
Environment-Sensitive
Intrusion Detection

Jonathon T. Giffin Somesh Jha Barton P. Miller

Wisconsin Safety Analyzer
University of Wisconsin

{giffin,jha,bart}@cs.wisc.edu

14 February 2005 Jonathon Giffin 2

Worldview
• Running processes make

operating system
requests

• Changes to trusted
computing base done via
these requests

• Attacker subverts
process to generate
malicious requests

Operating
System

Process

system calls

Trusted computing base

14 February 2005 Jonathon Giffin 3

Model-Based Intrusion Detection
• Detect deviations from

normal execution
behavior

• Dyck model
– Defines allowed sequences

of system calls

– Context sensitive for high
precision

Operating
System

User Process

14 February 2005 Jonathon Giffin 4

New Contributions
• Model precision:

– Context-sensitive data-flow analysis for system call
argument recovery

– Environment-sensitive program models

– 77% to 100% gain in model precision

• Model evaluation:
– Average reachability measure

• Static analysis infrastructure:
– Model construction for dynamically-linked binaries

14 February 2005 Jonathon Giffin 5

Community Context
• Commercial

– Startup company by Chieuh & Hsu (SUNY Stony Brook)
• Rether Networks

– Control-flow restrictions similar to ours
– Improperly handle indirect function calls
– No data-flow analysis

• Academic
– Dyck model is most advanced & precise statically-

constructed control-flow model
– Most advanced data-flow analysis
– Our analyses designed to counter attacks proposed by

Wagner (UCB), Reiter & Song (CMU), McHugh (CERT)
– Collaborate with Wenke Lee (Georgia Tech)

14 February 2005 Jonathon Giffin 6

Data-Flow Analysis
• System-call argument recovery

– Constrain system-call arguments to only data values
used in program code

• Track flows of data possible in program
execution
– Previous context-insensitive analysis loses precision

at points of execution convergence

– New context-sensitive analysis preserves precision
• Associated arguments

• Unknown arguments

14 February 2005 Jonathon Giffin 7

C Library

User Program

Execution Convergence

open system call trap

call-site 2

open(“/tmp/scratch”, O_RDWR)open(“/etc/passwd”, O_RDONLY)

call-site 1

open wrapper entry

14 February 2005 Jonathon Giffin 8

Context-Insensitive Data-Flow Analysis

open system call trap

call-site 2

open(“/tmp/scratch”, O_RDWR)open(“/etc/passwd”, O_RDONLY)

call-site 1

open wrapper entry

“/etc/passwd” “/tmp/scratch”

“/etc/passwd”,
“/tmp/scratch”}{

Argument 1 analysis

14 February 2005 Jonathon Giffin 9

Context-Insensitive Data-Flow Analysis

open system call trap

call-site 2

open(“/tmp/scratch”, O_RDWR)open(“/etc/passwd”, O_RDONLY)

call-site 1

open wrapper entry

O_RDONLY O_RDWR

O_RDONLY,
O_RDWR }{

Argument 2 analysis

14 February 2005 Jonathon Giffin 10

Context-Insensitive Data-Flow Analysis

open system call trap

call-site 2

open(“/tmp/scratch”, O_RDWR)open(“/etc/passwd”, O_RDONLY)

call-site 1

open wrapper entry

O_RDONLY,
O_RDWR }{“/etc/passwd”,

“/tmp/scratch”}{
open(“/etc/passwd”, O_RDWR)

Argument associations are lost

14 February 2005 Jonathon Giffin 11

Context-Insensitive Data-Flow Analysis

open system call trap

call-site 2

open(tempfile, O_RDWR)open(“/etc/passwd”, O_RDONLY)

call-site 1

open wrapper entry

“/etc/passwd” unknown

unknown

Unknown values destroy information

14 February 2005 Jonathon Giffin 12

Context-Sensitive Data-Flow Analysis

• Model construction
– Annotate argument values with calling context

passing those arguments

– Annotated values flow through program to system
call trap sites

• Model enforcement
– Identify calling context by reading function call site

addresses from call stack

– Enforce argument constraints specific to context

14 February 2005 Jonathon Giffin 13

Context-Sensitive Data-Flow Analysis

open system call trap

call-site 2

open(“/tmp/scratch”, O_RDWR)open(“/etc/passwd”, O_RDONLY)

call-site 1

open wrapper entry

“/etc/passwd”
via site 1

“/tmp/scratch”
via site 2

“/etc/passwd” via site 1,
“/tmp/scratch” via site 2 }{

Argument 1 analysis

14 February 2005 Jonathon Giffin 14

Context-Sensitive Data-Flow Analysis

open system call trap

call-site 2

open(“/tmp/scratch”, O_RDWR)open(“/etc/passwd”, O_RDONLY)

call-site 1

open wrapper entry

“/etc/passwd” via site 1,
“/tmp/scratch” via site 2 }{

Context information preserves argument associations

O_RDONLY via site 1,
O_RDWR via site 2 }{

14 February 2005 Jonathon Giffin 15

Context-Sensitive Data-Flow Analysis

open system call trap

call-site 2

open(tempfile, O_RDWR)open(“/etc/passwd”, O_RDONLY)

call-site 1

open wrapper entry

“/etc/passwd”
via site 1

unknown
via site 2

“/etc/passwd” via site 1

Unknown values do not destroy information

14 February 2005 Jonathon Giffin 16

Environment-Sensitive Models
• Three classes of data values used in programs

– Static value: not based on input
open(“/tmp/file”, O_RDWR);

– Input known when program loaded for execution
char *tempfile = tempnam(getenv(“TMP”), “file”);
open(tempfile, O_RDWR);

– Input not known until after execution begins
fgets(tmpfile, 100, stdin);
open(tmpfile, O_RDWR);

Environment

14 February 2005 Jonathon Giffin 17

Environment-Sensitive Models
• Environment

– Command-line
parameters

– Environment variables

– Configuration files

• Environment-sensitive
models restrict allowed
execution given
environment values

procmail -t
• Requeues failed messages

rather than bouncing to
sender

httpd -d <pathname>
• Specifies value of server root

directory

14 February 2005 Jonathon Giffin 18

Environment-Sensitive Models
• Actual program execution

in environment e

• Statically-constructed
model

• Environment-sensitive
model

eL

U
Ee

eS LL
∈

=

S
EEe

eA LLL ⊆=
⊆∈
U

'

Statically-Constructed
Model

Environment
Sensitive

Actual
Program Execution

Le

LA

LS

14 February 2005 Jonathon Giffin 19

Environment-Sensitive Models
• Construction: build model template

– System-call arguments

– Program branch behavior

char *tempfile = tempnam(getenv(“TMP”), “file”);
if (getopt(argc, argv, “L”) == ‘L’) {

open(tempfile, O_RDWR);
}

open(“[TMP]/.*”, O_RDWR)

L-L+

14 February 2005 Jonathon Giffin 20

Environment-Sensitive Models
• Enforcement: instantiate model in current

environment
– Update system-call arguments

– Prune unreachable paths

set TMP=/tmp

open(“[TMP]/.*”, O_RDWR)

L-L+

14 February 2005 Jonathon Giffin 21

Environment-Sensitive Models
• Enforcement: instantiate model in current

environment
– Update system-call arguments

– Prune unreachable paths

set TMP=/tmp
./a.out -L

open(“/tmp/.*”, O_RDWR)

L-L+

14 February 2005 Jonathon Giffin 22

Environment-Sensitive Models
• Enforcement: instantiate model in current

environment
– Update system-call arguments

– Prune unreachable paths

set TMP=/tmp
./a.out -L

open(“/tmp/.*”, O_RDWR)

ε

14 February 2005 Jonathon Giffin 23

Environment-Sensitive Models
• Enforcement: instantiate model in current

environment
– Update system-call arguments

– Prune unreachable paths

set TMP=/tmp
./a.out

ε

14 February 2005 Jonathon Giffin 24

Average Reachability Measure
• Average opportunity to undetectably insert

malicious system call into system call stream

• Context-free reachability suitable for models
with function call & return events

• Implemented using WPDS++ library
[CMU/UW MURI & ONR contract to GrammaTech]

getpid
open

chown

14 February 2005 Jonathon Giffin 25

Test Programs

185,844cat

196,242gzip

207,977mailx

374,103procmail

Number of
InstructionsProgram

14 February 2005 Jonathon Giffin 26

Analyses Improve Model Precision

0

0.5

1

1.5

2

2.5

3

3.5

procmail mailx (send) mailx (receive) gzip cat

A
ve

ra
ge

 R
ea

ch
ab

ili
ty

 M
ea

su
re

Dyck Model
Context-Insensitive Argument Recovery
Context-Sensitive Argument Recovery
Environment Sensitive

Questions

