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Abstract

Model-based intrusion detectors restrict program execution to a previously computed model of ex-
pected behavior. We consider two classes of attacks againstthese systems: bypass attacks that evade
detection by avoiding the detection system altogether, andtransformational attacks that alter a detected
attack into a semantically-equivalent attack that goes undetected. Recent detection approaches are prob-
lematic and do not effectively address these threats. We seereductions or outright failures in effective-
ness and efficiency when systems (1) monitor execution at thelibrary call interface, (2) provide accuracy
via inlining of statically-constructed program models, or(3) use simplistic analysis of indirect function
calls. Attacks can defeat library-call monitors by directly executing operating system kernel traps. In-
lined models grow exponentially large at the trap interface: models for several test programs are 12,000
to 38,000 times larger at the trap interface than at the library call interface. Naı̈ve indirect call analysis
produces models 14 to 177 times larger than models built within-depth analysis and that are less able
to detect attacks. In examining these issues, our aim is to reveal complexities of model-based detection
that have not been previously well understood.

1 Introduction

Host-based intrusion detection systems identify attemptsto exploit program vulnerabilities, frequently by
monitoring the program’s execution. A model-based or behavioral-based anomaly detector [6] restricts exe-
cution to a precomputed model of expected behavior. An execution monitor verifies a stream of system calls
generated by the executing program and rejects any call sequences deviating from the model. Constructing
a model that balances the competing needs of detection ability and efficiency is a challenging task.

A successful attack subverts the execution of a vulnerable process in a manner undetectable to an ex-
ecution monitor. We consider two threat models meeting thisdefinition. Bypass attacks exploit design
deficiencies of a detection system to avoid the execution monitor and generate arbitrary unmonitored system
calls [2]. The system calls executed by the attack may not be allowed by the execution monitor; unfortu-
nately, the monitor never intercepts the calls of a bypass attack. Transformational attacks, such as a mimicry
attack [18,27,29], alter a detected attack so that it goes undetected by the model-based detection system yet
carries the same malicious intent. A transformational attack is allowed by the program model.

Recently proposed model-based detection systems do not effectively address these threats. Resistance
to bypass attacks requires enforcement of an interface thatall attacks are required to use. This requires
identification of the trusted computing base—the components of a computer system trusted as non-malicious
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and impenetrable to attack. In common host-based intrusiondetection scenarios, the trusted computing
base usually includes the operating system kernel and execution monitor, but no other code on the system.
Effective system call interception requires monitoring ofthe kernel trap interface. Bypass attacks can defeat
recent detection systems that monitor at other interfaces,such as the library call interface [16,17], by directly
trapping to the kernel.

Resistance to transformational attacks requires program models to accurately represent correct execu-
tion behavior. Recent systems using static program analysis to build models [8,16,19,28] do not address the
limitations of the analysis [20]. An accurate model of control flows at indirect function call sites requires
identification of the possible targets of each indirect call. A simplistic indirect call analysis can offer oppor-
tunities to an attacker by including incorrect control flowsin the model. Transformational attacks become
easier to mount as the number of allowed execution paths and system call sequences increases. In our ex-
periments on a UNIX system, the weak analysis used by a recentsystem [19] increased model size by 13
to 177 times and decreased model precision by 17 times when compared to models constructed with deeper
indirect call analysis.

An accurate model must also correctly characterize function calls and returns. Model inlining is a
recently proposed technique that addresses this need [16, 19]. Unfortunately, inlined models can not be
efficiently enforced by an execution monitor. To be reasonably deployed, a monitor must rapidly verify
system calls and maintain a low in-memory footprint. Inlined models grow exponentially with the height
of a program’s call graph and impose unreasonable requirements on verification. In our experiments, an
inlined model was 71 times slower and required 83 times more memory than a non-inlined model of equal
accuracy.

In examining these issues, our aim is to reveal attacker threats and model construction complexities that
affect model-based intrusion detection systems. We believe that this paper makes the following contribu-
tions:

• Explicit enumeration of attacker threats that model-basedanomaly detectors must address. Section 2
describes both the bypass attack and the transformational attack in further detail.

• An in-depth analysis of the interface at which an execution monitor can securely enforce a program
model. We show in Section 3 that resistance to bypass attacksrequires a non-circumventable interface.
In most computer systems, the set of traps to the operating system kernel defines the entire secure
interface. Attackers can trivially bypass recent systems that monitor execution at the library call
interface.

• A comparison of two techniques that accurately model function call and return behavior—automata
inlining [16,19] and the non-inlined Dyck model [14]. A previous publication [16] reported results of
an unfair comparison between an inlined model at the librarycall interface and a Dyck model at the
kernel trap interface. Our static analysis infrastructurecan construct both inlined and Dyck models
at both the library call and the kernel trap interfaces, allowing for valid comparisons. Section 4
shows that inlined models become prohibitively large to build and enforce when constructed at the
non-circumventable kernel trap interface.

• Examination of the effect of indirect function calls on statically-constructed models and a call for
foundational research in this area. In Section 5, we give real examples of how current automated
identification of the targets of indirect calls significantly overapproximates the set of possible targets.
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Figure 1: Monitored execution. The monitor intercepts system call requests and allows only calls matching
the process’ behavioral model.

2 Attacks Against Model-Based Anomaly Detectors

Host-based intrusion detectors find attacks by monitoring the behavior of locally executing processes.
Model-based anomaly detectors verify a stream of system calls from an executing process against a pre-
computed model of expected behavior [1,3,10,21,22,26,28,30,31].

An execution monitoronly allows process execution that matches the program model. The process and
its monitor execute above a trusted operating system (Figure 1), although the monitor may be incorporated
into the operating system kernel for improved performance.To maintain its integrity, the monitor is isolated
in a separate address space from the possibly subverted process that it observes. Note that such designs must
be carefully architected so that new vulnerabilities, including time-of-check to time-of-use races between
the monitor’s verification of a system call and the subsequent kernel execution, are not introduced into the
system [12]. Attackers attempt to alter a process’ execution so that the process issues malicious system calls
in a way undetectable to the monitor. Common attacks includeexecution of a command shell, appending of
a new user to the system’s password file, or privilege escalation.

The monitor can verify the process’ execution at any programming interface with observable events,
such as the kernel trap interface. Whenever the process calls the interface, the monitor intercepts the call
and suspends execution of the process. If the call is allowedby the program model, the monitor resumes the
process’ execution. A call falling outside the program model indicates to the monitor that the process has
been subverted, and any appropriate response can then be activated. The monitor thus protects the operating
system from subverted processes.

The operating system and monitor form thetrusted computing base(TCB) of the computer system.
For any assurances of system security to be valid, we requirethe TCB to be non-malicious and free from
exploitable vulnerabilities. Processes change the TCB only through a well-defined system call interface.
All processes outside the TCB are explicitly untrusted, andwe expect that an attacker can manipulate these
processes in an arbitrary manner. Model-based intrusion detectors prevent manipulation from harming the
TCB by identifying a process’ attempts to use system calls inan unexpected way.

Successful detection of an attack requires two assumptionsto hold. First, attacks must produce events
observable to the monitor. Second, the model of expected behavior must be precise and not accept attacks
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as valid system call sequences. Attackers can evade detection with any attack that violates one or both
assumptions. We consider both possibilities.

Bypass attacksevade detection by bypassing the monitored interface. These attacks exploit systems that
monitor high-level interfaces and fail to enforce execution at the interface of the trusted computing base. By
calling the trusted computing base directly rather than through a higher interface, the attack can maliciously
alter the system without detection. We examine bypass attacks in Section 3.

Transformational attacksalter an existing attackA detected by a model-based anomaly detector into a
semantically-equivalent attackA′ that evades detection by appearing as valid execution [18, 27, 29]. The
sequence of system calls inA′ exists as a sentence in the language accepted by the program model. If
the program could generateA′ when executing correctly, then the model is correct and alternative detection
approaches may be necessary. If the program could never generateA′ in correct execution, then the program
model is imprecise and new model construction strategies must be developed. We examine two techniques
to build more precise program models, context-sensitive construction and indirect call analysis, in Sections 4
and 5.

3 Monitored Interface

Bypass attacks exploit design errors of an execution monitor to avoid the monitor and execute unverified
system calls. To resist bypass attacks, a model-based intrusion detection system must verify a process’
execution at the non-circumventable interface of the trusted computing base (TCB). This section addresses
the following points:

• For most common operating systems, including Windows, Linux, and UNIX, the TCB usually in-
cludes only the operating system kernel and execution monitor. Code in shared object files and dy-
namically linked libraries (DLLs) are explicitly not part of the TCB.

• Bypass attacks can evade a model-based intrusion detectionsystem that does not monitor the interface
of the trusted computing base.

• Although current Windows exploits commonly call library functions in Windows subsystem DLLs,
these exploits could be modified to directly execute Windowskernel traps.

Recent research has focused on execution monitoring at two different interfaces—library calls and op-
erating system kernel traps. The library call interface seems reasonable: most programs make calls to
standard library code, and library interpositioning is frequently an easy way to generate events during ex-
ecution. However, library code is not part of the trusted computing base. We will show that this interface
is circumventable and cannot provide security for secure systems. We subsequently consider sequences of
kernel traps generated by programs and claim that this is theonly non-circumventable interface useful to
execution monitors.

The implications of choosing an improper interface are profound. Efforts to enforce correct patterns
of use on any circumventable interface will not be secure. Bypass attacks can escape such monitoring by
simply bypassing the interface. Furthermore, we will show in Section 4 that poorly choosing the event
interface compounds the problems of algorithm design for accurate model construction.

3.1 Library Call Interface

Nearly every process running on a modern operating system executes code both from the application and
from shared libraries. We make a distinction between application code and library code.Application code
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void main (int, char **argv) {
syslog(0, argv[0]); // Format string vulnerability
setuid(0); // Need root uid for chroot
chdir("/var/www"); // Need chdir before chroot
chroot("."); // Establish chroot jail
if (scandir(".", NULL, isSetuid, alphasort) > 0)
exit(1); // Exit if jail contains setuid program

setuid(101); // Drop privilege from root
exec(argv[1]); // Exec any program inside jail

}

Figure 2: Code example. The functionisSetuid is a user-provided function that takes a directory entry
and returns true when that entry is a setuid binary.

scandir setuid execchrootsetuidsyslog

exit

chdir

Figure 3: Library model.

includes the binary code sections contained in the executable image file loaded by the operating system.
This code is generally unique to the program and was written for a specific use.Library codeis binary code
in shared object files, including the runtime linker, the standard C library, and Windows subsystem DLLs.
This is general-purpose code used by many processes and doesnot reside in the image file of the application.

In many ways, some functions in the standard libraries can beviewed as a user-space extension of the
kernel. These library calls serve two basic purposes:

1. Convenience.A process makes an operating system request by executing a software trap. The trap
requires a particular machine instruction, such asint, systrap, or syscall, that is generated
from hand-written assembly code rather than from a high-level language compiler. Shared libraries
can provide convenient wrapper functions around kernel traps, providing applications with a function
call interface to the kernel.

2. Error checking. The library wrapper functions examine error returns from kernel traps and provide
a higher-level error interface to application programs.

Hence, we can reasonably expect programs to make use of shared libraries because it is easy and convenient
to do so. As a direct consequence, we can expect any kernel trap executed by a process to have been preceded
by some call to a library function.

Recent model-based intrusion detection systems make use ofthis intuition and monitor execution at the
library call interface [16, 17]. This interface offers advantages: the library call interface is much richer and
can better fingerprint correct process execution. For example, Windows, UNIX, and Linux kernels each
have fewer than 256 traps, but the Windows system library hasnearly 1200 entry points. The Solaris C
library has over 2000 addressable functions.

The rich library interface can build expressive execution models. Consider the example functionmain in
Figure 2 that makes a series of library calls. After logging its filename, it creates a chroot jail in/var/www,
ensures that the jail directory contains no setuid executable, drops privilege, and executes any program in
the jail. Thesyslog call contains a format string vulnerability that allows an attacker to write to arbitrary
memory locations, possibly changing the program’s execution following syslog to jump directly to the
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/* setuid(0) */
"\x31\xc0" // xorl %eax,%eax
"\x31\xdb" // xorl %ebx,%ebx
"\xb0\x17" // movb $0x17,%al
"\xcd\x80" // int $0x80

Figure 4: A fragment of shellcode used by a format string attack. The final four bytes directly execute the
setuid kernel trap. The preceding four bytes construct the arguments passed to the kernel trap handler.

exec call. Systems that enforce correct use of library calls analyze this code to build the automaton model
of library call events shown in Figure 3.

Unfortunately,these systems offer no real security. The security of systems monitoring execution at the
library call interface requires that the only way to executea kernel trap is by first calling a library function.
Although library code may appear to be an extension of the kernel, this is a fallacy. Libraries are not part
of the TCB, and the library interface iscircumventable, allowing attack code to execute kernel traps without
first calling a library function. The attacker exploiting the format string vulnerability in the example code can
transfer execution into machine instructions contained intheir format string that execute kernel traps directly
(Figure 4). This bypass attack invokes kernel operations but escapes any process monitor intercepting library
calls.

3.2 Kernel Trap Interface

However, the attack cannot bypass the kernel. As part of the trusted computing base, the kernel code is
immune from direct attack and can only be entered via known entry points. These entry points define a
secure interface that attacks cannot circumvent. An attackthat generates malicious system calls must create
kernel trap events. An execution monitor verifying a process’ execution at the kernel trap interface can
intercept the trap and detect the malicious behavior. An attack can evade the monitor by failing to execute
kernel traps, but any such attack would be contained to the process.

Regarding their work on Linux, Jones and Lin write:

The library call approach works well with buffer overflow attacks when,as is typical, the at-
tacker code adds new sequences of library calls. . . [17] (emphasis added)

We disagree. In our experience, typical Linux and UNIX attacks do not call library functions. On UNIX-
like systems, it is often easier for attacks to directly execute kernel traps rather than call library functions.
The kernel trap interface is well known and easy to invoke. Trap use requires no knowledge of the address
at which the library code resides in memory. These observations hold in practice: We surveyed Linux
and UNIX exploits archived by SecuriTeam between 1 January 2004 and 2 May 2005 [25]. Of 47 code
injection attacks, including buffer overflows and format string attacks, 46 injected code that bypassed the
library interface and directly executed kernel traps. For example, Figure 4 shows a fragment of code injected
and executed in a format string attack against a web server front-end load balancer [5]. Intrusion detection
systems monitoring the library call interface would not even detect these current attacks.

Current exploits against processes executing on Windows work differently. All operating system kernel
traps are intended to be executed only by Windows subsystem shared libraries and not directly by applica-
tions. Windows exploits largely obey this programming practice, so library call enforcement would detect
most current Windows attacks.

This exploit design is largely an artifact arising from the obfuscated set of Windows kernel traps. The
kernel trap interface is not widely published and may changebetween operating system releases. Yet,
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details of the Windows trap interface, called the “Native API”, are available to interested attackers [23].
These attackers can convert an attack that calls subsystem library functions into an attack that directly
invokes Windows kernel traps. Although library call verification may detect today’s attacks, with little
effort attackers can alter their Windows exploits to bypassthe library call interface.

Recent intrusion detection systems monitor a combination of kernel traps and function call return ad-
dresses stored on the call stack [8,9,14]. It is important tounderstand the utility of function call monitoring
given the knowledge that the function call interface is circumventable [11,18].

Function call and return events serve only to improve the efficiency of online execution monitoring.
Only the kernel traps provide a secure monitoring point. Oursystem and the system of Fenget al. build
automata accepting the context-free language of kernel traps that a correctly executing process can generate.
Recognizing a context-free language incrementally is a cubic-time operation and too slow for real-world
deployment [30]. However, monitoring function calls determinizes automaton operation and allows the sys-
tems to recognize a context-free language in linear time. The function call events offer no additional security
but significantly improve the efficiency of kernel trap verification. Attacks can produce fake function call
events but are still limited to the context-free language ofkernel traps accepted by the model.

Gopalakrishnaet al. recognized that attacks can trivially escape library callmonitoring, and suggested
that a combination of library call and kernel trap enforcement may be useful [16]. Such enforcement is
subsumed by systems that monitor both traps and the entire set of function calls, as library calls appear as
just another function call to these systems.

3.3 Changing the Trusted Computing Base

Secure execution monitoring occurs at the interface to the trusted computing base. If the TCB changes, then
the monitored interface must likewise shift. Remote and distributed execution environments reflect such a
change. Processes execute on remote, untrusted machines and communicate with the parent process of the
distributed computation via a stream of events. The entire remote machine, including the operating system
and the hardware, may be malicious [13, 24]. The trusted computing base includes the machine on which
the parent process executes and the parent process itself.

An attacker at the remote machine may attempt to harm the parent process by sending malicious events
to the parent. This communication channel is the non-circumventable interface that an attacker is unable
to bypass. A model-based anomaly detection system can first model the remote process’ use of the com-
munication channel, and subsequently monitor the channel to detect subversion of the remote process as
deviation from the model.

4 Constructing Efficient Context-Sensitive Models

To reduce an attacker’s opportunity to construct transformational attacks, a program’s model must accurately
characterize the program’s possible control flows. One construction method used recently to accurately
model function calls and returns inlines models of called functions [16, 19]. We show that techniques
that replicate model structure, such as inlining, build prohibitively large models at the secure kernel trap
interface:

• In our experiments on a UNIX system, we could not construct inlined models at the kernel trap
interface for two test programs,htzipd andgnatsd, because the construction consumed the entire
4 GB virtual address space of our machine.
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Figure 5: Call-site replacement applied to the C library call setuid. The simplistic algorithm used intro-
duces an impossible path, shown in bold, because it does not correctly model function calls and returns.

• We successfully constructed inlined models for two other programs,cat andlhttpd. The inlined
models were 360 to 400 times larger than corresponding non-inlined models.

• Choosing a poor interface compounds the difficulty of findingreasonable model construction algo-
rithms. Although of reasonable size at the bypassable library interface, our inlined models became
12,000 to 38,000 times larger at the secure kernel trap interface.

• The large size of inlined models leads to prohibitive runtime enforcement resource demands. Inlined
models were 71 times slower and required 83 times more memorythan models of equal accuracy that
used different construction techniques.

Static analyzers construct a program model in two stages:

1. First analyze each function, abstracting away all code except for control-flow transfers like branches,
function calls, and kernel traps.

2. Second, assemble the models for each function into a global model for the program. The designer of
the system must choose an algorithm forcall-site replacementthat dictates how to model interproce-
dural control flows like function calls and returns.

Good call-site replacement strategies must keep models compact, accurately characterize interprocedural
control flows, and produce models efficient to operate duringonline execution verification. These strategies
are not trivial to develop and are the topic of this section.

Figure 5 shows the model formain of Figure 3 with a simplistic call-site replacement strategy applied
to the library callsetuid. The original call edges targetingsetuid have been replaced withǫ-edges
transferring control into and out of the model forsetuid. This strategy is context insensitive and does not
enforce proper function call and return behavior. Context insensitive models are subject to transformational
attacks, such as impossible path attacks [28] and mimicry attacks [18, 27, 29], that exploit this inaccuracy.
The bold path in Figure 5 is an impossible path accepting altered program executions that bypass chroot jail
creation and loss of root privilege.

4.1 Push-Down Automaton

A push-down automaton (PDA) accepts a context-free language such as that generated by a program ex-
ecuting with proper call and return semantics. The call-site replacement algorithm constructs a PDA by
adding push and pop symbols to theǫ-edges of Figure 5. Each call site uses distinct symbols corresponding
to the distinct function call return addresses used in the program. The execution monitor rejects any event
sequences not contained in the context-free language accepted by the PDA. This algorithm keeps model
size compact, as all calls to a particular function link to the same model. There is no replication of state.
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Program Application only With libraries

cat 1,232 185,844
htzipd 16,485 337,560
lhttpd 1,826 313,014
gnatsd 33,853 351,279
sendmail 133,915 688,387

Table 1: SPARC instruction counts.

Fenget al. [8, 9] and our previous work [14] used function call and return events to keep the cost of online
PDA operation to time linear in the PDA size.

4.2 Inlining

The additional call and return events do impose a slight cost, as the execution monitor must read data
from the virtual address of the monitored process at each system call. Two recent publications suggested
an alternative method to retain much of a model’s context sensitivity while dispensing with the need to
compute call and return events. Lam and Chiueh [19] and Gopalakrishnaet al. [16] implemented call-site
replacement as an algorithm that inlined models at call sites.

Inlining replaces a function call transition in an automaton with a unique copy of the target function’s
model. Even though a program may contain multiple call sitesall targeting the same function, this algo-
rithm does not introduce impossible paths because each callsite links to a different copy of the target model.
Inlining cannot be used at recursive call sites, so the final program model accepts a regular language over-
approximation of the context-free language of events that the executing process can generate. A regular
language can be recognized in linear time without requiringthe additional function call and return events.

However, inlining replicates models of functions, raisingconcerns that it will not scale to large programs.
Gopalakrishnaet al. presented reasonable results for three of four test programs when building their inlined
IAM model for the insecure library interface. Unfortunately, this poor interface selection obscures inlining’s
performance when constructing models at the non-circumventable kernel trap interface. Intuition suggests
that the space cost of inlining is exponential in the height of the call graph. Consider a simple example: if
functionf is a leaf function called by four other functions, and each ofthose four other functions are called
by five other functions, the number of copies of the model forf is already4 · 5. This multiplication repeats
for the entire height of the call graph and for every leaf function in the program.

Modeling a program at the kernel trap interface increases the number of functions that must be modeled
and the height of the call graph by including code from sharedlibraries. The first four programs listed in
Table 1 correspond to the test programs used by Gopalakrishna et al. in their previously published results.
Using static binary analysis of SPARC executables, we constructed inlined models for these programs at
both the library interface and the kernel trap interface to measure the ability of inlining to scale to complete
programs. From our earlier intuition, we expected inlined models constructed for the trap interface to be
significantly larger than models for the library interface.

Tables 2–5 show the results of our comparisons of the static analysis demands for the four test programs
used by Gopalakrishnaet al. The static analyzer executed on a Sun Microsystems SunFireV880 server
with dual 32-bit 750 MHz UltraSparc III processors, 4 GB of physical memory, and running Solaris 8.
Solaris allows user processes to address the entire 4 GB memory space. We list the memory used by the
static analyzer, the time required to construct the programmodel, and the size of the resulting model for
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Interface
Model Library calls Kernel traps

Binary IAM 5.4 MB 760 MB
Dyck 5.4 MB 8 MB

(a) Model construction memory use.

Interface
Model Library calls Kernel traps

Binary IAM 0.48 sec 515 sec
Dyck 0.39 sec 4 sec

(b) Model construction time.

Interface
Model Library calls Kernel traps

IAM [16] 90 states Unreported
791 edges

Binary IAM 53 states 17,338 states
123 edges 4,689,814 edges

Dyck 57 states 1,737 states
117 edges 12,882 edges

(c) Automaton sizes.

Table 2: Results forcat.

Interface
Model Library calls Kernel traps

Binary IAM 19 MB > 4082 MB
Dyck 8.4 MB 16 MB

(a) Model construction memory use.

Interface
Model Library calls Kernel traps

Binary IAM 16 sec > 1382 sec
Dyck 2 sec 20 sec

(b) Model construction time.

Interface
Model Library calls Kernel traps

IAM [16] 2,821 states Unreported
31,047 edges

Binary IAM 2,943 states Out of memory
20,796 edges

Dyck 593 states 2,167 states
1,377 edges 14,812 edges

(c) Automaton sizes.

Table 3: Results forhtzipd.

each test program. We list values both for model construction using the circumventable library interface
and for construction using the secure kernel trap interface. Results for the IAM model are not computed
but are copied from the publication of Gopalakrishnaet al. [16]. That publication did not present results
for memory use, build time, or models constructed at the trapinterface, so we implemented inlining as a
call-site replacement technique in our existing binary analysis infrastructure. We computed results shown
as Binary IAM using this infrastructure. We lastly include results for construction of our Dyck model [14],
which uses the PDA call-site replacement algorithm.

The Binary IAM models at the library interface are significantly smaller than the IAM models con-
structed by Gopalakrishnaet al. from source code analysis. We examined the inlined model for cat and
identified two analysis differences that accounted for the much of the discrepancy. First, our infrastruc-
ture performed more aggressive optimization of program models than did the infrastructure of Gopala-
krishnaet al. In particular, we minimized the automata to remove redundant edges. Second, the source code
analyzed by Gopalakrishnaet al. did not match object code produced by a compiler. The sourcecode was
a strange mix of preprocessed and non-preprocessed code that had some macros expanded and some re-
maining [15]. As a result, the IAM models contained macros asevents even though library interpositioning
could never intercept a macro event. By disabling optimizations and manually inserting macro events, we
could increase the size of the Binary IAM model forcat to 100 states and 640 edges. Manual verification
indicated that our analyzer was executing correctly and that our Binary IAM models are better optimized
than the source-level IAM models previously reported.
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Interface
Model Library calls Kernel traps

Binary IAM 6.5 MB 2328 MB
Dyck 5.7 MB 14 MB

(a) Model construction memory use.

Interface
Model Library calls Kernel traps

Binary IAM 3 sec 919 sec
Dyck 0.47 sec 20 sec

(b) Model construction time.

Interface
Model Library calls Kernel traps

IAM [16] 429 states Unreported
1,098 edges

Binary IAM 280 states 21,445 states
459 edges 5,567,470 edges

Dyck 212 states 2,050 states
455 edges 13,774 edges

(c) Automaton sizes.

Table 4: Results forlhttpd.

Interface
Model Library calls Kernel traps

Binary IAM 1582 MB > 4083 MB
Dyck 15 MB 45 MB

(a) Model construction memory use.

Interface
Model Library calls Kernel traps

Binary IAM 870 sec > 1588 sec
Dyck 25 sec 64 sec

(b) Model construction time.

Interface
Model Library calls Kernel traps

IAM [16] 338,736 states Unreported
7,915,678 edges

Binary IAM 1,600,999 states Out of memory
7,888,767 edges

Dyck 2,105 states 6,827 states
8,928 edges 284,715 edges

(c) Automaton sizes.

Table 5: Results forgnatsd.

The tables contain important features:

• Inlined models grow prohibitively large for even small programs when modeling the kernel trap inter-
face. The model forcat grew by3.8 million percent. Attempts to construct models forhtzipd and
gnatsd failed after consuming the entire 4 GB address space of the 32-bit system.

• The non-inlined Dyck model better scales with increasing code size and code complexity.

• Even when building models at the library interface, the non-inlined Dyck models are smaller than
their inlined counterparts.

We also measured the ability of inlined models to enforce execution at the kernel trap interface. We
executedcat with the command-line option “-n” and a workload that wrote 38 files totaling 500 MB to
disk. Both the Binary IAM model and the Dyck model effectively constrained an attacker. Measurements
of precision were identical to three decimal places, indicating that the inlined model’s loss of precision at
recursive call sites was not significant.

Inlined models faired less well when evaluating their performance impact. Table 6 shows the slowdown
in runtime due to execution verification. Both the Binary IAMand Dyck models can be operated in time
linear in the automaton size. The significant increase in theinlined model’s size thus resulted in significantly
worse performance. Table 7 gives the memory use demands of our runtime monitor for the two models. The
large inlined model required significant system resources.

The architecture of the Windows operating system will only worsen the effects of inlining. Given its mi-
crokernel design, the user-space subsystem DLLs contain significant functionality that models constructed
for the library call interface will not include. However, shifting execution monitoring to the secure Windows
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Unverified Verified execution
Model execution Initialization Parse model Execution Total Slowdown

Binary IAM 55.32 s 0.06 s 6.75 s 166.57 s 173.38 s 214 %
Dyck 55.32 s 0.02 s 0.06 s 56.90 s 56.98 s 3 %

Table 6: Performance impact of verifyingcat’s execution against a program model.

Model cat memory use Model size Increase

Binary IAM 976 KB 19,936 KB 2043 %
Dyck 976 KB 240 KB 25 %

Table 7: Memory use impact of execution monitoring.

kernel trap interface requires any execution model of a Windows application to additionally model code
from the libraries. Consider an example: the simple editornotepad.exe contains 85 functions. The
DLLs required bynotepad together contain 22,120 functions.

These results speak emphatically about the inability of inlined models to meet the needs of practical
security systems. We believe that Gopalakrishnaet al. were able to realize relatively small inlined models
for cat,htzipd, andlhttpd because the application code size of these three programs was small enough
that inlining had not yet reached the rapid growth of the exponential growth curve. As they reachedgnatsd,
explosive growth becomes evident even at the library interface. Adding library code to the programs pushes
all models into rapid growth.

Lam and Chiueh constructed inlined models at the Linux kernel trap interface without the exponential
model growth presented here [19]. Their results are possible for three reasons. First, Linux standard library
code is less complex than the Solaris standard libraries used in our experiments. Second, Lam and Chiueh
did not statically inline models at indirect call sites and instead used a monitoring-time call-site replacement
algorithm that did not replicate model state. Third, they analyzed statically-linked programs that contained
no runtime linker. In typical dynamically-linked programs, every library call may invoke the runtime linker
due to lazy linking and lazy loading. The runtime linker is complex and significantly increases model
complexity when used.

5 Effects of Indirect Calls

Indirect function calls add control-flow complexity that may require deep analysis to satisfactorily resolve.
Indirect calls significantly affect program models constructed from static analysis:

• Omission of indirect call analysis builds models 7 to 144 times larger than models built with analysis
and 14 to 177 times larger than models built with a combination of analysis and manual annotation.

• Indirect call analysis can significantly constrain attackers. Omitted or weak analyses increase an
attacker’s opportunity to develop a transformational attack.

• Current automated data-flow analyses are insufficient and require manual annotation.

Static code analyzers must identify all possible targets ofindirect function calls so that the generated model
correctly characterizes all control-flow transfers. For example, the library functionscandir, called in Fig-
ure 2, takes two function pointers as arguments and subsequently calls them via indirect call sites. Analysis
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Indirect call analysis
Program None Data-flow analysis Annotations

cat 5,179 states 1,643 states 1,737 states
2,285,988 edges 15,849 edges 12,882 edges

htzipd 5,748 states 2,082 states 2,167 states
2,303,075 edges 17,958 edges 14,812 edges

lhttpd 5,378 states 1,977 states 2,050 states
2,286,568 edges 17,499 edges 13,774 edges

gnatsd 13,566 states 5,908 states 6,827 states
8,828,375 edges 455,809 edges 284,715 edges

sendmail 27,286 states 18,591 states 18,478 states
15,613,707 edges 2,118,193 edges 1,149,040 edges

Table 8: Effect of pointer analysis on Dyck model size.
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Figure 6: Model precision for
cat with indirect call analy-
sis. A lower bar is better.

of this code must identify the targets of these indirect calls. This identification is undecidable for both source
and binary code analysis [20], so statically-constructed models can only approximate the set of possible tar-
gets. The most naı̈ve approach, used by Lam and Chiueh [19], performs no analysis and allows an indirect
function call to target any function in the program. This method greatly overapproximates correct program
behavior and gives an attacker significant freedom. Wagner and Dean constrained the set of targets to only
those functions whose address is taken in the program’s source code [28]. Again, this significantly overap-
proximates correct execution by treating all function pointers as identical. Gopalakrishnaet al. improved
this analysis by separately analyzing each function pointer in C source code [16]. They allowed an indirect
function call to target only those functions whose type signature matched that of the call site.

Binary code analysis is of greater difficulty because binarycode is weakly typed. Our previous work
used binary data-flow analysis to compute the addresses usedat indirect function calls [13]. When data-
flow analysis could not recover a call site’s possible targets, the constructed model allowed the site to target
any function with its address taken, as computed from data-flow analysis. Significantly, implementation
limitations caused the analyzer to miss certain targets andintroduce false alarms. For example, the analyzer
could not recover function addresses in C++ vtables when those vtables were used by objects on the heap.

Manual annotation can improve the precision of these analyses. Wagner and Dean manually restricted
the possible targets of some indirect function call sites toimprove the precision of their models. We used
annotation to similarly improve precision and to add control flows missed by the automated data-flow analy-
sis. Annotations can be relatively simple: the pair (“loadso”, “elf mapso”) specifies that the indirect call
in “load so” targets the function “elfmap so”; or inconvenient: the annotation (0x1adf8, “db set lorder”)
includes the virtual address of an indirect call site in the object code of a library. Virtual addresses must be
used to distinguish among multiple indirect call sites in one function.

These analyses significantly alter the constructed models.Table 8 shows the sizes of the PDA-based
Dyck model constructed with varying levels of indirect callanalysis. We show results for the four programs
used in earlier sections and forsendmail, a program with 688,387 SPARC instructions in its application
code and library code. The table includes model sizes with Lam and Chiueh’s omitted pointer analysis,
our automated binary data-flow analysis, and with manual annotation. Figure 6 presents model precision
measurements, using average branching factor [28], for executions ofcat. Lower measurements indicate
less opportunity for attack and hence greater precision.
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In each case, increasingly complex analyses improve model precision. Models constructed with indirect
call analysis accept fewer event sequences and better constrain program behavior and attacker opportunities.
Including the manual annotation step improves existing automated analyses by about 50% for some pro-
grams. Unfortunately, annotation is inconvenient and diminishes the usefulness of the work. We see a need
for additional research to develop more complex binary data-flow analyses than those used in our previous
work and note that several researchers have already begun making progress in this area [4,7].

6 Conclusions

Model-based intrusion detection system design should consider the threats that the systems must face. By-
pass attacks escape a monitor that verifies execution at a circumventable interface. Recent proposals to
monitor executing processes at the library call interface are unable to address bypass attacks and can be
successfully defeated by an attacker. The interface of the trusted computing base—frequently the operating
system kernel trap interface—is the only secure monitoringpoint.

Transformational attacks modify a detected attack so that it appears to the monitor as correct execu-
tion. The models enforced by the monitor must accurately represent correct program behavior to reduce
an attacker’s opportunities to successfully develop a transformational attack. Function calls and returns can
be correctly modeled with a push-down automaton and efficiently operated with call and return events in
addition to kernel trap events. Approaches using automatoninlining see exponential growth of the pro-
gram models as program size increases. Unfortunately, reasonable model size at the bypassable library call
interface was not an indicator of reasonable models at the secure kernel trap interface.

Static model construction efforts remain ongoing, as evidenced by efforts to improve indirect function
call analysis. As with function calls and returns, models must accurately characterize the possible control
flows at indirect function call sites. Current automated analyses are insufficient and frequently require
human annotation of indirect call targets to build precise models that produce no false alarms. We expect
that continued research in static data-flow analysis will make solely automated algorithms effective.
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