Environment-Sensitive
Intrusion Detection

Jonathon T. Giffin Somesh Jha Barton P. Miller

Wisconsin Safety Analyzer
University of Wisconsin

{giffin, jha,bart}@cs.wisc.edu

Worldview

e Running processes make
operating system
requests

Process

e Changes to trusted
. computing base done via
system calls these requests

perating

SR o Attacker subverts

process to generate
malicious requests

14 February 2005 Jonathon Giffin 2

Model-Based Intrusion Detection

e Detect deviations from
normal execution
User Process behavior

e Dyck model

— Defines allowed sequences
of system calls

gers‘“”g — Context sensitive for high
yStefm precision

14 February 2005 Jonathon Giffin 3

New Contributions

e Model precision:

— Context-sensitive data-flow analysis for system call
argument recovery

— Environment-sensitive program models
— 77% to 100% gain in model precision

 Model evaluation:
— Average reachability measure

e Static analysis infrastructure:
— Model construction for dynamically-linked binaries

14 February 2005 Jonathon Giffin 4

Community Context

e Commercial

— Startup company by Chieuh & Hsu (SUNY Stony Brook)
e Rether Networks

— Control-flow restrictions similar to ours
— Improperly handle indirect function calls
— No data-flow analysis

e Academic

— Dyck model Is most advanced & precise statically-
constructed control-flow model

— Most advanced data-flow analysis

— Our analyses designed to counter attacks proposed by
Wagner (UCB), Reiter & Song (CMU), McHugh (CERT)

— Collaborate with Wenke Lee (Georgia Tech)

14 February 2005 Jonathon Giffin 5

Data-Flow Analysis

e System-call argument recovery

— Constrain system-call arguments to only data values
used In program code

e Track flows of data possible in program
execution

— Previous context-insensitive analysis loses precision
at points of execution convergence
— New context-sensitive analysis preserves precision

e Assoclated arguments
e Unknown arguments

14 February 2005 Jonathon Giffin 6

Execution Convergence

call-site 1 call-site 2
open(“/etc/passwd”, O _ RDONLY) @ open(“/tmp/scratch”, O RDWR)

User Program

C Library

open wrapper entry

open system call trap

14 February 2005 Jonathon Giffin 7

Context-Insensitive Data-Flow Analysis

Argument 1 analysis

call-site 1 call-site 2
open(“/etc/passwd”, O _ RDONLY) @ open(“/tmp/scratch”, O RDWR)

“/etc/passwd” “/tmp/scratch”

open wrapper entry

{ “/etc/passwd”,
“/tmp/scratch”

open system call trap

14 February 2005 Jonathon Giffin 8

Context-Insensitive Data-Flow Analysis

Argument 2 analysis

call-site 1 call-site 2
open(“/etc/passwd”, O _ RDONLY) @ open(“/tmp/scratch”, O RDWR)

open wrapper entry

O_RDONLY,
O RDWR

open system call trap

14 February 2005 Jonathon Giffin 9

Context-Insensitive Data-Flow Analysis

Argument associations are lost

call-site 1 call-site 2
open(“/etc/passwd”, O _ RDONLY) @ open(“/tmp/scratch”, O RDWR)

open wrapper entry

{ “/etc/passwd”,

O _RDONLY, }
“/tmp/scratch”

O_RDWR

open system call trap open(“/etc/passwd”, O RDWR)

14 February 2005 Jonathon Giffin 10

Context-Insensitive Data-Flow Analysis

Unknown values destroy information

call-site 1 call-site 2
open(“/etc/passwd”, O RDONLY) open(tempfile, O RDWR)

“/etc/passwd” unknown

open wrapper entry

open system call trap

14 February 2005 Jonathon Giffin 11

Context-Sensitive Data-Flow Analysis

e Model construction

— Annotate argument values with calling context
passing those arguments

— Annotated values flow through program to system
call trap sites

e Model enforcement

— ldentify calling context by reading function call site
addresses from call stack

— Enforce argument constraints specific to context

14 February 2005 Jonathon Giffin 12

Context-Sensitive Data-Flow Analysis

Argument 1 analysis

call-site 1 call-site 2
open(“/etc/passwd”, O _ RDONLY) @ open(“/tmp/scratch”, O RDWR)

“/etc/passwd”
via site 1

“/tmp/scratch”
via site 2

open wrapper entry

{ “/etc/passwd” via site 1,
“/tmp/scratch” via site 2

open system call trap

14 February 2005 Jonathon Giffin 13

Context-Sensitive Data-Flow Analysis

Context information preserves argument associations

call-site 1 call-site 2
open(“/etc/passwd”, O _ RDONLY) @ open(“/tmp/scratch”, O RDWR)

open wrapper entry

{ “/etc/passwd” via site 1,

O_RDONLY via site 1, }
“/tmp/scratch” via site 2

O_RDWR via site 2

open system call trap

14 February 2005 Jonathon Giffin 14

Context-Sensitive Data-Flow Analysis

Unknown values do not destroy information

call-site 1 call-site 2
open(“/etc/passwd”, O RDONLY) open(tempfile, O RDWR)

unknown
via site 2

“/etc/passwd”
via site 1

open wrapper entry

“/etc/passwd” via site 1

open system call trap

14 February 2005 Jonathon Giffin 15

Environment-Sensitive Models

e Three classes of data values used In programs

— Static value: not based on input
open(““/tmp/file”, O RDWR);

— Input known when program loaded for execution

char *tempfile = tempnam(getenv(“TMP?), “file”’);
open(tempfile, O RDWR);

— Input not known until after execution begins
fgets(tmpfile, 100, stdin);
open(tmpfile, O RDWR);

14 February 2005 Jonathon Giffin 16

Environment-Sensitive Models

e Environment procmail -t
— Command-line Requeues failed messages
parameters rather than bouncing to
— Environment variables sender

— Configuration files
httpd -d <pathname>

e Environment-sensitive e Specifies value of server root
models restrict allowed directory

execution given
environment values

14 February 2005 Jonathon Giffin 17

Environment-Sensitive Models

e Actual program execution
INn environment e

Le
3 Actual e Statically-constructed
@ Program Execution model
L —
: Environment s ULe

eckE

Sensitive

e Environment-sensitive
model

tatically-Constructed

L,= L cLs

14 February 2005 Jonathon Giffin 18

Environment-Sensitive Models

e Construction: build model template
— System-call arguments
— Program branch behavior

char *tempfile = tempnam(getenv(“TMP*?), “file”);

if (getopt(argc, argv, “L”) == <L) {
open(tempfile, O RDWR);

ks

L+ L-

open(“[TMP]/.*”, O_RDWR)

14 February 2005 Jonathon Giffin 19

Environment-Sensitive Models

e Enforcement: instantiate model In current
environment

— Update system-call arguments
— Prune unreachable paths

set TMP=/tmp

L+ L-

open(“[TMP]/.*”, O_RDWR)

14 February 2005 Jonathon Giffin 20

Environment-Sensitive Models

e Enforcement: instantiate model In current
environment

— Update system-call arguments
— Prune unreachable paths

set TMP=/tmp
./a.out -L

L+ L-

open(*““/tmp/.*”, O _RDWR)

14 February 2005 Jonathon Giffin 21

Environment-Sensitive Models

e Enforcement: instantiate model In current
environment

— Update system-call arguments
— Prune unreachable paths

set TMP=/tmp
./a.out -L

open(*““/tmp/.*”, O _RDWR)

14 February 2005 Jonathon Giffin 22

Environment-Sensitive Models

e Enforcement: instantiate model In current
environment

— Update system-call arguments
— Prune unreachable paths

p

14 February 2005 Jonathon Giffin 23

set TMP=/tmp
./a.out

Average Reachability Measure

e Average opportunity to undetectably insert
malicious system call into system call stream

open

e Context-free reachability suitable for models
with function call & return events

e Implemented using WPDS++ library

[CMU/UW MURI & ONR contract to GrammaTech]

14 February 2005 Jonathon Giffin 24

14 February 2005

Test Programs

Number of

Program Instructions
procmail 374,103
mailx 207,977
gzip 196, 242
cat 185,844

Jonathon Giffin

25

3.5

1.5

Average Reachability Measure
H

Analyses Improve Model Precision

O Dyck Model
B Context-Insensitive Argument Recovery -
[J Context-Sensitive Argument Recovery
O Environment Sensitive

procmail mailx (send) mailx (receive) gzip cat

14 February 2005 Jonathon Giffin 26

Questions

