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Worldview
• Running processes make 

operating system 
requests

• Changes to trusted 
computing base done via 
these requests

• Attacker subverts 
process to generate 
malicious requests

Operating
System

Process

system calls

Trusted computing base
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Model-Based Intrusion Detection
• Detect deviations from 

normal execution 
behavior

• Dyck model
– Defines allowed sequences 

of system calls

– Context sensitive for high 
precision

Operating
System

User Process
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New Contributions
• Model precision:

– Context-sensitive data-flow analysis for system call 
argument recovery

– Environment-sensitive program models

– 77% to 100% gain in model precision

• Model evaluation:
– Average reachability measure

• Static analysis infrastructure:
– Model construction for dynamically-linked binaries
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Community Context
• Commercial

– Startup company by Chieuh & Hsu (SUNY Stony Brook)
• Rether Networks

– Control-flow restrictions similar to ours
– Improperly handle indirect function calls
– No data-flow analysis

• Academic
– Dyck model is most advanced & precise statically-

constructed control-flow model
– Most advanced data-flow analysis
– Our analyses designed to counter attacks proposed by 

Wagner (UCB), Reiter & Song (CMU), McHugh (CERT)
– Collaborate with Wenke Lee (Georgia Tech)
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Data-Flow Analysis
• System-call argument recovery

– Constrain system-call arguments to only data values 
used in program code

• Track flows of data possible in program 
execution
– Previous context-insensitive analysis loses precision 

at points of execution convergence

– New context-sensitive analysis preserves precision
• Associated arguments

• Unknown arguments
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C Library

User Program

Execution Convergence

open system call trap

call-site 2

open(“/tmp/scratch”, O_RDWR)open(“/etc/passwd”, O_RDONLY)

call-site 1

open wrapper entry
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Context-Insensitive Data-Flow Analysis

open system call trap

call-site 2

open(“/tmp/scratch”, O_RDWR)open(“/etc/passwd”, O_RDONLY)

call-site 1

open wrapper entry

“/etc/passwd” “/tmp/scratch”

“/etc/passwd”,
“/tmp/scratch”}{

Argument 1 analysis
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Context-Insensitive Data-Flow Analysis

open system call trap

call-site 2

open(“/tmp/scratch”, O_RDWR)open(“/etc/passwd”, O_RDONLY)

call-site 1

open wrapper entry

O_RDONLY O_RDWR

O_RDONLY,
O_RDWR }{

Argument 2 analysis
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Context-Insensitive Data-Flow Analysis

open system call trap

call-site 2

open(“/tmp/scratch”, O_RDWR)open(“/etc/passwd”, O_RDONLY)

call-site 1

open wrapper entry

O_RDONLY,
O_RDWR }{“/etc/passwd”,

“/tmp/scratch”}{
open(“/etc/passwd”, O_RDWR)

Argument associations are lost
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Context-Insensitive Data-Flow Analysis

open system call trap

call-site 2

open(tempfile, O_RDWR)open(“/etc/passwd”, O_RDONLY)

call-site 1

open wrapper entry

“/etc/passwd” unknown

unknown

Unknown values destroy information
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Context-Sensitive Data-Flow Analysis

• Model construction
– Annotate argument values with calling context 

passing those arguments

– Annotated values flow through program to system 
call trap sites

• Model enforcement
– Identify calling context by reading function call site 

addresses from call stack

– Enforce argument constraints specific to context
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Context-Sensitive Data-Flow Analysis

open system call trap

call-site 2

open(“/tmp/scratch”, O_RDWR)open(“/etc/passwd”, O_RDONLY)

call-site 1

open wrapper entry

“/etc/passwd”
via site 1

“/tmp/scratch”
via site 2

“/etc/passwd” via site 1,
“/tmp/scratch” via site 2 }{

Argument 1 analysis
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Context-Sensitive Data-Flow Analysis

open system call trap

call-site 2

open(“/tmp/scratch”, O_RDWR)open(“/etc/passwd”, O_RDONLY)

call-site 1

open wrapper entry

“/etc/passwd” via site 1,
“/tmp/scratch” via site 2 }{

Context information preserves argument associations

O_RDONLY via site 1,
O_RDWR via site 2 }{
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Context-Sensitive Data-Flow Analysis

open system call trap

call-site 2

open(tempfile, O_RDWR)open(“/etc/passwd”, O_RDONLY)

call-site 1

open wrapper entry

“/etc/passwd”
via site 1

unknown
via site 2

“/etc/passwd” via site 1

Unknown values do not destroy information
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Environment-Sensitive Models
• Three classes of data values used in programs

– Static value: not based on input
open(“/tmp/file”, O_RDWR);

– Input known when program loaded for execution
char *tempfile = tempnam(getenv(“TMP”), “file”);
open(tempfile, O_RDWR);

– Input not known until after execution begins
fgets(tmpfile, 100, stdin);
open(tmpfile, O_RDWR);

Environment
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Environment-Sensitive Models
• Environment

– Command-line 
parameters

– Environment variables

– Configuration files

• Environment-sensitive 
models restrict allowed 
execution given 
environment values

procmail -t
• Requeues failed messages 

rather than bouncing to 
sender

httpd -d <pathname>
• Specifies value of server root 

directory
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Environment-Sensitive Models
• Actual program execution 

in environment e

• Statically-constructed 
model

• Environment-sensitive 
model
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Environment-Sensitive Models
• Construction: build model template

– System-call arguments

– Program branch behavior

char *tempfile = tempnam(getenv(“TMP”), “file”);
if (getopt(argc, argv, “L”) == ‘L’) {

open(tempfile, O_RDWR);
}

open(“[TMP]/.*”, O_RDWR)

L-L+
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Environment-Sensitive Models
• Enforcement: instantiate model in current 

environment
– Update system-call arguments

– Prune unreachable paths

set TMP=/tmp

open(“[TMP]/.*”, O_RDWR)

L-L+
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Environment-Sensitive Models
• Enforcement: instantiate model in current 

environment
– Update system-call arguments

– Prune unreachable paths

set TMP=/tmp
./a.out -L

open(“/tmp/.*”, O_RDWR)

L-L+
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Environment-Sensitive Models
• Enforcement: instantiate model in current 

environment
– Update system-call arguments

– Prune unreachable paths

set TMP=/tmp
./a.out -L

open(“/tmp/.*”, O_RDWR)

ε
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Environment-Sensitive Models
• Enforcement: instantiate model in current 

environment
– Update system-call arguments

– Prune unreachable paths

set TMP=/tmp
./a.out

ε
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Average Reachability Measure
• Average opportunity to undetectably insert 

malicious system call into system call stream

• Context-free reachability suitable for models 
with function call & return events

• Implemented using WPDS++ library
[CMU/UW MURI & ONR contract to GrammaTech]

getpid
open

chown
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Test Programs

185,844cat

196,242gzip

207,977mailx

374,103procmail

Number of 
InstructionsProgram
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Analyses Improve Model Precision
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