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Abstract

A common way to elude a signature-based NIDS is to transforratack instance that the NIDS
recognizes into another instance that it fails to recogriiz example, to avoid matching between the
attack payload and the NIDS signature, attackers split #ydopd into several TCP packets, change it
syntactically while preserving its semantics, or hide itvieen benign messages. We study attackers
ability to find attack instances that elude a NIDS and ouiitgkitd recognize such instances.

We observe that different instances of a given attack canebgetl from each other using simple
transformations that change either the attack transpazharésm or its payload. We model these trans-
formations as inference rules in a formal natural deduddisiem. Starting from an exemplary attack
instance, we use an inference engine to automatically genall possible instances derived from a par-
ticular collection of rules. The result is a simple yet pofuetool capable of both generating attack
instances for NIDS testing and determining whether a gieguence of packets is an attack.

During several testing phases using different sets of yol@stool exposed serious vulnerabilities in
Snort—a widely deployed NIDS. Attackers acquainted witlsthvulnerabilities would have been able
to construct instances that elude Snort for any TCP-basadkatany Web-CGl attack, and any attack
whose signature is a certain type of regular expression.

1 Introduction

The goal of a Network Intrusion Detection System (NIDS) ial&rt a system administrator each time an
intruder tries to penetrate the network siynature-basedIDS defines penetration via a table of malicious
signatures: if an ongoing activity matches a signaturedrtable, an alarm is raised [24, 32]. Such systems
are widely used [39, 46] because they are simple to use anetlprooncrete information about the events
that have occurred. The weakness of a signature-based NIiSinability to recognize an attack that is
just slightly different from the attack signature it uses.

An attacker wishing to stealthily penetrate a network numeid by a signature-based NIDS can exploit
this weakness in two ways. First, they can use an attack wigsature is not known to the NIDS. In
an up-to-date system, such attacks are difficult to find. Sdcthey can use a known attack, but try to
elude the NIDS by finding an instance of the attack that theN#ldes not detect. For example, to elude a
NIDS that does not perform TCP reassembly, the attackeragmient the attack signature into several TCP
packets [12, 36, 42]. Or, to elude a NIDS that uses only dletaharacters in its signatures, an attacker
can change the signature of an HTTP attack by substituting/aent hexadecimal ASCII values for the
characters in a URL [11]. If an attacker can find a single imsteof the known attack that eludes the NIDS,
then the NIDS is—simply put—useless.

We study the ability of attackers to find attack instances ¢hade a NIDS and the ability of a NIDS to
detect such instances. To be more concrete, we translate dbdities into the following two problems.
1. Theblack hatproblem: given an attacld and a specific NIDS, transform the attack into a variant that
evades the NIDS.

2. Thewhite hatproblem: given an attacd and a sequence of network packs&idetermine whethe$ is
an instance ofd.



We propose a novel approach to rigorously tackle the bladkndrite hat problems by formalizing them
in terms of natural deduction [35]. We observe that variafthe same attack can be methodically derived
from each other. To translate this observation into practice first formally express the attacker knowledge
in a set of inference, or transformation, rules; each ryteagents an atomic mutation the attacker can use
to hide the attack signature. Then, starting from a knowarcktinstance, we use an inference engine [43]
to successively apply the rules and automatically complbsdtack instances based on any combination of
the rules. Finally, to solve the black hat problem, we feeditistances into the given NIDS until we find
one that is undetected. To solve the white hat problem, wekciwbether the given instancéématches one
of the instances generated.

Our approach has several advantages. First, it models avardty of the transformations that attack-
ers use. Unlike previous work that focused on transport leweations (e.g., TCP/IP) [12, 36], our work
uses rules to model both transport and application levaktcamations (e.g., HTTP). Second, since rules
represent simple independent transformations, our digtusystem can (i) combine the transformations,
(ii) incorporate other mutations not considered in thisgraand (iii) create inverse transformations; for
example, TCP fragmentation vs. TCP reassembly, or HTTPdiegws. HTTP encoding. These transfor-
mations enable us to start the derivation from any attadamte. First, we use them to go “backwards”,
until we derive an instance to which they cannot be applieeh twe use this instance as a root from which
we generate all instances using the original (“forwarddnsformations.

Based upon these ideas, we used Prolog—a language pafyicsdgtable for implementing natural
deduction systems [43]—and implement®@ENT anattack ganeration for NDS Testingtool. AGENT’s
biggest advantage is its relative completeness: the Pesigine can derive all possible instances from the
given set of inference rules. With the complete set AGENTvdsr we can find instances that elude a NIDS
even when these instances are few and are unlikely to be iming random testing techniques. In practice,
when we use many inference rules, generating all instarsciegeasible. However, our results show that
even though AGENT uses a small set of inference rules thatedarrelatively small number of instances, it
is still effective in finding instances that elude a widekptbyed NIDS.

To summarize, this paper makes three primary contributions

e A formal model for the black and white hat problems. We formalize these problems as a natural-
deduction system in which the inference rules capture ttzelar’'s ability to transform attacks. Our
model allows us to use automatic tools to derive mutants oiknattacks.

— The model is complete. For a given attadk the model concisely defines all instances4élerived
from an exemplary instance of by a given set of transformation rules.

— The model is sound. For a given attadk when each inference rule is sound (i.e., never produces a
sequence of packets that is not an instancd)piour model is also sound.

These properties enable us to generate sets of attackdastmat can be used to detect the presence or
the absence of vulnerabilities in a NIDS.

e AGENT, a practical tool for testing NIDS. We have used our formal model to build AGENT, a complete
and sound tool for attack generation. Given a set of inferantes and a representative instance of an
attack.4, AGENT generates all and only those attack instances timabealerived by the given rules.

— When we connect AGENT to a specific NIDS, it can serve as a biatkool. A failure of the NIDS
to detect an instance indicates a vulnerability in the NIBX®] a successful detection of all instances
demonstrates its correctness.

— When we use AGENT without a NIDS, it can serve as a white hat temr any TCP sequencg attack
A, and a set of transformation rules, AGENT determines wheftean be derived from an exemplary
instance ofA.

AGENT is not efficient enough to perform as a stand-aloneirmmNIDS; it can be used as an aid for
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NIDS developers. Either as a black or white hat tool, AGENGvjates the derivation sequence for each
instance it derives.

¢ Improving a widely deployed NIDS.Using AGENT, we found several serious vulnerabilities in&{24,
39]. We exposed vulnerabilities in the TCP engine of Snbg,way Snort handles HTTP requests, and
its pattern-matching algorithm. An attacker acquainteith tiese vulnerabilities could have caused Snort
to miss any TCP-based attack, any HTTP scripting attacknaartly attacks that require wild characters
in their signatures (a signature like “foo*bar”). Thesenarabilities were reported to the Snort develop-
ment team. Some were immediately fixed in Snort version 2ditiars will be fixed by the time that this
paper is published.

The rest of this paper is organized as follows. Section 2gnissrelated work on the black and white
hat problems. Section 3 illustrates how attack variants odeh attack can be derived from each other.
Section 4 formalizes the notion of derivation using nataediuction system in which attack variants can
be automatically derived from each other. Section 5 staitls & general discussion about selection of
transformation rules to use, and continues with a desoriptif both the transport and application rules
we used to find attack instances that elude Snort. Sectioregepts AGENT, how it was used to find
vulnerabilities in Snort, and the specific vulnerabilits&§ ENT exposed. Section 7 discusses future work.

2 Related Work

The black hat problem. The work of Ptacek and Newsham [36] described methods fasi@veof a
signature-based NIDS. Their methods include transfoonatthat modify the attack on both the link (IP)
and transport (TCP) levels. They manually built a set ofcktiastances, and showed that these instances
eluded every commercial NIDS they tested. Handley and Pediscussed similar transformations exploit-
ing inherent ambiguities of the TCP and IP protocols [12, 32]

There are three major differences between our work and th& wfothese researchers. First, while
they focus on individual transformations, we provide a falfrmodel to rigorously generate all possible
combinations from a set of transformations. Second, whiéy tprovide examples of methods to elude
a NIDS, we provide an automated tool that uses such methodsttially find the undetected instances.
Third, although our transport level transformations arsellaon their methods, we explore payload level
transformations as well, and our model can be extended ladecheir IP level transformations.

The black hat problem was also investigated in the conteattadr types of intrusion detection systems.
Wagner and Soto showed a model, based on formal languagsy,ttiead attackers can use to evade a host-
based IDS [49]. Tan et al. provide evidence that this themaetnodel can be used in practice [17, 45]. Our
approach is similar to Wagner's: we focus on a NIDS rathen thahost-based IDS, and our formal model
is based on natural deduction rather than on regular larguag

Hackers also have developed tools for attack obfuscatioagrBute [42] splits an attack payload into
several TCP and IP packets, but it neither always presehgesttack semantics nor enables automatic
modifications of the attack payload. Tools to obfuscateryicade in shell exploits are well known [9], but
we leave this type of transformation to future work.

The white hat problem and NIDS verification. While the white hat problem has attracted much more at-
tention than the black hat problem (see survey papers, [£51F, the particular problem of NIDS validation
has not received much attention. Since network speed isasurg rapidly, some researchers have focused
on the ability of NIDS to monitor large networks [16, 18]. biman et al. presented a comprehensive effort
to evaluate IDS capabilities [20, 19] (with a seminal cuggoy McHugh [26]). However, they focused on
comparing capabilities of several NIDS to detect a numbettafcks, while our methods rigorously test a
single NIDS for its ability to detect many instances of a t@raftack.

To the best of our knowledge, AGENT is the first tool that carubed to show that a NIDS correctly
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identify all possible attack instances derived by a givarotaansformation rules.

Resisting attacks on NIDS. Handley et al. [12] and Sommer et al. [41] present techniduasremove
TCP and IP ambiguities from network connections. Theserigaes can be used to prevent at least one of
the TCP vulnerabilities we found in Snort (Sections A.1hwever, to the best of our knowledge, these
methods are in a preliminary stage of research and are natiglely deployed.

Security protocol verification. There is a vast body of work on verification of security praisd5, 15,

21, 23, 28, 27, 29, 50]. Deductive systems are used to modéktiowledge” of the participants and the
adversary in the security protocol. For example, the NRitqual analyzer [28] uses Prolog to formalize the
set of facts learned by a participant. A similar approachksmn by Paulson [31], who uses Isabell to prove
the correctness of security protocols. Abstractly spagkimese technigues are related to the approach taken
in this paper because we also use deductive systems to nmedgbiver of the adversary. In the future, we
will explore techniques for state-space reduction avielabthe security protocol verification literature [40].

Deductive databases. Since we use deductive systems to model the transformatiansn attacker can
perform, the literature on efficient evaluation of logic grams from the deductive databases literature is
relevant. There are several techniques and systems faeeffliottom-up [37] and top-down evaluation [10,
48] of logic programs. In our context, these evaluation mémhes have the promise of providing efficient
algorithms for the black and white hat problems. We will éxplthese connections with deductive databases
in the future.

3 Example: Derivation of Attack Variants

We illustrate the main idea behind our work: given an instawfan attack4 and a set of transformations
that preserve the semantics.df we can systematically transform this instance into andtistance ofA.
We start with examples of two attack instances of a known FIIRerability. Then, we describe semantics
preservingransformation ruleswhich are single-step transformations that transformavmninstance into
a new one. Last, we illustrate that the two instances araniriof each other: one instance can be derived
from the other by repeatedly applying the single-step faantsations. While the example we present is
simple, it is based on a real vulnerability found in Snortatia A.2.3).

Our example vulnerability is a published buffer overflow is@mmonly used FTP serveBlackMoon
FTP server for Windows, CAN-2002-0126 in [30]); exploititige overflow may crash the server or present
root privileges. The exploit causes the overflow by provgdam overly-long argument for the FTP CWD
(change directory) command. We call this attéipkewd

The first instance oftp-cwdwe present is similar to instances that can be found on mackehaites
(e.g., [1]). Since this instance is so common, we cdlipitcwd, ., (Figure 1a). It contains four phases,
each containing several TCP packets: (i) TCP handshakd; TP login, usually achieved by anonymous
login, (iii) innocent phase in which the attacker browses $brver using benign FTP commands, and (iv)
attack phase in which the attacker launches the attack ldireea long CWD command. Since long FTP
commands may look suspicious, attackers commonly fragtheribng argument into several TCP packets.

To illustrate derivation of onétp-cwd instance from another, we now present a much shorter irstanc
of ftp-cwd(Figure 1b). We called it thteat and Potatoe@MaP) version offtp-cwd denotedtp-cwd,,, p,
because, as we discuss in Section 4.1, it is the simpleshicestpossible with respect to our rules.

There are two main differences betwegmcwd,,,» andftp-cwd, ;.. First, ftp-cwd,,,» contains a
single attack packet (we do not count packets in the TCP Ihakdsphase because they are part of any
connection, benign or malicious.). Since FTP and TCP betorigio different levels of the protocol stack
[52], the FTP server is (and should be) indifferent to the hanof TCP packets used to deliver the FTP
messages. Therefore, it is possible to send the three megdSEP messages (USER, PASS, and CWD)
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Figure 1: Two ftp-cwd variants.

in a single TCP packet. Seconfip-cwd,,,» contains only the data that is absolutely necessary for a
successfuftp-cwdattack; it does not contain any victim response. Note thegtahdifferences do not reduce
the effectiveness of thiép-cwd,,,p instance; from the attacker’s point of view, if the victimspgnds to
ftp-cwd,,,;.;, it should also respond fitp-cwd,,, p-

While theftp-cwd,,;.,, and theftp-cwd,,, » might look different, both contain the necessary messages
for a successfultp-cwdattack. Hence, intuitively speaking, one can irftercwd, ;. from ftp-cwd,, p,
and vice versa. Next, we illustrate this inference.

Consider the following twaransformationrules:

1. R, (TCP-fragmentatiof if S; is an instance of an attack, andS; is obtained fromS; by (i) frag-
menting a single TCP packgt € S into two packet;, p;+1 € So, and (ii) copying all packets other
thanp; from S; to Ss (shifting the indexes of all packets afierby one), thenS; is an instance Q.

2. Ry (FTP-padding: if Sy is an instance of an FTP attagkthat consists of at least one malicious FTP
command after login (e.g., like the CWD command in ftfpecwd attack), andS, is obtained fromS;
by inserting a benign FTP command between the login and thieimms command (but not the “QUIT”
command), theiys is an instance o#.

We call these rulesemantics preservinghey do not alter the semantics 8f. According to the TCP
specification [33], it is legal to fragment TCP packets asrdds To the best of our knowledge, every FTP
attack can be inflated, or padded, using benign FTP comrhands

If ftp-cwd,,,p iS an instance of th&p-cwdattack, then by using?; and R, it is possible to derive the
conclusion that thép-cwd, ., (Figure 1a) is also an instance fip-cwd We successively applig; on
ftp-cwd,,, p to fragment the single attack packet into the attack paakeftp-cwd,,,.,;. On the resulting
instance, we apply:. and pad the attack with benign FTP commands. Using natudaiatien terminology,
we say that thétp-cwd, ;. is derivedfrom ftp-cwd,, » using the rules?; and R,. More formally we
write: ftp-cwdy;, p (R, Ry} ftP-CW, ;001-

From the derivation process illustrated above, we can ntake important observations:

1. R; andR; define a closure over a subseffip-cwdinstances.R; and R, can be used to derive not only
theftp-cwd, ., instance, but also other instancestpfcwd Using these two rules we can derive every

LIf there exists an FTP attack that cannot be padded by anpif&P commands, then the rule is changed to only allow legal
modifications.



ftp-cwdinstance with several benign FTP commands and several T€etsadelivered in-order. This
observation motivates us to automate the derivation pspdeescause this enables (i) identification of
everyftp-cwdinstance that falls into the category mentioned above, @ngefneration of finitely many
instances to be used for a NIDS testing.

2. Ry and R, are commutative. To derivitp-cwd, ., it is possible to first change the attack payload
by padding the attack with benign FTP commands, and thenangehway the attack is delivered by
fragmenting it into the several packets. This observatimatly simplified the implementation of an
automatic derivation tool as discussed in Section 5.2.2.

3. The inference process can be bi-directional. Considerdlerse rulesf}?l as de-fragmentation and
]Q_g as removal of padding. It is easy to see hitpvrcwd,,» can be derived fronftp-cwd,,;.,;. This
bi-directional property suggests that a derivation pre@ start from any attack instance, so finding
instances that elude a NIDS may be less sensitive to theadierivstarting point. We use this observation
when we define the starting point for our automatic derivataml in Section 4.1.

Next, we describe a model that formalizes our intuition é¢iring attack instances.

4 A Natural Deduction Model for Attack Generation

We derive attack instances using natural deduction [35].a#unmal deduction system uses a collection
of predefined inference rules to derive conclusions froraaaly known facts; the new conclusions can be
used as facts to derive further conclusions, and so on. Fattack.4, we present an inference system to
derive TCP sequences that had&s semantics. The derivation starts from a representatisgamnce ofA4,
the meat-and-potatoes instance, and continues by sugagsgpplying syntactic transformations to derive
new instances ofl.

Our goal is to define a natural deduction model for the blackwahite hat problems. To do so requires
three steps. First, to precisely define attack instancesiesd a way to represent the instances. Second, to
start the derivation process, we need an exemplary attatinioe. Third, to propel the derivation process,
we need inference rules that show how to derive new instaftoes the others. Here, we discuss the
attack representation, the selection of an exemplarynostaand the way we model the black and white hat
problems in terms of natural deduction. Section 5 preséetinference rules that we used.

4.1 Attack Representation

Natural deduction uses syntactic transformations to dasonclusions from facts. Therefore, we need
to represent an attack in a way that is easy to syntacticadlgipulate. To achieve this goal, we represent
an attack as a sequence of TCP packets. For our purposesateaatihas two participants: tladtacker
and thevictim. We call the packets the attacker seattack packetsdenoted:;, and the packets the victim
sendsesponse packetgenoted-;.

The choice of a sequence of TCP packets to represent atmel® arbitrary and is convenient for
several reasons. First, this method of representationeigrthst obvious choice because the majority of
known attacks use TCP; for example, 88% of Snort rules taF@® communication. Second, since our
focus is from the TCP level up, we use TCP to hide low levelitet# the network protocols. Last and
most important, the TCP representation exposes both TCi#neders and application data. It enables
modeling of the attacker’s control over the applicatioragd#te attacker’s control over TCP parameters and
headers, and the attacker’s ability to inject TCP packetalat

The next step in the definition of a natural deduction systedefining the derivation starting point.

For a given attack4 we define a special instance: a TCP sequence calle#a-and-Potatoese-
guence, denotedl;;.p. The Ay, p is the single starting point for every derivation requiredsblve the
black or white hat problems. For simplicity, we assume thdta, p contains only one attack packet that is



part of a legal TCP sequence, and does not contain any viesponse (as in thigp-cwd,,, » sequence in
Figure 1b). To the best of our knowledge, in the majority dfvark attacks, the exploit does not depend on
data from the victim, so the attacker activity can be comdbiiméo a single TCP packet. In the future, if an
attack must contain more than one packet, we will apply thesrior each packet separately.

For any attack4, two questions about thd ;. should be addressed.

1. How do we identify amd s, p? Identifying and ;. p is driven by the common properties of the instances
the rules derive. For example, the common property of itgsmerived by CP-fragmentatioralone
is that they contain several TCP packets that are fragménteod,;,p payload. To ensure that the
natural deduction system generates all possible instavitesertain properties, thd ;. p is defined as
an instance that cannot be derived, using the inferencs, fiutem any other instance. In other words, the
Anap 1S the root of the derivation tree: it derives all instanced ao instance derives it. For example,
when considering only th€CP-fragmentatiorand FTP-paddingrules (Section 3), there is no instance
that can derivétp-cwd,;,p (Figure 1b).

2. How do we handle the case when tHg;,p is not unique? For example, since URLs in an HTTP
attack can be expressed either by printable charactersioetuivalent ASCII hexadecimal values [11],
one might be tempted to use inference rules that substitideacters in both directions. However,
since such bidirectional substitution rules enable cacderivation, for example fromcNN.COM” to
“%43NN.%430M” and back, they do not define a uniquky,p. In such a case, we artificially split
the rules into two categoriesfterward andbackwardsrules—and define thel ;;,p with respect to the
forward rules only. For example, we force forward substitufrom printable characters to their ASCII
hexadecimal values and define tlg,,p to contain only printable characters. In all the rules used i
this paper, forcing such an order enabled us to find a unidygp. This ordering did not reduce the
number of attack instances that our natural deduction sygenerated; formally, it did not affect the
completeness of our model.

The answers to these two questions suggest an automaticovweeyrive theAdy ,p. Since thed, .p
serves as the root for forward derivation, and since impteing backwards and forward versions of rules
is simple, there is no limitation to start the derivationgess from any instance, use the backwards rules to
derive theA,,,p, and then to generate all instances using the forward rliles current implementation of
AGENT does not include this capability; however, we planxplere this opportunity in the near future.

4.2 A Natural Derivation System for Solving the Black and Whie Hat Problems

We have defined how to represent attack instances and thiegtawint for the derivation process. To
complete the definition of the natural deduction system welrie define the inference rules and the black
and white hat problems in terms of natural deduction. Heesfasmally define the two problems and leave
the inference rules for the next section. We start with tHendien of attack closure.

Definition 1 (Attack Closure) Let® be a collection of inference rules, ant;,p be the MaP sequence of
an attackA. A's closurewith respect tap, denotedAs, is the collection of TCP sequences derivable from
Anrqp using a finite number of applications of the inference rukesmally, A = {s | Ayapr Fao s}

Now we formalize the black and the white problems:

Definition 2 (Black Hat Problem) Let.A be an attack,\" be a NIDS, andpP be a collection of inference
rules. Let Ay be the collection containing each TCP sequence fffatecognizes asd. The black hat
problem is to find a sequence S such thiat Ag\Ay .

Definition 3 (White Hat Problem) Let.A be an attack,S be a TCP sequence, arkl be a collection of
inference rules. The white hat problem is to determine wérethe Ag, or Aprep Fo S.

The definitions above highlight the advantages and disddgan of using inference to solve the black
and white hat problems. Formally defining them as naturalidigoh problems enables the usage of formal
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logic tools to automatically solve both problems. In thecklhat case, we generate unrecognizable variants
of A and in the white hat case we detect sequences that are ganiant However, the formal definition
also exposes a limitation. We are able to find only instanheas dre derived from thel,;,p instance
using the inference rules . Hence, our ability to find and detect attack instances lyretpends on
the composition of the rules i@ and theA,,,p instance. While thed;;,p may be easy to create, finding
effective inference rules is a more delicate task. We addtes task in the next section.

5 Transformation Rules

Our ability to find attack instances that elude a given NID®atetect whether a sequengeés a variant
of an attackA4, depends on the composition of the inference rule set. Welstadiscussing the qualities
that are desirable in a rule set. Then, we give an example Hdipal rule set as used in our experiments.
As the results in Section 6 show, working with these qualitiemind pays off: using this rule set exposes
several serious vulnerabilities in Snort.

5.1 Building an Effective Rule Set

Selecting the transformation rules is similar to programgniit requires expertise and human thinking.
We present the lessons we learned while building a rule seAGENT. We believe that the guidelines
provided here will be useful for others constructing theinaule set.

5.1.1 Desirable Properties of Transformation Rules

The most important property for a transformation rulsdsndnessA rule is sound if it does not change
the attack semantics: the rule can be applied to any inst#racgiven attack, and it derives a TCP sequence
that is an instance of this attack. If every rule is soundntte entire system is sound as well. Given an
attack.4, a sound set of rules is important for solving both the blauk &hite hat problems. For the black
hat problem, soundness means never generating TCP sequbateo not have the semantics.4f For
the white hat case, soundness means detecting only thoseddDEnces that do havs semantics.

The second desirable property of a rule setampletenessFor a given attack4, it means that the
inference rules enable the derivation of any TCP sequeratehtts the semantics of. Like soundness,
completeness also is important for solving the black andenmat problems. For the black hat problem,
completeness means that if there exists an attack instaateltides a NIDS, we will eventually find it. For
the white hat case, completeness means the ability to datgdhstance ofd.

When a set of transformation rulésis both sound and complete, then for every TCP sequérasrel for
every attack4, S is an instance o# if and only if S belongs to the closure of (or S € Ag). Essentially, a
derivation tool that uses such a sound and compldtea perfect NIDS.

5.1.2 The Structure of the Rule Set

Achieving soundness is not easy and requires expertise igghcifications of the protocol (e.g., TCP)
and application (e.g., HTTP) that the attack exploits. Whakes the situation even more difficult is that
specifications can be ambiguous [12, 44] and not all impleatiems obey their specifications. An example
of a disparity between implementation and specificatiorhés BSD finger server (version 0.17). While
the finger specification permits (but discourages) escapecters in a finger query [51], this server does
not support queries with such characters, and a sound dramation rule for this server cannot dictate
insertions of such characters. Achieving soundness mesjtiite knowledge of both the specifications and
implementations of the protocol and application that thacktexploits.

Theoretically, it is possible to build a complete rule seit, Wwe found that such a rule set is impractical.
Since the number of instances a rule set derives can be @favien an incomplete rule set with only a few
rules derives a large number of instances (see Section 6).

From our experience with AGENT, we have developed two grasethat help to achieve soundness and
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Figure 2: The hierarchy of inference rules.

deal with the practical limitations of completeness.

To address the difficulty in developing sound rules, we divttke rules into levels based upon the proto-
col stack model (Figure 2networkandtransportlevel rules modify the way the attack is delivered but do
not modify the attack paylo&dandpayloadlevel rules modify the attack payload itself. Within eachele
rules are divided into different types according to the wagytmodify the attack. At the transport level, we
have rules that add or remove packets from a TCP stream, ehlhagacket header, and change the order of
packets. At the payload level, we have rules that obfusta&enalicious subsequence in the attack payload
in a way that the NIDS signature will not match it, and rulest ihad the malicious subsequence with benign
data. The advantage of this hierarchical structure is thaduces the chance of writing an unsound rule;
the person that develops a rule can focus on a single aspéw aftack.

To address the infinite number of instances that a compldtesai dictates, we adopt two strategies.
First, we focus on rules that only derive a finite number ofanses. For example, a rule that retransmits a
packet many times is required for completeness, but it igrexttical to use. Instead, we limit the number
of retransmissions per packet to one; it is reasonable tovesthat even few retransmissions will be enough
to expose a bug in the way a NIDS handles retransmission.n8ega@ do not use all rules in every testing
phase. While this hurts the overall completeness, it dralbfireduces the number of instances we need to
test. Our results show that these two strategies effegtagbose vulnerabilities in Snort. Further, when a
NIDS detects all instances derived from an incomplete setle$, it increases our confidence that the NIDS
behaves correctly with respect to the set of rules we coreside

5.2 Inference Rules Description
def T4(S1),RulePredicate(...)

Each rule has the structure [@ule Level][Rule N ame] SED) . To specify the rule
name we use the name of the protocol if the rule is a transptat or application if the rule is a payload
rule. On the right hand side, we have the rule functional migtsen that reads:

if ((S1 is an instance of A) && RulePredicate(...)) then Ss is an instance of A

RulePredicatespecifies how the conclusion of the rulg] relates to the fact the rule useS; J; this is a
mechanism to enforce semantic preserving transformatidosexampleRulePredicatanay state thaby
must be a permutation &f; to conclude thab, is an instance afd. The predicate arguments can be either
TCP sequences or packets, depending on the predicate.

5.2.1 Transport Level Inference Rules

We present the transport rules in Table 1. We fséo denote a TCP sequenas, to denote the!”
packet of the attacker, and to denote thg'** response of the victim.

As can be noted, the rules not only change or add packets tdekait sends, but also add response
packets from the victim. As mentioned in Section 4.1,.thg,p sequence does not contain responses from
the victim. However, responses or acknowledgments play@alrpart in intrusion detection. The ability of

2In this paper we do not address network rules, but our natiegiction model can support them.



Name Description Formal Description

TCP The i** attack packetg; € S, is fragmented into two
Fragmen- | packetsa;,a;,, € S2. Thefrag predicate holds if and o o
tation only if a}, a/, , is a legal TCP fragmentation af; [33]. Za(loa, .- ”a“fj’,' : 'ja"’rl'"])’ frag(ai, i, dir1)
(R1) When exists, the original responsedpis deleted £;); Zallas .-, a3, 15y 1,7y, Qi1 - -Gy T
two responses are added to each of the new attack packets
(Tz,'7 T’IH»l)'
TCP Per-| S is a restricted permutation ;. restrictedPermute
mutation | holds if S is a permutation o with the following two Za(S1), restricted Permute(S1, Sa)
(R2) restrictions: (i) it preserves the original order between Za(S2)

packets and their corresponding retransmission packets,
and (ii) it preserves the original order between attack
packets and their responses.

TCP This rule specifies a family of rules in which the attack
Retrans- | packet,a; € Sy, is retransmitted irb>. Retransy holds '
o ! . A . . I(_A([ah...7ai,rj,...,amrm]),retransk(517ai7ai)
mission if and only if a; is retransmitted in a way that preserves 7 ——
(R3) the semantics of5;. Table 2 presents predicates that allas, .. a5, af, 75, Gy 7m])
specify semantics preserving retransmissions.
TCP This rule specifies a family of rules in which the TGP

Header header of the attack packet; € S;, is changed inS,.
Change hdChangey, holds if and only if the header change b
(R4) tweena; anda; does not alter the attack semantics. T|
investigation of these rules is left for future work.

Ta(lar,...ai,Tj,...,an,Tm]), hdChanger(a;, a;)
he Za([ar,...,a}, 75, ..., an, ™m])

Table 1: Semantic preserving TCP inference rules.

Name Holds is and only if Scenario
retransi (S, a;, a;) ai=a; except that: (i)a;.RST is set, and (ii) the se; The attacker retransmits a packet that
guence number i is smaller than the acknowledg- was already sent and acknowledge
ment number in the last response Snbeforea;. More | The attacker changes the packet intg a
formally, let r,€S be the last response befosg, then | RESET TCP packet.
a.sequence<ry.acknowledgment.
retranss (S, a;, aj) aj=a; except that: (i)a;.RST is set, and (ii) the| The attacker sends a TCP RESET
sequence number ina; is too large to fit into| packet that its sequence number is tpo
the TCP window of the victim. More formally| large to fit into the victim’s TCP win-
let r;eS be the last response before;, then | dow.

aj.sequence>r;.acknowledgment+S.window_size.

o

retranss(S, a;, aj) aj=a; except that: (i) a;.RST is set, (ii) | The attacker retransmits a packet that
a}.length=a;.length-1, and (iii) a;.sequence is the | was already sent but not yet acknowl-
sequence number the victim expects to get next. edged. The attacker changes the pagket

into a RESET TCP packét
retransa,s,e(9, ai,a;)| The same agetransi 2,3(S, as, a;) butinstead of the RST Simulates FIN eluding attempt rather
flag, set the FIN flag. than a RESET eluding attempt

2Called theambiguous retransmission problesee p. 309 in reference [44].

Table 2: Semantics preserving predicates for TCP retransnssion. We focused on a single retrans-
mission of control packets, like RESET and FINISH, whichwscimmediately after the original packet
without adding a victim responses. Other possibilitieslaftefor future work.

a NIDS to detect an attack depends not only on the attack {sitlsees, but also on the interleaving of those
packets with the victim’s acknowledgments [12, 16, 24, 33, Zo accurately represent attack instances, a
system that generates such instances must add victim atddagwents. An easy way to do so is through
TCP inference rules because they can be used to add ackmymdats to any TCP-based attack. However,
this brings up the question of which acknowledgments to daldieneral, a TCP implementation sends an
acknowledgment for each packet it receives [44], so our T@é&srusually add an acknowledgment after
each packet we add or modify. Other options to add acknowiletids or application specific responses are
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possible, but we leave them for future work.
5.2.2 Payload Level Inference Rules

We present payload level rules and their integration intoratural deduction system. In general, two
differences exist between the transport rules presenteveand payload rules:

1. Payload rules operate only on tHg,,p instance rather than on any other variant of the attack.eSinc
transport level protocols and application level proto@sksindependent, there should be no difference if
we first change the attack payload and then change the waaegad is transmitted, or vice versa. So,
it is possible to apply payload, or application, modificaimn theA ;. p instance before any transport
level modification. There are techniques to attack NIDS #natbased on interleaving of transport and
payload modifications [12, 36]; while these attacks can bdeteal too, we do not address them here.

2. Payload rules are based upon the assumption that th&eattawws the signatures used by the NIDS.
Since the attacker’s goal is to elude a signature-based NH2$ must change or hide the signature of
the attack. Therefore, we assume that the attacker knowsighature used by the NIDS to detect the
attack. We believe that it is a reasonable assumption foréasons. First, NIDS are commaodities, so it
is easy to obtain the signatures provided with any NIDS. 8&cdeveloping signatures requires intimate
knowledge of the network protocol and the attack itself.c8insers of a NIDS usually do not have the
time or the knowledge to customize the provided signatuhes, use them “as is”.

Regardless of the application the rules model, we dividethto two general categorieQbfuscation
rules take the subsequence in the payload that matchesiife ijnature and change it. On the other hand,
paddingrules do not change the subsequence, but hide it among bsaigantic-preserving sequences.
HTTP can be used to illustrate the difference between thetymes of rules. To encode a malicious URL
(like “WwWW.FOO.COM/SCRIPTYCMD.EXE” in CVE-2001-0333), an attacker can obfuscate the URL by
replacing characters with their equivalent hexadeciméles or they can pad this request with benign
HTTP requests in the same TCP packet. The main insight béése two types of rules is that obfuscation
rules elude a NIDS by exploiting the fact that its signatuwegdnot cover all attack instances, while padding
rules attack the NIDS pattern matching algorithm rathen tine signature it uses.

_Tyé)e Name Description
o HTTP URL Encode| Substitute printable characters in a URL with their equaalASCII values (was not investi-
§ (Rs) gated in this paper).
g HTTP space padding Insert spaces after an HTTP method: changes a signature froHTTP
8 (Ro) Method>[SP]* <URL> into <HTTP Method>[SPT* "' <URL>.
finger padding Rs) Add spaces before the username. This is legal accordinggerfapecification [51].
FTP Padding Rs) Add benign semantics-preserving FTP commands before aimaicommand. For Snort,
one of the malicious commands is a CWD with an argument lottgear 100 bytes (Snort
=y Id (sid): 1919 [24]). Representative benign commands thesgrve semantics are “CWD
S /tmp\n” and “LIST”, while “QUIT" is benign but does not preserversantics.
B HTTP Multiple Re-| Add benign semantics-preserving HTTP requests before mimat request. For Snort, ah
& quests Rr) HTTP method followed by a URL that contains the string “pet” is considered malicious
(sid: 832 [24]). Benign semantics-preserving requestsheafindex.html” without a “Con-
nection: close” option which will turn them into requestattdo not preserve semantics.

Table 3: Semantics preserving payload inference rules.

The distinction between the two types of payload rules isalipg for three reasons. First, it helps us
to develop rules by dividing the task into two more focuseltasks. Second, it increases the variety of
instances our model derives, because any combination ofoafion and padding rules is possible. Last, it
helps us improve the signatures a NIDS uses, as we illusiehtsy.

In a recent paper, Sommer and Paxson reduced the falsevpasit of a NIDS by using a contextual
signature that generates an alert only after matching akesab-signatures [41]. The padding rules can
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be used to formalize their idea. For example, look atfthewd attack (Figure 1). For this attack, Snort
generates an alert when observing a TCP packet contairergjring “CWD ahhh...”. As a result, Snort will
generate an alert for a TCP packet that contains “QUITWD ahhh...”. Unfortunately, this alert is a false
positive because the FTP server first processes the “QUiTHibating the connection. For that reason, no
attacker will use “QUIT” to pad thdétp-cwd signature; they will only use a subset of the FTP commands
that do not alter the attack semantics (e.g., “CWD?”"). Let esate the language that the attackers will use
for padding ast'I'Ppq44ing. NOW, if we extend Snort signature féip-cwdto X-“CWD ahhh...” where

X € FT Pyqading, then this false positive will not be generated. The reabathge off'T'Fp,q4ing IS its
applicability to other FTP attacks; we can use it for othdfdmoverflows occurring in FTP servers. Hence,
it can be defined once and used in many signatures. The precegthave illustrated can be formalized as
a set-constraints problem as we show in Appendix B.

Table 3 presents the payload rules we consider in this p&pare payload rules are application specific,
we focus on three applications: Finger, FTP, and HTTP. Fauitg] we provide only the informal description
of the rules; the formal description presented next.

5.3 Implementation

We implemented the core of AGENT in Prolog [43]. Prolog isigesd for natural deduction; using
Prolog, it is easy to represent th,;,p instance as a ground fact, the inference rules as Prolog, raubel to
solve the black and white hat problems using queries. Théeimgntation of AGENT in Prolog is compact
enough to be included as part of this paper (Table 6, Appe@ixMore importantly, the same Prolog
program can be used to solve both the black and white hatgrabas we illustrate below.

To solve the black hat problem, we used AGENT to genergfe First, we provided—the set of
inference rules we want to use—then, we issue the existeuigay:

derive(Aprap,X).

which returns a list of all possible variants 4dfy;,p that the rules inb derive. Formally, this query returns
As. In the next section we show how we connected AGENT to Snasblee the black hat problem for a
particular NIDS (Definition 2).

To solve the white hat problem we used AGENT alone using &krwe have. To determine whether
is an instance of an attack, we issue the ground query:

derive(Aprap,S).
Prolog will return yes if and only it € Ag, as required by the white hat definition (Definition 3).

6 Finding Attack Instances that Elude Snort

Our goal was to use AGENT to test a real NIDS. Our testing esgsatvas to use AGENT to generate
instances of known attacks and to feed them into Snort—agtalvailable widely-used signature-based
NIDS [39]. When Snort missed an instance we stopped andtigaegsd Snort code to find out the reason.
We generated instances of three known attack$in@er-root used to gain root sensitive information from a
victim (CVE-1999-0612, [30]), (iiperl-in-cgi, used to execute arbitrary commands on a Web server (CAN-
1999-0509), and (iiijtp-cwd a buffer overflow used to gain root access to an FTP serveN(Z@02-0126).

To generate the instances of each attack, we used the tnawadgion rules discussed in Section 5.2.

We chose Snort as a target NIDS for several reasons. First Simes with more than 1500 signatures,
so it was easy to find the signatures of our chosen attackson8g&nort is considered a state-of-the-art
NIDS. Snort performance is comparable to commercial NIDSAHE, and it seems to be aware of many
evasion techniques that were reported in the past [12, 3biterefore uses techniques such as IP and TCP
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space padding

Payload

its nature to report only a single alert per TCP pack
Snort misses the attack or generates a general
instead of theerl-in-cgi alert (Section A.2.2).

efiguration, Snort completely misses the &
aleatk; with a user-defined configuratio
Snort generates a general HTTP alert rat

Level Name Description Implications: enables attackers to find an
- attack instance that eludes Snort for
g_ Evasive RST. | Abugin Snort’'s TCP state tracking. Snort acceptsiaAny TCP-based attack.
@ illegal TCP RESET packet; as a result, Snort stops
g tracking a live TCP connection (Section A.1.2).
Flushing Exploits a vulnerability in Snort’s TCP reassemhblyAny attack whose signature can be inflated
mechanism. Snort misses a signature that is fla@py a context-based payload rule.
mented over several TCP packets (Section A.2.1).
HTTP Exploits Snort’s default configuration together withAny Web-CGI attack. With a default con-

at-
n,
ner

than the specific alert for the attack.
Exploits a bug in Snort's HTTP decoding mechaAny Web-CGlI attack.

nism. Snort does not analyze more than a single

HTTP request per TCP packet (Section A.2.2).
Exploits a bug in Snort’s pattern matching algorith
(Section A.2.3).

Table 4: Summary of Snort bugs found by AGENT.

HTTP multiple
requests

Pattern match-
ing

mAny attack that uses a signature of the fo
“foo*bar”.

m

reassembly, HTTP encoding, and TTL checks. As far as we darsteort uses balanced data structures,
S0 it is not sensitive to algorithmic complexity attack assvehown for another NIDS [7]. Third, since
it is maintained regularly and bugs are fixed periodicallg assumed that it would be non-trivial to find
instances that elude it.

For each attack we tested, AGENT found instances that el8ded. These instances exposed vulner-
abilities in different portions of Snort’s code: the TCP &gy the HTTP decoder, and the pattern matching
mechanism. We reported these vulnerabilities to the Sremgldpment team. Some of the vulnerabilities
have been fixed (Snort version 2.0.2) and others will be fixethé upcoming releases of Snort. Table 4
presents a summary of vulnerabilities our testing effopgosed. For each vulnerability, the table specifies
the type of the transformation rules that exposed it, a shdrterability description, and the vulnerability
implications.

Next, we describe the testing environment we built aroundENG and then we present a summary of
our testing efforts. The description of the individual arstes that eluded Snort and the vulnerabilities they
exposed appears in Appendix A.

6.1 NIDS Testing Using AGENT

To test Snort, we used AGENT as a black hat tool: for a giveachttl, we tried to find instances that
Snort does not detect. In particular, for a given attagkhis testing process contains the following three
stages (see Figure 3):

1. Closure Generation This stage generates all instanceslip. We provided two inputs to AGENT: the
attack M a P instance, A/, p, and a collection of transformation rules, The output of this stage is a
text file containingAg. Each instance itdg is represented as a list of TCP packets; as mentioned in
Section 5.2.1, instances contain both attack and resp@tsets.

Eluding-Instance Search This stage finds an attack instance that eludes Snort. Torpethis search,
we implement anstance simulatothat plays the instances g ; the simulator writes both the attacker
and the victim packets to the network. On the simulator'simrecwe also installed Snort, which reads
from the network. Snort raises an alert each time it idestiflein a TCP sequence. The search stops
when an undetected instance is found, or when all instareestieen checked.

We implemented the simulator using C libraries that enat®@atmon of raw TCP packets [47, 38]. The
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simulator plays complete TCP sessions, including TCP Heal@sand termination procedures and it
simulates an average of 350 instances per second on a Péhti@60MHz.

3. Instance Feasibility Check This stage illustrates that the instance found by the bestage can be used
by attackers over the network. In the previous stage, welateu both the attacker’s packets and the
victim's responses. We used two machines connected by a bANparate the attacker from the victim.
In this stage, we used the instance simulator to send thekatta packets only, the victim responses
were generated by a real application.

Strictly speaking, this stage is unnecessary. As long assesound rules, any attack instance generated
by AGENT can be used by any hacker. We included this stageligat@ our own methodology and to
illustrate that AGENT can find attack instances that cant@xithe wild.

Rules (P)
Closure
Generation Awmap AGENT }7

Ay (text file)

Eluding
Instance Search

Instance of A
attack + response
segments

Instance
Simulator

YES (check next instance)

Instance of A

attack - ¢real victim
Instahc_g Instance segments only "~ responses Real
Feasibility Check Simulator - Victim

Figure 3: NIDS Testing Using AGENT.

6.2 Testing Effort Summary

Software testing is usually an incremental process. Omtsstéth simple test cases, and gradually adds
cases to increase coverage. The ideal goal is to test evesjbcase. Since this is infeasible, one usually
splits the testing into more manageapleasesin each phase the goal is to test a particular type of tesscas

Here, we describe this process in the context of AGENT andtSntle performed a total of seven
phases that yielded five vulnerabilities. We started witlngpke attack and with a rule set that derived a
small number of instances. To increase coverage, in eadeptaeither added rules to AGENT or changed
the attack.

Table 5 presents a summary of our seven test phases. In theviirphases we useithger-root with
transport rules alone. In the second phase AGENT exposevhgive-RST vulnerability. We continued
to use thefinger-root attack, but added thinger-paddingrule. Using this rule alone did not yield new
vulnerabilities (Phase 3), but combining it with transpafes exposed the Flushing vulnerability (Phase
4). We continued wittperl-in-cgi and each HTTP rule we used exposed a vulnerability in SnaT$P
decode engine (Phases 5,6). Last, we tested Snort witmaestaf theftp-cwd attack and discovered the
Double-Signature vulnerabilities (Phase 7).

Here is a summary of the lessons we learned from working WGENT:

1. Selection of rules In our current settings (Figure 3), we can test 350 attastantes per second, or
107 instances in about 8 hours. This limitation, together wli desire to increase coverage, propelled
the selection of rules in each phase. We composed rule sgtddmot derive more than a few millions
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Testing Phases

1 2 3 4 5 6 7
Vulnerability Frag and| Evasive Finger Flushing HTTP HTTP Double Sig-
name Permute RST Padding Space Multiple nature

Padding Request

Tested attack finger-root | finger-root | finger-root | finger-root perl-in-cgi perl-in-cgi ftp-cwd
Described in Al1l Al1l A21 A21 A2.2 A2.2 A23
Section
Rules in 2 {R17R2} {R17R2,R3 {R5} {R1,R27R5 {Rg} {R7} {Rl,Rﬁ}
Instances inAs 1631 3,628,960 25 6, 820, 346 677,960 100 178, 585
As generation 0.1 70 <0.1 180 5 < 0.1 4
time (sec)
% of eluding in- None 33 None 0.15 > 99 99 23
stances
First eluding in- None 14 None 1,037,096 6 1 2280
stance

@See rules description in Tables 1 and 3.

Table 5: Testing effort summary.

of instances (in some cases we slightly changed the ruléfiga¢ions, see details in Appendix A). Our
goal is to improve AGENT, so testing more instances will eeanore practical.

2. The advantages of soundnesdJnlike tools that modify an attack in a way that may not presets
semantics (e.g., [42]), every instance generated by AGENIaments the attack under consideration.
This greatly helps in finding attack instances that eluderiSbecause no time was wasted on under-
standing whether a given sequence of TCP packets reallyeimgaits the attack. This illustrates the
usefulness of sound testing tools, and AGENT in particular.

3. The advantages and disadvantages of completeneda Phases 1 and 3 AGENT did not expose any
vulnerability. Since AGENT generates all instances withtaia properties, in these phases it serves
like a verification tool. For example, after Phase 1, we cantlsat Snort correctly reassembles TCP
streams with six characters or less. Similarly, after Pi3ase can say that the Snort pattern matching
algorithm correctly ignores spaces before the attack sigaa While these are simple claims, they do
provide important information about Snort reliability. Tiwe best of our knowledge, such verification
capabilities were not reported in the past in the contextI@f®N We hope that after improving AGENT
performance, we will be able to verify more complex propesxti

Completeness has a disadvantage too. In Phase 4, for exah@ENT found the first instance that
eluded Snort only after generating more than a million imsts. If we compare AGENT to a tool that
randomly samples instances out of a set of sound attackniretathe random tool would have found
an instance after checking 666 instances (on average). observation suggests that AGENT and a
random tool could complement each other. We leave this figatin for future work.

7 Future Work

There are several directions for future work. We are workimgxpand our knowledge-base of rules.
We are exploring other link, transport, and payload levkdsuto model attackers’ knowledge. In particular,
we intend to model code obfuscation rules that enable attadck change binary code of network exploits.
We also intend to explore ways showing that the rules covgoskible ways to modify an attack.

We envision integrating AGENT into a NIDS development cydléhile AGENT is a powerful testing
tool, it can help NIDS developers in other tasks as well. Tdaustand why a stream of packets implements
a given attack, AGENT can provide a derivation sequencesthaws all transformations used by attackers.
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Moreover, developers can use AGENT transformation rulagiqularly the payload level rules, to construct
better signatures as we illustrated in Section 5.2.2 anchipefndix B.

Last, to improve AGENT capabilities as a NIDS validationltaee intend to improve AGENT perfor-
mance using techniques described by the deductive databasenunity.
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A Description of Eluding Instances
A.1 Eluding Snort Using Transport Level Rules

In the first experiments, we focused on transport level foansations. Since these transformations
affect any TCP-based attack, we choose for testinditiyger-root attack which is the simplest TCP-based
attack we could find.

finger-rootis an information-leak attack where the attacker uses tlyeffiservice [34] to find the last
time root logged into the host. Since applying security ppesctypically requires root login, hosts that root
has not logged into for a long period of time are more likelfp¢ovulnerable. The finger-rogh, » sequence
contains a single packet with six characters: the stringt"rand two characters (carriage return and line
feed) used as an end-of-message marker for the finger server.

A.1.1 Frag-and-Permute

One of the earliest transport transformations document#tkiliterature targets the NIDS TCP reassem-
bly mechanism [36]. In the fragment and permute transfdaonathe attacker first fragments the attack and
then permutes the fragments. Since the NIDS observes theupst attack, if the NIDS TCP reassembly
engine is malfunctioning, then the NIDS may miss some of ttezk instances. Since Snort performs TCP
reassembly, it should be robust against such attacks.

Snort correctly identifies all instances of the frag-andypége finger-root attack. We conclude that, at
least for short attacks, Snort reassembly mechanism worksatly.

A.1.2 Evasive RST Injection

We added the rules for semantically preserving retransmmissof RESET packets (Table 2). Since
legitimate RST (reset) packets cause a TCP connectionrtorate, the purpose of an evasive RST packet
is to convince the NIDS that the attacker terminates the ection while the connection was not truly
terminated. When this happens, the NIDS stops tracking dmmextion while the attacker and victim
continue to accept and respond to messages.

®‘ 8, 5€q:1:4(3) "ro0”
a, RST S€q:1:3(2) "ro”

S€q:1:7(6) “root\n”

1. ack 7 “root details...”

3, s 4:7(3) "t

6

Attacker NIDS Victim r. ack? "root details...”

Attacker NIDS Victim
(a) Thefinger-root,,,, » instance. (b) Evasive RSTinger-root attack.

Figure 4: TCP evasive RST attack.

Evasive RST Description. To better understand the evasive RST bug, we first demoa$Srairt behavior
on thefinger-root,;,p instance that does not contain an evasive RST (Figure 4pa)Ih@ attacker sends
a; containing the string “roan”. (2) To avoid accepting evasive RST packets, Snort firgfies thata,
fits into its image of the victim's TCP window, then it applittee pattern matching algorithm aen, and
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finally it generates &inger-rootalert because; matches Snoffinger-rootsignature. (3) Snort observes the
victim’s responser(;) and updates its image of the victim’s TCP window: it chantpesboundaries of the
window so any packet that ends with a sequence number srttedier7 will be (justifiably) ignored.

Figure 4b describes an instance difrger-rootattack that include an evasive RST. (1) The attacker sends
a packet containing the string “rooé{). The attacker immediately retransmit, but in the retransmitted
packet @-) the payload size is smaller, and the RST flag is set. (2) Seoifies thata, fits into (its image
of) the victim's TCP window and applies the pattern matchaigprithm. Since there is no match, no alert
is generated. (3) Since the victim’s window was not updattdiyis updated only after victim responses),
Snort considers, valid and acts according to RST semantics: it stops tradkiisgr CP session and deletes
all data associated with this connection. (4) The victimeieesa; beforeas, so the victim rejectsi,
because it is out of its TCP window (duedg). As a result, the victim does not terminate the connection.
(5) Snort observes; andrs. Since the connection was terminated, Snort initializesva connection and
start following it. (6) Snort validates and accepts Sinceas does not contains “root”, and sineg was
already deleted from memory, Snort misses the signatu™ro

What went wrong? At point (3) in Figure 4b, there is no way to know whether theTRfacket will be
accepted or rejecte@ufbiguous retransmission problesee p. 309 in [44]). Hence, Snort concludes that
the connection was terminated was done too early and wrolmggrestingly, when we analyzed Snort code,
it was clear that the developers made an effort to validaf€ Rkets, but missed this corner case.

How did AGENT find it? AGENT used set of transport rules to generate all possildsiey RST cases
(Table 2). In this case, the sifiager-root;, is large, more than 3.6 million instances. Still, AGENT gextes

all attack variants in this case. Since 2% of the variant®se@ the RST bug in Snort, and, more importantly,
since even short sequences with a single RST exposes it,uthevas exposed in the first 1000 attack
instances checked.

Remedy. One way to solve this problem is to defer handling a RST pachkét it is clear whether the
packet has been accepted. This solution was proposed bydyaamtl Paxson [12], but it complicates the
TCP state tracking in Snort. Instead, after we reported tlig Bnort developers issued a fix (in version
2.0.2) in which Snort does not terminate a connection whehserves a RST packet. Snort waits until the
connection is idle for a certain amount of time and then flaghe connection out of memory.

A.2 Eluding Snort Using Payload Level Rules

Since other variants of transport transformations haddirdoeen investigated [12, 36], the rest of our
experiments focus on payload level transformations. We atoctaim that Snort is robust against other
transport level modifications, but we leave investigatimgse for future work.

A.2.1 Flushing: A General Payload Attack

We first focus on the simpliénger-rootattack. To find payload rules for the finger service we reviéwe
the finger specification [51]. We observed that there are ftimos to change the payload of a finger query:
to add spaces before the username, and to include escapetehgrsuch as backspace, in the username.
Since the finger daemon in our experiments does not suppmapexharacters (BSD-finger version 0.17),
we only used the first option, tHmger-paddingrule (Table 3).

When usingfinger-paddingalone, AGENT did not find any undetected instance. Howewling the
TCP-Fragmentatiomules (Table 1) exposed the flushing vulnerability.

Flushing Description. As previously mentioned, Snort performs TCP reassemblydidasimple frag-

and-permute attacks. Since attack signatures can be fragthever several TCP packets that can arrive
out-of-order, Snort buffers the packets data. Once in aeyhBing a pseudo-random method, Snort flushes
the data buffer: it reassembles the data, checks the datadiwhing signatures, and deletes the data from
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memory.

AGENT found an attack instance the eluded Snort by exptpithis mechanism (Figure 5): (1) the
attacker sends a long packet Y that contains 258 spaces followed by the string “ro”. Smdagerves:,
and buffers it. (2) When Snort observes that the victim rexbi,, it flushes its TCP data buffer because
the buffer size is larger than a given threshold. Since “rizatot part of the buffer, Snort does not generate
any alert. (3) When Snort observes its reassembly mechanism cannot reassemble the fullbectuse
a1 was already deleted from memory.

What went wrong? The fundamental problem is that Snort reapplied the pattestching algorithm
separately on each data packet and independently fromopieyiackets. Buffering of data, checking the
data for matching signatures at random points in time, arhetidg the data after checking, reduced the
probability of a signature being split across checks bundidtcompletely prevent such a case. Furthermore,
AGENT found that the implementation of random flushing in ®mas not effective. Even though flushing
points were randomly selected, they were never larger th@rbgtes, so the reassembly buffer was always
flushed when its size exceeded 260 bytes. If attackers coflte the attack payload by 260 bytes, they
would always be able to split the signature between two iaddpnt applications of the pattern matching
algorithn?.

How did AGENT find it? AGENT generated all possible instances from finger-paddingand TCP-
Fragmentationrules that are shorter than 500 bytes and contain up to th@ @ackets. In this case,
finger-root, contains6.8 x 10 instances and the first eluding instance was found aftettessan hour.

Remedy. The pattern matching module should continuously moniterdineam of data, and should not
back off to its initial state after each packet it receivesto,Bnhich is a NIDS developed for research
purposes, adopts this approach [32].

a seq:1:261(260) (<258 Spaces>ro)

r, (root details...)

e

Attacker NIDS Victim

Figure 5: finger-root flushing attack.

A.2.2 Eluding Snort using HTTP transformations

Our next goal was to find instances that elude Snort for amlatizore serious thafinger-root We
choose theerl-in-cgi attack in which the attacker tries to force a Web server t@a@esa PERL script on
their behalf. When the Web server is mis-configured, thelkdtascript run under the privileges of the Web
server, usually root, so the attacker can execute arbit@rynands on the server.

This attack uses HTTP, which is very common among attacé®%; of Snort rules target HTTP com-
munication. To identifyperl-in-cgi, Snort uses the signature “GET*/perl.exe” (sid #832 [24\Ve have

3Just before the submission of this paper, this vulnerghiliis reported by Sommer and Paxson [41]. However, they dighmw
that it can always be exploited.
“The “GET" is not part of the signature, but Snort checks feeitistence as part of its HTTP decoding
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developed three payload rules for HTTHTTP multiple requestHTTP space paddingagndHTTP URL
encoding(Table 3). We have investigated only the first two; the thirteft for future work.

We applied the above rules and found two type of instancgedfin-cgi that Snort did not detect.

1. HTTP space padding.More than 8 spaces after the “GET” cause Snort to miss thekatthen Snort
uses its default configuration, and report a “Large HTTP wtlalert instead of theerl-in-cgi alert
after we have modified the configuration as we describe below.

What went wrong? The fundamental problem is that Snort reports only a sinigle per TCP packet.
In this case, Snort identifies an abnormally large HTTP n@(HGET” + eight spaces), so it generates
a “Large HTTP Method” and does not continue to check for otllerts. However, the “Large HTTP
Method” is generated only if Snortiaternal alertsflag is set. Unfortunately, thiaternalalertsflag is
unset by default, so under the default configuration no @Eeyénerated.

To the best of our knowledge, there is no description of tlig énywhere in Snort distribution, though
a recently published book describes it [6]; one learns atmiexistence of this flag only by browsing
the code.

How did AGENT find it? AGENT uses théHTTP-space-paddintp add spaces between the “GET”
and “/perl.exe”; it added 5 spaces at a time, up to 250 spaeslso used TCP-fragmentation rule lim-
ited to three packets in each instance (TCP-fragmentatasnot necessary for this attaciprl-in-cgig
contains2.7 x 102 instances and more than 99% of them eluded Snort.

Remedy. The fix for the default configuration is easy. It would be helpf all options supported by
Snort would be documented (although undocumented optimmg@nmon among publicly available
tools). The situation where one alert hides a more mearigiel is common in NIDS [8], but we are
not aware of any systematic solution for this problem.

2. Multiple HTTP Requests. Snort does not detect a malicious HTTP request that is plaiteda benign
request in the same TCP packet.

What went wrong? Snort's HTTP decode engine, which decodes hexadecima¢vatua URL into
printable characters, decodes only the first HTTP requesich TCP packet. Interestingly, the software
interface to the decoding engine permits more than a singl€RfHrequest. This indicates that Snort
developers were aware of the possibility to have severalMiefuests in a single TCP packet, but this
functionality was not implemented yet.

How AGENT we find it? AGENT uses thédTTP Multiple Requestsile. The second instance AGENT
generated eluded Snort.

Remedy.Enables Snort to handle more than one HTTP request in a sii@ffepacket.
A.2.3 Double Signature: Another General Payload Attack

Our last goal was to find an instance of tiye-cwd attack that eludes Snort. This goal is challenging
because Snort has two rules that it uses to detect the attack.

1. CWD rule (sid: #1919 [24]) According to Snort documentation [6], this rule shouldger an alert if
an end-of-line character, ("), is not found within 100 characters after a CWD commandwiver, in
the current Snort implementation, this rule triggers ant #lan end-of-line character is not found within
100 characters after a CWD command, and before the end ofGRephcket. In other words, a TCP
packet that contains “CWD” must also contain\m® somewhere after the “CWD”. One might consider
such behavior overly strict because it increase Snort tletesensitivity: the attacker must include both
“CWD” and “\n” in the same packet, so it limits the attacker’s ability taifitp-cwdinstances that elude
Snort.
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2. Large packet rule (sid:#1748 [24]) Since FTP commands are usually short, the packets thatritow i
the FTP server are also short. This rule triggers an alef @R packet that flows into the FTP server is
larger than 100 bytes.

Given this situation, we had no choice but to let AGENT to perf an exhaustive search for a new
ftp-cwdvariant that eludes Snort. AGENT exposed the regular egesttack described below.

Double signature description. Figure 6 presents an instance of ftigcwdthat eluded Snort. (1) After
login, the attacker sends a packet containing two FTP cordmaan innocent CWD command (“CWD
/tmp\n”) and the malicious CWD command. (2) Snort applies patteatching. Due to a bug in the pattern
matching algorithm, it identifies the innocent “CWD /tiyrgj but misses the beginning of the buffer overflow
(“CWD aa...”) even though the second CWD command violatesGWD rule mentioned above. (3) Even
after reassembly, due to the same bug, Snort misses thaonal€WD command.

ry (230 User anonymous. .. logged in ...)

®

a5 208:288(84) (CWD *mp\nCWD aaa...)

> .

I ——

: r,, ack 4208
'//ﬁ@b—'

Attacker NIDS Victim

Figure 6: FTP-CWD Double Signature Attack.

ag 288:372(84) (hhhh...)

What went wrong? The pattern matching algorithm does not correctly handjaatures from the type
“foo*bar”. The algorithm fails to recognize this pattern dnstring like “foa JUNK_rah foo_JUNK_bar”.
After analyzing the prefix “foaJUNK_rab” the algorithm incorrectly concludes that the stringeslamot
contain the pattern “foo*bar”.

Similarly, in the case of Figure 6, the algorithm failed teritify the pattern “CWD?(="\n’)% when it
appears after the pattern “CWER4".

How did AGENT find it? AGENT uses=TP-paddingand TCP-Fragmentationules. ftp-cwd;, contains
179 x 102 instances and 23% of them eluded Snort. The first eludingriestwas found immediately.

Remedy. Use a good library for regular expression matching.
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B Using Set Constraints to Generate Signatures

Recall that an attacker can transform a malicious HTTP r&tdgoye encoding the URL, adding spaces
between the HTTP method and the URL, and adding a sequenemadtent HTTP requests before the
malicious one. These transformations can be modeled asrsgtaints [2, 3, 13] and solved using standard
techniques from the literature. The solution to these sastraints can be used as signatures to detect
malicious payloads in NIDS. We plan to explore this avenuthenfuture. However, we explain this idea
using the HTTP example. L€y, -- ,b;} be the set of malicious URLs artdbe the substitution that
corresponds to encoding printable characters in a URL vhidir tequivalent ASCII values. Recall that
regular languages are preserved under substitutions [JetlbadURLand goodURLbe the set variables
corresponding to malicious and innocent URLS, respegtividhe transformations that an attacker can make
to a URL can be formulated as follows:

{b,- by} C badURL (1)
h(badUR) C badURL @)
Lyr. N (-badUR) < goodURL 3)

The languag€d.yr, is the regular expression for all valid URL names accordmthe standard [11]. The
set constraints given above can be solved using standdrdigees from the literature. However, in this
special case we can obtain the following solution:

h({b1,--- b)) = badURL
LyrLN ﬁ(h({bl, e ,bk})) = goodURL

Using the regular expressions foadURLandgoodURL, we can derive regular expressions for malicious
HTTP requests and use them as signatures in a NIDS.
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C Prolog Implementation

Description

Prolog Implementation

AGENT’s main predicateA’ is a variant of4 s, . The main predicate is base
on the observation that payload rules can be applied befansort rules (Sec
tion 5.2.2).

dderive(Anap, A') —

apply-payload(Anrapr, Arrap),
apply_transport(Ayap, A').

Payload rules application. Here, the predicate contairtg arsingle finger-
padding rule which inserts between 0 to 250 spaces beforestmame in a
finger query. To support other attacks, the finger-paddifeggfiould be replaceg
with the specific payload rules.

)

apply_payload([P, S, F],[P’, S, F]) «—
finger_space_pad(P, 250, P").

Transport rules application. The predicate fragmentsripatj then permutes it|
and last it adds retransmission packets. For ease of patigentthe implemen-
tation here is slightly different then the specificationagivin Table 1. In Table 1
permutation is done on a stream that contains retransnptekets, but here i
is done without them. However, all vulnerabilities repdrta Section 6, can be
found using this implementation.

apply_transport(IN,OUT) «—
tep_frag(IN,TMP1),
tep_permute(T M P1,TM P2),
tep_retrans(TMP2,0UT),

Insert betweel® and L spaces before the paylo&t

finger_space_pad(P, L, P") «—
between(0, L, X),
spacelist(X, SP),
append(SP, P, P").

A recursive predicate that performs
first packet [P, S,F]) is fragmented into two parts,P1 and P2
(frag-packet([P, S, F],[P1, P2])). For each possible fragmentation
P, P2 is pushed in front of the stream taibysh-front(P2,TL, NTL)).
Then the new tail is fragmented recursivelse_frag(NTL,S1)). Last,
for each possible fragmentation of the new taf] is pushed in the front
(push_front(P1,S1, L)).

TCP fragmentation.

pf

Thep_frag([],[]) < true.

tep_frag([[P, S, F]|TL],L) —
frag-packet([P, S, F], [P1, P2)]),
push_front(P2,TL,NTL),
tep_frag(NTL,S1),
push_front(P1,S1, L).

Permutation of a TCP stream. Uses built-in Prolog permutigtredicate.

tep_permute(IN,OUT) —
permutation(IN,OUT).

A recursive predicate that performs TCP retransmissiore rEtrans_packet
predicate returns a strearfi1) containing the first packef, S, F]) and its re-
transmitted version. Then the predicate is applied reegission the tail of the
original stream, For each new tafl] is push in the front.

tep_retrans([],[]) < true.

tep_retrans([[P, S, F]|TL],OUT) «—
retrans_packet([P, S, F|,S1),
tep_retrans(TL, S2),
append(S1,52,0UT).

Fragmentation of a single packet. The output is a stream of pack-
ets, [P1,S,F] and [P2,S2, F], which are the fragmentation of the in
put packet, [P, S,F]|. First, the payload is fragmented into two pal
(append(P1, P2, P)).P2 may be empty, saP1 holds the original payload
Then, the sequence numberfe? is fixed plus(L, S, S2)). For ease of presentg
tion, the current implementation does not show the addirmpnaicknowledgmen

after P1 as specified in Table 1.

frag-packet([P, S, F],

([P1, 5, F],[P2,52, Fl]) —
append(P1, P2, P),
not_empty(P1),
length(P1,L),
plus(S, L, S2).

Table 6: The core of AGENT implementation. Due to space constraints we do not show the implementa-

tion for all rules discussed in this paper.
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