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Overview
Attacks
• Server attack (conventional host-based IDS)
• Remote execution attack (remote IDS)

Model-based intrusion detection
• Constructing program models using static binary 

analysis
• Accuracy/performance tradeoff in prior models
• Our new Dyck model solves tradeoff
• Data-flow analysis to recover arguments

Milestones
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Worldview
• Running processes 

make operating 
system requests

• Changes to trusted 
computing base done 
via these requests

• Attacker subverts 
process to generate 
malicious requests

Operating
System

User Process

system calls

Trusted computing base
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Example: Server Attack

• Goal: Execute malicious 
code in the server

Operating
System

Server
Process

system calls

Trusted computing base

Server HostServer Host
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Example: Remote Execution Attack

Submitting HostSubmitting Host

Shadow Process
giffin

Remote Execution HostRemote Execution Host

User Process
nobody

system calls

Trusted computing base
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Example: Remote Execution Attack

Submitting HostSubmitting Host

Shadow Process
giffin

Remote Execution HostRemote Execution Host

Malicious
User Process

nobody

system calls

Lurker
Process
nobody

forkfork

Trusted computing base
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Trusted computing base

Example: Remote Execution Attack

Submitting HostSubmitting Host

Shadow Process
bart

Remote Execution HostRemote Execution Host

Innocent
User Process

nobody

system calls

Control remote
system calls

Lurker
Process
nobody

rm -rf *rm -rf *

attachattach
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Our Objective
• Detect malicious 

activity before harm 
caused to local machine

• … before operating 
system executes 
malicious system call

Operating
System

User Process

system calls
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Model-Based Intrusion Detection
• Build model of correct 

program behavior

• Runtime monitor 
ensures execution does 
not violate model

• Runtime monitor must 
be part of trusted 
computing base

Operating
System

Trusted computing base

User Process
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Static Analysis

Automated Model Construction
• Dynamic analysis

– Under-approximates 
correct behavior

– False alarms
– Forrest, Sekar, Lee

• Static analysis
– Over-approximates 

correct behavior
– False negatives
– Wagner&Dean, our work
– Previous attempts at 

precise models 
problematic

Correct Process
Behavior

Dynamic
Analysis
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Static Analysis

Automated Model Construction
• Static analysis 

challenge
– Design an efficient, 

context-sensitive model

• Answers
– Dyck model
– Argument dependency 

recovery

Correct Process
Behavior

Dynamic
Analysis
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Our Approach
• Build model of correct program behavior

– Static analysis of binary code
– Construct an automaton modeling all system call 

sequences the program can generate

• Ensure execution does not violate model
– Use automaton to monitor system calls.
– If automaton reaches an invalid state, then an 

intrusion attempt occurred.
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Model-Based Intrusion Detection

Analyzer

Program
Model

Rewritten
Program

User
Program
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Model-Based Intrusion Detection
• Build model of correct 

program behavior

• Runtime monitor 
ensures execution does 
not violate model

• Runtime monitor must 
be part of trusted 
computing base

Operating
System

Rewritten
Process

Trusted computing base
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Rewritten
Program

Program
Model

Model Construction

Analyzer

User
Program

Binary
Program

Control
Flow 

Graphs

Local
Automata

Global
Automaton
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Code Example
link_wrap:
save %sp, -596, %sp
call unlink
mov %i1, %o0
mov %i1, %o1
call link
mov %i0, %o0
add %sp, 56, %o0
mov 50, %o1
sethi %hi(str), %o2
call snprintf
or %o2, %lo(str), %o2
call log
add %sp, 56, %o0
ret
restore

void 
link_wrap(char *f, char *t)
{
char msg[BUFFSIZE];

unlink(t);
link(f, t);
snprintf(msg, BUFFSIZE,
“Linked %s to %s, f, t);

log(msg);
}
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Local Automaton
void 
link_wrap(char *f, char *t)
{
char msg[BUFFSIZE];

unlink(t);
link(f, t);
snprintf(msg, BUFFSIZE,
“Linked %s to %s, f, t);

log(msg);
}

link_wrap

unlink(?)

link(?,?)

log
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write(?,?,?)

logunlink(?)

link(?,?)

log

NFA Model

exec(“/sbin/mailconf”)

exec_wrap

stat(“/sbin/mailconf”)

ε

ε

ε

ε

log

link_wrap
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write(?,?,?)

unlink(?)

link(?,?)

Impossible Paths

exec(“/sbin/mailconf”)

ε

ε

unlink(“/sbin/mailconf”);
link(“/bin/sh”, “/sbin/mailconf”);
write(-1, 0, 0);
exec(“/sbin/mailconf”);
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Adding Context Sensitivity

• Model call & return behavior of function calls

• Use pushdown automaton (PDA) stack to 
model program’s call stack

• Model is sensitive to calling context of each 
system call
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pop X

push X

push Y

pop Y

write(?,?,?)

logunlink(?)

link(?,?)

PDA Model

exec(“/sbin/mailconf”)

stat(“/sbin/mailconf”)

ε

ε

ε

ε

link_wrap exec_wrap
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PDA State Explosion
• e-edge identifiers maintained on a stack

– Stack non-determinism is expensive
– Unbounded stacks add complexity
– Best-known algorithm: cubic in automaton size

• Unusable as program model
– Orders of magnitude slowing of application

• [Wagner et al. 01, Giffin et al. 02]
– Conclusion: only weaker NFA models have 

reasonable performance

X
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Dyck Model
• Efficiently tracks calling context

• As powerful as full PDA
• Efficiency approaches NFA model

• Implication: accuracy & performance can 
coexist
– Invalidates previous conclusion
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Dyck Model
• Bracketed context-free language

– [Ginsberg & Harrison 67]

stat [Y write ]Y exec
unlink link [X write ]X

• Matching brackets are alphabet symbols
– Exposes stack operations to runtime monitor
– Rewrite binary to generate bracket symbols
– [Giffin et al. 04]
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pop X

push X

push Y

pop Y

]X

[X

[Y

]Y

write(?,?,?)

logunlink(?)

link(?,?)

Dyck Model

exec(“/sbin/mailconf”)

stat(“/sbin/mailconf”)

ε

ε

ε

ε

link_wrap exec_wrap
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Binary Rewriting

Binary
Program

Rewritten
Binary

Rewritten
Program

Program
Model

Analyzer

User
Program
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Binary Rewriting
• Insert code to 

generate bracket 
symbols around 
function call sites

• Notify monitor of stack 
activity

void 
link_wrap(char *f, char *t)
{
char msg[BUFFSIZE];

unlink(t);
link(f, t);
snprintf(msg, BUFFSIZE,
“Linked %s to %s, f, t);

leftX();
log(msg);
rightX();

}
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Data-Flow Analysis
• Can use knowledge of argument values to 

make model more precise.
• Use data-flow analysis of arguments:

– Argument recovery
• Sets of constant values
• Sets of regular expression strings

– Argument dependencies upon system call return 
values

– System call return values that control branching
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Argument Dependencies
. . .
fd1 = open(“/home/foo”, 

O_RDWR);
fd2 = open(“/etc/passwd”,

O_RDWR);
read(fd2, buf, BUFSIZE);
write(fd1, buf, BUFSIZE);
. . .

open1() = 3;
open2() = 4;

open1(“/home/foo”, O_RDWR)

open2(“/etc/passwd”, O_RDWR)

read(=open2, ?, BUFSIZE)

write(=open1, ?, BUFSIZE)write(     3     , ?, BUFSIZE)

read(     4     , ?, BUFSIZE)
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Test Programs

54,028cat
67,874fdformat
70,177eject
56,710gzip
107,246procmail

Number of 
InstructionsProgram
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Runtime Overheads

54.65
112.41
5.14
7.02
0.42

Base

3%
0%
1%
0%
0%

Increase IncreaseDyckNFAProgram

80.78
112.38
5.22
7.16
0.40

48%
0%
2%
2%
0%

56.32cat
112.36fdformat
5.17eject
6.61gzip
0.37procmail

Execution times in seconds
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Accuracy Metric

• Average branching factor

getpid
open

chown
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NFA and Dyck Model Accuracy
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Important Ideas
• Model-based intrusion detection forces 

execution behavior to match model.

• Statically constructed program models 
historically compromise accuracy for 
efficiency.

• The Dyck model is the first efficient 
context-sensitive specification.
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Milestones

Nov 01:
•NFA & PDA 
construction

•Call-site renaming

Jan 02:
•Bounded stack PDA
•Static argument recovery
•Binary code instrumentation

May 02:
•Began shared 
object analysis

Aug 02:
•USENIX Security paper
•Interprocedural data-flow analysis
•Argument dependency recovery

Jan 03:
•Smart binary code
instrumentation

Oct 02:
•Data-flow-sensitive
analysis

March 03:
•Invented Dyck model

July 03:
•Implemented kernel
trap monitoring

Feb 04:
•NDSS Paper
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Milestones
• Two conference papers

– J.T. Giffin, S. Jha, and B.P. Miller. Detecting 
manipulated remote call streams. In 11th USENIX 
Security Symposium, San Francisco, California, 
August 2002.

– J.T. Giffin, S. Jha, and B.P. Miller. Efficient 
context-sensitive intrusion detection. In 11th

Annual Network and Distributed Systems 
Security Symposium (NDSS), San Diego, 
California, February 2004.
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Milestones

Feb 04:
•Support dynamic linking

June 04:
•Move to BREW
infrastructure

Ongoing 2004:
•Formal modeling of attacks & 
defenses

•Investigating tool to construct 
attacks for better IDS testing

Ongoing 2004:
•Investigating hybrid
static/dynamic techniques

July 04:
•Recover arguments at
additional program points
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Collaboration with Wenke Lee
• Collaborated on static version of his dynamic 

analysis work
– Compared with our Dyck model
– Developed static model formalisms
– Under submission: “Formalizing Sensitivity in 

Static Analysis for Intrusion Detection”

• Future: research hybrid techniques
– New methods to recover calling context
– Combine static & dynamic analysis
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Analyzer
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