Towards Abstraction Refinement in TVLA

Alexey Loginov
UW Madison
alexey@cs.wisc.edu
Need for Heap Data Analysis

• Talks by WiSA students
 – Static analyses for de-obfuscation of code
 – Limited ability to analyze heap data
 – Need understanding of possible shapes
 • Want to handle unbounded heap object creation
 • Java objects (e.g. threads) are in heap
Linked List Abstractions

• Informally

• Formally
Linked List Abstractions

- Informally

- Formally
Linked List Abstractions

• Informally

• Formally

\[x \rightarrow \quad \cdots \]
\[y \rightarrow \quad \cdots \]

\[x \rightarrow r_x \rightarrow \quad r_x \]
\[y \rightarrow r_y \rightarrow \quad r_y \]
Linked List Abstractions

• Informally

• Formally
Abstraction Refinement

- Devising good analysis abstractions is hard
 - Precision/cost tradeoff
 - Too coarse: “Unknown” answer
 - Too refined: high space/time cost
- Start with simple (and cheap) abstraction
- Successively refine abstraction
 - Adaptive algorithm
Abstraction Refinement

- Iterative process
 - Create an abstraction (e.g. set of predicates)
 - Run analysis
 - Detect indefinite answers (stop if none)
 - Refine abstraction (e.g. add predicates)
 - Repeat above steps
Previous Work on Abstraction Refinement

- Counterexample guided [Clarke et al]
 - Finds shortest invalid prefix of spurious counterexample
 - Splits last state on prefix into less abstract ones
- SLAM toolkit [Ball, Rajamani]
 - Temporal safety properties of software
 - Identifies correlated branches
Abstraction Refinement for TVLA: New Challenges

• Need to refine abstractions of linked data structures
 – Identify appropriate new distinctions between
 • Nodes
 • Structures

• Need to derive the associated abstract interpretation
 – What are the update formulas?
Control Over the Merging of Nodes

• Unary abstraction predicates
 \[r_x(v) = \exists v' : (x(v') \land n^*(v',v)) \]
 • Distinguish nodes reachable from x (and y)
 • Can now tell if lists are disjoint
Control Over the Merging of Structures

• Nullary abstraction predicates

\[nn_x() = \exists v : x(v) \]

• Distinguish structures based on whether x is NULL
• Can now tell that x is NULL whenever y is (and vice versa)
Need for Update Formulas

- Re-evaluating formulas is imprecise

\[r_x(v) = \exists v' : (x(v') \triangleright n^*(v',v)) \]

Action “\(x = x->n\)”
Need for Update Formulas

- Re-evaluating formulas is imprecise

\[r_x(v) = \exists v' : (x(v') \leftarrow n^*(v',v)) \]

Action “\(x = x->n\)”
Goal: Create Update Formulas Automatically

• Currently: user provides all update formulas
 – A lot of work
 – Error prone
 – Precludes iterative refinement

• Idea: Finite differencing of formulas

\[F(\phi) = p_\phi \phi^\Delta \]
Past Work on Finite Differencing

- Paige: SETL
- Horwitz & Teitelbaum: Relational Algebra
- Liu & Teitelbaum: Functional Programs
Database View Maintenance

- DB' - updated database
- U – database update
- ϕ - query
- A – answer
Finite Differencing of first-order formulas

- S' - updated core structure
- τ – core update
- ϕ_p – instrumentation predicate formula
- S_{inst} – instrumentation structure
\[0^\Delta = 0 \]
\[1^\Delta = 0 \]
\[(\varphi \psi)^\Delta = \varphi^\Delta \psi^\Delta \]
\[(\varphi \psi)^\Delta = \varphi^\Delta \psi^\Delta \]
\[(\varphi \Delta \psi)^\Delta = \varphi^\Delta \psi^\Delta \]
\[(\varphi \Delta \psi)^\Delta = \varphi^\Delta \psi^\Delta \]

\[\text{Differencing } \approx \text{ Differentiation} \]

\[c' = 0 \]
\[(f + g)'(x) = f'(x) + g'(x) \]
\[(f \cdot g)'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x) \]
Finite Differencing of Formulas

• $F(\phi) = p_\phi \varphi^\Delta$ - too naïve
 – yields $\frac{1}{2}$ when either argument is $\frac{1}{2}$
 – No ability to “generate” or “kill” facts

• Idea: split into negative and positive change
 – $F(\phi) = p_\phi \ ? \neg \Delta^-(\phi) : \Delta^+(\phi)$
 – More precise
 – Natural for static analysis problems
Laws for Δ^+

$\Delta^+(0) = 0 \quad \Delta^+(1) = 0$

$\Delta^+(\neg \varphi) = \Delta^-(\varphi)$

$\Delta^+(\varphi \land \psi) = (\Delta^+(\varphi) \land \neg \psi) \lor (\neg \varphi \land \psi)$

$\Delta^+(\psi))$

$\Delta^+(\exists v : \varphi) = (\exists v : \Delta^+(\varphi)) \lor (\neg (\exists v : \varphi))$
Example: reachability

$$\Delta^+(r_x(v)) = \Delta^+(\exists v' : (x(v') \mathbin{\rightarrow} n^*(v',v)))$$

$$= (\exists v' : \Delta^+(x(v') \mathbin{\rightarrow} n^*(v',v)))$$

$$\mathbin{\rightarrow} (\exists v : (x(v') \mathbin{\rightarrow} n^*(v',v)))$$

$$= (\exists v' : \Delta^+(x(v')) \mathbin{\rightarrow} F(n^*(v',v))) \mathbin{\rightarrow} F(x(v')) \mathbin{\rightarrow} \Delta^+(n^*(v',v)))$$

$$\mathbin{\rightarrow} (\exists v' : (x(v') \mathbin{\rightarrow} n^*(v',v)))$$
Evaluation

• Programs
 – Singly linked list manipulation
 – Doubly linked list manipulation
 – SLL sorting routines
 – Information flow tests

• Measure of success
 – Fraction of automatically generated formulas without loss of precision relative to best hand-crafted formulas
 – Greedy exploration
Results

• More than half of formulas auto generated
 – Worst case: 0 of 2, best case 11 of 15
 – All problems due to transitive closure
• Analysis time increase
 -3% (decrease) to 9% (avg. <2%)
Example revisitted: reachability

\[\Delta^+(r_x(v)) = \]
\[
(\exists v' : \Delta^+(x(v'))) \quad F(n^*(v',v))
\]
\[
F(x(v')) \quad \Delta^+(n^*(v',v)))
\]
\[
(\exists v' : (x(v') \quad n^*(v',v)))
\]
Solution: factor out TC

• Use power of instrumentation
 – Save TC info in instrumentation predicate
 – $t_n(v_1, v_2) = n^*(v_1, v_2)$

• Use in other instrumentation predicates
 – $r_x(v) = \exists v' : x(v') \bowtie t_n(v', v)$
 – $c_n(v) = \exists v' : n(v', v) \bowtie t_n(v, v')$
Example revisited: reachability

\[\Delta^+(r_x(v)) = \]
\[(\exists v' : \Delta^+(x(v'))) \quad F(t_n(v',v)) \]
\[F(x(v')) \quad \Delta^+(t_n(v',v))) \]
\[\neg(\exists v' : (x(v') \quad t_n(v',v))) \]
Results (improved)

• Almost 90% of formulas auto generated
 – Worst case: 9 of 11, best cases 3 of 3, 11 of 12
 – Only two kinds of hand-crafted updates needed
 • predicate $t_n(v1,v2)$ for $x->n = \text{null}$
 • predicate $t_n(v1,v2)$ for $x->n = y$

• Analysis time increase
 -5% (decrease) to 11% (avg. <4%)
Conclusions

- **FD** – fully handles first-order formulas
- **Performance effect** – minimal
- **Challenges** – Transitive Closure
 - Updating TC information
 - Preserving unchanged TC information
 - Key: avoid recomputation
Future Work

• Generation of new instrumentation predicates
 – Formula generation
 – Generate update formulas via finite differencing
• Abstraction refinement loop
Towards Abstraction Refinement in TVLA

Alexey Loginov
UW Madison
alexey@cs.wisc.edu
Laws for Δ^+

$\Delta^+(0) = 0$ $\Delta^+(1) = 0$

$\Delta^+(v = w) = 0$

$\Delta^+(\neg \varphi) = \Delta^-(\varphi)$

$\Delta^+(\varphi \land \neg \psi) = (\Delta^+(\varphi) \land \neg \psi) \land (\neg \varphi \land \Delta^+(\psi))$

$\Delta^+(\varphi \lor \psi) = (\Delta^+(\varphi) \lor F(\psi)) \lor (F(\varphi) \lor \Delta^+(\psi))$

$\Delta^+(\psi))$

$\Delta^+(\exists v : \varphi) = (\exists v : \Delta^+(\varphi)) \lor \neg(\exists v : \varphi)$

$\Delta^+(\exists v : \varphi) = (\exists v : \Delta^+(\varphi)) \lor (\not\exists v : F(\varphi))$