
DynInst Security© 2002 Barton P. Miller January 2002

Playing Inside the Blackbox:
Using Dynamic Instrumentation to Create

Security Holes

Barton P. Miller
bart@cs.wisc.edu

Computer Sciences Department
University of Wisconsin

Madison, Wisconsin 53705
USA

– 2 – DynInst Security© 2002 Barton P. Miller

Overview

1. How to easily do dangerous and malicious things
to a running program.

2. How to detect when someone does something evil
to your program.

– 3 – DynInst Security© 2002 Barton P. Miller

A New View
Running programs are objects to be easily

manipulated. Kinds of manipulations might include:

❑ Instrumentation

❑ Optimization

❑ Control

– 4 – DynInst Security© 2002 Barton P. Miller

The Vehicle:The DynInst API

A machine-independent library for machine level
code patching.

❑ Eases the task of building new tools.

❑ Provides the basic abstractions to patch code on-
the-fly

– 5 – DynInst Security© 2002 Barton P. Miller

Dynamic Instrumentation
❑ Does not require recompiling or relinking

• Saves time: compile and link times are
significant in real systems.

• Can instrument without the source code (e.g.,
proprietary libraries).

• Can instrument without linking (relinking is not
always possible.

❑ Instrument optimized code.

– 6 – DynInst Security© 2002 Barton P. Miller

Dynamic Instrumentation (con’d)
❑ Only instrument what you need, when you need

• No hidden cost of latent instrumentation.
• Enables “one pass” tools.

❑ Can instrument running programs:
• Servers.
• Application programs.
• Systems with complex start-up procedures.

– 7 – DynInst Security© 2002 Barton P. Miller

The Basic Mechanism
Application

Program
Application

Program

Function fooFunction foo

TrampolineTrampoline

Pre-InstrumentationPre-Instrumentation

RelocatedRelocated
InstructionInstruction

Post-InstrumentationPost-Instrumentation

– 8 – DynInst Security© 2002 Barton P. Miller

The DynInst Interface

❑ Machine independent representation
❑ Object-based interface to build Abstract

Syntax Trees (AST’s)
❑ Write-once, instrument-many (portable)
❑ Hides most of the complexity in the API

• Process Hijacker: only 700 lines of user code!
• MPI tracer: 250 lines

– 9 – DynInst Security© 2002 Barton P. Miller

Basic DynInst Operations
❑ Process control:

• Attach/create process
• Monitor process status changes
• Callbacks for fork/exec/exit

❑ Image (executable program) routines:
• Find procedures/modules/variables
• Call graph (parent/child) queries
• Intra-procedural control-flow graph

– 10 – DynInst Security© 2002 Barton P. Miller

Basic DynInst Operations
❑ Inferior (application processor) operations:

• Malloc/free
– Allocate heap space in application process

• Inferior RPC
– Asynchronously execute a function in the

application.
• Load module

– Cause a new .so/.dll to be loaded into the application.

– 11 – DynInst Security© 2002 Barton P. Miller

Basic DynInst Operations
❑ Inferior operations (continued):

• Remove Function Call
– Disable an existing function call in the application

• Replace Function Call
– Redirect a function call to a new function

• Replace Function
– Redirect all calls (current and future) to a function

to a new function.

– 12 – DynInst Security© 2002 Barton P. Miller

Basic DynInst Operations
❑ Building AST code sequences:

• Control structures: if and goto
• Arithmetic and Boolean expressions
• Get PID/TID operations
• Read/write registers and global variables
• Read/write parameters and return value
• Function call

– 13 – DynInst Security© 2002 Barton P. Miller

Security Applications of DynInst

Lots of tool applications of Dyninst by lots of groups.

Here are two security-oriented ones:

❑ License server bypassing

❑ Condor security attacks

– 14 – DynInst Security© 2002 Barton P. Miller

Condor Attack: Lurking Jobs
❑ Condor schedules jobs on idle workstations
❑ In a normal mode, jobs run as a common, low-

privilege user ID: “nobody”.
❑ This common user ID provides an opportunity

for an evil lurking process to ambush
subsequent jobs (from other users):

– 15 – DynInst Security© 2002 Barton P. Miller

Condor Job Structure

Submitting HostSubmitting Host

Shadow Process

Execution HostExecution Host

User Jobsystem calls

– 16 – DynInst Security© 2002 Barton P. Miller

Condor Job Structure

Submitting HostSubmitting Host

Shadow Process

Execution HostExecution Host

Evil
User Job

system calls

Lurker
Process

forkfork

– 17 – DynInst Security© 2002 Barton P. Miller

Condor Job Structure

Submitting HostSubmitting Host Execution HostExecution Host

Lurker
Process

– 18 – DynInst Security© 2002 Barton P. Miller

Condor Job Structure

Submitting HostSubmitting Host

Shadow Process

Execution HostExecution Host

Innocent
User Job

system calls

Lurker
Process

– 19 – DynInst Security© 2002 Barton P. Miller

Condor Job Structure

Submitting HostSubmitting Host

Shadow Process

Execution HostExecution Host

Innocent
User Job

system calls

Lurker
Process

attach

– 20 – DynInst Security© 2002 Barton P. Miller

Condor Job Structure

Submitting HostSubmitting Host

Shadow Process

Execution HostExecution Host

Innocent
User Job

system calls

Control remote
system calls

Lurker
Process

rm -rf *

– 21 – DynInst Security© 2002 Barton P. Miller

Can We Trust a Remote Job?
The threats:

1. Cause the job to make improper remote system
calls.

2. Cause the job to calculate an incorrect answer.
3. Steal data from the remote job.

Threat protection strategies:
• File sand-boxing (#1)
• System call sand-boxing (#1)
• Obscure and encode binary (#1)
• Replicate remote job (#2)

– 22 – DynInst Security© 2002 Barton P. Miller

Sand-Boxing

Shadow process selectively rejects system calls:
• Restrict access to specific files or directories
• Disallow certain system calls
• Disallow certain system call parameter values

Submitting HostSubmitting Host

Shadow Process

Execution HostExecution Host

User Jobsystem calls

– 23 – DynInst Security© 2002 Barton P. Miller

Obscuring the Executable

User Job

Modified
User JobChecking Shadow

Modifier/Obscurer

– 24 – DynInst Security© 2002 Barton P. Miller

Obscuring the Executable

Goal:
Even if an intruder can see, examine, and fully

control the remote job, no harm can come to the
local machine.

– 25 – DynInst Security© 2002 Barton P. Miller

How to Get a Copy of DynInst:
Release 2.3 (release 3.0 imminent)

• Free for research use.
• Runs on Solaris (SPARC & x86), Windows NT,

AIX/SP2, Linux (x86), Irix (MIPS),Tru64 Unix
(Alpha).

http://www.paradyn.org

http://www.dyninst.org

paradyn@cs.wisc.edu

