
Attacks and Defenses

Barton Miller
Jonathon Giffin, Somesh Jha

University of Wisconsin
{bart,giffin,jha}@cs.wisc.edu

WiSA – Wisconsin Safety Analyzer
http://www.cs.wisc.edu/wisa

13 November 2003 WiSA - Barton P. Miller 2

Overview
Attacks
• Server attack (conventional host-based IDS)
• Remote execution attack (remote IDS)

Model-based intrusion detection
• Constructing program models using static binary

analysis
• Accuracy/performance tradeoff in prior models
• Our new Dyck model solves tradeoff
• Data-flow analysis to recover arguments

Milestones

13 November 2003 WiSA - Barton P. Miller 3

Worldview
• Running processes

make operating
system requests

• Changes to trusted
computing base done
via these requests

• Attacker subverts
process to generate
malicious requests

Operating
System

User Process

system calls

Trusted computing base

13 November 2003 WiSA - Barton P. Miller 4

Example: Server Attack

• Goal: Execute malicious
code in the server

Operating
System

Server
Process

system calls

Trusted computing base

Server HostServer Host

13 November 2003 WiSA - Barton P. Miller 5

Example: Remote Execution Attack

Submitting HostSubmitting Host

Shadow Process
giffin

Remote Execution HostRemote Execution Host

User Process
nobody

system calls

Trusted computing base

13 November 2003 WiSA - Barton P. Miller 6

Example: Remote Execution Attack

Submitting HostSubmitting Host

Shadow Process
giffin

Remote Execution HostRemote Execution Host

Malicious
User Process

nobody

system calls

Lurker
Process
nobody

forkfork

Trusted computing base

13 November 2003 WiSA - Barton P. Miller 7

Trusted computing base

Example: Remote Execution Attack

Submitting HostSubmitting Host

Shadow Process
bart

Remote Execution HostRemote Execution Host

Innocent
User Process

nobody

system calls

Control remote
system calls

Lurker
Process
nobody

rm -rf *rm -rf *

attachattach

13 November 2003 WiSA - Barton P. Miller 8

Our Objective
• Detect malicious

activity before harm
caused to local machine

• … before operating
system executes
malicious system call

Operating
System

User Process

system calls

13 November 2003 WiSA - Barton P. Miller 9

Model-Based Intrusion Detection
• Build model of correct

program behavior

• Runtime monitor
ensures execution does
not violate model

• Runtime monitor must
be part of trusted
computing base

Operating
System

Trusted computing base

User Process

13 November 2003 WiSA - Barton P. Miller 10

Static Analysis

Automated Model Construction
• Dynamic analysis

– Under-approximates
correct behavior

– False alarms
– Forrest, Sekar, Lee

• Static analysis
– Over-approximates

correct behavior
– False negatives
– Wagner&Dean, our work
– Previous attempts at

precise models
problematic

Correct Process
Behavior

Dynamic
Analysis

13 November 2003 WiSA - Barton P. Miller 11

Static Analysis

Automated Model Construction
• Static analysis

challenge
– Design an efficient,

context-sensitive model

• Answers
– Dyck model
– Argument dependency

recovery

Correct Process
Behavior

Dynamic
Analysis

13 November 2003 WiSA - Barton P. Miller 12

Our Approach
• Build model of correct program behavior

– Static analysis of binary code
– Construct an automaton modeling all system call

sequences the program can generate

• Ensure execution does not violate model
– Use automaton to monitor system calls.
– If automaton reaches an invalid state, then an

intrusion attempt occurred.

13 November 2003 WiSA - Barton P. Miller 13

Model-Based Intrusion Detection

Analyzer

Program
Model

Rewritten
Program

User
Program

13 November 2003 WiSA - Barton P. Miller 14

Model-Based Intrusion Detection
• Build model of correct

program behavior

• Runtime monitor
ensures execution does
not violate model

• Runtime monitor must
be part of trusted
computing base

Operating
System

Rewritten
Process

Trusted computing base

13 November 2003 WiSA - Barton P. Miller 15

Rewritten
Program

Program
Model

Model Construction

Analyzer

User
Program

Binary
Program

Control
Flow

Graphs

Local
Automata

Global
Automaton

13 November 2003 WiSA - Barton P. Miller 16

Code Example
link_wrap:
save %sp, -596, %sp
call unlink
mov %i1, %o0
mov %i1, %o1
call link
mov %i0, %o0
add %sp, 56, %o0
mov 50, %o1
sethi %hi(str), %o2
call snprintf
or %o2, %lo(str), %o2
call log
add %sp, 56, %o0
ret
restore

void
link_wrap(char *f, char *t)
{
char msg[BUFFSIZE];

unlink(t);
link(f, t);
snprintf(msg, BUFFSIZE,
“Linked %s to %s, f, t);

log(msg);
}

13 November 2003 WiSA - Barton P. Miller 17

Local Automaton
void
link_wrap(char *f, char *t)
{
char msg[BUFFSIZE];

unlink(t);
link(f, t);
snprintf(msg, BUFFSIZE,
“Linked %s to %s, f, t);

log(msg);
}

link_wrap

unlink(?)

link(?,?)

log

13 November 2003 WiSA - Barton P. Miller 18

write(?,?,?)

logunlink(?)

link(?,?)

log

NFA Model

exec(“/sbin/mailconf”)

exec_wrap

stat(“/sbin/mailconf”)

ε

ε

ε

ε

log

link_wrap

13 November 2003 WiSA - Barton P. Miller 19

write(?,?,?)

unlink(?)

link(?,?)

Impossible Paths

exec(“/sbin/mailconf”)

ε

ε

unlink(“/sbin/mailconf”);
link(“/bin/sh”, “/sbin/mailconf”);
write(-1, 0, 0);
exec(“/sbin/mailconf”);

13 November 2003 WiSA - Barton P. Miller 20

Adding Context Sensitivity

• Model call & return behavior of function calls

• Use pushdown automaton (PDA) stack to
model program’s call stack

• Model is sensitive to calling context of each
system call

13 November 2003 WiSA - Barton P. Miller 21

pop X

push X

push Y

pop Y

write(?,?,?)

logunlink(?)

link(?,?)

PDA Model

exec(“/sbin/mailconf”)

stat(“/sbin/mailconf”)

ε

ε

ε

ε

link_wrap exec_wrap

13 November 2003 WiSA - Barton P. Miller 22

PDA State Explosion
• e-edge identifiers maintained on a stack

– Stack non-determinism is expensive
– Unbounded stacks add complexity
– Best-known algorithm: cubic in automaton size

• Unusable as program model
– Orders of magnitude slowing of application

• [Wagner et al. 01, Giffin et al. 02]
– Conclusion: only weaker NFA models have

reasonable performance

X

13 November 2003 WiSA - Barton P. Miller 23

Dyck Model
• Efficiently tracks calling context

• As powerful as full PDA
• Efficiency approaches NFA model

• Implication: accuracy & performance can
coexist
– Invalidates previous conclusion

13 November 2003 WiSA - Barton P. Miller 24

Dyck Model
• Bracketed context-free language

– [Ginsberg & Harrison 67]

stat [Y write]Y exec
unlink link [X write]X

• Matching brackets are alphabet symbols
– Exposes stack operations to runtime monitor
– Rewrite binary to generate bracket symbols
– [Giffin et al. 04]

13 November 2003 WiSA - Barton P. Miller 25

pop X

push X

push Y

pop Y

]X

[X

[Y

]Y

write(?,?,?)

logunlink(?)

link(?,?)

Dyck Model

exec(“/sbin/mailconf”)

stat(“/sbin/mailconf”)

ε

ε

ε

ε

link_wrap exec_wrap

13 November 2003 WiSA - Barton P. Miller 26

Binary Rewriting

Binary
Program

Rewritten
Binary

Rewritten
Program

Program
Model

Analyzer

User
Program

13 November 2003 WiSA - Barton P. Miller 27

Binary Rewriting
• Insert code to

generate bracket
symbols around
function call sites

• Notify monitor of stack
activity

void
link_wrap(char *f, char *t)
{
char msg[BUFFSIZE];

unlink(t);
link(f, t);
snprintf(msg, BUFFSIZE,
“Linked %s to %s, f, t);

leftX();
log(msg);
rightX();

}

13 November 2003 WiSA - Barton P. Miller 28

Data-Flow Analysis
• Can use knowledge of argument values to

make model more precise.
• Use data-flow analysis of arguments:

– Argument recovery
• Sets of constant values
• Sets of regular expression strings

– Argument dependencies upon system call return
values

– System call return values that control branching

13 November 2003 WiSA - Barton P. Miller 29

Argument Dependencies
. . .
fd1 = open(“/home/foo”,

O_RDWR);
fd2 = open(“/etc/passwd”,

O_RDWR);
read(fd2, buf, BUFSIZE);
write(fd1, buf, BUFSIZE);
. . .

open1() = 3;
open2() = 4;

open1(“/home/foo”, O_RDWR)

open2(“/etc/passwd”, O_RDWR)

read(=open2, ?, BUFSIZE)

write(=open1, ?, BUFSIZE)write(3 , ?, BUFSIZE)

read(4 , ?, BUFSIZE)

13 November 2003 WiSA - Barton P. Miller 30

Test Programs

54,028cat
67,874fdformat
70,177eject
56,710gzip
107,246procmail

Number of
InstructionsProgram

13 November 2003 WiSA - Barton P. Miller 31

Runtime Overheads

54.65
112.41
5.14
7.02
0.42

Base

3%
0%
1%
0%
0%

Increase IncreaseDyckNFAProgram

80.78
112.38
5.22
7.16
0.40

48%
0%
2%
2%
0%

56.32cat
112.36fdformat
5.17eject
6.61gzip
0.37procmail

Execution times in seconds

13 November 2003 WiSA - Barton P. Miller 32

Accuracy Metric

• Average branching factor

getpid
open

chown

13 November 2003 WiSA - Barton P. Miller 33

NFA and Dyck Model Accuracy

0

1

2

3

4

5

6

7

8

9

10

11

12

procmail gzip eject fdformat cat

A
ve

ra
ge

 B
ra

nc
hi

ng
 F

ac
to

r

NFA
Dyck

13 November 2003 WiSA - Barton P. Miller 34

Important Ideas
• Model-based intrusion detection forces

execution behavior to match model.

• Statically constructed program models
historically compromise accuracy for
efficiency.

• The Dyck model is the first efficient
context-sensitive specification.

13 November 2003 WiSA - Barton P. Miller 35

Milestones

Nov 01:
•NFA & PDA
construction

•Call-site renaming

Jan 02:
•Bounded stack PDA
•Static argument recovery
•Binary code instrumentation

May 02:
•Began shared
object analysis

Aug 02:
•USENIX Security paper
•Interprocedural data-flow analysis
•Argument dependency recovery

Jan 03:
•Smart binary code
instrumentation

Oct 02:
•Data-flow-sensitive
analysis

March 03:
•Invented Dyck model

July 03:
•Implemented kernel
trap monitoring

Feb 04:
•NDSS Paper

13 November 2003 WiSA - Barton P. Miller 36

Milestones
• Two conference papers

– J.T. Giffin, S. Jha, and B.P. Miller. Detecting
manipulated remote call streams. In 11th USENIX
Security Symposium, San Francisco, California,
August 2002.

– J.T. Giffin, S. Jha, and B.P. Miller. Efficient
context-sensitive intrusion detection. In 11th

Annual Network and Distributed Systems
Security Symposium (NDSS), San Diego,
California, February 2004.

13 November 2003 WiSA - Barton P. Miller 37

Milestones

Feb 04:
•Support dynamic linking

June 04:
•Move to BREW
infrastructure

Ongoing 2004:
•Formal modeling of attacks &
defenses

•Investigating tool to construct
attacks for better IDS testing

Ongoing 2004:
•Investigating hybrid
static/dynamic techniques

July 04:
•Recover arguments at
additional program points

13 November 2003 WiSA - Barton P. Miller 38

Collaboration with Wenke Lee
• Collaborated on static version of his dynamic

analysis work
– Compared with our Dyck model
– Developed static model formalisms
– Under submission: “Formalizing Sensitivity in

Static Analysis for Intrusion Detection”

• Future: research hybrid techniques
– New methods to recover calling context
– Combine static & dynamic analysis

Attacks and Defenses

Barton Miller
Jonathon Giffin, Somesh Jha

University of Wisconsin
{bart,giffin,jha}@cs.wisc.edu

WiSA – Wisconsin Safety Analyzer
http://www.cs.wisc.edu/wisa

13 November 2003 WiSA - Barton P. Miller 40

Analyzer

Architecture

User
Program

EEL
Build
CFGs

Program
Model

Rewritten
Program

Rewrite

Generate
Code

Analyze
Data Flow

Build Program
Model

13 November 2003 WiSA - Barton P. Miller 41

Codesurfer

Architecture

User
Program

IDA Pro
Build
CFGs

Program
Model

Rewritten
Program

Rewrite

Generate
Code

Analyzer
Build Program

Model

BREW

Analyze
Data Flow

