
Detecting Manipulated
Remote Call Streams

Jonathon Giffin, Somesh Jha, Barton Miller
Computer Sciences Department

University of Wisconsin
giffin@cs.wisc.edu

2002 USENIX Security Symposium ©2002 Jonathon T. Giffin 2

Intrusion Detection and
Specification-Based Monitoring

• The Condor attack
How to easily do dangerous and malicious things

to a running job
• Binary analysis

How to detect attempted intrusions with pre-
execution static analysis and runtime
monitoring

• Program instrumentation
How to improve model precision & performance

2002 USENIX Security Symposium ©2002 Jonathon T. Giffin 3

Intrusion Detection
Goal: Discover attempts to gain malicious

access to a system
Specification-Based

Monitoring

•Specify constraints upon
program behavior

•Ensure execution does
not violate specification

•Our work; Ko, et al.

•Specifications can be
cumbersome to create

Misuse Detection

•Specify patterns of
attack or misuse

•Ensure misuse patterns
do not arise at runtime

•Snort

•Rigid: cannot adapt
to novel attacks

Anomaly Detection

•Learn typical behavior
of application

•Variations indicate
potential intrusions

• IDES

•High false alarm rate

2002 USENIX Security Symposium ©2002 Jonathon T. Giffin 4

Execution
Obeys Static

Rule Set

Specification

Execution
Matches
Model of

Application

Analyst or
Administrator

Training
Sets

Static
Binary Code

Analysis

Static
Source Code

Analysis

Enforcement

2002 USENIX Security Symposium ©2002 Jonathon T. Giffin 5

Our Approach: Specification
Static analysis of binary code
• Specifications are automatically

generated
• Not reliant upon analysts

to produce accurate specifications
• Analyzes all execution paths
• Source code may be unavailable

2002 USENIX Security Symposium ©2002 Jonathon T. Giffin 6

Our Approach: Enforcement
Operate an automaton modeling correct

system call sequences

• Dynamic ruleset

2002 USENIX Security Symposium ©2002 Jonathon T. Giffin 7

Technical Contributions
• Binary analysis
• Model comparisons
• Techniques to improve precision

– Null call insertion
– Call site renaming

• Techniques to improve performance
– Stack abstractions
– Null call insertion: Practical results using

push-down automaton (PDA) models

2002 USENIX Security Symposium ©2002 Jonathon T. Giffin 8

Example: The Condor Attack
• Users dispatch programs for remote

execution
• Remote jobs send critical system calls

back to local machine for execution

Submitting HostSubmitting Host

Shadow Process

Execution HostExecution Host

User Jobsystem calls

2002 USENIX Security Symposium ©2002 Jonathon T. Giffin 9

Example: The Condor Attack
• Attackers can manipulate remotely

executing program to gain access to user’s
machine

Submitting HostSubmitting Host

Shadow Process

Execution HostExecution Host

User Jobsystem calls

2002 USENIX Security Symposium ©2002 Jonathon T. Giffin 10

Countering Remote Attacks
• Goal: Even if an intruder can see, examine,

and fully control the remote job, no harm
can come to the local machine.

• Method: Model all possible sequences of
remote system calls. At runtime, update
the model with each received call.

• Key technology: Static analysis of binary
code.

2002 USENIX Security Symposium ©2002 Jonathon T. Giffin 11

Execution Monitoring

Analyzer

Runtime
Monitor

Modified
Application

Application

Checking
Shadow

Modified
User Job

User Job

2002 USENIX Security Symposium ©2002 Jonathon T. Giffin 12

Execution Monitoring

Submitting HostSubmitting Host Execution HostExecution Host

Modified
User Job

system callsChecking
Shadow

Job Model

2002 USENIX Security Symposium ©2002 Jonathon T. Giffin 13

Execution Monitoring

Submitting HostSubmitting Host Execution HostExecution Host

Modified
User Job

system callsChecking
Shadow

Job Model

Call 1Call 2Call 3

FAILFAIL

2002 USENIX Security Symposium ©2002 Jonathon T. Giffin 14

Model Construction

Binary
Program

Control
Flow

Graphs

Local
Automata

Global
Automaton

Analyzer

Checking
Shadow

Modified
User Job

User Job

2002 USENIX Security Symposium ©2002 Jonathon T. Giffin 15

The Binary View (SPARC)
function:
save %sp, 0x96, %sp
cmp %i0, 0
bge L1
mov 15, %o1
call read
mov 0, %o0
call line
nop
b L2
nop

L1:
call read
mov %i0, %o0
call close
mov %i0, %o0

L2:
ret
restore

function (int a) {
if (a < 0) {

read(0, 15);
line();

} else {
read(a, 15);
close(a);

}
}

2002 USENIX Security Symposium ©2002 Jonathon T. Giffin 16

Control Flow Graph
Generation

function:
save %sp, 0x96, %sp
cmp %i0, 0
bge L1
mov 15, %o1
call read
mov 0, %o0
call line
nop
b L2
nop

L1:
call read
mov %i0, %o0
call close
mov %i0, %o0

L2:
ret
restore

call read

bge

call read

CFG ENTRY

call close

ret

call line

CFG EXIT

2002 USENIX Security Symposium ©2002 Jonathon T. Giffin 17

Control Flow Graph
Translation

call read

bge

call read

CFG ENTRY

call close

ret

call line

CFG EXIT

read read

close line

2002 USENIX Security Symposium ©2002 Jonathon T. Giffin 18

Interprocedural Model
Generation

read read

close line

line

write

line

A B

close

ε

ε

ε

ε

2002 USENIX Security Symposium ©2002 Jonathon T. Giffin 19

Possible Paths

read read

close
write

line

A B

ε

ε

ε

closeε

2002 USENIX Security Symposium ©2002 Jonathon T. Giffin 20

Possible Paths

read read

close
write

ε

ε

ε

closeε

line

A B

2002 USENIX Security Symposium ©2002 Jonathon T. Giffin 21

Impossible Paths

read read

close
write

ε

ε

ε

closeε

line

A B

2002 USENIX Security Symposium ©2002 Jonathon T. Giffin 22

Impossible Paths

read read

close
write

ε

ε

ε

closeε

line

A B

2002 USENIX Security Symposium ©2002 Jonathon T. Giffin 23

Y

Y

X

X

Adding Context Sensitivity

read read

close closewrite

ε

ε

ε

ε
push

push

pop

pop

line

A B

2002 USENIX Security Symposium ©2002 Jonathon T. Giffin 24

PDA State Explosion
• ε-edge identifiers maintained on a stack

– Stack may grow to be unbounded

• Solution:
– Bound the maximum size of the runtime stack
– A regular language overapproximation of the

context-free language of the PDA

X

2002 USENIX Security Symposium ©2002 Jonathon T. Giffin 25

Prototype Implementation
• Simulates remote execution environment
• Measure model precision
• Measure runtime overheads
• Measure the effect of changing maximum

stack depth on bounded PDA model

2002 USENIX Security Symposium ©2002 Jonathon T. Giffin 26

Test Programs

Process 1 incoming email message

Finger 3 non-local users

Compress a 13 MB file

Workload

56,686gzip

107,167procmail

95,534GNU finger

Program Size
in Instructions

2002 USENIX Security Symposium ©2002 Jonathon T. Giffin 27

Precision Metric
• Average branching factor

• Lower values indicate greater precision

getpid
open

chown

2002 USENIX Security Symposium ©2002 Jonathon T. Giffin 28

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

gzip GNU finger procmail

Program

A
ve

ra
ge

 B
ra

nc
hi

ng
 F

ac
to

r

None Rename Argument Capture Rename+Capture

Precision: NFA Model

2002 USENIX Security Symposium ©2002 Jonathon T. Giffin 29

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

0 1 2 3 4 5 6 7 8 9 10
Stack Bound

A
ve

ra
ge

 B
ra

nc
hi

ng
 F

ac
to

r

Rename+Capture

Precision: PDA Model, procmail

2002 USENIX Security Symposium ©2002 Jonathon T. Giffin 30

Optimizations to Improve Precision
• Observation: PDA is more precise than

NFA because it provides context
sensitivity

• Idea: Insert null calls into NFA model to
add some context sensitivity without
suffering runtime cost of PDA

2002 USENIX Security Symposium ©2002 Jonathon T. Giffin 31

Null Call Experiments
• Inserted null calls at 3 rates

– High: At entries of functions with fan-in of 2
or greater

– Medium: At entries of functions with fan-in of
5 or greater

– Low: At entries of functions with fan-in of 10
or greater

2002 USENIX Security Symposium ©2002 Jonathon T. Giffin 32

Precision: NFA Model with Null Calls

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

gzip GNU finger procmail

Program

A
ve

ra
ge

 B
ra

nc
hi

ng
 F

ac
to

r

Rename+Capture Low Insertion Rate Medium Insertion Rate High Insertion Rate

0

2002 USENIX Security Symposium ©2002 Jonathon T. Giffin 33

Precision: PDA Model with Null Calls, procmail

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

0 1 2 3 4 5 6 7 8 9 10
Stack Bound

A
ve

ra
ge

 B
ra

nc
hi

ng
 F

ac
to

r

High Insertion Rate Medium Insertion Rate Low Insertion Rate Rename+Capture

2002 USENIX Security Symposium ©2002 Jonathon T. Giffin 34

0
2
4

6
8

10
12
14

16
18
20

0 1 2 3 4 5 6 7 8 9 10

Stack Bound

O
ve

rh
ea

d
(s

ec
on

ds
)

High Insertion Rate Medium Insertion Rate Low Insertion Rate Rename+Capture

750 s 95 s

Overhead: PDA Model with Null Calls, procmail

2002 USENIX Security Symposium ©2002 Jonathon T. Giffin 35

Important Ideas
• Specifications generated automatically

from binary code analysis
• Operate a finite state machine modeling

correct execution
• PDA model is precise but suffers high

overhead
• Bounded PDA stack & null calls allow use of

precise PDA model

Detecting Manipulated
Remote Call Streams

Jonathon Giffin, Somesh Jha, Barton Miller
Computer Sciences Department

University of Wisconsin
giffin@cs.wisc.edu

