Towards Abstraction Refinement
in TVLA

Alexey Loginov
UW Madison
alexey(@cs.wisc.edu

Need for Heap Data Analysis

* Morning talks by UW students
— Static analyses for de-obfuscation of code
— Limited ability to analyze heap data
— Need understanding of possible shapes

* Want to handle unbounded heap object creation
» Java objects (e.g. threads) are in heap

8/5/2003 alexey@cs.wisc.edu 2

[Linked List Abstractions

* Informally

* Formally

8/5/2003 alexey@cs.wisc.edu

[Linked List Abstractions

* Informally

* Formally

8/5/2003 alexey@cs.wisc.edu 4

[Linked List Abstractions

* Informally

* Formally

8/5/2003 alexey@cs.wisc.edu

[Linked List Abstractions

* Informally

* Formally

8/5/2003 alexey@cs.wisc.edu 6

Abstraction Refinement

* Devising good analysis abstractions 1s hard

— Precision/cost tradeoff
e Too coarse: “Unknown’ answer

* Too refined: high space/time cost
 Start with simple (and cheap) abstraction

* Successively refine abstraction
— Adaptive algorithm

8/5/2003 alexey@cs.wisc.edu 7

Abstraction Refinement

* [terative process
— Create an abstraction (e.g. set of predicates)
— Run analysis
— Detect indefinite answers (stop if none)
— Refine abstraction (e.g. add predicates)

— Repeat above steps

8/5/2003 alexey@cs.wisc.edu 8

Previous Work on Abstraction Refinement

» Counterexample guided [Clarke et al]

— Finds shortest invalid prefix of spurious
counterexample

— Splits last state on prefix into less abstract ones

 SLAM toolkit [Ball, Rajamani]

— Temporal safety properties of software
— Identities correlated branches

8/5/2003 alexey@cs.wisc.edu 9

Abstraction Refinement for TVLA:
New Challenges

e Need to refine abstractions of linked data structures

— Identify appropriate new distinctions between
* Nodes
* Structures

* Need to derive the associated abstract interpretation
— What are the update formulas?

8/5/2003 alexey@cs.wisc.edu 10

Control Over the Merging of Nodes

» Unary abstraction predicates
r.(v) = : (x(v) <@ n*(v,v))
 Distinguish nodes reachable from x (and y)
e Can now tell 1f lists are disjoint

8/5/2003 alexey@cs.wisc.edu 11

Control Over the Merging of Structures

* Nullary abstraction predicates
nn, () = v : x(v)

 Distinguish structures based on whether x 1s NULL
» Can now tell that x 1s NULL whenever y 1s (and vice versa)

!

=) |[ORC

8/5/2003 alexey@cs.wisc.edu 12

Need for Update Formulas

* Re-evaluating formula 1s imprecise
r(v) = v 1 (x(v) <@ n*(v,v))
Action “x == NULL” (no change to heap)

8/5/2003 alexey@cs.wisc.edu 13

Creating Update Formulas Automatically

* Frees user from having to provide update formulas
— A lot of work (esp. with 1terative refinement)
— Error prone

 Idea: Finite differencing of formulas

F(¢) =py <= ¢°

8/5/2003 alexey@cs.wisc.edu 14

Differencing = Differentiation

A '

v

(GTHP)A = pATA YA (f+g)' (x) = F'(X)+g'(x)

CrEall) e Rl (Pre)(x) = f'(x)*g(x)
<= Ay + f(x)*g'(x)

<= A PA

8/5/2003 alexey@cs.wisc.edu 15

Laws for ¢~

02=0

14=0

(v=w)r=0

(0C=)s = $AT=yA

(PPt = gl I A<Dy Ol pAays
(Dv:d)r = (Dv:p) I (Dv:p=dL)
(TC:0)(v,w)2 = (TC:9)(v,w) <= (TC:p<=Hp?) (v, w)

8/5/2003 alexey@cs.wisc.edu 16

Formula Differencing Limitations

 Differencing output often imprecise
r.(v)=0v:xV) <@ n*v,v))

Action “x=x-n"

8/5/2003 alexey@cs.wisc.edu

Reducing Loss of Precision
from Differencing

e Semantic minimization of formulas
— Simplest case: propositional formulas

* Work 1n progress

— Removing unnecessary reevaluation
* Finding common sub-formulas

— Improvements to materialization
— Exploiting important special cases
* E.g., reachability 1n lists

8/5/2003 alexey@cs.wisc.edu

18

Three-Valued Logic

1: True
0: False
: Unknown

A join semi-lattice: 0 =8 1 =

Information
/\
0]

8/5/2003

alexey@cs.wisc.edu

0N
1 N

19

Semantic Minimization

o &O—>(A): Value of formula ¢ under assignment A4
 In 3-valued logic, €¢—2>(A4) may equal '2
Cptp>(p0]) =1
Cptp2(p %)) = Y
Cptp2(p 1) =1

« However,
C12>(p 0] =1
E13([p 2 %)) = 1
C1>([paal]) =1

8/5/2003 alexey@cs.wisc.edu 20

Semantic Minimization

C1o([p20) =1 =<€p+pd(p =
0) €1>([p=2%)=1K%=¢€p+
p2(p %) €12(p = 1)) =1

<p+p>(p 1))
2-valued logic: 1 1s equivalent to p + p'

3-valued logic: 1 is better than p + p'

For a given @, is there a best formula? REY

8/5/2003 alexey@cs.wisc.edu 21

8/5/2003

X & X

XY
XY
XY
XY

X Z

XY
Xz

X Z

Minimal?

vz
vz

alexey@cs.wisc.edu

No!
Yes!
No!
Yes!
Yes!
No!

22

Example

Original formula (¢)
xy +xz

Minimal formula ()
xy+ xz+ yz

A

Y24 <9

2 (4)

[x X Y,y a8 1,z 28 1]

1

72

8/5/2003

alexey@cs.wisc.edu

23

Example

Original formula (¢)
xy+xz+yz

Minimal formula ()
Xy+xz+yz+xy+txz+tyz

A €L|J9(A)

<o)

X/W\/zyAMO ZAMO
x2a 0,y 28 1,z 28 V5
layml/zaz”"‘l:

72
72
72

8/5/2003 alexey@cs.wisc.edu

24

Semantic Minimization

 When ¢ contains no occurrences of 2 and
aul primes(<¢—>)

* In general, somewhat more complicated
— Represent € ¢—> with a pair

floor: &, €¢2> NS =
ceiling: Q <> H4 K V04 =

0

1

— Semantically minimal formula

8/5/2003 @ —— éﬂasﬁgcsg.vg)ed _ (@ primes(— ?&)~

Current and Future Work

* Finite differencing of formulas
e Minimization of first-order formulas

* Generation of instrumentation predicates

8/5/2003 alexey@cs.wisc.edu

26

Towards Abstraction Refinement
in TVLA

Alexey Loginov
UW Madison
alexey(@cs.wisc.edu

