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Worldview

e Running processes make
operating system
requests

Process

e Changes to trusted
. computing base done via
system calls these requests

perating

SR o Attacker subverts

process to generate
malicious requests
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Model-Based Intrusion Detection

e Detect deviations from
normal execution
User Process behavior

e Dyck model

— Defines allowed sequences
of system calls

gers‘“”g — Context sensitive for high
yStefm precision
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New Contributions

e Model precision:

— Context-sensitive data-flow analysis for system call
argument recovery

— Environment-sensitive program models
— 77% to 100% gain in model precision

 Model evaluation:
— Average reachability measure

e Static analysis infrastructure:
— Model construction for dynamically-linked binaries
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Community Context

e Commercial

— Startup company by Chieuh & Hsu (SUNY Stony Brook)
e Rether Networks

— Control-flow restrictions similar to ours
— Improperly handle indirect function calls
— No data-flow analysis

e Academic

— Dyck model Is most advanced & precise statically-
constructed control-flow model

— Most advanced data-flow analysis

— Our analyses designed to counter attacks proposed by
Wagner (UCB), Reiter & Song (CMU), McHugh (CERT)

— Collaborate with Wenke Lee (Georgia Tech)
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Data-Flow Analysis

e System-call argument recovery

— Constrain system-call arguments to only data values
used In program code

e Track flows of data possible in program
execution

— Previous context-insensitive analysis loses precision
at points of execution convergence
— New context-sensitive analysis preserves precision

e Assoclated arguments
e Unknown arguments
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Execution Convergence

call-site 1 call-site 2
open(“/etc/passwd”, O _ RDONLY) @ open(“/tmp/scratch”, O RDWR)

User Program

C Library

open wrapper entry

open system call trap
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Context-Insensitive Data-Flow Analysis

Argument 1 analysis

call-site 1 call-site 2
open(“/etc/passwd”, O _ RDONLY) @ open(“/tmp/scratch”, O RDWR)

“/etc/passwd” “/tmp/scratch”

open wrapper entry

{ “/etc/passwd”,
“/tmp/scratch”

open system call trap
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Context-Insensitive Data-Flow Analysis

Argument 2 analysis

call-site 1 call-site 2
open(“/etc/passwd”, O _ RDONLY) @ open(“/tmp/scratch”, O RDWR)

open wrapper entry

O_RDONLY,
O RDWR

open system call trap
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Context-Insensitive Data-Flow Analysis

Argument associations are lost

call-site 1 call-site 2
open(“/etc/passwd”, O _ RDONLY) @ open(“/tmp/scratch”, O RDWR)

open wrapper entry

{ “/etc/passwd”,

O _RDONLY, }
“/tmp/scratch”

O_RDWR

open system call trap open(“/etc/passwd”, O RDWR)
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Context-Insensitive Data-Flow Analysis

Unknown values destroy information

call-site 1 call-site 2
open(“/etc/passwd”, O RDONLY) open(tempfile, O RDWR)

“/etc/passwd” unknown

open wrapper entry

open system call trap
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Context-Sensitive Data-Flow Analysis

e Model construction

— Annotate argument values with calling context
passing those arguments

— Annotated values flow through program to system
call trap sites

e Model enforcement

— ldentify calling context by reading function call site
addresses from call stack

— Enforce argument constraints specific to context
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Context-Sensitive Data-Flow Analysis

Argument 1 analysis

call-site 1 call-site 2
open(“/etc/passwd”, O _ RDONLY) @ open(“/tmp/scratch”, O RDWR)

“/etc/passwd”
via site 1

“/tmp/scratch”
via site 2

open wrapper entry

{ “/etc/passwd” via site 1,
“/tmp/scratch” via site 2

open system call trap
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Context-Sensitive Data-Flow Analysis

Context information preserves argument associations

call-site 1 call-site 2
open(“/etc/passwd”, O _ RDONLY) @ open(“/tmp/scratch”, O RDWR)

open wrapper entry

{ “/etc/passwd” via site 1,

O_RDONLY via site 1, }
“/tmp/scratch” via site 2

O_RDWR via site 2

open system call trap
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Context-Sensitive Data-Flow Analysis

Unknown values do not destroy information

call-site 1 call-site 2
open(“/etc/passwd”, O RDONLY) open(tempfile, O RDWR)

unknown
via site 2

“/etc/passwd”
via site 1

open wrapper entry

“/etc/passwd” via site 1

open system call trap
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Environment-Sensitive Models

e Three classes of data values used In programs

— Static value: not based on input
open(““/tmp/file”, O RDWR);

— Input known when program loaded for execution

char *tempfile = tempnam(getenv(“TMP?), “file”’);
open(tempfile, O RDWR);

— Input not known until after execution begins
fgets(tmpfile, 100, stdin);
open(tmpfile, O RDWR);
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Environment-Sensitive Models

e Environment procmail -t
— Command-line  Requeues failed messages
parameters rather than bouncing to
— Environment variables sender

— Configuration files
httpd -d <pathname>

e Environment-sensitive e Specifies value of server root
models restrict allowed directory

execution given
environment values
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Environment-Sensitive Models

e Actual program execution
INn environment e

Le
3 Actual e Statically-constructed
@ Program Execution model
L —
: Environment s ULe

eckE

Sensitive

e Environment-sensitive
model

tatically-Constructed

L,= L cLs
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Environment-Sensitive Models

e Construction: build model template
— System-call arguments
— Program branch behavior

char *tempfile = tempnam(getenv(“TMP*?), “file”);

if (getopt(argc, argv, “L”) == <L) {
open(tempfile, O RDWR);

ks

L+ L-

open(“[TMP]/.*”, O_RDWR)
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Environment-Sensitive Models

e Enforcement: instantiate model In current
environment

— Update system-call arguments
— Prune unreachable paths

set TMP=/tmp

L+ L-

open(“[TMP]/.*”, O_RDWR)
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Environment-Sensitive Models

e Enforcement: instantiate model In current
environment

— Update system-call arguments
— Prune unreachable paths

set TMP=/tmp
./a.out -L

L+ L-

open(*““/tmp/.*”, O _RDWR)
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Environment-Sensitive Models

e Enforcement: instantiate model In current
environment

— Update system-call arguments
— Prune unreachable paths

set TMP=/tmp
./a.out -L

open(*““/tmp/.*”, O _RDWR)
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Environment-Sensitive Models

e Enforcement: instantiate model In current
environment

— Update system-call arguments
— Prune unreachable paths

p
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set TMP=/tmp
./a.out



Average Reachability Measure

e Average opportunity to undetectably insert
malicious system call into system call stream

open

e Context-free reachability suitable for models
with function call & return events

e Implemented using WPDS++ library

[CMU/UW MURI & ONR contract to GrammaTech]
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Test Programs

Number of

Program Instructions
procmail 374,103
mailx 207,977
gzip 196, 242
cat 185,844
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3.5

1.5

Average Reachability Measure
H

Analyses Improve Model Precision

O Dyck Model
B Context-Insensitive Argument Recovery -
[J Context-Sensitive Argument Recovery
O Environment Sensitive

procmail mailx (send)  mailx (receive) gzip cat
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Questions



