Attacks and Defenses

Barton Miller
Jonathon Giffin, Somesh Jha

University of Wisconsin
{bart,gi1ffin, Jha}llcs.wisc.edu

WiSA - Wisconsin Safety Analyzer

http://www.cs.wisc.edu/wisa

Overview

Attacks

Server attack (conventional host-based IDS)
Remote execution attack (remote IDS)

Model-based intrusion detection

Constructing program models using static binary
analysis

Accuracy/performance tradeoff in prior models
Our new Dyck model solves tradeoff

Data-flow analysis to recover arguments

Milestones

13 November 2003 WiSA - Barton P. Miller 2

Worldview

* Running processes
make operating
system requests

* Changes to trusted
computing base done
via these requests

» Attacker subverts
process to generate

malicious requests
Trusted computing base

13 November 2003 WiSA - Barton P. Miller 3

Example: Server Attack

Server
Process

| %_
ystem calls

/

Server Host
Trusted computing base

13 November 2003

- Goal: Execute malicious
code in the server

WiSA - Barton P. Miller 4

Example: Remote Execution Attack

Shadow Process 1 system calls User Process

giffin nobody

Submitting Host Remote Execution Host
Trusted computing base

13 November 2003 WiSA - Barton P. Miller 5

Example: Remote Execution Attack

Malicious

Shadow Process system calls
Y User Process

-

giffin nobody

Submitting Host Remote Execution Host
Trusted computing base

13 November 2003 WiSA - Barton P. Miller 6

Example: Remote Execution Attack

Innocent

Shadow Process _ System calls

User Process
nobody

bart

rm -rf *

P attach

Submitting Host Remote Execution Host
Trusted computing base

13 November 2003 WiSA - Barton P. Miller 7

Our Objective

- Detect malicious
activity before harm
caused to local machine

+ ... before operating
system executes

tys’fem calls malicious system call

13 November 2003 WiSA - Barton P. Miller 8

Model-Based Intrusion Detection

* Build model of correct
program behavior

User Process

- Runtime monitor
ensures execution does
hot violate model

* Runtime monitor must
be part of trusted
computing base

Trusted computing base

13 November 2003 WiSA - Barton P. Miller 9

Automated Model Construction

* Dynamic analysis
- Under-approximates
correct behavior

- False alarms

Dynamic - Forrest, Sekar, Lee
Analysis

+ Static analysis

- Over-approximates
correct behavior

Static Analysis - False negatives
- Wagner&Dean, our work

- Previous attempts at
precise models
problematic

Correct Process
Behavior

13 November 2003 WiSA - Barton P. Miller 10

Automated Model Construction

+ Static analysis
challenge

- Design an efficient,
context-sensitive model

Dynamic
Analysis
e - Answers
or.rl.BeeChavir‘cg)r'C ; - Dyck model
Static Anlysis - Argument dependency
recovery

13 November 2003 WiSA - Barton P. Miller 11

Our Approach

* Build model of correct program behavior
- Static analysis of binary code

- Construct an automaton modeling all system call
sequences the program can generate

- Ensure execution does not violate model

- Use automaton to monitor system calls.

- If automaton reaches an invalid state, then an
infrusion attempt occurred.

13 November 2003 WiSA - Barton P. Miller 12

Model-Based Intrusion Detection

User
Program

L

Y { %

Rewritten
Program

13 November 2003 WiSA - Barton P. Miller 13

Model-Based Intrusion Detection

* Build model of correct
program behavior

Rewritten
Process

- Runtime monitor
ensures execution does
hot violate model

* Runtime monitor must
be part of trusted
computing base

Trusted computing base

13 November 2003 WiSA - Barton P. Miller 14

Model Construction
Program
>

) %

Rewritten Program
Program Model
: Control
PBmary Elow Local Global
rogram A Aut
9 Graphs utomata utomaton

13 November 2003 WiSA - Barton P. Miller 15

Code Example

link wrap: void
save %sp, -596, %sp link wrap (char *f, char *t)
call unlink {
WY Il el char msg[BUFFSIZE] ;
mov %il, %ol
call link

link ;
mov %10, %00 eladlebaafe)

add %sp, 56, %00 link (£, t);

mov 50. %ol snprintf (msg, BUFFSIZE,

sethi %hi(str), %02 “Linked %s to %s, £, t);

call snprintf log (msgq) ;
or %02, %lo(str), %02 }

call log

add %sp, 56, %00

ret

restore

13 November 2003 WiSA - Barton P. Miller 16

Local Automaton

void
link wrap(char *f, char *t)

{
char msg[BUFFSIZE] ;

unlink(?)

unlink(t) ;

link (£, t);

link(?,?) snprintf (msg, BUFFSIZE,
“Linked %s to %s, £, t);

log (msg) ;

13 November 2003 WiSA - Barton P. Miller 17

NFA Model

unlink(?) stat(‘“/sbin/mailconf)

link(?2,?) log

exec(“/sbin/mailconf)

<o

13 November 2003 WiSA - Barton P. Miller 18

Impossible Paths

unlink("/sbin/mailconf");
link("/bin/sh", “/sbin/mailconf");
write(-1, O, 0);
exec("/sbin/mailconf");

unlink(?)

link(?,?)

write(?,?2,?)
exec(“/sbin/mailconf)

0
o

13 November 2003 WiSA - Barton P. Miller 19

Adding Context Sensitivity

- Model call & return behavior of function calls

» Use pushdown automaton (PDA) stack to
model program’s call stack

* Model is sensitive to calling context of each
system call

13 November 2003 WiSA - Barton P. Miller 20

PDA Model

unlink(?) stat(‘“/sbin/mailconf)

e
push Y

write(?,?,?

o
S

push X

link(?,?)

e
pop Y

€] pop X exec(“/sbin/mailconf”)

L 4 @

13 November 2003 WiSA - Barton P. Miller 21

PDA State-Explosion

+ e-edge identifiers maintained on a stack

- Stack non-determinism is expensive -
- Unbounded stacks add complexity
- Best-known algorithm: cubic in automaton size

» Unusable as program model

- Orders of magnitude slowing of application
* [Wagner et al. 01, Giffin et al. 02]

- Conclusion: only weaker NFA models have
reasonable performance

13 November 2003 WiSA - Barton P. Miller 22

Dyck Model

» Efficiently tracks calling context

+ As powerful as full PDA
» Efficiency approaches NFA model

* Implication: accuracy & performance can
coexist

- Invalidates previous conclusion

13 November 2003 WiSA - Barton P. Miller

23

Dyck Model

» Bracketed context-free language
- [Ginsberg & Harrison 67]

stat [y write], exec
unlink link [y write]y

* Matching brackets are alphabet symbols
- Exposes stack operations to runtime monitor
- Rewrite binary to generate bracket symbols

- [Giffin et al. 04]

13 November 2003 WiSA - Barton P. Miller 24

Dyck Model

unlink(?) stat(‘“/sbin/mailconf)

[YIY

write(?,?,?

e

1y Y
€1« X exec(“/sbin/mailconf”)

L 4 @

13 November 2003 WiSA - Barton P. Miller 25

Binary Rewriting

User
Program
Rewritten Program

Program Model

Binary Rewritten
Program Binary

13 November 2003 WiSA - Barton P. Miller

26

Binary Rewriting

+ Insert code to void
generate bracket link_wrap(char *f, char *t)
symbols around ¢

function call sites

* Notify monitor of stack unlink(t);

activity link (£, t);
snprintf (msg, BUFFSIZE,

“Linked %s to %s, £, t);
leftX() ;

log (msgq) ;
rightX() ;

char msg[BUFFSIZE];

13 November 2003 WiSA - Barton P. Miller 27

Data-Flow Analysis

» Can use knowledge of argument values to
make model more precise.

» Use data-flow analysis of arguments:

- Argument recovery
- Sets of constant values
- Sets of regular expression strings

- Argument dependencies upon system call return
values

- System call return values that control branching

13 November 2003 WiSA - Barton P. Miller 28

Argument Dependencies

fdl = open(“/home/foo”, -
O RDWR) ;
- open,(“/home/foo”, O_RDWR)
fd2 = open(“/etc/passwd”,
O RDWR) ;

read (fd2, buf, BUFSIZE) ;
write (fdl, buf, BUFSIZE) ;

open,(“/etc/passwd”, O_RDWR)

read(=ogen,, ?, BUFSIZE)

open, () = 3;

write(=open,, ?, BUFSIZE)
open, ()

I
IS

13 November 2003 WiSA - Barton P. Miller LY

Test Programs

Number of
Program Instructions
procmail 107,246
gzip 56,710
eject 70,177
fdformat 67,874
cat 54,028

13 November 2003 WiSA

- Barton P. Miller

30

Runtime Overheads

Execution times in seconds

Program | Base NFA | Increase| Dyck |Increase
procmail 0.42] 0.37 0% 0.40 0%
gzip 7.02] 6.61 0% 7.16 2%
eject 5.14 5.17 1% 5.22 2%
fdformat | 112.41]|112.36 0%| 112.38 0%
cat 54.65| 56.32 35| 80.78 48%

13 November 2003 WiSA - Barton P. Miller 31

Accuracy Metric

» Average branching factor

getpid l

13 November 2003 WiSA - Barton P. Miller

32

Average Branching Factor

NFA and Dyck Model Accuracy

—_ —_ —_
O O -~ DN
|

O -~ NN O & O1 O N 00

procmail gzip eject fdformat

13 November 2003 WiSA - Barton P. Miller

33

Important Ideas

- Model-based intrusion detection forces
execution behavior to match model.

- Statically constructed program models
historically compromise accuracy for
efficiency.

* The Dyck model is the first efficient
context-sensitive specification.

13 November 2003 WiSA - Barton P. Miller

34

Milestones

Oct 02:
*Data-flow-sensitive March 03:
analysis ‘Invented Dyck model
Jan 02:
‘Bounded stack PDA

Jan 03:
*Smart binary code
Instrumentation

Feb 04.

-Static argument recovery ‘NDSS Paper

‘Binary code instrumentation

Aug 02:
*USENIX Security paper

»Interprocedural data-flow analysis
- Argument dependency recovery

Nov 01.

‘NFA & PDA
construction

- Call-site renaming

May 02: July 03:
-Began shared ‘Implemented kernel
object analysis trap monitoring

13 November 2003 WiSA - Barton P. Miller 35

Milestones

» Two conference papers

- J.T. Giffin, S. Jha, and B.P. Miller. Detecting
manipulated remote call streams. In 11th USENIX

Security Symposium, San Francisco, California,
August 2002.

- J.T. Giffin, S. Jha, and B.P. Miller. Efficient
context-sensitive intrusion detection. In 11th
Annual Network and Distributed Systems
Security Symposium (NDSS), San Diego,
California, February 2004.

13 November 2003 WiSA - Barton P. Miller 36

Milestones

Ongoing 2004:

*Formal modeling of attacks & July 04:
defenses *Recover arguments at
-Investigating tool to construct additional program points

attacks for better IDS testing

Feb 04.

» Support dynamic linking Ongoing 2004:
*Investigating hybrid
static/dynamic techniques

June 04:

*Move to BREW

infrastructure

13 November 2003 WiSA - Barton P. Miller 37

Collaboration with Wenke Lee

» Collaborated on static version of his dynamic
analysis work

- Compared with our Dyck model
- Developed static model formalisms

- Under submission: "Formalizing Sensitivity in
Static Analysis for Intrusion Detection”

* Future: research hybrid techniques
- New methods to recover calling context
- Combine static & dynamic analysis

13 November 2003 WiSA - Barton P. Miller 38

Attacks and Defenses

Barton Miller
Jonathon Giffin, Somesh Jha

University of Wisconsin
{bart,gi1ffin, Jha}llcs.wisc.edu

WiSA - Wisconsin Safety Analyzer

http://www.cs.wisc.edu/wisa

Architecture

EEL Analyzer

PUS""" Build Analyze | [Build Program | I Program
rogram CFGs Da’ra Flow Model Model

Rewrite

Rewritten

Generate p
Code rogram

13 November 2003 WiSA - Barton P. Miller 40

Architecture

IDA Pro Codesurfer Analyzer

; User Build Analyze | B[Build Program | I P rogram
rogram CFGs Data Flow Model Mode

BREW

T Rewritten
Code Program

13 November 2003 WiSA - Barton P. Miller 41

