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Intrusion Detection and 
Specification-Based Monitoring

• The Condor attack
How to easily do dangerous and malicious things 

to a running job
• Binary analysis

How to detect attempted intrusions with pre-
execution static analysis and runtime 
monitoring

• Program instrumentation
How to improve model precision & performance
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Intrusion Detection
Goal: Discover attempts to gain malicious 

access to a system
Specification-Based

Monitoring

•Specify constraints upon
program behavior

•Ensure execution does
not violate specification

•Our work; Ko, et al.

•Specifications can be
cumbersome to create

Misuse Detection

•Specify patterns of
attack or misuse

•Ensure misuse patterns
do not arise at runtime

•Snort

•Rigid: cannot adapt
to novel attacks

Anomaly Detection

•Learn typical behavior
of application

•Variations indicate
potential intrusions

• IDES

•High false alarm rate
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Our Approach: Specification
Static analysis of binary code
• Specifications are automatically 

generated
• Not reliant upon analysts

to produce accurate specifications
• Analyzes all execution paths
• Source code may be unavailable
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Our Approach: Enforcement
Operate an automaton modeling correct 

system call sequences

• Dynamic ruleset
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Technical Contributions
• Binary analysis
• Model comparisons
• Techniques to improve precision

– Null call insertion
– Call site renaming

• Techniques to improve performance
– Stack abstractions
– Null call insertion: Practical results using 

push-down automaton (PDA) models
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Example: The Condor Attack
• Users dispatch programs for remote 

execution
• Remote jobs send critical system calls 

back to local machine for execution

Submitting HostSubmitting Host

Shadow Process

Execution HostExecution Host

User Jobsystem calls
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Example: The Condor Attack
• Attackers can manipulate remotely 

executing program to gain access to user’s 
machine

Submitting HostSubmitting Host

Shadow Process

Execution HostExecution Host

User Jobsystem calls
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Countering Remote Attacks
• Goal: Even if an intruder can see, examine, 

and fully control the remote job, no harm 
can come to the local machine.

• Method: Model all possible sequences of 
remote system calls. At runtime, update 
the model with each received call.

• Key technology: Static analysis of binary 
code.
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Execution Monitoring
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Execution Monitoring

Submitting HostSubmitting Host Execution HostExecution Host

Modified
User Job

system callsChecking 
Shadow

Job Model
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Execution Monitoring

Submitting HostSubmitting Host Execution HostExecution Host

Modified
User Job

system callsChecking 
Shadow

Job Model

Call 1Call 2Call 3

FAILFAIL
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Model Construction

Binary
Program

Control
Flow 

Graphs

Local
Automata

Global
Automaton

Analyzer

Checking
Shadow

Modified
User Job

User Job
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The Binary View (SPARC)
function:
save %sp, 0x96, %sp
cmp %i0, 0
bge L1
mov 15, %o1
call read
mov 0, %o0
call line
nop
b L2
nop

L1:
call read
mov %i0, %o0
call close
mov %i0, %o0

L2:
ret
restore

function (int a) {
if (a < 0) {

read(0, 15);
line();

} else {
read(a, 15);
close(a);

}
}
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Control Flow Graph 
Generation

function:
save %sp, 0x96, %sp
cmp %i0, 0
bge L1
mov 15, %o1
call read
mov 0, %o0
call line
nop
b L2
nop

L1:
call read
mov %i0, %o0
call close
mov %i0, %o0

L2:
ret
restore

call read

bge

call read

CFG ENTRY

call close

ret

call line

CFG EXIT
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Control Flow Graph
Translation

call read

bge

call read

CFG ENTRY

call close

ret

call line

CFG EXIT

read read

close line
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Interprocedural Model
Generation
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Possible Paths
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Impossible Paths
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Impossible Paths
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PDA State Explosion
• ε-edge identifiers maintained on a stack

– Stack may grow to be unbounded

• Solution:
– Bound the maximum size of the runtime stack
– A regular language overapproximation of the 

context-free language of the PDA

X
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Prototype Implementation
• Simulates remote execution environment
• Measure model precision
• Measure runtime overheads
• Measure the effect of changing maximum 

stack depth on bounded PDA model
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Test Programs

Process 1 incoming email message

Finger 3 non-local users

Compress a 13 MB file

Workload

56,686gzip

107,167procmail

95,534GNU finger

Program Size 
in Instructions
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Precision Metric
• Average branching factor

• Lower values indicate greater precision

getpid
open

chown
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Optimizations to Improve Precision
• Observation: PDA is more precise than 

NFA because it provides context 
sensitivity

• Idea: Insert null calls into NFA model to 
add some context sensitivity without 
suffering runtime cost of PDA
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Null Call Experiments
• Inserted null calls at 3 rates

– High: At entries of functions with fan-in of 2 
or greater

– Medium: At entries of functions with fan-in of 
5 or greater

– Low: At entries of functions with fan-in of 10 
or greater
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Precision: NFA Model with Null Calls
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Precision: PDA Model with Null Calls, procmail
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Important Ideas
• Specifications generated automatically 

from binary code analysis
• Operate a finite state machine modeling 

correct execution
• PDA model is precise but suffers high 

overhead
• Bounded PDA stack & null calls allow use of 

precise PDA model
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