
Verifying Behavioral Subtyping
in TVLA

Anne Mulhern
UW Madison

mulhern@cs.wisc.edu

Overview
• Subtyping and Subclassing
• Behavioral Subtyping and Structural Subtyping
• Verifying Behavioral Subtyping in TVLA

• Method Equivalence
• TVLA Techniques

• Work So Far
• Future Work

Subtyping vs. Subclassing

• Inheritance of code, i.e. subclassing
• Inheritance of behavior, i.e. subtyping
• Liskov Substitution Principle:

For every object x’ of type t’ there is an object x of type t, such that
for all programs P defined in terms of t, the behavior of P is
unchanged when x’ is substituted for x. [Liskov 1988]

• Subtyping not enforced by compilers
• Goal: Build a tool that provides some amount of

checking

Why?
class FooNode {
FooNode next;. . .
〈many data members〉. . .

};

class Foo {
FooNode first;
FooNode last;
AppendElmt(Datum);. . .
〈many members〉
. . .

};

class ListNode {
ListNode next;

};

class List {
ListNode first;
ListNode last;
AddToEnd(Datum);

};

≤

Related Work

• Liskov & Wing
– A Behavioral Notion of Subtyping [1994]
– Behavioral Subtyping Using Invariants and Constraints [1999]

• America:
– Designing an Object-Oriented Programming Language with Behavioral

Subtyping [1991]
• Leavens & Dhara:

– Weak Behavioral Subtyping for Types With Mutable Objects [1994]
• Findler, Latendresse & Felleisen:

– Behavioral Contracts and Behavioral Subtyping [2001]
• Findler & Felleisen:

– Contract Soundness for Object-Oriented Languages [2001]

Overview
• Subtyping vs. Subclassing
• Behavioral Subtyping and Structural Subtyping
• Verifying Behavioral Subtyping in TVLA

• Method Equivalence
• TVLA Techniques

• Work So Far
• Future Work

Behavioral Subtyping
• Sometimes difficult to define what is subtyping
• “behavior” hard to specify
• Typically relies on some programmer specifications
• A subtype object is sometimes operated on by

supertype methods and sometimes by subtype
methods (polymorphism problem)

expects supertypeexpects supertype expects subtype

“surprising”
behavior

Structural Subtyping

• Are the structures substitutable?

f.AppendElmt(Datum);

l.AddToEnd(Datum);

Goals

• Keep programmer input to a minimum
• Example: programmer asserts correspondence

• Between fields of the class
• Between methods of the class
• Rest is up to tool

• Need to verify
• Method equivalence: corresponding methods of

the subclass and superclass do the “same” thing
• If “new” methods of the subclass are executed

surprising behavior won’t occur subsequently

Overview
• Subtyping vs. Subclassing
• Behavioral Subtyping and Structural Subtyping
• Verifying Behavioral Subtyping in TVLA

• Method Equivalence
• TVLA Techniques

• Work So Far
• Future Work

How?

• TVLA (Three valued logic analysis)
• Models the different elements in the data structure
• Models equivalence between two structures

• Maintains a correspondence between elements

Example

• Assert: doubly linked list is a subclass of a singly
linked list

• The back pointer in a doubly linked list stands in for
the additional fields defined in Foo

Overview
• Subtyping vs. Subclassing
• Behavioral Subtyping and Structural Subtyping
• Verifying Behavioral Subtyping in TVLA

• Method Equivalence
• TVLA Techniques

• Work So Far
• Future Work

Method Equivalence
• General idea:

• Invoke “equivalent” methods simultaneously on
corresponding structures
• Maintain correspondence between nodes
• If correspondence is maintained throughout

then structures are equivalent.

Method Equivalence

• Problem I:
• TVLA structures must be detailed enough to

capture the meaning of the operation
• Example: AddToEnd must add element at end

Invalid Structure

Method Equivalence

• Problem I Solution:
• “Brand” specific nodes that will be affected.

• Works only when a specific node can be
designated.

• May require programmer input.

Method Equivalence
• Problem II:

• Generally, equivalent methods will have very
different implementations.
• Example: Remove the last element from a list.

• Doubly linked list can use back pointers.

Method Equivalence
• Problem II Solution:

• Relax the requirement that the two structures
always be in sync.
• The structures must still be in sync at the start

and end of the method.

Overview
• Subtyping vs. Subclassing
• Behavioral Subtyping and Structural Subtyping
• Verifying Behavioral Subtyping in TVLA

• Method Equivalence
• TVLA Techniques

• Work So Far
• Future Work

Sharpening Predicates
• Use a binary predicate to maintain the

correspondence between a pair of nodes.
• Summarization results in loss of precision.

before summarization

summarized

one possible
structure

Sharpening Predicates
• Add a unary predicate that indicates the existence of

the binary predicate.
• Each node definitely has a partner.

before summarization

summarized

one possible
structure

Sharpening Predicates
• Define the correspondence “recursively”
• If

• the previous two nodes correspond, and
• each of the current nodes has a partner,

• then the two current nodes correspond to each other.

Sharpening Predicates
• Techniques

• Strengthening the binary predicate with auxiliary
unary predicates.

• Making the definition recursive.
• Can resolve the correspondence while advancing in

the list.

Sharpening Predicates
• Unary predicates prevent blurring of coupled and

uncoupled nodes.

before summarization

summarized

one possible
structure

Example

Remove Last
Element

Overview
• Subtyping vs. Subclassing
• Behavioral Subtyping and Structural Subtyping
• Verifying Behavioral Subtyping in TVLA

• Method Equivalence
• TVLA Techniques

• Work So Far
• Future Work

Work so far

• Changing the structure of linked lists.
• Inserting nodes.
• Removing nodes.

Overview
• Subtyping vs. Subclassing
• Behavioral Subtyping and Structural Subtyping
• Verifying Behavioral Subtyping in TVLA

• Method Equivalence
• TVLA Techniques

• Work So Far
• Future Work

Future Work
• Generalize techniques to other problems.

• Different structures, e.g. trees rather than lists
• Behavior that is not just structural

• e.g. do the methods order the nodes in the same way?
• Build on previous work in TVLA on sorting.

• Enhance techniques
• Numeric abstraction (attach integer values to nodes)

• Can maintain a count of the number of non-summary
nodes that a summary node represents

• Can maintain more information about the position of a
node within a structure

