
August 4, 2003 WiSA - Vinod Ganapathy 1

Static Analysis Techniques to Detect
Buffer Overrun Vulnerabilities

Vinod Ganapathy
University of Wisconsin

August 4, 2003 WiSA - Vinod Ganapathy 2

Introduction
• Buffer Overruns

– An important class of vulnerabilities
– CERT advisories:

• 10 out of 37 in 2001
• 8 out of 19 till July 2002

– Eg. Microsoft IE [2002-04], Yahoo! Messenger [2002-16]

– C is highly vulnerable
• Systems programming mainly done in C
• Easy to exploit

August 4, 2003 WiSA - Vinod Ganapathy 3

Goal
• Build a tool that will detect overruns in C

source code
• Static Analysis or Run-time Analysis?

– Run-time: Avoids vulnerabilities, tools available
• Examples: CCured [Berkeley] , SafeC [Wisconsin]

– Static Analysis: Eliminates vulnerabilities
• Examples: Wagner’s tool [Berkeley] , Our tool

• Our Tool:
– Statically analyzes source code
– Uses points to information
– Uses Linear Programming (LP) for analysis

August 4, 2003 WiSA - Vinod Ganapathy 4

Idea

• Treat strings as Abstract Data Types
– Each string buffer buf associated with four variables:

• buf_len_max, buf_len_min, buf_alloc_max, buf_alloc_min

• These define an interval of values

– Each integer int associated with two variables:
• int_max, int_min

• Model the semantics as constraints on variables
– Eg. strcpy(a, b) a_len_max >= b_len_max

a_len_min <= b_len_min

August 4, 2003 WiSA - Vinod Ganapathy 5

Tool Layout – An Overview

Constraint Generator

Detector

Linear Program Solver

Source Code

Linear Program

Values for Variables

Warnings

August 4, 2003 WiSA - Vinod Ganapathy 6

Constraint Generation
• Consists of the following phases:

– Program Analysis : using Codesurfer
– Constraint Generation : Codesurfer + Transducer
– Constraint format converter [optional]

• Program Analysis with Codesurfer:
– Input : Source program
– Internally Constructs : CFG, PDG, Points to information
– Front End : Traverse the constructs and produce

constraints

August 4, 2003 WiSA - Vinod Ganapathy 7

Constraint Generation
• Options Available

– Flow Sensitive Analysis:
• Respect Program order

– Flow Insensitive Analysis:
• Do not respect program order

– Context-Sensitive modeling of functions:
• Differentiate Information between call-sites

– Context-Insensitive modeling of functions:
• Merge Information across call-sites

August 4, 2003 WiSA - Vinod Ganapathy 8

Constraint Generation
• Our Model:

– Flow Insensitive Analysis
– Context-sensitive modeling for some library

functions
– Context-insensitive for the rest

• Pros and Cons:
☺ Faster and Easier Analysis
☺ Smaller space requirements
/ Lower Precision => Higher False Positives

August 4, 2003 WiSA - Vinod Ganapathy 9

Constraint Generation
• Transducer:

– Produces constraints from an intermediate
format produced by Codesurfer

• Constraint Format Converter:
– Converts constraints into the format required

by the LP solver
– MPS format is popular

• Column based format
– Row based format Column based format

August 4, 2003 WiSA - Vinod Ganapathy 10

Constraint Generation
• An Example

param2 = ID(“hi”); Char *ID (char *formal){

strcpy(a, param2); return formal;

… }

• A few Constraints:
call site : formal_len_max >= 3 (“h”+“i”+“\0”)

formal_len_min <= 3
ID_return_len_max >= formal_len_max
ID_return_len_min <= formal_len_min

assignment: param2_len_max >= ID_return_len_max

param2_len_min <= ID_return_len_min

call to strcpy: a_len_max >= param2_len_max

a_len_min <= param2_len_min

August 4, 2003 WiSA - Vinod Ganapathy 11

Linear Program Solver
• A Linear Program:

– A set of constraints
– An objective function
– Goal : Maximize/Minimize the value of the

objective function subject to the constraints
• In our case:

– Constraints are available
– Goal should be to:

• Maximize the min variables [greatest lower bound]

• Minimize the max variables [least upper bound]

August 4, 2003 WiSA - Vinod Ganapathy 12

Some LP Terminology
• Constraint set C, objective: minimize F
• Optimal solution: A finite assignment satisfying C

and giving F its lowest finite value
• Unbounded

– Give me an arbitrary finite value M
– I’ll find an assignment so that the value of F < M
– e.g.: Minimize -a, subject to a >= 5

• Infeasible
– No finite assignment satisfying C exists
– eg: C is a >= 5; a <= 2

August 4, 2003 WiSA - Vinod Ganapathy 13

Linear Program Solver
• What should the objective function be?

– Option 1:
• Minimize: Σ (buf_len_max – buf_len_min) +

Σ (buf_alloc_max – buf_alloc_min) +
Σ (int_max – int_min)

• Solve one LP
– Option 2:

• Minimize: buf_alloc_max – buf_alloc_min +
buf_len_max – buf_len_min

• Solve as many LPs as there are buffers

August 4, 2003 WiSA - Vinod Ganapathy 14

Linear Program Solver
– Option 3:

• Minimize: (buf_len_max – buf_len_min)
• Minimize: (buf_alloc_max – buf_alloc_min)
• Solve twice as many LPs as there are buffers

– Option 4:
• Minimize: buf_alloc_max
• Minimize: buf_len_max
• Maximize: buf_alloc_min
• Maximize: buf_len_min
• Solve four times as many LPs as there are buffers

August 4, 2003 WiSA - Vinod Ganapathy 15

Linear Program Solver
• Precision of the results obtained:

– Option 1 < Option 2 < Option 3 < Option 4

• Reason:
– Goal: Minimize a and b, subject to C
– Objective function: Minimize: a + b

a

b

.
.

.

. .
Projection of vertex of
polytope C on plane a..b

Minimizes b

Minimizes a

Most Precise

August 4, 2003 WiSA - Vinod Ganapathy 16

Linear Program Solver
• All 4 options are in place

– Lets you choose the level of precision desired
– Way out when the LP is Unbounded
– More precision => More LPs => Greater analysis time

• We use SoPlex
– Sequential Object Oriented Simplex
– Accepts Column based and Row based formats
– May also try out CPLEX

August 4, 2003 WiSA - Vinod Ganapathy 17

Detector
• Takes values from the LP solver
• Detects overruns based on the values

0 1 ...

buf_alloc_min

buf_len_max

Scenario I: ‘’Possible’’ buffer overflow

buf_alloc_max buf_len_max

Scenario II: Sure buffer overflow

August 4, 2003 WiSA - Vinod Ganapathy 18

Tool Layout - Summary

Detector LP solver

Codesurfer Row->ColumnTransducer

F C

Values

Source program

Objective function ?
Constraints

ConstraintsObjective functions

Warnings

Constraints

August 4, 2003 WiSA - Vinod Ganapathy 19

Some Problems !
• A few problems:

– LP can only work with finite values
– All problems need not have an optimal solution
– What if your source program had i = i + 1 ?

• i_max >= i_max + 1 is not accepted by any LP solver
– What if your source program had:

• a = b + 5; b = a ? (pointer arithmetic)
• A subset of the constraints generated:

a_len_min <= b_len_min - 5

b_len_min <= a_len_min

• This LP is infeasible!

August 4, 2003 WiSA - Vinod Ganapathy 20

Our solutions
• Optimal: We are done.
• Unbounded:

– Some variable goes to infinity.
– Produce objective function using choice 3 or 4
– Still unbounded => those variables are infinite

• Infeasible (work in progress):
– Remove the constraints that caused infeasibility
– CPLEX has the capability to do so

August 4, 2003 WiSA - Vinod Ganapathy 21

Infeasible constraints
• Some preliminary ideas:

– Remove a subset C’ of constraints from C
– So that C – C’ is feasible
– Once C’ is removed:

• Have to set values of variables in C’ to ∞ / -∞
• May have to ripple this through C – C’

– E.g.
• Remove b_len_min <= a_len_min

• Set both their values to -∞

August 4, 2003 WiSA - Vinod Ganapathy 22

Our solutions
• i = i + 1

– Convert to i_prime = i + 1

– Use i_prime in places where i is used
– Problem here:

• Increased value of i not being fed back to itself
• We could miss potential overruns
• What if I add i = i_prime? Infeasible !

– Possible way out:
• Use the above conversion
• Remove the infeasible set; Set i to ∞

August 4, 2003 WiSA - Vinod Ganapathy 23

Tool Layout with Infeasibility Detector

Detector LP solver

Codesurfer
Infeasibility

DetectorTransducer

F C

Values

Source program

Objective function ?
Constraints

ConstraintsObjective functions

Warnings

August 4, 2003 WiSA - Vinod Ganapathy 24

Status
• Done:

– Constraint Generation
– Capability to solve multiple linear programs
– Capability to analyze unbounded problems
– Capability to reuse basis from previous solve

• Faster solves as a result

• Doing
– Working on the infeasibilty problem

August 4, 2003 WiSA - Vinod Ganapathy 25

Goals
• Biggest program tested SendMail 8.7.6

– Constraint set is infeasible
• Target:

– Immediate (next 1 month) :
• The infeasibility problem
• Performance issues

– Short term :
• Diagnostics: Which statement caused the overrun ?

– Long term :
• Alternatives to Linear Programming based analysis
• Constraint Generator for binaries

August 4, 2003 WiSA - Vinod Ganapathy 26

Demo with BSD Talk Daemon
Constraint Generation

Analysis

Warnings

August 4, 2003 WiSA - Vinod Ganapathy 27

Thank You!

Questions?

