Buffer Overrun Detection via
Static Analysis

Vinod Ganapathy
University of Wisconsin

August 1, 2003 WiSA - Vinod Ganapathy

Introduction

» Buffer Overruns:
- Easily exploitable class of vulnerabilities
- Large number of systems are vulnerable

» Inadequate bounds checking

- CERT:
- 9 out of 19 vulnerabilities since July ‘02
- BIND, Kerberos, SSH, OpenSSL

August 1, 2003 WiSA - Vinod Ganapathy

WiSA BO-Tool

+ Addresses the Buffer Overrun Problem

- Features:

- Statically analyzes code for vulnerabilities
* Vulnerabilities can be caught before deployment

- Uses points-to information
» Complicated dependencies can be tracked

- Is designed to scal/e to large programs

August 1, 2003 WiSA - Vinod Ganapathy

Overview of Talk

- Related Work

- Tool Architecture
- Constraint Generation
- Constraint Solving

- Results
- Goals

August 1, 2003 WiSA - Vinod Ganapathy

Related Work

* 'Fat’ Pointers:
- Static + Dynamic Analysis
- SafeC (Wisconsin: Austin et.al.)
- CCured (Berkeley: Necula et.al.)
+ StackGuard:
- Place ‘canary’ on the stack
- Dynamic Analysis: High runtime overhead

August 1, 2003 WiSA - Vinod Ganapathy 5

Related Work

+ BOON: (Berkeley: Wagner et.al.)
- Closest relative to our work
- Static Analysis
- But, no points-to information used
- Yet, good results

August 1, 2003 WiSA - Vinod Ganapathy

BO-Tool Architecture

Linear

Cons‘rr'am‘r AR Taint
Gener'a’ror' Tr'ansducer' Analysis
Linear
Program
ete U T U ~ T [gr'Clm
Ranges Solver

C Source

August 1, 2003 WiSA - Vinod Ganapathy

Enhancements since July'02

» Taint Analysis and Pre-solve

» Ability to handle all kinds of Linear
Programs

« Detector GUI with trace-back
- Other kinds of solvers

August 1, 2003 WiSA - Vinod Ganapathy

Constraint Generation

» Constraint Generator + Transducer
* Input: C source code
» Output: Linear Program

* Basic Idea:
- Treat buffers as abstract data types

- Reflect changes in buffers by changing
associated buffer variables

August 1, 2003 WiSA - Vinod Ganapathy

Constraint Generation

» Four variables for each string buffer

buf_len_max, buf_len_min
buf_alloc_max, buf_alloc_min

» Operations on a buffer

strcpy(target, source)
target_len_max >= source_len_max

target_len_min <= source_len_min

August 1, 2003 WiSA - Vinod Ganapathy 10

Constraint Generation

- Source code fed to Codesurfer
* Analysis is done by Codesurfer

» Various options available for program
analysis

August 1, 2003 WiSA - Vinod Ganapathy 11

Constraint Generation

» Options Available
- Flow Sensitive Analysis:
* Respect Program order

- Flow Insensitive Analysis:
* Do not respect program order

- Context-Sensitive modeling of functions:
* Differentiate Information between call-sites

- Context-Insensitive modeling of functions:
* Merge Information across call-sites

August 1, 2003 WiSA - Vinod Ganapathy 12

Constraint Generation

- Current Model:

- Flow Insensitive Analysis

- Context-sensitive modeling for some library
functions

- Context-insensitive for the rest

* Pros and Cons:

© Faster and Easier Analysis

© Smaller space requirements

® Lower Precision => Higher False Positives

August 1, 2003 WiSA - Vinod Ganapathy 13

The Solver

- Abstract Problem:

- Given a set of constraints on min and
max variables

- Get tightest possible fit satisfying the
constraints

» Our approach:
- Model and solve as a linear program

August 1, 2003 WiSA - Vinod Ganapathy

14

Why Linear Programming?

* Rich literature available
- Solutions to problems readily available

- Commercial solvers available
- No need to build our own solver
- Highly optimized code => faster solves

» Known to scale to large problem sizes
- One of our initial goals

August 1, 2003 WiSA - Vinod Ganapathy 15

The Solver

» Consists of various phases:
- Taint Analysis

- Pre-solve value inference
- Obtain solution based on constraint analysis
ea >= 4 and a >= 3 imply a >= 4
* Mainly an optimization to speed up LP solver
- Linear Program Solver

August 1, 2003 WiSA - Vinod Ganapathy

16

Taint Analysis

*+ Objective: serve as a pre-solve step

- Search constraints for variables that

- Are entered by the user:
e sprintf(buf, “%s”, argv[1l])

- Are un-initialized (incomplete modeling)

* e.g. Library function that has not been
modeled

* Helps reduce the Linear Program size

August 1, 2003 WiSA - Vinod Ganapathy 17

Linear Programming

* A set of constraints C
» Subject to: An objective function F
+ Example:

MaxXximize: X

Subject to:
X <= 3

August 1, 2003 WiSA - Vinod Ganapathy

18

Linear Program Solver

- In our case:
- Constraints are available
- Goal: Obtain values for buffer bounds

* Modeling as a Linear Program

Minimize: max variable
: Least Upper Bound
Subject to:

Set of Constraints

And

Maximize: min variable Greatest Lower Bound

Subject to:
Set of Constraints

August 1, 2003 WiSA - Vinod Ganapathy 19

Linear Program Solver

+ The Solution to an LP can be:
- Optimal
- Unbounded
- Infeasible (constraint set is infeasible)

August 1, 2003 WiSA - Vinod Ganapathy

20

Linear Program Solver

* Optimal:
- All constraints are satisfied
- Objective function is optimized
- Value of buffer variable = solution
+ Example:
Minimize: buf_len_max
buf_len_max >= 3

August 1, 2003 WiSA - Vinod Ganapathy

21

Linear Program Solver

+ Unbounded
- Infinitely many solutions exist
+ Example:
Minimize: var_max
var_max - varZ_max >= 4

. Solution: set variable value to oo/-

August 1, 2003 WiSA - Vinod Ganapathy

22

Linear Program Solver

» Infeasible:
- No solution exists => Bad news for us
* Example:
Minimize: var
var >= 5
var <= 3
+ Does this case arise?
- Yes! And very oftenl

August 1, 2003 WiSA - Vinod Ganapathy

23

Infeasible LPs

»+ Common Program construct:
i=i+1 -> loop iteration, pointer arithmetic
» Convert this to an LP constraint:

1’_max >= 1_max + 1
1_max >= 1’ _max
1’_min <= 1_min + 1
1_min <= 1'_min

August 1, 2003 WiSA - Vinod Ganapathy 24

Solving Infeasible LPs

Infeasible Constraint Set

Feasible Constraint Set

Removed
Constraints

August 1, 2003 WiSA - Vinod Ganapathy

25

Solving Infeasible LPs

» Optimization literature to the rescue

* Problem of IIS detection
- ITS = Irreducibly Inconsistent Set

- Smallest set of constraints such that
- The constraint set is infeasible
- Any subset of the constraint set is feasible

» Algorithms available to identify IISs

August 1, 2003 WiSA - Vinod Ganapathy 26

Solving Infeasible LPs

1’ _max
1_max
1°_min
1_min

>=
>=
<=
<=

1’7 _max
1min + 1
1’ _min

a_max >= 1_max + 2

August 1, 2003

WiSA - Vinod Ganapathy

_MaXx

27

Solving Infeasible LPs

*+ Heuristic:
- Identify IISs
- Set variable values to oo/-o
- Ripple effect through constraint set

* InvesTigaTion under'way (with Michael Ferris)

- How effective is this heuristic?

- Do we set more variables to «/-o than
required?

August 1, 2003 WiSA - Vinod Ganapathy 28

Other kinds of Solvers

* Hierarchical Solver
* Draw constraint dependency graph
» Identify SCCs

» Solve each SCC
* Propagate values

August 1, 2003 WiSA - Vinod Ganapathy

29

Dependency Graph
cC > a+ b, b>>a, a>= 2

b >= a

cC>a+ b cC>a+ b

August 1, 2003 WiSA - Vinod Ganapathy

30

Hierarchical Solver

————m

PropagaTe

- SCC-DAG

Propagate ?

August 1, 2003 WiSA - Vinod Ganapathy

PropagaTe

And Pr'opaga’re

Hierarchical Solver

* Big LP broken down into smaller ones

- Can use different solvers for
different SCCs

» Can solve in parallel (?)

- Status:
- Most of the Infrastructure in place

- To test on benchmarks

August 1, 2003 WiSA - Vinod Ganapathy 32

Detector: Basic Idea

- Takes values from the LP solver
- Detects overruns based on the values

Cenario I: "Possible” buffer overflow

' PR bt _len_max_

>

o 1. ' !

I | |
ot alloc. Mo w

Scenario II: Sure buffer overflow

August 1, 2003 WiSA - Vinod Ganapathy 33

Detector Front End

- GUI built at Grammatech Inc.

» Allows trace-back:
- Click on warning
- Get to offending line on source code

- Constraints also available for the more
informed debugger

* Currently compiled for Linux

August 1, 2003 WiSA - Vinod Ganapathy 34

Detector Front End

» Scanner =]

August 1, 2003 WiSA - Vinod Ganapathy 35

Results

+ 3 Benchmarks:
- BSD Talk Daemon-4.2 (1000 lines)
- WUFTP Daemon-2.5.0 (17000 lines)
- Sendmail-8.7.6 (40000 lines)

+ WUFTP Daemon: CERT-1999-13
» Sendmail-8.7.6: 1 known bug (BOON)
» Talk Daemon: ??

August 1, 2003 WiSA - Vinod Ganapathy 36

Results: Talk Daemon

» line_buf: [120..120] [2..299]

- Offending source code:
sprintf(line_buf[1], “..”, varl, var?2)

Could be as large as 256 bytes

 snprintf will solve the problem

August 1, 2003 WiSA - Vinod Ganapathy 37

Results: WuFTP Daemon

e« strcat(mapped_path, dir)
» mapped_path:global array: 4096
» dir:there is a path to user input

+ Result:
mapped_path : [4096..4096] [-,oo]

August 1, 2003 WiSA - Vinod Ganapathy 38

Results: Sendmail

» Unreported overrun: caught by BOON

- Off by one bug:

- BOON gets it as:
e dfname: [20..20] [-..257]

- We get it as:
o dfname: [20..20] [-o°..c0]

August 1, 2003 WiSA - Vinod Ganapathy 39

Current Status

» Alpha version ready and working
» Acceptably quick:

- Sendmail ~2 hours

- Wuftpd, TalkD < 5 minutes

» User friendly GUT for trace-back

August 1, 2003 WiSA - Vinod Ganapathy

40

Next in line...

* The challenge: BIND ~50000 lines

- Highly vulnerable
- 4 CERT advisories in 2 years

- Hierarchical Solver results

» Context Sensitivity through summary
functions

» Timeline: completion by mid-April

August 1, 2003 WiSA - Vinod Ganapathy 41

Tool Demo: TalkD

Prnject talkd

Step 1: Build the source code
using Codesurfer

Build current: [Ouery:Mone

August 1, 2003 WiSA - Vinod Ganapathy

42

Tool Demo: TalkD

Window

Add Poi
Add Ind

Step 2: Invoke the
Buffer Overrun Analyzer

= —
Build cur

August 1, 2003 WiSA - Vinod Ganapathy

43

Tool Demo: TalkD

Step 3: Follow the warnings to source code lines

¢ Scanner =10

tt line_buf Allocated: -0,

s

) &

P]

L l k intz,..

August 1, 2003 WiSA - Vinod Ganapathy 44

Tool Demo: TalkD

Project talkd

Project Oueries Go Window

Heap | OX+2Ts£2GT | HLE| e

File

Hes L5 X2

4 announce.c

Edit Oueries Go Window

TSSGT |EKE e

Functions

=i

Basic

b MR R
BH announce,c

Include files
File static wariables
#File_Initialization
announce
SNAOUNCE_Proc
print_mesg
String constants

gethostbyaddr,c

print,c

H Include files
File static wariables
#File_Initialization
print_request
print_response
String constants

process.c

table.c

talkd.c

Global wariables

Hezap wariables

Muera+bone

fvoidisprintfiline_buflil, "talk: connection requested by Es@Es,",
request—>1_name, remote_machinel:

zizeslil = strleniline_buf[il>:

i = maximax_size, sizeslill:

{voidrsprintfiline_bufl[il, "talk: respond with: talk Zs@Xs".
request—>1_name, remote_machinel:

zizeslil = strleniline_buf[il>:

max_size = maximax_size, sizeslill:

i++:

(voidrsprintFiline_bufL[il, " "z

zizeslil = strlentline_bufLil>:

max_size = maximax_size, sizes[ill:

i++:

bptr = big_buf:

#bptr++ = 7?7+ % send something to

#bptr++ = "1 A% add a s oin case

*bptr++ = "'l

for €1 =03 1 <

wake them up %7
of raw mode 7

N_LIMES: i++> £
A% copy the line into the big buffer 7
lptr = line_bufl[il:
while (klptr I= "%07)
#{bptr++) = #{lptr++):
A% pad out the rest of the lines with blanks %/

Pild ciowerent

. Scanner

Scanner Scans Input

E Buffer Ouerruns (123
B announce,c i print_mesg i line_buf
[call-zitel {woidlsprintfil
[call-zitel {voidisprintf{l
[declaration] (Locall line_buf
[call-zite] {woidlsprintfil
[call-zite] {woidisprintfil
[call-zite] {woidlsprintfil
process.c 13 find_user 13 ftty
announce,c $r print_mesg i lptr
process,c 13 find_user 131 tty
announce.c Ii print_mesg @i bptr
print,c :: #File_Initialization :: tuypes

print.c t: print regquest i te Allocated:

Allocated: -0, ,120

Allocated: 20, .20
Allocated: -0,.120
Allocated: 16, .16
Allocated: -0, 600
Allocated:
F..B0 Uzed:

7..132

3]
[call-=sitel] <{voidisprintfil

Source Codel
162+ (woidlsprintf{line_buf[il, "talk:
163: request—>1_name, remote_machinel:

Constraints:

L 3¥ line_bufllen = + 31 +
remote_machine!len
request,l_name!len

remote_machinellen + reguest.l_name!len
]

[12,.12]1

Used:

Used: 6,.37

Uged: -0,,239
Useds 15,.32
Used: -0, ,600

7..80

L=

(3
(3

(5
Used: 7.,13
{53

{3
[

conmhection requested by Xe@Xs,".

= [43,,293]

August 1, 2003

Thank You!

Questions?

WiSA - Vinod Ganapathy

46

