Vulnerability and Information Flow Analysis of COTS

Somesh Jha, Bart Miller, Tom Reps
{jha,bart,reps}@cs.wisc.edu
Computer Sciences Department
University of Wisconsin
1210 W. Dayton Street
Madison, WI 53706-1685
Cost of Software Development Motivates Use of COTS

• High cost of software development
 • increased complexity
 • increasing degree of concurrency
 • increasing quality-assurance demands
 • other factors . . .

• Increased deployment of COTS

• CIP/SW TOPIC #6
 - Protecting COTS from the inside
Advantages and Disadvantages of COTS

- **Advantages**
 - reduced cost
 - promotes modular design
 - partitions the testing effort

- **Disadvantages**
 - higher risk of vulnerabilities
 - general quality-assurance issues
Unsafe Malicious Code

- **Viruses**
 - Gain access through infected files
- **Worms**
 - Spread over the network
- **Trojans**
 - Hide harmful behavior under the guise of useful programs

- Most often: combined code
 - worm + virus + trojan

- **Distinguishing characteristics:** something observable happens
Malicious Code Example:

Internet worm Sobig.E

Install worm code:
- into the Windows folder
- as a Win2K service

Auto-update itself from a list of master servers:
- relay spam
- steal confidential data
- install keyboard loggers

E-mail

Local Network Shares
What Is Spyware?

• Spyware is software that
 - Is non-destructive (unlike a virus)
 - Operates in background—not easily observable
 - Is Often installed silently by other software
 - Usually integrated with desired functionality

• Privacy-violating malicious code
 - Provides useful functionality
 - But, “leaks” sensitive information
KaZaa in Operation

- Collecting user information
- Download/install programs
- Modify system settings

Spyware

Spyware Homeserver
Spyware Summary

• Install a useful program
 - Play DVDs
• But ...
 - Also install "spy" software, which monitors user behavior
 • Example: Monitor web traffic
• Aureate Media, Real Networks
• Consult
 - http://grc.com/optout.htm
• Perhaps useful to advisors/managers😊
WiSA: Don’t Deploy COTS Without It

• We have proposed the Wisconsin Safety Analyzer
 - vulnerability and
 • Handles unsafe malicious code
 - information flow analysis of COTS
 • Handles privacy-violating malicious code (Spyware)
• Develop technology for static analysis of binaries
• Investigate applications
Trusted verification services

Submit code

vulnerabilities

WiSA Server (TAS)
Benefits to DoD

- Reduces risk of deploying COTS
- Capable of discovering vulnerabilities in COTS
 - safety related
 - information-flow related
- Assign assurance levels to COTS components
WiSA Requirements

• **Requirement 1**
 - cannot mandate that all COTS packages will be written in the same language
 - source code for COTS frequently not available
 ∴ analysis of binaries/multi-lingual techniques

• **Requirement 2**
 - safety depends on context
 - desire to specify
 • discretionary access control
 • mandatory access control
 ∴ need an expressive specification language
WiSA Requirements

• **Requirement 3**
 - there are tradeoffs between scalability & precision
 - generally: efficiency vs. precision
 - but sometimes: more precise = more efficient
 \[\therefore \text{tunable precision} \]

• **Requirement 4**
 - wish to analyze compositions of COTS packages
 \[\therefore \text{rely-guarantee reasoning and reason about compositions of vulnerabilities and constructing attack graphs} \]
Initial Focus

• Our initial focus is on analyzing x86 binaries

• Reasons
 - high impact
 • several viruses written for the x86 platform
 - rich language
 • several hard analysis issues will be dealt with
 • can reuse architecture and experience in other settings

• partially addresses requirement 1
IDA Pro

- Decompilation tool
- Supports several executable file formats like COFF, ELF
- Gather as much information as possible
 - e.g. Names of functions, parameters to functions
- Is extensible through a built-in C like language
Codesurfer

• A program understanding tool
• Analyzes the data and control dependencies
 - Stores in System Dependence Graph (SDG)
 - Helpful in static analysis
• Provides an API to access the information stored in SDG
• The API can be extended
Dynamic Buffer Overflow Detection

- Binary
 - Parse Binary
 - Build CFGs
 - Connector
 - Memory Analysis
 - BREW
 - Rewrite
 - Generate Code
 - Codesurfer
 - Build SDG
 - Browse
 - Codesurfer
 - Detect Buffer Overrun
 - Build Program Specification

Clients
- Detect Malicious Code
- Detect Buffer Overrun
- Build Program Specification
Static Buffer Overflow Detection

Binary → IDA Pro → Parse Binary → Build CFGs → Connector
 → Memory Analysis → BREW → Rewrite → Generate Code → Codesurfer → Parse C → Build SDG → Browse → Clients
 → Detect Malicious Code → Detect Buffer Overrun → Build Program Specification → Generated Binary
Value Set Analysis

- Binary
 - IDA Pro
 - Parse Binary
 - Build CFGs
 - Connector
 - Memory Analysis
 - BREW
 - Rewrite
 - Generate Code
 - Codesurfer
 - Build SDG
 - Browse
 - Generated Binary

Clients
- Detect Malicious Code
- Detect Buffer Overrun
- Build Program Specification
Specification-Based Monitoring

- Binary
- IDA Pro
 - Parse Binary
 - Build CFGs
- Connector
 - Memory Analysis
 - BREW
 - Rewrite
 - Generate Code
- Codesurfer
 - Build SDG
 - Browse
- Clients
 - Detect Malicious Code
 - Detect Buffer Overrun
 - Build Program Specification
- Generated Binary
- Program Spec

S. Jha, B. Miller, and T. Reps
July 2003, ONR Review
Students Supported

• Gogul Balakrishnan
 - Advisor: Tom Reps
 - Going to take his qualifiers in the fall

• Mihai Christodorescu
 - Advisor: Somesh Jha
 - Passed his qualifiers (PL)
 - Prelim soon

• Vinod Ganapathy
 - Advisor: Somesh Jha
 - Passed his qualifiers (PL)
Students Supported (Contd.)

• Jon Giffin
 - Advisors: Somesh Jha and Bart Miller
 - Passed his qualifier (OS)
 - Prelim soon

• Hong Lin
 - Advisor: Bart Miller
 - Going to take her qualifier in the fall

• Hao Wang
 - Advisor: Somesh Jha
 - Passed his qualifier (OS)
Papers

Papers

- Four papers under submission
- Mihai’s work is being patented
- Many more coming …
Technology Transfer

- **Main vehicles for technology transfer**
 - Grammatech
 - Tim Tietelbaum and David Melski will talk about this
 - NRL
 - Connie Hietmeyer is planning to visit UW-Madison
 - I am planning to visit her sometime in the fall
 - CERT and other such organizations
 - Disseminate bugs and vulnerabilities found
 - Hopefully ...
 - Many other research projects have expressed interest in the infrastructure
Contact Information

- Prof. S. Jha
 - email: jha@cs.wisc.edu

- Prof. B. Miller
 - email: bart@cs.wisc.edu

- Prof. T. Reps
 - email: reps@cs.wisc.edu

- Computer Sciences Dept.
 1210 West Dayton Street
 Madison, WI 53706

Project home page
http://www.cs.wisc.edu/wisa