Towards Abstraction Refinement in TVLA

Alexey Loginov

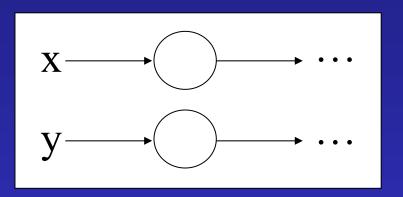
UW Madison

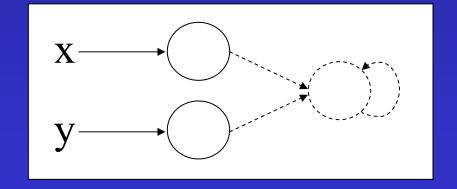
alexey@cs.wisc.edu

Need for Heap Data Analysis

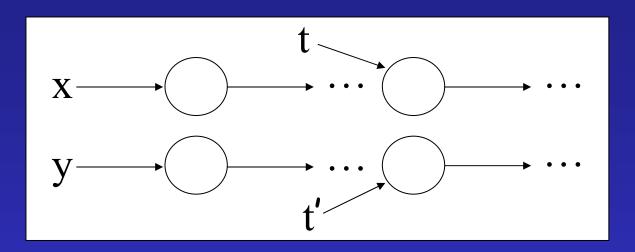
- Morning talks by UW students
 - Static analyses for de-obfuscation of code
 - Limited ability to analyze heap data
 - Need understanding of possible shapes
 - Want to handle unbounded heap object creation
 - Java objects (e.g. threads) are in heap

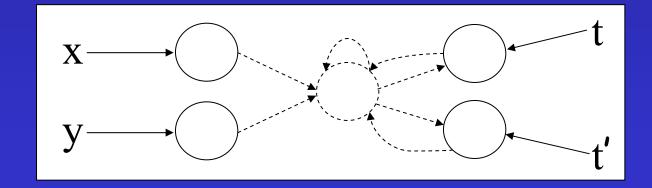
Informally



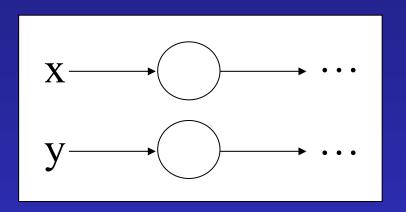


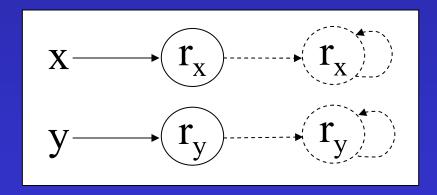
Informally



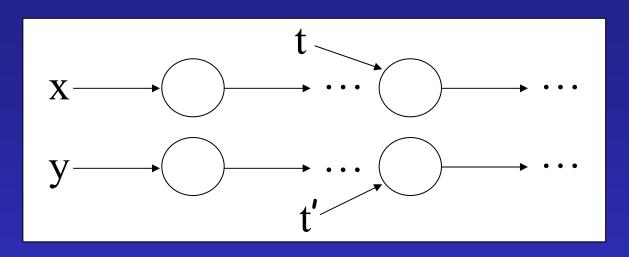


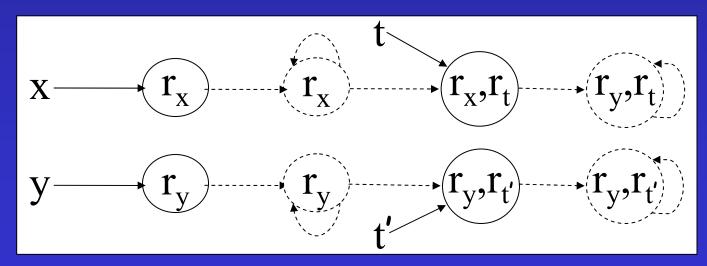
Informally





Informally





Abstraction Refinement

- Devising good analysis abstractions is hard
 - Precision/cost tradeoff
 - Too coarse: "Unknown" answer
 - Too refined: high space/time cost
- Start with simple (and cheap) abstraction
- Successively refine abstraction
 - Adaptive algorithm

Abstraction Refinement

- Iterative process
 - Create an abstraction (e.g. set of predicates)
 - Run analysis
 - Detect indefinite answers (stop if none)
 - Refine abstraction (e.g. add predicates)
 - Repeat above steps

Previous Work on Abstraction Refinement

- Counterexample guided [Clarke et al]
 - Finds shortest invalid prefix of spurious counterexample
 - Splits last state on prefix into less abstract ones
- SLAM toolkit [Ball, Rajamani]
 - Temporal safety properties of software
 - Identifies correlated branches

Abstraction Refinement for TVLA: New Challenges

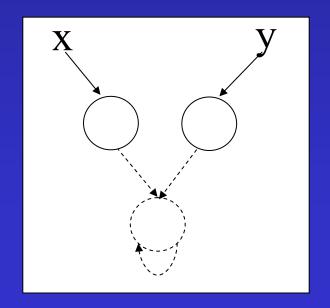
- Need to refine abstractions of linked data structures
 - Identify appropriate new distinctions between
 - Nodes
 - Structures
- Need to derive the associated abstract interpretation
 - What are the update formulas?

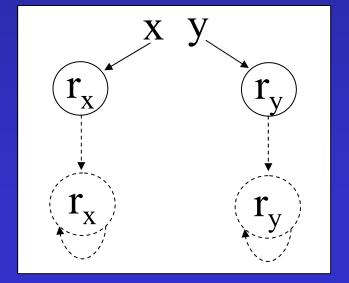
Control Over the Merging of Nodes

Unary abstraction predicates

$$r_{x}(v) = \exists v' : (x(v') n*(v',v))$$

- Distinguish nodes reachable from x (and y)
- Can now tell if lists are disjoint



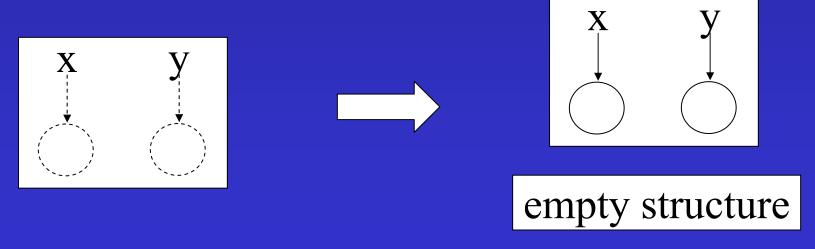


Control Over the Merging of Structures

Nullary abstraction predicates

$$nn_x() = \exists v : x(v)$$

- Distinguish structures based on whether x is NULL
- Can now tell that x is NULL whenever y is (and vice versa)

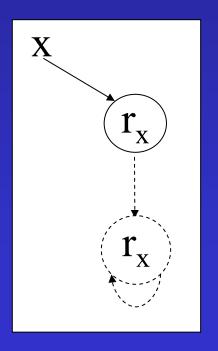


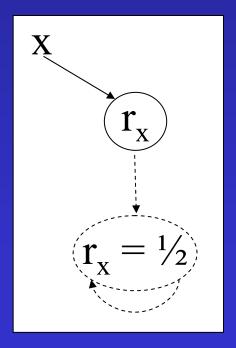
Need for Update Formulas

• Re-evaluating formula is imprecise

$$r_{x}(v) = \exists v' : (x(v') \triangleleft n*(v',v))$$

Action "x == NULL" (no change to heap)





Creating Update Formulas Automatically

- Frees user from having to provide update formulas
 - A lot of work (esp. with iterative refinement)
 - Error prone
- Idea: Finite differencing of formulas

$$F(\varphi) = p_{\varphi} \ \, \text{alpha} \ \, \varphi^{\Delta}$$

Differencing ≈ Differentiation

$$0^{\Delta} = 0$$

$$1^{\Delta} = 0$$

$$(\phi \circlearrowleft \psi)^{\Delta} = \phi^{\Delta} \circlearrowleft \psi^{\Delta}$$

$$(\phi \circlearrowleft \psi)^{\Delta} = \phi \circlearrowleft \psi^{\Delta}$$

$$(f^*g)'(x) = f'(x) * g(x)$$

$$(f^*g)'(x) = f'(x) * g(x)$$

$$+ f(x) * g'(x)$$

Laws for φ^{Δ}

$$0^{\Delta} = 0$$

$$1^{\Delta} = 0$$

$$(v = w)^{\Delta} = 0$$

$$(\phi \Rightarrow \psi)^{\Delta} = \phi^{\Delta} \Rightarrow \psi^{\Delta}$$

$$(\phi \Rightarrow \psi)^{\Delta} = \phi \Rightarrow \psi^{\Delta} \Rightarrow \phi^{\Delta} \Rightarrow \psi^{\Delta} \Rightarrow \phi^{\Delta} \Rightarrow \psi^{\Delta}$$

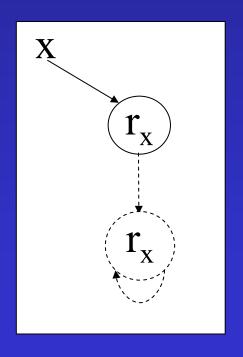
$$(\psi \cdot \psi)^{\Delta} = (\psi \cdot \psi) \Rightarrow (\psi \cdot \psi) \Rightarrow$$

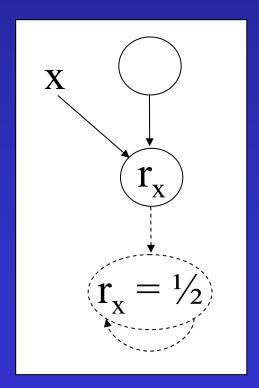
Formula Differencing Limitations

• Differencing output often imprecise

$$r_{x}(v) = \exists v' : (x(v') \triangleleft n*(v',v))$$

Action " $x = x \rightarrow n$ "



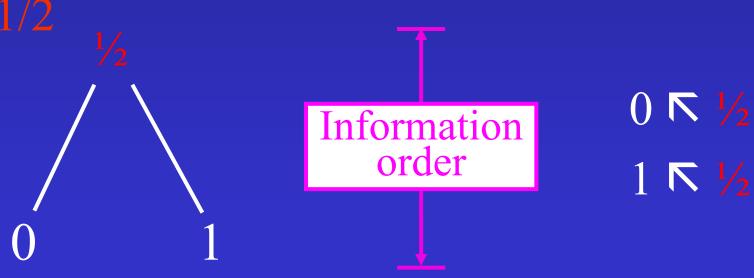


Reducing Loss of Precision from Differencing

- Semantic minimization of formulas
 - Simplest case: propositional formulas
- Work in progress
 - Removing unnecessary reevaluation
 - Finding common sub-formulas
 - Improvements to materialization
 - Exploiting important special cases
 - E.g., reachability in lists

Three-Valued Logic

- 1: True
- 0: False
- 1/2: Unknown
- A join semi-lattice: $0 \le 1 =$



Semantic Minimization

- $\leftarrow \phi \rightarrow (A)$: Value of formula ϕ under assignment A
- In 3-valued logic, $\leftarrow \phi \rightarrow (A)$ may equal $\frac{1}{2}$

$$\leftarrow p + p' \rightarrow ([p \approx 0]) = 1$$

$$\leftarrow p + p' \rightarrow ([p \approx 1/2]) = 1/2$$

$$\leftarrow p + p' \rightarrow ([p \approx 1]) = 1$$

• However,

$$\begin{array}{l} \leftarrow 1 \rightarrow ([p \ \varpi \ 0]) = 1 \\ \leftarrow 1 \rightarrow ([p \ \varpi \ \frac{1}{2}]) = 1 \\ \leftarrow 1 \rightarrow ([p \ \varpi \ 1]) = 1 \end{array}$$

Semantic Minimization

3-valued logic: 1 is better than p + p'

For a given φ , is there a best formula?

Yes!

Minimal?

$$x + x'$$
 $x = x'$
 $xy + x'z$
 $xy + x'z$
 $xy + x'y'$
 $xy + x'z + yz$
 $xy + x'z + yz$
 $xy + x'z + yz$
 $xy + x'z + yz$
No!

Example

Original formula
$$(\varphi)$$

 $xy + x'z$

Minimal formula
$$(\psi)$$

 $xy+x'z+yz$

$$A \qquad \longleftrightarrow (A) \qquad \longleftrightarrow (A)$$

$$[x \stackrel{1}{\approx} \frac{1}{2}, y \stackrel{2}{\approx} 1, z \stackrel{2}{\approx} 1] \qquad 1 \qquad \frac{1}{2}$$

Example

Original formula
$$(\varphi)$$

 $xy' + x'z' + yz$

Minimal formula (ψ)

$$x'y + x'z' + yz + xy' + xz + y'z'$$

A	$\leftarrow \psi \rightarrow (A)$	$\leftarrow \varphi \rightarrow (A)$
$[x \stackrel{1}{\approx} 1/2, y \stackrel{2}{\approx} 0, z \stackrel{2}{\approx} 0]$)] 1	1/2
$[x \approx 0, y \approx 1, z \approx 1/2]$	$\begin{bmatrix} 2 \end{bmatrix}$ 1	1/2
$[x \widetilde{m} 1, y \widetilde{m} \frac{1}{2}, z \widetilde{m} 1]$	1	1/2

Semantic Minimization

• When φ contains no occurrences of $\frac{1}{2}$ and $\stackrel{\text{def}}{=}$

$$\text{primes}(\leftarrow \phi \rightarrow)$$

- In general, somewhat more complicated
 - Represent $\leftarrow \varphi \rightarrow$ with a pair

floor:
$$\& \leftarrow \phi \rightarrow \varnothing$$

$$2^{1/2} =$$

0

_

- Semantically minimal formula

Current and Future Work

- Finite differencing of formulas
- Minimization of first-order formulas
- Generation of instrumentation predicates

Towards Abstraction Refinement in TVLA

Alexey Loginov

UW Madison

alexey@cs.wisc.edu