
August 5, 2003 WiSA - Vinod Ganapathy 1

Static Analysis Techniques to detect
Buffer Overrun Vulnerabilities.

Vinod Ganapathy
University of Wisconsin

August 5, 2003 WiSA - Vinod Ganapathy 2

Overview

• Buffer Overrun Vulnerability

– String length more than space allocated for it

– char *a;

a = (char *)malloc(5);

gets(a);

– Variable a has 5 bytes allocated, occupies ??

August 5, 2003 WiSA - Vinod Ganapathy 3

Overview
• Significance?

– 10 out of 37 of CERT advisories in 2001
– > 50% of vulnerabilities over last decade

[Wagner et al, 2000 : CERT DB]

– Internet worm – exploited fingerd
– Buffer overruns in RPC services ranked as

the top vulerability to UNIX systems
[SANS Institute 2001]

August 5, 2003 WiSA - Vinod Ganapathy 4

Overview

• Why is C so vulnerable?

– Array references not automatically bounds checked

– C library functions inherently unsafe:
strcpy(), gets(), strcat(), sprintf() etc.

– Very easy to get “off-by-one” bugs

August 5, 2003 WiSA - Vinod Ganapathy 5

Our Goal
• Automate buffer overrun detection

– Use Static Analysis

• State of the Art: Research Prototype
– Very good results on real life applications
– No pointer analysis

• Our Contributions:
– Points to Analysis
– Use of Commercial Linear Program solvers
– Modular Design

August 5, 2003 WiSA - Vinod Ganapathy 6

Ideas Involved

• Strings -- Abstract Data Types
– Operations allowed – strcpy(), strcat(),...

• Associate string s with two variables:
– s_alloc : space allocated for s

– s_len : length of s

• Safety Property: s_alloc >= s_len

August 5, 2003 WiSA - Vinod Ganapathy 7

Ideas Involved
• A constraint for each string operation

• strcpy(a, b): a_len = b_len

• a = (char*)malloc(5); : a_alloc = 5

gets (a); : a_len = choose(1..INF)

• Constraints for whole program:
– Produce equations at each program point.
– Solve as a Linear Program.

August 5, 2003 WiSA - Vinod Ganapathy 8

Tool Layout

Codesurfer

Constraint Generator

Transducer

LP Solver

a = char(*) malloc(5);
gets(a);

a_alloc = 5

a_len = choose(1 .. INF)

a_alloc_max >= 5
a_alloc_min <= 5
a_len_max >= INF
a_len_min <= 1

Internal structures

Buffer Overrun
on a

August 5, 2003 WiSA - Vinod Ganapathy 9

Codesurfer
• Why Codesurfer?

– Capable of points to analysis (3 precision levels)
– Type information available

• How we use Codesurfer:
– Builds a number of structures – use PDG nodes
– Walk the PDG nodes for each procedure
– Walk for each procedure
– Constraint generated based on semantics

August 5, 2003 WiSA - Vinod Ganapathy 10

Constraint Generation
• Various classifications of program points

• Interested in call-sites, assignments &
declarations
– Why call sites? Calls to Functions
– Why assignments? a = strcpy(b,c);

– Why declarations? char a[5];

August 5, 2003 WiSA - Vinod Ganapathy 11

Modeling Functions

• Context Sensitive vs. Context Insensitive
• Sensitive: differentiate call sites.
• Insensitive: Merge information across call sites

• Speed vs. Precision
• More Computation => Slower constraint generation
• Greater Precision => fewer false alarms.

August 5, 2003 WiSA - Vinod Ganapathy 12

Modeling Functions
• False Alarms?

char a[3], b[6];

strcpy(b, ID(“hello”));

strcpy(a, ID(“hi”));

ID

“hi”

“hello”

Size of output [3, 6]

August 5, 2003 WiSA - Vinod Ganapathy 13

Constraint Generation
• Our Model

– Context sensitive: Commonly used library
functions.

– Context insensitive: User defined functions.

• Using type information
– Produce only relevant constraints.
– Limit interest to strings and integers.

August 5, 2003 WiSA - Vinod Ganapathy 14

Constraint Generation
• An Example

… char *ID(char *formal){

strcpy(a, ID(“hi”)); return formal;

… }

• What do we have here?
– call site : formal_len = 3

ID_return_len = formal_len

– assignment : param2_len = ID_return_len
– call to strcpy : a_len = param2_len

August 5, 2003 WiSA - Vinod Ganapathy 15

Flow Insensitivity
• How to “walk” the PDG?

• Flow Sensitive Analysis :
– Respect program order
– Space vs. Time concerns

• Flow Insensitivity :
– Approach adopted here.
– Loss in precision – False Alarms
– Ease of implementation and faster code

August 5, 2003 WiSA - Vinod Ganapathy 16

Flow Insensitivity
• False Alarms?

char *a, b[3],c[6];

a = “hi”;

strcpy(b,a);

a = “hello”;

strcpy(c,a);

• Way around?:
– Copy of store at each CFG node

August 5, 2003 WiSA - Vinod Ganapathy 17

The Transducer
• Constraints produced in an Intermediate

Representation (IR)
– Simple Mathematical equations
– Easy for debugging purposes

• Converts IR to the input format of Linear
Program Solver

August 5, 2003 WiSA - Vinod Ganapathy 18

Linearizing Constraints
• Transducer linearizes constraints

• Only “simple” constraints

• Example:
gets(a) : a_len = choose(1..INF)

a_len_max >= INF

a_len_min <= 1

August 5, 2003 WiSA - Vinod Ganapathy 19

Linearizing Constraints
• More examples:

– Multiple assignments to a variable
• strcpy(a,”hi”); a_len = 3

strcpy(a,”hello”); a_len = 6

a_len_max >= 3

a_len_min <= 3

a_len_max >= 6

a_len_min <= 6

August 5, 2003 WiSA - Vinod Ganapathy 20

Linearizing Constraints
• Even more examples:

– Min/max constraints
• strncpy(a, b, n); a_len = min(b_len, n)

a_len_max >= fresh_var

a_len_min <= fresh_var

fresh_var <= b_len

fresh_var <= n

Try to make fresh_var as large as possible

August 5, 2003 WiSA - Vinod Ganapathy 21

Linearizing Constraints
• Each variable from IR associated with 2 variables

– Denote the range of the variable
– Get the tighest possible range: How?

• A Linear Program:
– minimize : an objective function
– Subject to : a set of constraints

• Our case: minimize the range size :
a_len_max – a_len_min

August 5, 2003 WiSA - Vinod Ganapathy 22

The LP Solver
• Takes in:

– The Objective Function
– The constraints

• Gives out:
– Solution satisfying all the above constraints

• Using SoPlex: Off the shelf solver
– Takes input in MPS format
– Modular design simplifies plugging in any solver

August 5, 2003 WiSA - Vinod Ganapathy 23

Current Status

• Completed:
– Handled a number of library functions
– Handled generalized calls and assignments
– Incorporated the use of types
– Linearizing constraints and producing the MPS file for

SoPlex.
– Constraint generation for real life programs

sendmail-8.7.6 ~40K lines before macro expansion.

August 5, 2003 WiSA - Vinod Ganapathy 24

Current Status

• To be done:
– Dictionary – for library functions.

• Function prototype available
• Source code of function body unavailable
• Can mimic constraint generation

– Wrapper around the LP solver.
– Stress testing
– Results on widely used software packages

August 5, 2003 WiSA - Vinod Ganapathy 25

Current Status

• BSD Talk Daemon
– ~900 lines of code before macro expansion
– ~5000 lines of code after macro expansion

– Dictionary not yet written
– 157 variables in the linear program
– 222 equations
– SoPLex takes negligible time to solve

August 5, 2003 WiSA - Vinod Ganapathy 26

Future Work

• Context Sensitive Handling of user defined
functions
– Compute the transfer functions

• Identifying difference constraints
– Fast Solvers Exist
– How to incorporate this with the LP Solver?

• Apply concepts developed to Assembly Code

August 5, 2003 WiSA - Vinod Ganapathy 27

Demo

• Constraint Generation
• Linearized Constraints and Map File
• MPS File
• Results Overrun Observed on “hname” in main()

• Talk Daemon:
– Constraint Generation

