
August 1, 2003 WiSA - Vinod Ganapathy 1

Buffer Overrun Detection via
Static Analysis

Vinod Ganapathy
University of Wisconsin

August 1, 2003 WiSA - Vinod Ganapathy 2

Introduction

• Buffer Overruns:
– Easily exploitable class of vulnerabilities
– Large number of systems are vulnerable

• Inadequate bounds checking
• CERT:

– 9 out of 19 vulnerabilities since July ’02
– BIND, Kerberos, SSH, OpenSSL

August 1, 2003 WiSA - Vinod Ganapathy 3

WiSA BO-Tool

• Addresses the Buffer Overrun Problem
• Features:

– Statically analyzes code for vulnerabilities
• Vulnerabilities can be caught before deployment

– Uses points-to information
• Complicated dependencies can be tracked

– Is designed to scale to large programs

August 1, 2003 WiSA - Vinod Ganapathy 4

Overview of Talk

• Related Work
• Tool Architecture

– Constraint Generation
– Constraint Solving

• Results
• Goals

August 1, 2003 WiSA - Vinod Ganapathy 5

Related Work

• ‘Fat’ Pointers:
– Static + Dynamic Analysis
– SafeC (Wisconsin: Austin et.al.)
– CCured (Berkeley: Necula et.al.)

• StackGuard:
– Place ‘canary’ on the stack
– Dynamic Analysis: High runtime overhead

August 1, 2003 WiSA - Vinod Ganapathy 6

Related Work

• BOON: (Berkeley: Wagner et.al.)
– Closest relative to our work
– Static Analysis
– But, no points-to information used
– Yet, good results

August 1, 2003 WiSA - Vinod Ganapathy 7

BO-Tool Architecture

Constraint
Generator

C Source
Transducer Taint

Analysis

Linear
Program
Solver

Detector GUI

Linear
Program

Linear
Program

Ranges

Joint work with Grammatech Inc.

Done by Grammatech Inc.

August 1, 2003 WiSA - Vinod Ganapathy 8

Enhancements since July’02

• Taint Analysis and Pre-solve
• Ability to handle all kinds of Linear

Programs
• Detector GUI with trace-back
• Other kinds of solvers

August 1, 2003 WiSA - Vinod Ganapathy 9

Constraint Generation

• Constraint Generator + Transducer
• Input: C source code
• Output: Linear Program
• Basic Idea:

– Treat buffers as abstract data types
– Reflect changes in buffers by changing

associated buffer variables

August 1, 2003 WiSA - Vinod Ganapathy 10

Constraint Generation

• Four variables for each string buffer
buf_len_max, buf_len_min

buf_alloc_max, buf_alloc_min

• Operations on a buffer
strcpy(target, source)

target_len_max >= source_len_max

target_len_min <= source_len_min

August 1, 2003 WiSA - Vinod Ganapathy 11

Constraint Generation

• Source code fed to Codesurfer
• Analysis is done by Codesurfer
• Various options available for program

analysis

August 1, 2003 WiSA - Vinod Ganapathy 12

Constraint Generation
• Options Available

– Flow Sensitive Analysis:
• Respect Program order

– Flow Insensitive Analysis:
• Do not respect program order

– Context-Sensitive modeling of functions:
• Differentiate Information between call-sites

– Context-Insensitive modeling of functions:
• Merge Information across call-sites

August 1, 2003 WiSA - Vinod Ganapathy 13

Constraint Generation
• Current Model:

– Flow Insensitive Analysis
– Context-sensitive modeling for some library

functions
– Context-insensitive for the rest

• Pros and Cons:
☺ Faster and Easier Analysis
☺ Smaller space requirements
/ Lower Precision => Higher False Positives

August 1, 2003 WiSA - Vinod Ganapathy 14

The Solver

• Abstract Problem:
– Given a set of constraints on min and
max variables

– Get tightest possible fit satisfying the
constraints

• Our approach:
– Model and solve as a linear program

August 1, 2003 WiSA - Vinod Ganapathy 15

Why Linear Programming?

• Rich literature available
– Solutions to problems readily available

• Commercial solvers available
– No need to build our own solver
– Highly optimized code => faster solves

• Known to scale to large problem sizes
– One of our initial goals

August 1, 2003 WiSA - Vinod Ganapathy 16

The Solver

• Consists of various phases:
– Taint Analysis
– Pre-solve value inference

• Obtain solution based on constraint analysis
•a >= 4 and a >= 3 imply a >= 4

• Mainly an optimization to speed up LP solver
– Linear Program Solver

August 1, 2003 WiSA - Vinod Ganapathy 17

Taint Analysis

• Objective: serve as a pre-solve step
• Search constraints for variables that

– Are entered by the user:
•sprintf(buf, “%s”, argv[1])

– Are un-initialized (incomplete modeling)
• e.g. Library function that has not been

modeled

• Helps reduce the Linear Program size

August 1, 2003 WiSA - Vinod Ganapathy 18

Linear Programming

• A set of constraints C
• Subject to: An objective function F
• Example:

Maximize: x

Subject to:
X <= 3

August 1, 2003 WiSA - Vinod Ganapathy 19

Linear Program Solver
• In our case:

– Constraints are available
– Goal: Obtain values for buffer bounds

• Modeling as a Linear Program
Minimize: max variable
Subject to:

Set of Constraints

And
Maximize: min variable
Subject to:

Set of Constraints

Least Upper Bound

Greatest Lower Bound

August 1, 2003 WiSA - Vinod Ganapathy 20

Linear Program Solver

• The Solution to an LP can be:
– Optimal
– Unbounded
– Infeasible (constraint set is infeasible)

August 1, 2003 WiSA - Vinod Ganapathy 21

Linear Program Solver

• Optimal:
– All constraints are satisfied
– Objective function is optimized

• Value of buffer variable = solution
• Example:

Minimize: buf_len_max

buf_len_max >= 3

August 1, 2003 WiSA - Vinod Ganapathy 22

Linear Program Solver

• Unbounded
– Infinitely many solutions exist

• Example:
Minimize: var_max

var_max – var2_max >= 4

• Solution: set variable value to ∞/-∞

August 1, 2003 WiSA - Vinod Ganapathy 23

Linear Program Solver

• Infeasible:
– No solution exists => Bad news for us

• Example:
Minimize: var

var >= 5

var <= 3

• Does this case arise?
– Yes! And very often!

August 1, 2003 WiSA - Vinod Ganapathy 24

Infeasible LPs

• Common Program construct:
i=i+1 -> loop iteration, pointer arithmetic

• Convert this to an LP constraint:
i’_max >= i_max + 1

i_max >= i’_max

i’_min <= i_min + 1

i_min <= i’_min

Infeasible Set

August 1, 2003 WiSA - Vinod Ganapathy 25

Solving Infeasible LPs

Infeasible Constraint Set Feasible Constraint Set

Removed
Constraints

August 1, 2003 WiSA - Vinod Ganapathy 26

Solving Infeasible LPs

• Optimization literature to the rescue
• Problem of IIS detection

– IIS = Irreducibly Inconsistent Set
– Smallest set of constraints such that

• The constraint set is infeasible
• Any subset of the constraint set is feasible

• Algorithms available to identify IISs

August 1, 2003 WiSA - Vinod Ganapathy 27

Solving Infeasible LPs

i’_max >= i_max + 1

i_max >= i’_max

i’_min <= i_min + 1

i_min <= i’_min

a_max >= i_max + 2

IIS

i_max = ∞
i’_max = ∞

Remove IISPropagate

a_max = ∞

August 1, 2003 WiSA - Vinod Ganapathy 28

Solving Infeasible LPs

• Heuristic:
– Identify IISs
– Set variable values to ∞/-∞
– Ripple effect through constraint set

• Investigation underway (with Michael Ferris)

– How effective is this heuristic?
– Do we set more variables to ∞/-∞ than

required?

August 1, 2003 WiSA - Vinod Ganapathy 29

Other kinds of Solvers

• Hierarchical Solver
• Draw constraint dependency graph
• Identify SCCs
• Solve each SCC
• Propagate values

August 1, 2003 WiSA - Vinod Ganapathy 30

Dependency Graph

c >= a + b, b >= a, a >= 2

. c

. ab .
b >= a

c >= a + bc >= a + b

August 1, 2003 WiSA - Vinod Ganapathy 31

Hierarchical Solver

• SCC-DAG
SCC1

SCC2 SCC3

SCC4 SCC5

Solve

Propagate

Propagate

SolveSolve

And so on…Propagate Propagate

Propagate

August 1, 2003 WiSA - Vinod Ganapathy 32

Hierarchical Solver

• Big LP broken down into smaller ones
• Can use different solvers for

different SCCs
• Can solve in parallel (?)
• Status:

– Most of the Infrastructure in place
– To test on benchmarks

August 1, 2003 WiSA - Vinod Ganapathy 33

Detector: Basic Idea
• Takes values from the LP solver
• Detects overruns based on the values

0 1 ...

buf_alloc_min

buf_len_max

Scenario I: ‘’Possible’’ buffer overflow

buf_alloc_max buf_len_max

Scenario II: Sure buffer overflow

August 1, 2003 WiSA - Vinod Ganapathy 34

Detector Front End

• GUI built at Grammatech Inc.
• Allows trace-back:

– Click on warning
– Get to offending line on source code
– Constraints also available for the more

informed debugger
• Currently compiled for Linux

August 1, 2003 WiSA - Vinod Ganapathy 35

Detector Front End

August 1, 2003 WiSA - Vinod Ganapathy 36

Results

• 3 Benchmarks:
– BSD Talk Daemon-4.2 (1000 lines)
– WuFTP Daemon-2.5.0 (17000 lines)
– Sendmail-8.7.6 (40000 lines)

• WuFTP Daemon: CERT-1999-13
• Sendmail-8.7.6: 1 known bug (BOON)
• Talk Daemon: ??

August 1, 2003 WiSA - Vinod Ganapathy 37

Results: Talk Daemon

• line_buf: [120..120] [2..299]
• Offending source code:

sprintf(line_buf[i], “…”, var1, var2)

• snprintf will solve the problem
Could be as large as 256 bytes

August 1, 2003 WiSA - Vinod Ganapathy 38

Results: WuFTP Daemon

• strcat(mapped_path, dir)

• mapped_path:global array: 4096
• dir:there is a path to user input
• Result:

mapped_path : [4096..4096] [-∞,∞]

August 1, 2003 WiSA - Vinod Ganapathy 39

Results: Sendmail

• Unreported overrun: caught by BOON
• Off by one bug:

– BOON gets it as:
•dfname: [20..20] [-∞..257]

– We get it as:
•dfname: [20..20] [-∞..∞]

August 1, 2003 WiSA - Vinod Ganapathy 40

Current Status

• Alpha version ready and working
• Acceptably quick:

– Sendmail ~2 hours
– Wuftpd, TalkD < 5 minutes

• User friendly GUI for trace-back

August 1, 2003 WiSA - Vinod Ganapathy 41

Next in line…

• The challenge: BIND ~50000 lines
– Highly vulnerable
– 4 CERT advisories in 2 years

• Hierarchical Solver results
• Context Sensitivity through summary

functions
• Timeline: completion by mid-April

August 1, 2003 WiSA - Vinod Ganapathy 42

Tool Demo: TalkD

Step 1: Build the source code
using Codesurfer

August 1, 2003 WiSA - Vinod Ganapathy 43

Tool Demo: TalkD

Step 2: Invoke the
Buffer Overrun Analyzer

August 1, 2003 WiSA - Vinod Ganapathy 44

Tool Demo: TalkD
Step 3: Follow the warnings to source code lines

August 1, 2003 WiSA - Vinod Ganapathy 45

Tool Demo: TalkD

August 1, 2003 WiSA - Vinod Ganapathy 46

Thank You!

Questions?

