
Pushdown Systems
and

Weighted Pushdown Systems

Thomas Reps
University of Wisconsin

Joint work with
S. Jha, S. Schwoon, and S. Stubblebine

Topics
• Model checking of pushdown systems
• Context-sensitive dataflow analysis
• Authorization problems
• Authorization problems + privacy, recency,

validity, and trust

• Jha, S. and Reps, T., Analysis of SPKI/SDSI certificates
using model checking. In Proc. of the 15th IEEE
Computer Security Foundations Workshop, 2002

• Schwoon, S., Jha, S., Reps, T., and Stubblebine, S., On
generalized authorization problems. Submitted to 16th
IEEE Computer Security Foundations Workshop, 2003.

Outline
• Overview of SPKI/SDSI

– Concepts
– Certificate-analysis problems

• Translating SPKI/SDSI to PDSs
– Translation
– Solve certificate-analysis problems using model

checking of PDSs

Motivation
• Traditionally, authorization is expressed

using Access Control Lists or ACLs
– Associate permissions with objects
– For file F:

reps : <r,w,x>
jha : <r,x>
reps-students : <r,x>

• Closed-world assumption
• Not appropriate in a distributed system

Trust Management

Request
credentials
authorization spec Security Policy

Compliance checking

yes no

Trust Management Systems
• Request is the “proof” of authorization
• Several trust management systems

– SPKI/SDSI

– KeyNote

– Referee, SD3, Binder, . . .

SPKI/SDSI
Principals (Public Keys)

RH Some host computer
KCS CS Department
KBob, KAlice Individuals

Local Names
KCS faculty
KBob myStudents

Extended Names
KBob myStudents Spouses

Name Certs

Bob is a CS faculty member
KCS faculty → KBob

Alice is a student of Bob’s
KBob myStudents → KAlice

Name Certs

Bob is a CS faculty
KCS faculty → KBob

Alice is a student of Bob’s
KBob myStudents → KAlice

Each Name cert also has a
Validity specification
(usually a time interval)

Auth Certs
A CS faculty member can use host RH
RH → KCS faculty

Bob allows his students to use host RH
KBob → KBob myStudents

Can delegate

Cannot
delegate

Alice allows access to her friends
KAlice → KAlice myFriends

The lunch resource
k_lunch_resource □

AUTH CERT: Williamsburg Hosp. House lets conferences authorize lunch access
k_lunch_resource □ → k_whh conference □

CIPSW is a conference at Williamsburg Hospitality House
k_whh conference → k_cipsw

AUTH CERT: Conference organizers authorized to act on behalf of CIPSW
k_cipsw □ → k_cipsw organizer □

The CIPSE organizers are . . .
k_cipsw organizer → k_wachter
k_cipsw organizer → k_toth

AUTH CERT: Toth authorizes all attendees . . . but without delegation
k_toth □ → k_cipsw attendee ■

List all attendees here
k_cipsw attendee → k_jha
k_cipsw attendee → k_reps
k_cipsw attendee → k_toth
k_cipsw attendee → k_wachter
k_cipsw attendee → k_clarke

Example

Is k_wachter authorized
to access k_lunch_resource?

Outline
• Overview of SPKI/SDSI

– Concepts
– Certificate-analysis problems

• Translating SPKI/SDSI to PDSs
– Translation
– Solve certificate-analysis problems using

model checking of PDSs

Certificate Analysis
• Authorization access

– Given a resource R and principal K, is K
authorized to access R?

– Solved by constructing a certificate chain
that proves the authorization (certificate-
chain discovery)

Certificate-Analysis Problems

• Shared access
– Given two resources, R1 and R2, what principals

can access both R1 and R2?
• Expiration vulnerability

– What resources will principal K be prevented
from accessing if certificate set C ’ expires?

• Universally guarded access
– Is it the case that all authorizations that can

be issued for a given resource R must involve a
certificate signed by principal K?

More Certificate-Analysis Problems

• Many more . . .
– Consult the CSFW ’02 paper

• Main message
– Model-checking algorithms for Pushdown

Systems can be exploited to solve several
certificate-analysis problems

Certificate Chain
RH

KBob

KCS faculty

KAlice

KBob myStudents

RH → KCS faculty

KCS faculty → KBob

KBob → KBob myStudents

KBob myStudents → KAlice

KAlice → KAlice myFriends

Does not apply!

Outline
• Overview of SPKI/SDSI

– Concepts
– Certificate-analysis problems

• Translating SPKI/SDSI to PDSs
– Translation
– Solve certificate-analysis problems using

model checking of PDSs

Pushdown Systems and SPKI/SDSI

Locations
{ RH, KCS, KBob, KAlice }

Think states

Stack Symbols
{ , , faculty, myStudents }

Transition Rules

<RH, > → <KCS, faculty >

<KCS, faculty> → <KBob, ε>

<KBob, > → <KBob, myStudents >

<KBob, myStudents> → <KAlice,ε>

If location is KBob and the top of
the stack is , then
pop off the stack
transition to location KBob
push myStudents on the stack

<KBob, > → <KBob, myStudents >

If location is KBob and the top of
the stack is , then
pop off the stack
transition to location KBob
push myStudents on the stack

KBob

myStudents
KBob

<KBob, > → <KBob, myStudents >

If location is KBob and the top of
the stack is , then
pop off the stack
transition to location KBob
push myStudents on the stack

KBob α KBob

myStudents

α

PDS Terminology
Configuration

<KBob, myStudents >

c ⇒ c’
c’ follows from c by a transition rule
c predecessor of c’
c’ successor of c
c0 ⇒ c1 ⇒ . . . ⇒ cn (a run)

c ⇒* c’
reflexive transitive closure of ⇒

myStudents

A Certificate Chain is a Run

<KBob, >

<RH, >

<KCS, faculty >

<KAlice, >

<KBob, myStudents >

<RH, > → <KCS,faculty >

<KBob, > → <KBob, myStudents >

<KBob, myStudents> → <KAlice, >ε

<KCS, faculty> → <KBob, > ε

Outline
• Overview of SPKI/SDSI

– Concepts
– Certificate-analysis problems

• Translating SPKI/SDSI to PDSs
– Translation
– Solve certificate-analysis problems using

model checking of PDSs

Pre*({<KAlice, >,<KAlice, >})

Pre*(S)

S = {<KAlice, >,
<KAlice, >}<RH, >

• The set of configurations pre*(S)
can be infinite

• Example
– <K,A> → <K, ε >
– pre* ({<K,A>}) = { K Ai | i ≥ 1 }

• Solution in the PDS literature:
Represent a set of configurations
with an automaton

Representation Issue

<K,A>

<K,AA>

<K, ε >

<K,AAA>

...

{<KAlice, >,<KAlice, >}

KCSRH KAliceKBob

{ , }

What Does the Automaton Represent?

• A set of configurations:
<K, a1 … am > is in the set if

• Initial automaton represents
{<KAlice, >,<KAlice, >}

KK . . .a1 a2 am

{ , }

KCSRH KAliceKBob

Update Rule

<K,a> → <K1,a1 . . . am>

K
a

α

a1 . . . am
K1

K α
a

K1

a1

α
am

...

Pre*({<KAlice, >,<KAlice, >})

KCSRH KAliceKBob

{ , }

faculty myStudents

<KCS,faculty > → <KBob, ε>

<KBob, myStudents > → <KAlice, ε>

Pre*({<KAlice, >, <KAlice, >})

KCSRH KAliceKBob

{ , }

faculty myStudents

<KBob, > → <KBob, myStudents ■>
<RH, > → <KCS, faculty >

Pre*({<KAlice, >, <KAlice, >})

KCSRH KAliceKBob

{ , }

faculty myStudents

<RH, □> ∈ Pre*({<KAlice, □>, <KAlice, ■>})

The lunch resource
(k_lunch_resource <delegation>)

AUTH CERT: Williamsburg Hosp. House lets conferences authorize lunch access
k_lunch_resource <delegation> --> k_whh <conference delegation>

CIPSW is a conference at Williamsburg Hospitality House
k_whh <conference> --> k_cipsw <>

AUTH CERT: Conference organizers authorized to act on behalf of CIPSW
k_cipsw <delegation> --> k_cipsw <organizer delegation>

The CIPSE organizers are . . .
k_cipsw <organizer> --> k_wachter <>
k_cipsw <organizer> --> k_toth <>

AUTH CERT: Toth authorizes all attendees . . . but without delegation
k_toth <delegation> --> k_cipsw <attendee no_delegation>

List all attendees here
k_cipsw <attendee> --> k_jha <>
k_cipsw <attendee> --> k_reps <>
k_cipsw <attendee> --> k_toth <>
k_cipsw <attendee> --> k_wachter <>
k_cipsw <attendee> --> k_clarke <>

Demo

Demo

Time and Space Complexity
• nK : number of principals
• |C|: sum of the lengths of the right-hand

sides of the certs in C
• Pre*

– Time complexity: O(nK |C|)
– Space complexity: O(nK |C|)

• Post*
– Time and space complexity: O(nK (nK+|C|))

2

2

Other Certificate Analysis Problems
• Authorized access 2

– <R, > is in pre* ({ c(N}) })
– Where N = K A1 … Am is an extended name
– c(N) is equal to <K, A1 … Am >
– Note: N need not be a key

• Expiration vulnerability 1
– R1= pre*[C] ({<K, >,<K, >})
– R2 = pre*[C-C’] ({<K, >, <K, >})
– { R | <R, > is in R1 – R2 }

Related Work
• Certificate-chain discovery [Clarke et.al. 99]

– Name-reduction closure
– No mechanism to represent infinite sets

of configurations
– Only solves one certificate-analysis problem

• Our paper
– Infinite sets of configurations represented by

automata
– PDS model checking solves many

certificate-analysis problems

Related Work
• Certificate-chain discovery [Clarke et.al. 99]

– Name-reduction closure
– No mechanism to represent infinite sets

of configurations
– Only solves one certificate-analysis problem

• Semantics of SPKI/SDSI
– [Abadi 98], [Howell & Kotz 00], [Halpern & Meyden 01]

• Our paper
– PDS model checking solves many

certificate-analysis problems
– SPKI/SDSI semantics for free

Contributions
• Observed

– SPKI/SDSI certs = PDS transition rules
– SPKI/SDSI names = PDS configurations

• Harnessed theory of PDS model checking
– PDS model checking solves many

certificate-analysis problems
• SPKI/SDSI semantics for free

Topics
• Model checking of pushdown systems
• Context-sensitive dataflow analysis
• Authorization problems
• Authorization problems + privacy, recency,

validity, and trust

• Jha, S. and Reps, T., Analysis of SPKI/SDSI certificates
using model checking. In Proc. of the 15th IEEE
Computer Security Foundations Workshop, 2002

• Schwoon, S., Jha, S., Reps, T., and Stubblebine, S., On
generalized authorization problems. Submitted to 16th
IEEE Computer Security Foundations Workshop, 2003.

Reachability
Reachability

+ a value

<RInsurance, □> → <KH, patient ■> I
<KH, patient> → <KAIDS, patient> I
<KH, patient> → <KIM, patient> I

<KAIDS, patient> → <KAlice, ε> S
<KIM, patient> → <KAlice, ε> I

Privacy using a Weighted PDS

S

I

Privacy using a Weighted PDS
<RInsurance, □>

<KH, patient ■>

<RInsurance, □> → <KH, patient ■>I

<KAIDS, patient ■>

<KH, patient> → <KAIDS, patient>I

<KAlice, ■>
<KAIDS, patient> → <KAlice, ε>S

Privacy using a Weighted PDS
<RInsurance, □>

<KH, patient ■>
I

<KAIDS, patient ■>

I

<KAlice, ■>
S

I ⊗ I ⊗ S = S
S

Privacy using a Weighted PDS
<RInsurance, □>

<KH, patient ■>

<RInsurance, □> → <KH, patient ■>I

<KIM, patient ■>

<KH, patient> → <KIM, patient>I

<KAlice, ■>
<KIM, patient> → <KAlice, ε>I

Privacy using a Weighted PDS
<RInsurance, □>

<KH, patient ■>
I

<KIM, patient ■>

I

<KAlice, ■>
I

I ⊗ I ⊗ I = I
I

Privacy using a Weighted PDS
<RInsurance, □>

<KH, patient ■>

I

<KIM, patient ■>

I

<KAlice, ■>
I

<KH, patient ■>

I

<KAIDS, patient ■>

I

S
S ⊕ I = I⊕

S I

More Expressive Memory-Safety Policies

v.unknown:
[(v = malloc(_)) == 0] →t v.null

→f v.notNull
[v = malloc(_)] → v.unknown

v.unknown, v.null, v.notNull:
[free(v)] → v.freed

v.freed:
[free(v)] → “double free!”
[v] → “use after free!”

Opportunity: “Checking System Rules” [Engler]

The Need for Context Sensitivity

enter q exit q

v = malloc() free(v)

enter p

call q call q

exit p

ret q ret q

double free!

false alarm:
invalid path!

Hierarchical Graph = PDS

enter q exit q

v = malloc() free(v)

enter p

call q call q

exit p

ret q ret q

Hierarchical Graph = PDS

d e

b g

a

c h

j

f i

p:

q:
<p, a> → <p, b>

Hierarchical Graph = PDS

d e

b g

a

c h

j

f i

p:

q:
<p, b> → <p, c>

Hierarchical Graph = PDS

d e

b g

a

c h

j

f i

p:

q:
<p, c> → <q, d c>

save call site
on stack

Hierarchical Graph = PDS

d e

b g

a

c h

j

f i

p:

q:
<q, d> → <q, e>

Hierarchical Graph = PDS

d e

b g

a

c h

j

f i

p:

q:
<q, e> → <q, ε>

uncovers most
recent call site

Hierarchical Graph = PDS

d e

b g

a

c h

j

f i

p:

q:
<q, c> → <p, f>

Hierarchical Graph = PDS

d e

b g

a

c h

j

f i

p:

q:
<p, f> → <p, g>

d e
q:

Transition System = Unrolled Program

b g

a

c h

j

f i

p:

d e
q:

The Need for Context Sensitivity

enter q exit q

v = malloc() free(v)

enter p

call q call q

exit p

ret q ret q

OK!

Hierarchical Graph + Weights
= Context-Sensitive Dataflow Analysis

int x;

void main() {
x = 5;
p(); // main_calls_p
return;

}

void p() {
if (...) {
x = x + 1;
p(); // p_calls_p1
x = x - 1;

}
else if (...) {
x = x - 1;
p(); // p_calls_p2
x = x + 1;

}
return;

}

Hierarchical Graph + Weights
= Context-Sensitive Dataflow Analysis

int x;

void main() {
n1: x = 5;
n2: p(); //main_calls_p
return;

}

void p() {
n4: if (...) {
n5: x = x + 1;
n6: p(); // p_calls_p1
n8: x = x - 1;

}
n9: else if (...) {
n10: x = x - 1;
n11: p(); // p_calls_p2
n13: x = x + 1;

}
n14: return;

}

Demo

<x@exit, p p_calls_p2 p_calls_p1 main_calls_p>

Topics
• Model checking of pushdown systems
• Context-sensitive dataflow analysis
• Authorization problems
• Authorization problems + privacy, recency,

validity, and trust

• Jha, S. and Reps, T., Analysis of SPKI/SDSI certificates
using model checking. In Proc. of the 15th IEEE
Computer Security Foundations Workshop, 2002

• Schwoon, S., Jha, S., Reps, T., and Stubblebine, S., On
generalized authorization problems. Submitted to 16th
IEEE Computer Security Foundations Workshop, 2003.

Reachability
Reachability

+ a value

