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Abstract
) ) ) L ing the application to crash when an attack is discovered.
This paper addresses the issue of identifying buffer OVeIG atic techniques have the added advantage that they im-

vulnerabilities by statically analyzing C source code. Weose no run-time overhead on the applications.

demonstrate a scalable analysis based on modeling C strﬁlqn this paper, we describe the design and implemen-
manipulations as a linear program. We also present faSﬂ"scfj}ition of a tool ’that statically analyzes C source code to

able solvers based on linear programming, and demonstiafg, .+ 1yt overrun vulnerabilities. In particular, sthi
how to make the analysis context sensitive. Based on ﬂ}%ﬁer demonstrates:

techniques, we built a prototype and used it to identify sdve

o oo o e The use of static analysis to model C string manipula-
vulnerabilities in popular security critical applicatian

tions as a linear program.
1 Introduction e The design and implementation of fast, scalable solvers

based on novel use of techniques from the linear pro-

Buffer overruns are one of the most exploited class gfamming literature. The solution to the linear program
security vulnerabilities. In a study by the SANS instigetermines buffer bounds.

tute [3], buffer overruns in RPC services ranked as tQ€rechniques to make the program analysis context sen-

top vulnerability to UNIX systems. A simple mistakejtjye.

on the part of a careless programmer can cause a seripyife efficacy of other program analysis techniques, such

security problem. Consequences can be as serious gg &tatic slicing to understand and eliminate bugs from

remote user acquiringoot privileges on the vulnera-gqyrce code.

ble machine. To add to the problem, these vulnerabilitiesone of our principle design goals was to make the tool

are easy to exploit, and several “cookbooks” [4, 31] a&@g|e to large real world applications. We used the tool to

available to construct such exploits. As observed by seyrgit several popular and commercially used packages.

eral researchers [23, 34], C is highly vulnerable becaugges tool identified 14 previously unknown buffer over-

there are several library functions that manipulate baffe{;ns inwu-  t pd- 2. 6. 2 (Section 6.1.1) in addition to

in an unsafe way. Millions of lines of legacy code havgyeral known vulnerabilities in other applications.

been written in C, and systems running these applicationghe rest of the paper is laid out as follows: Section 2

continue to be vulnerable. describes the overall architecture of our tool. Section 3
Several approaches have been proposed to mitiggi@ Section 4 describe the design of two solvers used by

the problem — these range from dynamic techniquggr tool. Section 5 describes a technique to make the

8,10, 12, 14, 24, 27] thatreventattacks based on buffefyrogram analysis context-sensitive. We report our ex-

overruns, to static techniques [17, 23, 29, 33, 34] thgdrience with the prototype implementation in Section

examine source code &iminatethese bugs before theg  section 7 discusses related work, and Section 8 con-
code is deployed. Combinations of static and dynamjig,des.

techniques have also been proposed where the results of i

static analysis are used to remove run-time checks. @n Overall Tool Architecture

like static techniques, dynamic techniques do not elinfihe tool has five components (Figure 1) that are de-
nate bugs, and often have the undesirable effect of caamibed in the remainder of this section. Section 2.1
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Figure 1: Overall Architecture of the Buffer Overrun Tool

(1) main(int argc, char* argv[]){ includes a system dependence graph (that is composed
(2) char heagef[20‘2‘811 ?Uf[1024]' of program dependence graphs for each procedure), an

*ccl, *cc2, *ptr; ;
(3) int counter: P interprocedural control-flow graph, abstract syntax trees
E4g FILE *fp; (ASTSs) for program expressions, side-effect information,

5 : . :

(6) btr = fgets(header, 2048, fp): ar_1d points-to mform;mop. podeSurfer presents the user
(7 ccl = copy_buffer (header); with a GUI for exploring its internal program representa-
(8)  for (counter =0; COU”terC;ui??erH){ tions. The queries that CodeSurfer supports include for-
(9) ptr = fgets (buf, 1024, fp); ward and backward slicing from a program point, precise
Eig; } cc2 = copy_buffer(buf); interprocedural chopping between two program points
(13) } (for details, see [28]), finding data and control depen-
214; ) buf f er (char *buf f er) { dence predecessors and successors from a program point,
15) char *copy_buffer(char *buffer . . .
(16)  char *copy: and examining the points-to set of a program variable.
(17) copy = (char *) malloc(strlen(buffer)); CodeSurfer presents the user with a listing of their source
Eig; fL[EFﬁ(Eﬁgi buffer); code that is “hot”, i.e., the user can click on a program
(20) } ' point in their code and ask any of the queries listed above.

CodeSurfer has two primary uses in the buffer over-
run tool: (1) the constraint generator is a CodeSurfer
plug-in that makes use of CodeSurfer's ASTs and pointer

describes the code-understanding tool CodeSurfdtalysis (an implementation of Andersen’s analysis [6]).
CodeSurfer is used by treonstraint generatqrthede- (2) the detector front-end is a CodeSurfer plug-in that
tector front-end and to help the user examine potenti&ises CodeSurfer's GUlin order to display potential over-
overruns. Section 2.2 describes constraint generatig!s. Information about potential overruns is linked to
Section 2.3 presentsint analysis which identifies and CodeSurfer’s internal program representation, so that the
removes unconstrained constraint variables. Section 958 can make use of CodeSurfer's features, such as slic-
describes how to solve the constraint system, and S8 in order to examine potential overruns.

tion 2.5 explains how to use the solution to the constra
system in order to detect potential buffer overruns. T
program in Figure 2 will serve as a running example. Constraint generation is similar to the approaches pro-
posed in [17, 23, 33]. We also use points-to information
21 Codesurfer returned by Codesurfer, thus allowing for more precise
The constraint generator and the detector front-end aomstraints. Each pointdruf , to a character buffer, is
both developed as plug-ins to CodeSurfer. CodeSunfieodeled by four constraint variablesbuf ! used! nax

is a code-understanding tool that was originally dand buf! used! ni n, which denote the maximum and
signed to compute precise interprocedural slices [20, 2hjnimum number of bytes used in the buffer, and
CodeSurfer builds a whole program representation that ! al | oc! max and buf ! al | oc! mi n, which denote

Figure 2: Running Example

?g Constraint Generation
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the maximum and minimum number of bytes allocatedives may result. We chose to follow [33] in this re-
for the buffer. gard because we are interested in improving precision

Each integer variablé is modeled by the constraintby using a context sensitive program analysis (Section
variablesi ! max andi ! m n which represent the maxi-5). Currently, context-sensitive pointer analysis does
mum and minimum value of, respectively. Programnot scale well, and using a context-insensitive pointer
statements that operate on character buffers or integealysis would undermine our objective of performing
variables are modeled using linear constraints over caontext-sensitive buffer overrun analysis.
straint variables. However, we discovered that we could make use of

Our constraints model the program inflaw- and pointer analysis to eliminate some false negatives. For in-
context-insensitivenanner, with the exception of librarystance, consider the statemest f cpy(p->f, buf)”
functions that manipulate character buffers. A flowvherep could point to a structure. The constraints
insensitive analysis ignores the order of statements, geterated for this statement would relate the constraint
a context-insensitive analysis does not differentiate heriables fors. f andbuf . Moreover, we use the results
tween multiple call-sites to the same function. Ford pointer analysis to handle arbitrary levels of derefer-
function call to a library function that manipulates stsngencing. Constraint generation also makes use of pointer
(e.g.,strcpy orstrl en), we generate constraints thanformation for integers.
model the effect of the call; for these functions, the con-Figure 3 shows a few constraints for the program in
straint model is context-sensitive. In Section 5, we whligure 2, along with the program statement that gener-
show how we extended the model to make the constraiated them. Most of the constraints are self-explanatory,
context-sensitive for user defined functions as well. however a few comments are in order:

Constraints are generated using a single pass overdt&ince we do not model control flow, we ignore pred-
program’s statements. There are four program statates in our constraint generation. Hence we do not
ments that result in constraint generation: buffer demodel the effect of the predicate in &n or f or state-
larations, assignments, function calls, and return statgent; the predicateount er < 10 in line (8) was ig-
ments. A buffer declaration such abar buf[1024] nored in our example.
results in constraints that indicate thaaf is of size e The statementount er ++ is particularly interest-
1024. A statement that assigns into a character bufieg when generating linear constraints. A linear con-
(e.g., buf[i]="c") results in constraints that reflecstraint such asounter! max > counter!max + 1
the effect of the assignment adsuf! used! max and cannot be interpreted by a linear program solver. Hence,
buf l used! mi n. An assignment to an integérresults we model this statement by treating it as a pair of
in constraints om ! max andi ! m n. statementscounter’ = counter + 1; counter =

As mentioned above, a function call to a library fun@ount er’. These two constraints capture the fact that
tion that manipulates string buffers is modeled by cooeunter has been incremented by 1, and can be translated
straints that summarize the effect of the call. For exainto constraints that are acceptable to a linear program
ple, thest r cpy statement atling€18) in Figure 2 results solver, although the resulting linear program will ine

in the following constraints: feasible Section 3 discusses these and related issues in
copy! used! max > buffer!used! max detail.
copy!used! min < buffer!used! nmin e A program variable that acquires its value from

For each user-defined functidoo, there are con-the environment or from user input in an unguarded
straint variables forf oo’s formal parameters thatmanner is considered unsafe — for instance, the state-
are integers or strings. If oo returns an integer mentget env(" PATH"), which returns the search path,
or a string, then there are constraint variables (e.gould return an arbitrarily long string. To reflect the
copy_buf f er $ret ur n! used! max) for the function’s fact that the string can be arbitrarily long, we gener-
return value. A call to a user-defined function is modte constraintget env$r et ur n! used! max > oo and
eled with constraints for the passing of actual parametges env$r et ur n! used! mi n < 0. Similarly, an integer
and the assignment of the function’s return value. variablei accepted as user input gives rise to constraints

As in [33], constraints are associated with pointersitbmax > ooandi!'mn < -
character buffers rather than the character buffers them-
selves. This means that some aliasing among character
buffers is not modeled in the constraints and false neg-



Constraint Program Statemen

header ! used! max > 2048 6
header!used!mn < 1 6
buf f er! used! max > buf! used! nax 10 (function call)
buffer!used! m n < buf!used!nn 10 (function call)
buffer!alloc! max > buf!alloc! max 10 (function call)
buffertalloc!mn < buftalloc!mn 10 (function call)

copy_buffer$return!alloc! max > copy!all oc! nax 19
copy_buffer$returnlalloc!mn < copy!alloc!mn 19

copy_buf f er $return! used! nax > copy! used! max 19

copy_buffer$returnlused! min > copy!used! mn 19

cc2! used! max > copy_buffer $return! used! max 10 (assignment)
cc2lused! min < copy-buffer$return!used! mn 10 (assignment)
cc2!alloc! max > copy_buffer$return!all oc! nax 10 (assignment)
cc2lalloc!min > copy-buffer$returnlalloc!mn 10 (assignment)
counter’! max > counter!max + 1 8 (count er ++)
counter! max > counter’! max 8 (count er ++)
counter’!mn < counter!mn + 1 8 (count er ++)
counter!mn < counter’!'min 8 (count er ++)

Figure 3: Some constraints for the running example

Input: Set of Constraintg”

Output: Subset of”' with no uninitialized, or infinite variables

1) I nf Set ={var |var < —ocoVvar > oo} U {var |var is un-initialized
2) whilel nf Set # ¢

3) Select and removear from | nf Set

4) foreach Constraintc € C of the formMaxVar > RHS
(5) if MaxVar isvar

(6) Dropc from C

(@) eseif var appears in RHS

(8) SetMaxVar to +oco and addvaxVar to | nf Set
9) Dropc from C

(10) endif

(11) foreach Constraintc € C of the formM nVar < RHS
(12) if M nVar isvar

(13) Dropc from C

(14) eseif var appears in RHS

(15) SetM nVar to -co and addM nVar to |l nf Set
(16) Dropc from C

a7 endif

(18) ReturnC'

Figure 4: Algorithm for Taint Analysis

2.3 Taint Analysis > oo Orvar < -oo. Taint analysis identifies constraint
variables that can directly or indirectly be set
The linear constraints then pass througtaiat analysis through such constraints and removes them from the set
module. In Sections 3 and 4 we will demonstrate twaj constraints.
techniques to solve the constraints using linear prograenidentify and remove any uninitialized constraint vari-
ming. The main goal of the taint analysis module is @bles The system of constraints is examined to see if all
make the constraints amenable to these solvers. Lineax constraint variables have a finite lower bound, and
programming can work only with finite values, hence th@l ni n constraint variables have a finite upper bound;
requires us to remove variables that can obtain infinike refer to constraint variables that do not satisfy this
values. Moreover, it is also important thadx variables requirement asininitialized Constraint variables may
have finite lower bounds andgi n variables have finite fail to satisfy the above requirement if either the program
upper bounds. Hence, the objectives of this module amgiables that they correspond to have not been initialized
twofold: in the source code, or program statements that affect the
e Identify and remove any variables that get an infinitéalue of the program variables have not been captured by
value As mentioned in section 2.2, some constraint vathe constraint generator. The latter case may arise when
ablesvar are associated with constraints of the forax  the constraint generator does not have a model for a li-



brary function that affects the value of the program vari- Variable ni n Value | max Value
o i ; ; e i header! used 1 2048

able. ltis |mportant_ t(_)_re_allze that thls_analy5|s Is not hoader ! al L oc o048 5048
meant to capture uninitializeprogram variables, but is buf ! used 1 1024
meant to capture uninitializecbnstraintvariables. buf!all oc 1024 1024
. . . . ccl! used 0 2048
Figure 4 presents the taint analysis algorithm. In the collall oc 0 2047
constraints obtained by the program in Figure 2, no vari- ptr! U|S|ed 1 2048
. - f ptrtalloc 1024 2048

able_s will be removed by the t_amt anaIyS|_s module, as- 2! used o 2048
suming that we modeled the library functiossr| en, cc2!al l oc 0 2047
buffer!used 1 2048

fgets andstrcpy correctly. buffer!alloc 1024 2048
2.4 Constraint Solving gggz: :flegc 8 ggig
The constraints that remain after taint analysis can be count er 0 o0

solved using linear programming. We have developed
two solvers, both of which use linear programming to ob-
tain values for the constraint variables. The first method
uses a linear program solver on the entire set of con-
straints to obtain values for constraint variables; a de-
tailed description of the algorithm can be found in Sec- . .
tion 3. The second method analyzes and breaks up $RE'€ is true of the buffer pointed to byf .
set of constraints into smaller subsets, and passes éadie buffer pointed to byt r was found to have be-
of these subsets to the linear program solver; we explffen 1024 and 2048 bytes allocated, while between 1
this algorithm in Section 4. and 2048 bytes could have been used. Note phat
The goal of both solvers is the same, to obtain the bisPart of two assignment statements. The assignment
possible estimate of the number of bytes used and afiAtement 6) could makept r point to a buffer as long
cated for each buffer in any execution of the progra@s 2048 bytes, while the statemés) could makept r
For a buffer pointed to byuf, finding the number of point to a buffer as long as 1024 bytes. The flow insen-

bytes used corresponds to finding the “tightest” possit§idVity of the analysis means that we do not differenti-
range puf ! used! mi n..buf ! used! max]. This can be ate between these program points, and hence can only

done by finding the lowest and highest values of the cdRf€" thatptr was up to 2048 bytes long. In such a
straint variablesbuf ! used! max and buf ! used! ni n SCenario, where the value pt r! used! max is bigger

respectively that satisfy all the constraints. Similarf§}@nptr!al Ioc! min but smaller than (or equal to) the
we can find the “tightest” possible range for the nuny@lue ofptr!al | oc! max, we conservatively conclude

ber of bytes allocated for the buffer by finding ththat there might have been an overrun. This can result in
lowest and the highest values iofif ! al | oc! max and afalse positivedue to the flow insensitivity of the analy-

buf ! al | oc! ni n respectively. SIS. _
For the program in Figure 2, the constraint variabl& N cases such as for program variabteopy
take on the values shown in Figure 5: We explain in det4l€ré we observe thatopy! al | oc! mex is less than

in Sections 3 and 4 how these values were obtained. COPY! used! max, we know that there is a run of the pro-
gram in which more bytes were written into the buffer

than it could possible hold, and we conclude that there
Based on the values inferred by the solver, as well as tis@s an overrun on the buffer.

values inferred by the taint analysis module, the detectoiNotice that the constraint variables corresponding to
decides whether there was an overrun on each buffer. 8%¥& andcc2 get the same value; this is a result of the
use several heuristics to give the best possible judgmeontext-insensitivity of our analysis. We will show in
We shall explain some of these in the context of the v&ection 5 how to enhance the precision of the analysis
ues from Figure 5. using context sensitivity.

e The solver found that the buffer pointed to byader We have developed a GUI front end (Figure 11) that
has 2048 bytes allocated for it, but that its length coutthables the end-user to “surf” the warnings — every warn-
have been between 1 and 2048 bytes. This is a scenamipis linked back to the source code line that it refers to.
where a buffer overrun can never occur — and hence Mereover, the user can exploit the program slicing capa-
buffer pointed to byheader is flagged as “safe”. Thebilities of Codesurfer to verify real overruns.

Figure 5: Values of some constraint variables

2.5 Detecting Overruns
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3 Constraint Resolution using Linear Pro- erated by the tool, if alirax variables have finite lower
gramming bounds, and alfi n variables have finite upper bounds,

: . o .__then the values obtained by solving the four linear pro-
A Linear Program is an optimization problem that is ex- - .

grams as above are also the values that optimize the lin-
pressed as follows:

ear program with the same set of constraints subject to
Minimize : cx the objective function:

Subject To : Ax > b Minimize: >, . (buf!al | oc! max - buf!alloc!nin

+ buf ! used! max - buf ! used! mi n)

whereAis anm x n matrix of constants andc are vec- Note that this objective function combines the con-

tors of constants, anxl is a vector of variables. Thisis_, . . . . )
: i . straint variables acrosdl buffers. Since taint analysis
equivalent to saying that we have a systemmahequal- . -
ensures that alirex variables have finite lower bounds

ities inn variables, and are required to find values for the . . -
. L and allni n variables have finite upper bounds, we can
variables such that all the constraints in the system ar

. . ) ) Bive justonelinear pro ram, and obtain the bounds for
satisfied and thebjective functioncx takes its lowest J prog

. L all buffers.
possible value. It is important to note that the above formIt must be noted that we are actually interested in

is just one of the numerous ways in which a linear pro-.. . .~ .
.~ Obtaining integer values that represent buffer bounds

gram can be expressed. For a more comprehensive view .
of linear programming, see [11, 30]. Linear pro rang)—u talloc! max, buf!used! max, buftalloc!m n
prog 9, ' ' Programu, 4p ¢ 1 used! mi n. The problem of finding integer so-

ming works on finite real numbers; that is, the variables. . . .
. . utions to a linear program is called Integer Linear Pro-
in the vectoix are only allowed to take finite real values, . .

ramming and is a well known NP-complete problem

Hence the optimum value of the objective function, if . o
. o 8]. Our approach is thus an approximation to the real
exists, is always guaranteed to be finite. R . .
. L o . roblem of findingintegersolutions that satisfy the con-
Linear programming is well studied in the literatur . . .
: . Straints. In some cases, however, it is possible to solve
and there are well-known techniques to solve linear pro- . . .
the problem using standard linear programming algo-

grams, Simplex [16.] being the r.nost.popul.ar of therpthms and yet obtain integer solutions to the variables in
Other known techniques, such interior point methoELs

. L . e linear program. This is possible when the constraints
[35] work provably in polynomial time. Commercially . .

: 2 an be expressed #x > b, andA is a unimodular
available solvers for solving linear programs, such as §rrc1)étrix [5, 19, 30, 32]. Herd\ is anm x n matrix of
Plex [36, 37] and CPLEX [26] implement these and re- T .

integer constantss is ann x 1 vector of variables, and

lated methods. . .

: . b is anm x 1 vector of integer constants. In our expe-

The set of constraints that we obtained after program .
. . ) rience, the constraints produced by the tool have always

analysis are linear constraints, hence we can formulate : .

) . roduced integer solutions.
our problem as a linear program. Our goal is to 08-
tain the values fobuf ! al | oc! mi n, buf ! al | oc! max,
buf ! used! mi nandbuf ! used! max that yield the tight- _ _ .
est possible ranges for the number of bytes allocafgd HandlingInfeasibleLinear Programs
and used by the buffer pointed to yuf in such a
way that all the constraints are satisfied. More pré/hile at first glance the method seems to give the de-
cisely, we are interested in finding the lowest possiired buffer bounds, it does not work for all cases. In
ble values ofbuf! al | oc! max and buf! used! max, particular, an optimal solution to a linear program need
and the highest possible valuesboif ! al | oc! ni n and nhot even exist. We describe briefly the problems faced
buf ! used! ni n subject to the set of constraints. We cafthen using a linear programming based approach for de-
obtain the desired bounds for each buffef by solving termining the buffer bounds.

four linear programs, each with the same constraints bu# linear program is said to bieasibleif one can find

with different objective functions: finite values for all the variables such that all the con-
Minimize: buf ! al | oc! max straints are satisfied. For a linear programivariables,
Maximize:buf! al | oc! mi n such an assignment is a vector®fi and is called a so-
Minimize: buf ! used! max lution to the linear program. A solution is said to be-
Maximize:buf ! used! mi n timal if it also maximizes (or minimizes) the value of the

However, it can be shown (the proof is beyond thabjective function. A linear program is said to be-
scope of this paper) that for the kind of constraints gelmeundedif a solution exists, but no solution optimizes
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the objective function. For instance, consider: the problem of “correcting” infeasible linear programs to
make them feasible is a well studied problem in the op-
Maximize : x erations research community. The approach is to identify

Subject To : x >5 Irreducibly Inconsistent SetgalledlIS) [9]. An IS is

a minimal set of inconsistent constraints, i.e., the con-
Any value ofx > 5 is a solution to the above linear prostraints in the I1S together are infeasible, but any subset
gram, but no finite value € R optimizes the objective of constraints in the IS form a feasible set. For instance,
function. Finally, a linear program is said to inéeasible poth the constraints in the linear program in Figure 6 con-
|f |t haS no SOIUtionS. An example Of an infeaSible Iine%lﬁtute an lIS because the remova| Of any one Of the two

program is shown in Figure 6. constraints makes the linear program feasible. There are
several efficient algorithms available to detect IISs in a
Minimize : counter!max set of constraints. We used tlidastic Filtering algo-
Subject To : counter’lmax > counter'max + 1 rithm described in [9]. The Elastic Filtering Algorithm

Imax > g : . . SO
counter’max 2 counter:max takes as input a set of linear constraints and identifies an

IIS in these constraints (if one exists). An infeasible lin-
ear program may have more than one 1ISs in it, and the

In our formulation, if a linear program has an optimaﬁlasuc filtering algorithm is guaranteed to find at least

solution, we can use that value as the buffer bound. NOHE of these ”_SS' .TO produce a feasible linear pr_ogram
of the linear programs in our case can be unboundg&m an |nfea_15|b_|e I|_near program, we may be required to
since the constraints have been examined by the taint —th? elastic filtering algorithm several times; each run
alyzer to ensure that aftax variables have finite lower' entifies and rémoves an IIS and produ_ces a smaller lin-
bounds. We minimize for theax variables in the objec- ear program which can further be examined for presence

tive function, and since all theax variables have finite of ”_SS' . )
lower bounds, the lowest value that eadix variable Figure 7 pictorially shows our approach to obtain a set

can obtain is also finite. Similarly, ati n variables have of feasible linear constraints from a set of infeasible lin-
finite upper bounds aﬁd so whe'n we maximizertha €& constraints. We first examine the input set, depicted

variables, the highest values that they could obtain 5\%0’ fo find out if it is feasible; if so, it does not con-

also finite. Hence taint analysis is an essential step fglnl!ISs, andC canfbe usle? as ﬁ?fh;e: of constt:alrt;ts n
ensure that our approach works correctly. ouriinear program formuiation. urns out to be

However, when the linear program is infeasible, V\llgfeasmle, then it means that there is a subsef ahat

cannot assign any finite values to the variables to ge_fto&mS one or more |ISs. This subset is depicted’as

feasible solution. As a result, we cannot obtain the val tlhe flgu_rg. :[I_'fhe EIaZt'C fllterlngtﬁlgon&;r/nt, ovetrhsev-
ues for the buffer bounds. In such a case, a safe opt%ﬁ runs, 1 en lies and removes the su/ _e rom_ €
would be to set alirax variables toso andni n variables set of constraints. The resultant set— C’ is feasible.

to -oo, but that information would be virtually uselesg\/e then.secflthe valueds of tihex aanI n \\/Zrla(;)Ies atF:_

to the user of the tool because there would be too mdl§ANNg INC" 10 oo and oo respectively. We do so be-
false alarms. The linear program may be infeasible duecgyise we cannot infer the values of these variables using

a small subset of constraints; in such a scenario, sett!i'ﬁ'_ atr proglzjramr_nmg, and hentge setting th(re]se_l\_/:rlables f[o
all variables to infinite values will be overly conserval MIt€ ValUes IS a conservative approach. ese varl-

tive. For instance, the constraints in Figure 2 are infea@Ple

ble because of the constraints generated for the staten@ i h had traint variabl h
count er ++. Constraints generated by most real worft'2ys1S, Where we-nad some constraint variables wnose

programs have such statements, as well as Statementgafl!r'-eS were |nf|n|t_e, and we had toﬂ'demlf){, and remove
volving pointer arithmetic, and we can expect the co __e con_stramt variables that were “tainted” by the infi-
straints for such programs to be infeasible. Thus, tﬂge varlalble_s. 'Il'her_er:ore,lg/_ve run4ste(pf?}- (13) of thhe
conservative approach of setting all constraint variabf@{t analysis a gorithm (Figure 4) wi _nf set as the
to infinite values is unacceptable. constraint variables that appeardf. This step results
We have developed an approach in which we try to Jg_further removal of constraints, which are depicted in
; " 1 _
move a “small” subset of the original set of constrain{g® _Flgurt:t7 by a SUbISg,/ 0:;0 N ((’; ' ge SE.t of co7n
so that the resultant constraint system is feasible. Imfa?c!{amts ater remova ,» denoted ad) in Figure 7,

Figure 6: An Infeasible Linear Program

traints”' — C’. The scenario is now similar to taint

7
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o c-C . )
C Elastic Filtering Taint Analysis
————— [T ! —_— =

cr !
i
”””” |
| |
c i
‘ l

The set C of constraints. Removal of C’ results in The set D obtained b

C’ denotes a set of IISs. a set C” tainted by C’ removing C".

Figure 7: Making an Infeasible set of constraints amenablértear Programming

Input: Set of Constraintg”

Output: For each buffebuf , values fobuf ! used! max, buf ! used! m n,buf!al | oc! max,buf!alloc!nmn
(2) Renoved = ¢

2) while C'is infeasible

3) |1 S.set = ELASTIC_FILTER_ALGORITHM(C)

4) C=C-11SSet

(5) Renpbved = Renpbved U || S_Set

(6) foreach constraint variable appearing irRenoved

(@) if v is amax variable

(8) V< 00

9) else

(20) Ve —00

(11) C = output of stepg 2) -( 12) of Taint AnalysigFigure 4) by settind nf set = Renpved
(12) MaxSet = {v | vis amax constraint variable appearing (@}

(13) M nSet = {u | wis am n constraint variable appearing d}

(14) Minimize: 0", cyaxser ¥) = (O u cuinser @) Subject To:C

(15) Set each variable to the value returned by the Lineagraino Solver.

Figure 8: Constraint Resolution using Linear Programming

satisfies the property that athx variables appearing inthe constraints; for instance, #f > 5 is the only con-

it have finite lower bounds, and ali n variables have fi- straint involvingx, and we wish to minimize, it is clear

nite upper bounds. Moreoveh is feasible, and will only thatx is 5. Several such techniques are described in the
yield optimal solutions when solved as a linear prograliterature [7]; we have incorporated some of them in our
with the objective functions described earlier. Hence, welver.

solve the linear program using the set of constraint9.in

Figure 8 summarizes our approach to constraint rés- Solving Constraint Systems Hierarchically

olution using linear programming. Steps) - (10) of | the previous section, we described an approach that
the algorithm describe the transformation that removigse( linear programming to determine bounds on the
the 1ISs, while stegf 11) performs the taint analysis tQcgnstraint variables. When the linear program was infea-
obtain the set of cons.traints which can be used in the lijple we detected and removed 11Ss and solved a feasible
ear program formulation. subset of the constraints. In this section, we present an al-
ternate approach for solving a set of constraints that han-
dles infeasible sets of constraints in a different way. This
We have implemented the above algorithm by extendiagproach was also developed independently by Rugina
the commercially available package SoPlex [36, 37]. Saad Rinard in [29]. The idea behind this approach is to
Plex is a linear program solver; we extended it by addidgcompose the set of constraints into smaller subsets, and
IIS detection and taint analysis. In practice, linear preelve each subset separately. We do so by constructing a
gram solvers work much faster when the constraints halieected acyclic graph (DAG), each of whose members is
beenpresolved Presolving is a method by which cona set of constraints, and solve each member in the order
straints are simplifietbeforebeing passed to the solverthat it appears in a topological sort of the DAG.

In several cases, we can make simple inferences aboufo construct such a DAG, we first identify sets of con-

3.2 Implementation
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constraint inC'; consequently, setting any LHS variable
to an infinite value will result in the LHS variables of all
constraints getting infinite values. Hence, the approach
of solving a set of dependent constraints together obvi-
ates the need for IIS detection and elimination.

Once we have the values for the constraint variables
that appear in an SCC, we can substitute these values in
_ ) the constraints that are associated with the children of
Figure 9: Constraint Dependency Graph —an examplge scc. Once all the SCCs have been solved, the values

for all the constraint variables in the set of constraints
bgﬁomes available.

EQ1: wimax >= 10

EQ2: x!Imax >= w!max

EQ3: y!lmax >= x!max + 10

EQ4: x!Imax >= 2.ylmax + 15
EQ5: zIlmax >= 5.x!max + w!max

straints such that each member of the set depends N . h . ith hi
the other members of the set either directly or indirectly. PjW points are worth noting with respect to this

Consider for instance, the constraints shown on the B¢ _ :
in Figure 9. ConstrainEGs gives a lower bound for the® Constraint simplification by substituting available val-

variabley! max based on the value aft max. However ues presents an opportunity to avoid calling an LP solver

the value ofx! max itself has a lower bound determineéxf the Simplificgtion makes the constraints amenable to

by EQ2 andEQ4. ThusEGS “depends” orEQ andEQK. !ores_olve. For mstan_ce, for the set of constramts shown
To formalize the notion of dependency, we constrult Figure 9,-we can infer th‘f"t the value of max is 10 .

a graph whose vertices are the constraint variables in AE'OUt having to invoke a linear program solver. This

set of equations. We associate the vertex corr(—:‘spondfﬁl e can be sub_sﬂtuteql EQZ andE, t_hus simplify-

to a variablex with all constraints in whiclx appears on Ing these constraints. Similarly, we can infer the value of

the LHS. We draw an edge from a vertgto a vertexc 2! once the value of! max is available.

if there is a constraint that hgson the RHS anet on the ® '€ IS detection based approach for handling infea-
LHS. We then identifyStrongly Connected Component3/P/Ity 1S an approximation algorithm. It may remove
(SCCs)in this graph. The set of constraints associat8tP"® cqnstramt_s than are actually required t_o mak_e the
with the vertices in an SCC are defined to be dependgﬂpstramts feasible; as a result more constraint vasable
upon each other. Figure 9 shows the constraints asgg: ! N€c€ssary may be settd-oo. It can be shown that

ciated with each vertex: the SCCs are identified usiHbe solution obtained by the hierarchical solver is precise

dotted lines.EQ2, EQ8 andEQ# are dependent on eachn the sense that it sets the fewest number of constraint

other variables tooco/-o0. Furthermore, when the linear pro-

Recall that if we coalesce the SCCs in a graph, thaff™m is_ feasible, this so!ver prod_uces the same solu_tion
the resulting graph is a DAG. The topological sort of 1S obtained by_the algorithm in Figure 8. This gives rise
DAG naturally defines a hierarchy in the DAG. Hencé? a trgde—off, €., the user can choose between t_he hi-
we consider each SCC in topologically sorted order, aﬁrcf"rCh'Cal solver Wh'Ch SOIVe‘_Q' more (but smallgr) linear
solve the constraints associated with that SCC. Each SE89"aMmS, the solutions to which are mathematically pre-

consists of a set of linear constraints, and we formulatg'ﬁe’ or ch_oose th(_a algorlthm_ f_rom Figure 8, Wh"_:h may
linear program to minimize (maximize) eaghx (mi n) be imprecise, but is more efficient. In our experiments,

variable that appears in the set of constraints just as | noted that the appr_oach fr_om Section 3 can be up _to 3
did in Section 3. times faster than the hierarchical solver, while sacrigcin

If the set of constraint€’ in an SCC are found to bethe _precision of only 5% of the constraint varigbles.
infeasible, we can immediately set aix andmi n vari- ® Since we have broken down the problem into one of

ables appearing on the LHS of each constrain€imo solving small sets of constraints, we could use a different

oo and oo respectively. This approach does not requiF@ Iv_er for each set of constraints. Sqme kinds of con-
us to identify and remove IISs i@. This is because anotraint systems have fast solvers, for instance, the prob-

IIS detection algorithm combined with the taint analys|§m of finding a solution to a set of difference constraints

that follows IS detection, denoted by stgds - (11) of can be formulated as a shorte_st—path problem [13].
Figure 8, would remove all the constraintsGhand set ® Lastly, for very large constraint systems, one could en-

the variables appearing on the LHS in each constraint/jfi'o" S%'ng t_hﬁdSC?; at thbe sarlnedd%[))th in parallel.
C'to infinite values. This can be attributed to the fact thgpus’ a with depti) can be solved i) steps.
each constraint i’ is dependent on at least one more
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5 Adding Context Sensitivity andcc2! used! nax get the values 1023 and 1024 re-
spectively, which is an improvement over the values re-
The constraint generation process described in Sectiwited in Figure 5.
2 was context-insensitive. When we generated the conwe have implemented this approach because it re-
straints for a function, we considered each call-site @sires only minimal changes to the constraint generation
an assignment of the actual-in variables to the formalgrocess that we have already described. However, it also
variables, and the return from the function as an assigyas some shortcomings:
ment of the formal-out variables to the actual-out vai-It does not handle recursive function calls; this is at-
ables. As a result, we merged information across cahbuted to the fact that inlining cannot work in the pres-
sites, thus making the analysis imprecise. In this secti@fice of recursion.
we describe how to incorporate context sensitivity. e The number of constraint variables in the constraints
Constraint inlining is similar in spirit to inlining with context sensitivity may be exponentially larger than
function bodies at call-sites. Observe that in the conteie number of constraints in their non-context sensitive
insensitive approach, we lost precision because wsunterpart. As a result, we do not expect this technique
treateddifferentcall-sites to a function identically, i.e, byto scale well to large programs.
assigning the actual-in variables at each call-site to therhese drawbacks can be overcome through the use of
sameformal parameter. summary constraints Summary constraints summarize
Constraint inlining alleviates this problem by creatinghe effect of a function call in terms of the constraint vari-
afresh instance of the constraints of the called functionaifles representing global variables and formal parame-
each call-site. In other words, at each call-site to a funiers of the called function. Once the summary constraints
tion, we produce the constraints for the called functi@i a function are available, we can obtain context sensi-
with the local variables and formal variables renamegity by substituting actual parameters in place of the
uniquely for that call-site. This is illustrated in the exformal parameters in the summary constraints. This ap-
ample below, which shows some of the constraints foroach is described in detail in Appendix A.1.
the functioncopy _buf f er from Figure 2 specialized for

the call-site at ling 7) : 6 Experiencewith thetool
copy!al loc! max; > buffer!used! max; - 1 We tested our prototype implementation on several pop-
copy! used! max; > buffer!used! max; ular commercially used programs. In each case, the

| I'm | I'm . .
copy! usedimin, < buffer!used! mm tool produced several warnings; we used these warnings,
copy_buf f er $return! used! nax; > copy! used! max;

copy_buf f er $ret urn! used! nin, < copy! used! nin, | cOmbined with Codesurfer features such as slicing, to

cneck for real overruns. We tested to see if the tool dis-
overed known overruns documented in public databases
ch adbugt r aq[1] and CERT [2], and also checked to

Context-sensitivity can be obtained by modeling ea
call-site to the function as a set of assignments to t

renamed instances of the formal variables. The actual-_ . .
e if any overruns that were previously unreported were

2bles, and thenamedormal-out variables are assigneg SCCVerec: We reportour experience vl pd and
: 9NeE endnai | . Results on a few more packages are in Ap-

to the actual-out variables. As a result, there is exacélg dix A2
one assignment to each renamed formal-in parametel o o

the functi hich alleviates th bl ¢ o Il our experiments were performed on a machine
€ function, which afleviates the probiem of Merging N, 5 3GHz p4 Xeon processor machine with 4GB
formation across different calls to the same function.

. . RAM running Debian GNU/Linux 3.0. We used
Some of the constraints for the call-site t

buf f ¢ i 7 in Fi 5 h Rodesurfer version 1.8 for our experiments, te-
copy-buffer at line (7) in Figure are shownz » 4 compiler for building the programs, amg i bc

below: version 2.2.4 for macro-expansion. Codesurfer imple-
bufferTused! max, > header ! used! max ments several pointer analysis algorithms; in each case
buf fer!used! min; < header!used! min we performed the experiments with a field-sensitive ver-

ccllused! max > copy.buffer$returnlused! max: | sion of Andersen’s analysis [6] that uses the common-
ccllusedimin < copy-buffer$returntusedinini | jnitigl-prefix technique of Yong and Horwitz [39] to deal

With this approach to constraint generation, we obtaiith structure casts. We configured the tool to use the
the values 2047 and 2048 farcl! al | oc! max and hierarchical solver described in Section 4 for constraint
ccl!used! max respectively, whilecc2!all oc! max resolution (so the values obtained will be precise), and
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produce constraints in a context-insensitive fashion. located 32 bytes and 4095 bytes respectively. This
call reads the contents of the filPATH FTPSERVERS,
6.1 WU-FTP Daemon which typically has privileged access. However, in
We tested two versions of thei- f t p daemon, a popularnon-standard and unusual configurations of the system,
file transfer server. Version 2.5.0 is an older version witRATH.FTPSERVERS could be written to by a local user.
several known vulnerabilities (see CERT advisories CAS a result, the bufferiost addr ess andconf i gdi r
1999-13, CA-2001-07 and CA-2001-33), while versiogan overflow based on a carefully chosen input string,
2.6.2 is the current version with several security patcHe@ssibly leading to a local exploit. The use afta ncpy

that address the known vulnerabilities. or strl cpy statement instead of the unsafer cpy in
read_server s i ne rectifies the problem.
611 wi-ftpd-2.6.2 Some other new overruns which were detected by the

wu-f t pd- 2. 6. 2 has about 18K lines of code, and prd©0! were: _ _ _

duced 178 warnings when examined by our tool. Up8nAn uncheckedsprintf in main in the file ft-
examining the warnings, we found 14 previously unr&! estart.c could result in 16383 bytes being written
ported overruns; we will describe one of these in detail M0 & local buffer that was allocated 4095 bytes.

The tool reported a potential overrun on a buff@Another uncheckedprintf in main in the fileft -
pointed to by accesspath in the procedure prestart.c could result in 8447 bytes being written
read servers.line in rdservers.c. where as INtoalocalbufferthatwas allocated 4095 bytes.

many as 8192 bytes could be copied into the buffer forAn uncheckedstrcpy in min in the file ft-

which up to 4095 bytes were allocated. Figure 10 shoffsest art . ¢ could result in 8192 bytes being written
the code snippet fromead._servers | ine which is into a local buffer that was allocated 4095 bytes.

responsible for the overrun. In_each of the above cases, a carefully chosen string in
the file_PATH FTPACCESS can be used to cause the over-

int read_servers_line (FILE *svrfp,

char *host addr ess, run. As before, PATH FTPACCESS typically has privi-
_ char *accesspat h){ leged access, but could be written to by a local user in
statie char buffer[BUFSi 2] non-standard configurations. We contactedvilef t pd
whil e (fgets(buffer, BUFSIZ, svrfp)){ developers [22], and they have acknowledged the pres-
't ((hp = get host bynane( hep) ) { ence of these bugs in thelr code,_ ?.nd are in the process of
struct in_addr in; fixing the bugs (at the time of writing this paper).
menmove( & n, hp->h_addr, sizeof(in));
strcpy(host address, inet_ntoa(in)); 6.1.2 wu-ft pd- 2 50
[ .
¢ zfrcpy(hostaddress, hep) ; wu- f t pd- 2. 5. 0 has about 16K lines of code; when

analyzed by our tool, it produced 139 warnings. Figure

11 shows a screenshot of the GUI that our tool provides

} for the user to surf the warnings. Each of the warnings
Figure 10: Code snippet fromu- f t pd- 2. 6. 2 shown is a “hot” link, and is linked back to the line of

source code that is responsible for the warning. Consider

The f get s statement may copy as many as 8198e first warning shown in the figure; it depicts that the

(BUFSI Z) bytes intobuf f er , which is processed furthertool found a potential overrun on the buffeaf in the

in this function. As a result of this processirap and procedurevr epl y in the filef t pd. c. It also shows two

hcp point to locations insidduf f er . By an appropri- possible locations where it thinks the overrun could have

ate choice of the contents otif f er, one could make occurred —asnprintf,and arspri ntf statement.

acp or hcp point to a string buffer as long as 8190 bytes, The first location where a potential overrun was found,

which could result in an overflow on the buffer pointednsnpri nt f , was:

strcpy(accesspath, acp);

to either byaccesspat h or host nane respectively. snprintf(buf + (n ? 4 : 0),
The procedureread_servers.line is called at n ? (sizeof (buf)-4) : sizeof(buf),
several places in the code. For instance, it is “ost, fmt);

called in the main procedure it prestart.c where  Clearly, no more thasi zeof (buf) bytes are writ-
read_servers._ine is called with two local buffers, ten intobuf , and hence this statement is safe. However
host addr ess and confi gdi r, which have been al-since the tool ignores control flow, this statement is mod-
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 Scanner O] x|

Scanner  Scans  Input
B ¢3) ftpd.c :: wreply i3 buf  Allocated:; B8192,,8192  Used: -0,.8196 S
[call-sitel snprintfi} |
[declaration] (Local} buf
Safe: [call-site] sprintfid
B {4} access.c ;i acl_countusers” i3 pidfile  Allocated; 4095,,4095  Used; -0, ,+INF
[declaration] {Local} pidfile
Safe: [call-site] sprintfi)
B {4} access.c if acl_deny i msgpathbuf  Allocated: 4095,.4095  Used; -0, ,+INF
[call-zsitel stropyil
[call-sitel stropyil
[call-zite] acl_denyll
Safer [expreszion] #msgpathbuf = {charl{void *0
(4} scocess.c $f acl_getclass §3 classbuf Allocated; 1024,,4035%  Used: -0, +INF
(4} access.c fr hostmatch f: addrncaze  Allocated: -OL+IMF Used: O..+INF A
[call-zite] snprintf{} S
Source Codei
ftpd,ci4B07:  snprintfibuf + {n P 4 ¢ 03, n ? sizeof{buf) - 4 : sizeof{bufl, "¥=", fmti:
Constraints:
{Priority 2 buf!len CONTAINS + $tempES0 + mint + $tempB43 . + fmt!len > WHICH EQUALS [-0,,81961
$tempEa0 IS IN [0,,4]
$tempB4d IS IM [8183,.8192]
fmt!len IS IM [-0,,+INF]
4

Figure 11: A screenshot from theu- f t pd- 2. 5. 0 analysis

eled as thoughi zeof (buf) bytes could be written atin the absence of an overrun. We used Codesurfer’s pro-

the locationbuf + 4, which causes the tool to reporgram slicing feature to confirm thdt r could be derived

that as many as 8196 bytes could be written mié for from user input. We found that the procedu® el em

which 8192 bytes where allocated. As a result, this waimne of whose parameters @ r, was called from the

ing is a false alarm. The second location associated witloceduremappi ng_chdi r. This function was in turn

this warning, arspr i nt f statement, turns out to be safealled from the procedurend, whose input arguments

since it copies only 16 bytes into the 8192 byte abvaf). could be controlled by the user. This shows the impor-

The tool inferred this from the constraints, and hence thénce of providing the end user with several program

statement was marked “safe” as is shown in the figureanalysis features. These features, such as program slicing
We analyzed the warnings to check for a widelgnd control and data dependence predecessors, which are

exploited overrun reported in CERT advisory CA-199%art of Codesurfer, aid the user of the tool to understand

13. The buffer overflow was on a globally declaretthe source code better and hence locate the source of the

buffer mapped_pat h in the proceduredo_el emin the vulnerability.

file ft pd. c. It was noted in [23] that the overrun was )

due to a statemenstrcat (mapped_path, dir), Sendmail

where the variabledi r could be derived (indirectly) Sendmail is a very popular mail transfer agent. We an-

from user input. As a result it was possible to overfloglyzedsendmai | - 8. 7. 6, an old version that was re-

mapped_pat h for which 4095 bytes were allocatedieased after a thorough code audit of versiry. 5.

Our tool reported the range fompped_pat h! used as However, this version has several known vulnerabili-

[0..+00], while mapped_pat h! al | oc was [4095..4095]. ties. We also analyzeslendmai | - 8. 11. 6; in March

We note thatstrcat (dst, src) would be modeled 2003, two new buffer overrun vulnerabilities were re-

as four linear constraints by our tool: ported in the then currerstendnai | version. We note

thatsendnmi | - 8. 7. 6 andsendnmi | - 8. 11. 6 are vul-

nerable to these overruns as well.

dst 't used! max > dst ! used! max +src! used! nax
dst ! used! max > dst’! used! max
dst’tused! min<dst!used! min+src!used! nmn
dst!used! mi n<dst’!used! mn
The first two constraints make the linear program ifendmai | -8. 7. 6 has about 38K lines of code; when

feasible, as explained in Section 3, and result &alyzed by our tool, it produced 295 warnings. Due to
dst ! used! max being set to #0. Hence, inw- f t pd-  the large number of warnings, we focused on scanning

2. 5.0, mapped_pat h! used! max will be set to +o, the warnings to detect some known overruns.

and the tool would have reported the same range evedvagneret al. use BOON [34] to report an off-by-one
bug insendnai | - 8. 9. 3 where as many as 21 bytes, re-

6.2.1 sendmail-8.7.6
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turned by a functiomueuenane, could be written into a Wi-ftpd-2.6 2 | sendmail-8.7.6
20 byte arraydf nane. Our tool identified four possible CODESURFER 12.54 sec 30.09 sec
program points insendmai | - 8. 7. 6 where the return GENERATOR 74.88 sec 266.39 sec
value fromqueuenane is copied usingst r cpy State- TAINT 9.32 sec 28.66 sec
ments into buffers which are allocated 20 bytes. As in | LPSOLVE 3.81 sec 13.10 sec
[34], our tool reported that the return value frameue- H'ERSO'-mE ] fC10-08 sec 5 25682 sec
name could be up to 257 bytes long, and further manual umber of Constraints Generate
analysis was required to decipher that this was in fact PRE-TAINT 22008 104162
y POST-TAINT 14972 24343

an off-by-one bug. Another minor off-by-one bug was
reported by the tool where the programmer mistakenly
allocated only 3 bytes for the buffetel i mbuf which

stored" \n\t ", which is 4 bytes long including the end _ . . . .
. \nit ", y g g while TAINT denotes the time taken for taint analysis.
of string character.

_ The constraints produced can be resolved in one of two
6.22 sendmail-8.11.6 ways; the rows LPSLVE and HERSOLVE report the
sendmai | - 8. 11. 6 is significantly larger than versiontime taken by the solvers from Section 3 and Section 4

8. 7. 6 and has 68K lines of code; when we ran our todl?SpeCt?Vely- The nu_mber of constraints output by the
it produced 453 warnings. We examined the warnings@@nstraint generator Is reported in the rOWH:’TAH_\IT.
check if the tool discovered the new vulnerabilities réhile POSTTAINT denotes the number of constraints af-

ported in March 2003. ter taint-analysis.
One of these vulnerabilities is on a functionack- These results serve to demonstrate the trade-off be-

addr in the file headers. ¢, which parses an incom-tween performance and precision of the Hierarchical
ing e-mail address string. This function stores the agPIver versus the IIS detection based solver from Section
dress string in a local static buffer calledf that is de- 3. While the IIS detection based approach is much faster,

clared to b&/AXNAMVE + 1 bytes long, and performs sevit is not mathematically precise. However, we found that
eral boundary condition checks to see that does not itis a good approximation to the solution obtained by the

overflow. However, the condition that handles the anderarchical solver. In case ofu-ft pd- 2. 6. 2 fewer
brackets €>) in the Fr omaddress string is imprecisethan 5% of the constraint variables, and in the case of

thus leading to the overflow [25]. sendnai | - 8. 7. 6 fewer than 2.25% of the constraint
Our tool reported thabp, a pointer to the buffer variables obtained imprecise values when we used the 1IS

buf in the function hadbp! al | oc! max = +oo and detection based approach.
bp! used! max = +oo, thus raising an warning. Howeverg 4 Adding Context Sensitivity

the reasorbp! al | oc! nax andbp! used! max were set . . .
to +00 was because of several pointer arithmetic stal/® report here our experience with using context-

ments in the body of the function. In particular, th&€nSitive analysis onuf t pd- 2. 6. 2 using both the con-
statemenbp- - resulted inbp! al | oc! max = +o0o and straint inlining approach and the summary constraints ap-

bp! used! max = +oo. Hence, this warning would haveProach. To measure the effectiveness of each approach,

existed even if the boundary condition checks were c¥f€ Will count the number of range variables that were
rect. refined in comparison to the corresponding ranges ob-
We have discovered that the use of control dependeFﬁ":ié‘ed in a context-insensitive analysis. Recall that the
information, which associates each statement with (ffdue of @ range variablear is given by the corre-
predicate that decides whether the statement will be eX8onding constraint variablesr ! mi n andvar ! mex as

cuted, is crucial to detecting such overruns reliably. ~ [var!m n..var! max]. We chose this metric since, as ex-
plained in Section 2.5, the detector uses the values of the

ranges to produce diagnostic information, and more pre-
Figure 12 contains representative numbers from aise ranges will more precise diagnostic information.
experiments withwu-ft pd-2. 6.2 and sendmai | - The context-insensitive analysis owft pd-2. 6. 2
8.7.6. All timings are wall-clock times, and are aryields values for7310 range variables. Using the sum-
average over 4 runs; GbESURFER denotes the timemary constraints approach, we found thiat of these
taken by Codesurfer to analyze the progranENGR- range variables obtained more precise values. Note that
ATOR denotes the time taken for constraint generatidn,this approach the number of constraint variables (and

Figure 12: Performance of the tool

6.3 Performance
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hence the number of range variables) is the same asaitier than buffers themselves).

the context-insensitive analysis. However, the numberTo observe the benefits of pointer analysis we gen-
of constraints may change, and we observetfiain- erated constraints with the pointer analysis algorithms
crease in the number of constraints. This change ¢amed off. Since fewer constraints will be generated,
be attributed to the fact that summarization introduce& can expect to see fewer warnings; in the absence of
a some constraints (the summaries), and removes sthese warnings, false negatives may result. We observed
constraints (the old call-site assignment constraints). a concrete case of this in the casesefidnsi | - 8. 7. 6.

The constraint inlining approach, on the other hand/hen we generated constraints without including the re-
leads to a5.8x increase in the number of constraintsults of the pointer analysis algorithms, the tool output
and a&.7x increase in the number of constraint varbnly 251 warnings (as opposed to 295 warnings). How-
ables (and hence the number of range variables). Téwer, this method resulted in the warning on the adfay
can be attributed to the fact that the inlining based amne being suppressed, so the tool missed the off-by-one
proach specializes the set of constraints at each callditey that we described earlier. A closer look at the code
In particular, we observed that tf1810 range variables in the procedurgueuenane revealed that in the absence
from the context-insensitive analysis were specializeddbpoints-to facts, the tool failed to generate constraints
63704 range variables based on calling context. We c#or a statement:
count the number of range variables that obtained mergri nt f (buf, sizeof buf, "%f %",
precise values in two possible ways: type, e— >e.id)

e Out of the 63704 specialized range variable§497 in the body ofqueuenane since points to facts for the
range variables had obtained more precise values thanvidigable e, which is a pointer to a structure, were not
corresponding unspecialized range variables. generated.

e Out of the 7310 unspecialized range variable$)6 We note that BOON [34] identified this off-by-one bug
range variables had obtained more precise values irbetause of a simple assumption made to model the ef-
least one calling context. fect of pointers, i.e., BOON assumes that any pointer to

As noted earlier, the constraint inlining approach ra-structure of typel' can point to all structures of type
turns more precise information than the summary coh- While this technique can be effective at discovering
straints based approach. To take a concrete exampiggs, the lack of precise points-to information will lead
we consider the program variablegcode (an integer), to a larger number of false alarms.
which is the formal parameter of a functipn _nesg in
the file access. ¢ in wu-ftpd-2. 6. 2. The function 6.6 Shortcomings

zrﬁ‘ mes% 'S IC alle? fri)r:n several :olaces(;n thTehcode er{ﬂ/hile we found the prototype implementation a useful
fierent vajues for the parametetgcode. 1€ SUM- 4, 14 4ydit several real world applications, we also

][narz constramts_aglproach resul:js_ in the vagm)['._'E)E)O] noted several shortcomings and are working towards
or the range variable correspon mgnn;)g_co e. How- overcoming these limitations.
ever, the constraint inlining approach refines these range,girst, the flow insensitivity of the analysis meant that

— forinstance, itis able to infer thar mesg is aways o \yo1d have several false alarms. Through the use
c_alled with the valué&30 from the functionpass in the of slicing we were able to weed out the false alarms,
file ftpd. c. nevertheless it was a manual and often painstaking pro-
cedure. By transitioning to a Static Single Assignment
(SSA) representation [15] of the program, we can add a
As observed in Section 2, we were able to reduce falseited form of flow sensitivity to the program. This will
negatives through the use of pointer analysis. The toeult in a large number of constraint variables. Fortu-
is capable of handling arbitrary levels of dereferencingately, we have observed that the solvers readily scale to
For instance, ip points to a pointer to a structuse the large linear programs with several thousand variables.
pointer analysis algorithms correctly infer this fact. Sim Second, by modeling constraints in terms of pointers
ilarly, if p andq are of typechar ** (i.e., they point- to buffers rather than buffers, we can miss overruns, thus
to pointers to buffers), the constraints for a statemdaading to false negatives [34]. However, the reason we
such asstrcpy(*p, *q) would be correctly modeleddid so was because the pointer analysis algorithms them-
in terms of the points-to sets qf and q (recall that selves were flow- and context-insensitive, and generat-
we generated constraints in terms of pointers to bufféng constraints in terms of buffers would have resulted in

6.5 Effectsof Pointer Analysis
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a large number of constraints and consequently a largdhere are a suite of dynamic techniques that help pre-
number of false alarms. By transitioning to “bettervent stack-smashing attacks. Stackguard [14] detects
pointer analysis algorithms we can model constraintsdhanges to the return address by placing a “canary” word
terms of buffers themselves, thus eliminating the falea the stack. RAD [10] defends the return address by

negatives. storing it in a repository and checking the return address
against the repository before the function returns. Both
7 Related Work these techniques enhance the compiler to insert func-

Several static techniques have been proposed to miti 5’(8 prologues gnd epilogues that pgrform the _ghecking.
the problem of buffer overruns. Wagnet al. [33, 34] rasad and Chiueh [27] propose a binary rewriting tech-

have proposed a tool, BOON, similar in spirit to ours tra)ique that enhances binaries by incorporating the RAD
detect buffer overruns in C source code. However echanism; however their technique suffers from im-

like our tool, BOON does not employ pointer analysgreCiSion while_ disasgembling the b_inary. While these
algorithms and does not provide a way to enhance mgthOdS help wdetectmga_nd p_re\(entlngattacks based
context-sensitivity of the analysis. Larochelle and Evafjs buffer overruns, they fail tellml_nate_the bufter over-

[23] propose an extension to LCLint that uses semanfl!f&v_vs from the_ source code, which is the goal around
information from annotations in the program to make iH\fh'Ch our tool 1S built.

ferences on buffer bounds. The tool works like a com-Stat'C techniques have also been used to reduce the

piler and produces warnings by making inferences baé)é’(?rhead of run-time checks. CCured [12, 24] is a pro-

on the annotations. Xi and Pfenning [38] propose an é{&™ transformgtlon systembthat a_d dﬁ memlory_ saf(;ty
tension to ML that supports type annotations. These &H_aranteez 0 q plrogr'ar_ns y _stat|ca y ar]:ayzmg t fe
notations are then used to determine the type safetySB\‘"Ce (_:0 € an C assifying pomters. as sate or ““S‘?‘ €
the programs. However, in both these techniques, (h%proprl_ate run-time c_hecks_are thgn inserted depending
onus is on the user to provide correct annotations. Agr?a,the km%gf th(; Eomt;r (Ilghtvvlglght checkslfor safe
result, analyzing large legacy applications without the8_8'”ter3?- ~ured has been applie _to several commer
annotations becomes almost impossible. Bial. [17] cial applications with reasonable run-time overhead [12].
propose a tool (CSSV) that aims to find all buffer oveﬁowr:aveg |r:c éocme cc:jasesl, dskl;Ch ai_si/]sten;sws/oft\év;i the
flows with just a few false alarms. The basic idea is erhead o ured could be as high as o :

convert the C program into an integer program, and pPresent ABCD [8], which provides a way to eliminate

a conservative static analysis algorithm that can Ché@quently executed but redundant array bounds checks

the correctness of integer manipulations. The analysig% Java programs. This technique assumes the pres-

performed on a per-procedure basis; to extend the afalc® Of_ the run—tlmfe checks 'Q the cod_e, arr:d suggestsda
ysis interprocedurally, they use the conceptoftracts way to improve performance by removing the unwante

which are a set of pre-conditions and post-conditions o‘f’laeCkS'

procedure, along with side-effect information. The nung- o clusions

ber of false alarms generated depends on the accuracy of

the contracts, which are typically provided by the usée have demonstrated a scalable technique to analyze
They also discuss techniques whereby conservative Useyource code to detect buffer overrun vulnerabilities.
supplied contracts can be automatically refined. Rugii& have shown the efficacy of the technique by apply-
and Rinard [29] propose a technique based on linear pig it to real world examples and identifying new vul-
gramming that infers symbolic upper and lower boundgrabilities in a popular security critical package. Our
on arrays. They deal with infeasible linear programs E§chniques use novel ideas from the linear programming
using a solver similar to the hierarchical solver approabigrature, and provide a way to enhance the context sen-
presented in Section 4. They use a flow and context séifivity of the program analysis. The output of our tool,
sitive program analysis to detect several programmifgupled with other program understanding features of
errors such as array out-of-bounds errors and race cefdesurfer, such as static slicing, aid the user to com-
ditions. However, the techniques in [17, 29] have nBfehend and eliminate bugs from source code.

been tested on large programs, and may scale poorly. gor
instance, CSSV took- 200 seconds to analyze a string
manipulation program with a total of about 400 lines dthis work was supported in part by the National Science
code. Foundation under grant CCR-9619219, by the Office of
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A.1 Summary Constraints reduces to an all-pairs shortest or longest path problem

The approach described in this section addresses M graph formed by the constraints. Hence, we will

shortcomings of constraint inlining — namely, the methd§St"ct (I)u(rj_?fxposmon to t?e _C";‘Sem‘?ﬁ[‘ a function gten_ert—
described here handles recursion and does not result fi& 0N dilference constraints. iiference constrain

large number of variables. The basic idea is to sumnh?—sf at most FWO va_rlables, and involves exclusma_iy
grlables omi n variables. Hence, when we consider a

rize the effect of a function call using a set of constrain¥ tion that onl tes diff raints. th
expressed only in terms of the constraint variables dengfiction that only generates ditierence constraints, the

ing the global program variables and the formal parar\\‘gsra('jm _Sl_Jbs?/stemhlnvoIvmg thﬁx vsrlables '_S CO:“_'
eters of the called function. We refer to such constraidf$te'y disjoint from the constraint subsystem involving

assummaryconstraints. Consider for instance, the fun&hem : varlaples. This means that we can produge sum-
tion copy_buf f er shown in Figure 2. Figure 13 showdhary constraints for each of these subsystems indepen-
B dently.

First consider a function that does not call other func-

A Appendix

a subset of constraints (only those involvingx vari-
ables) generated byopy_buf f er, and the correspond- | s th ¢ i ; hich
ing summary constraints. Notice that the summary cdjpns, or only calls those functions for which summary

straints are produced in terms of the constraint Variab[g_gcnonzs_are avallablei. T?e fur;ctmfnpy__buf f er fro_m |
denoting the formal parameters obpy_buf f er. The 'qure 2 Is an example of such a function, since it only

program statements responsible for generating each (BAKeS calls tastrepy andnel | oc and we have the
straint are also shown. summary functions for both of these.

To summarize the effect of a function call, we must To produce summary constraints for a set of con-

eliminate the constraint variables corresponding to tﬁ%;aunt‘s/(] ﬁf such a]:];unctlcl)n in terms of aoTetI 0:) Vla“'f
local variables of the called function. This will resulf®'€S (the set of formal-parameters and globals o

We function), we construct a graph to denote the con-

in a new set of constraints for the called function in~ inC. Th ) ¢ thi h h
terms of the constraint variables denoting the formal psg{[a!nts ince. e vertices of this grap are the con-
int variables that appear @ For a constraint of the

rameters and the global program variables alone. Thak - N h q .
are several variable elimination techniques available f8f™m V1 = V2 * W, Wherév, andvs; arémax varl-

linear constraint systems, the most common one be@'@es’ ﬁve draw ‘1” edge V‘I“th We|g~_Wtfrorrr]1 VQQIO Vld
the Fourier-Motzkin eliminationmethod. The Fourier- >'C€ there may be several constraints that relaian

Motzkin method takes as input a set of constradritand V2, the edge is assigned a weight equal to the greatest
difference between these variables. For each constraint

a set of variabled” which must be retained in the sum- ) .
mary constraints. It then iteratively eliminates the va f the formv, 2 W, ”vve qlraw an edge Wlth. weight
ables not inV/. For example, for the constraints shown i om a dummy “zero va_rlabl_elo tq V1. For ms_tance,
Figure 13 the Fourier-Motzkin method would eIiminatg1e graph of _the constraints myolvmg thgx vgrlables
copy! al | oc! max by combining constraints1) and for the functioncopy_buf f er is shown in Figure 14

(3) to produce constrairta) . Similarly, it would elim- (the varlablgbuf fertalloc! max was not mvplved in
inate copy! used! max by combining constraints2) any constraints generated bypy _buf f er and is hence
and( 4) to produce constraintg) not shown in the graph). The problem of generating
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Subset of Constraints Generateddypy _buf f er
(1) copy!alloc!max > buffer!used! max - 1 (bylinel?7)
(2) copy!used! max > buffer!used! nax (bylinel8)

(3) copy-buffer$return!alloc!max > copy!alloc! max (by line19)

(4) copy-buffer$return!used! max > copy! used! max (by line19)
Equivalent Summary Constraints

(A) copy-buffer$returnlalloc!max > buffer!used max - 1

(B) copy-buffer$return!used! max > buffer!used! max

Figure 13: Summary constraints foopy _buf f er

summary functions now reduces to finding tfloagest respectively, and are computed by obtaining the pairwise
path between each pair of verticeslin Intuitively, the longest paths from Figure 14. The bold edges denote
longest path length is the maximum difference betwetire subsitution of the actual variables in place of the
the two variables. Hence, if the longest path length frdimrmal parameters in the summary constraints. When
v tov, isa, we would generate the constraiit > v, we generate constraints faai n, we only generate the

+ a. The all pairs shortest path problem for vertice¥in constraints pertaining to the bold lines shown in the
can be solved using well known techniques (such as flgaure. Hence, the call toopy_buffer at line (10)
Floyd-Warshall algorithm [13]). An analogous construén the program in Figure 2 would result in the constriants:
tion for theni n variables helps produce the summary
constraints for the constraints consisting of the vari-
ables. In this case, a constramnf > vy + wwould

cc2!used! max > buf! used! nax
cc2lalloc!max > buflused' max - 1
cc2lused!m n < buf!used! nmn

result in an edge with weight from v, to v, wherev, cc2lalloc!min < buflused!'min - 1
andv,, areni n variables. However, in this case we wouldy susedimax cealusedimax  cc2lallocimax
be required to find thehortestpath between each pair of 0
vertices inV. Thus, forcopy buf f er, the graph shown .
in Figure 14 yields the constraints shown in Figure 13. X 0 0
bufferlused!max  copy_buffer$returnlused!max copy_buffer$return!alloc!max
bufferlused!max 0 l.copy_buffer$retum!aIIoc!max

-1

copy_buffer$returniused!max

Figure 15: Obtaining Context-Sensitivity

copylused!max copy'alloc!max

The above technigue can be formalized as follows:

Figure 14: Graph for Summary Constraint Productiore Inspect the call-graph of the program, identify SCCs in

it, and coalesce all the nodes belonging to an SCC.

We can now use the summary constraints COIThe resultant graph is a DAG; compute summary con-
puted for copy_buffer in main to make the calls straints in reverse topologically sorted order of the DAG.
to copy buffer context sensitive. This is denotegtor each function that calls other functions, summarize
pictorially in Figure 15. This figure shows the portion ohe effect of the call by subsituting the actual variables in

the constraint graph afai n from Figure 2 pertaining pjace of the formal parameters of the called function.
to the constraints generated at lig@0). The dotted

edge originating frombuf! used! max denotes the A.2 More Results

assignment obuf ! used! max to buf fer! used! max, \ye report on the experience of our tool with a few more
while the dotted edges incident omc2! used! max commercial applications

and cc2!al |l oc! max denote the assignment state-

ments from the formal-out constraint variables @&.2.1 Talk Daemon

copy buffer to the actual-out constraint varl-r, . qaemon program, a popular UNIX communica-
ables. The dotted edges fromuffer! used! max Prog - apop

tion facility, derived from the current FreeBSD release is
to copy_buffer$return!all oc! max and . . :

about 900 lines of code, and produced just 4 warnings on
copy_buf f er $r et ur n! used! max denote the

summary constraintg A) and (B) from Figure 13 our tool. L_Jpon furthur investigation, we found that all
the 4 warnings were false alarms; however one of these
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warnings was particularly interesting.

The tool reported that as many as 33 bytes could be
copied into a buffer pointed to byty which was al-
located 16 bytes. The source code responsible for this
warning is shown in Figure 16.

On our platform,UT_LI NESI ZE macro-expanded to
32, as a result of which the tool reported the overrun.
However, we discovered that when we used the FreeBSD
header files for macro-expansiodT_LI NESI ZE was 8,
and hence the warning was suppressed.

This example serves to demonstrate the use of our tool
to determine whether an application is vulnerable on a
particular platform. For instance, the talk daemon pro-
gram would have been vulnerable to the aforementioned
buffer overflow on our platform.

struct utnp
char ut_line[ UT_LI NESI ZE] ;

H
int find_user(const char *nane, char *tty)
struct utnp ubuf;
char 1ine[sizeof (ubuf.ut_line) + 1];
while (fread((char *) &ubuf, sizeof ubuf ..))
strncpy(line, ubuf.ut_line,

si zeof (ubuf.ut _line));
line[sizeof (ubuf.ut_line)] ="\0";

if (...)

'(;/;)i d) strcpy(tty, line);

Figure 16: Code Snippet from Talk Daemon

A.2.2 Telnet Daemon from kt h- ker ber os-4. 0.0

We tested the Telnet Daemon program from the KTH re-
lease ofker ber os- 4. 0. 0 (circa 1995). Telnet daemon
has about 9400 lines of code, and produced 40 warnings
when analyzed by our tool. The tool identified an inter-
esting bug: it reported that as many as 256 bytes could
be copied inta er i nal t ype, which points to a buffer
only 41 bytes long. We found that the bug was due to
astrncpy statement imget t er mi nal t ype in the file

tel netd. c:

strncpy(termnaltype, first, sizeof(first))

Note thatst r ncpy was meant to be a “safe” function,
but was used in an unsafe way — the programmer mistak-
enly set the number of bytes to be copied into the desti-
nation buffer equal to the size of the source buffer, thus
rendering thest r ncpy statement equivalent to its “un-
safe” counterparst r cpy.
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