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Abstract

Malicious code detection is a crucial component of any defense mechanism. In this paper, we present a unique
viewpoint on malicious code detection. We regard malicious code detection as an obfuscation-deobfuscation game
between malicious code writers and researchers working on malicious code detection. Malicious code writers attempt
to obfuscate the malicious code to subvert the malicious code detectors, such as anti-virus software. We tested the
resilience of three commercial virus scanners against code obfuscation attacks. The results were surprising: the three
commercial virus scanners could be subverted by very simple obfuscation transformations! We present an architecture
for detecting malicious patterns in executables that is resilient to common obfuscation transformations. Experimental
results demonstrate the efficacy of our prototype tool, SAFE (a static analyzer for executables).

1 Introduction

In the interconnected world of computers, malicious code has become an omnipresent and dangerous threat. Malicious
code can infiltrate hosts using a variety of methods such as attacks against known software flaws, hidden functionality
in regular programs, and social engineering. Given the devastating effect malicious code has on our cyber infrastruc-
ture, identifying malicious programs is an important goal. Detecting the presence of malicious code on a given host is
a crucial component of any defense mechanism.

Malicious code is usually classified [28] according to its propagation method and goal into the following categories:

• virusesare programs that self-replicate within a host by attaching themselves to programs and/or documents that
become carriers of the malicious code;
• wormsself-replicate across a network;
• trojan horsesmasquerade as useful programs, but contain malicious code to attack the system or leak data;
• back doorsopen the system to external entities by subverting the local security policies to allow remote access and
control over a network;
• spywareis a useful software package that also transmits private user data to an external entity.

Combining two or more of these malicious code categories can lead to powerful attack tools. For example, a worm
can contain a payload that installs a back door to allow remote access. When the worm replicates to a new system
(via email or other means), the back door is installed on that system, thus providing an attacker with a quick and easy
way to gain access to a large set of hosts. Stanifordet. al. have demonstrated that worms can propagate extremely
quickly through a network, and thus potentially cripple the entire cyber infrastructure [40]. In a recent outbreak,
the Sapphire/Slammer worm reached the peak infection rate in about 10 minutes since launch, doubling every 8.5
seconds [29]. Once the back-door tool gains a large installed base, the attacker can use the compromised hosts to
launch a coordinated attack, such as a distributed denial-of-service (DDoS) attack [5].

In this paper, we develop a methodology for detecting malicious patterns in executables. Although our method is
general, we have initially focused our attention on viruses. A computer virus replicates itself by inserting a copy of
its code (theviral code) into a host program. When a user executes the infected program, the virus copy runs, infects
more programs, and then the original program continues to execute. To the casual user, there is no perceived difference
between the clean and the infected copies of a program until the virus activates its malicious payload.

The classic virus-detection techniques look for the presence of a virus-specific sequence of instructions (called avirus
signature) inside the program: if the signature is found, it is highly probable that the program is infected. For example,
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the Chernobyl/CIH virus is detected by checking for the hexadecimal sequence [44]:

E800 0000 005B 8D4B 4251 5050
0F01 4C24 FE5B 83C3 1CFA 8B2B

This corresponds to the following IA-32 instruction sequence, which constitutes part of the virus body:

E8 00000000 call 0h
5B pop ebx
8D 4B 42 lea ecx, [ebx + 42h]
51 push ecx
50 push eax
50 push eax
0F01 4C 24 FE sidt [esp - 02h]
5B pop ebx
83 C3 1C add ebx, 1Ch
FA cli
8B 2B mov ebp, [ebx]

This classic detection approach is effective when the virus code does not change significantly over time. Detection
is also easier when viruses originate from the same source code, with only minor modifications and updates. Thus, a
virus signature can be common to several virus variants. For example, Chernobyl/CIH versions 1.2, 1.3, and 1.4 differ
mainly in the trigger date on which the malicious code becomes active and can be effectively detected by scanning for
a single signature, namely the one shown above.

The virus writers and the antivirus software developers are engaged in anobfuscation-deobfuscationgame. Virus writ-
ers try to obfuscate the “vanilla” virus so that signatures used by the antivirus software cannot detect these “morphed”
viruses. Therefore, to detect an obfuscated virus, the virus scanners first must undo the obfuscation transformations
used by the virus writers. In this game, virus writers are obfuscators and researchers working on malicious code detec-
tion are deobfuscators. A method to detect malicious code should be resistant to common obfuscation transformations.
This paper introduces such a method. The main contributions of this paper include:

The obfuscation-deobfuscation game and attacks on commercial virus scanners
We view malicious code detection as an obfuscation-deobfuscation game between the virus writers and the researchers
working to detect malicious code. Background on some common obfuscation techniques used by virus writers is given
in Section3. We also have developed an obfuscator for executables. Surprisingly, the three commercial virus scanners
we considered could be easily thwarted by simple obfuscation transformations (Section4). For example, in some cases
the Norton antivirus scanner could not even detect insertions ofnop instructions.

A general architecture for detecting malicious patterns in executables
We introduce a general architecture for detecting malicious patterns in executables. An overview of the architecture
and its novel features is given in Section5. External predicates and uninterpreted symbols are two important elements
in our architecture. External predicates are used to summarize results of various static analyses, such as points-to
and live-range analysis. We allow these external predicates to be referred in the abstraction patterns that describe
the malicious code. Moreover, we allow uninterpreted symbols in patterns, which makes the method resistant to
renaming, a common obfuscation transformation. Two key components of our architecture,the program annotator
andthe malicious code detector, are described in Sections6 and7 respectively.

Prototype for x86 executables
We have implemented a prototype for detecting malicious patterns in x86 executables. The tool is called astatic
analyzer for executablesor SAFE. We have successfully tried SAFE on multiple viruses; for brevity we report on our
experience with four specific viruses. Experimental results (Section8) demonstrate the efficacy of SAFE. There are
several interesting directions we intend to pursue as future work, which are summarized in Section9.

Extensibility of analysis
SAFE depends heavily on static analysis techniques. As a result, the precision of the tool directly depends on the static
analysis techniques that are integrated into it. In other words,SAFE is as good as the static analysis techniques it is
built upon. For example, if SAFE uses the result of points-to analysis, it will be able to track values across memory
references. In the absence of a points-to analyzer, SAFE makes the conservative assumption that a memory reference
can access any memory location (i.e. everything points to everything). We have designed SAFE so that various static
analysis techniques can be readily integrated into it. Several simple static analysis techniques are already implemented
in SAFE.
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2 Related Work

2.1 Theoretical Discussion

The theoretical limits of malicious code detection (specifically of virus detection) have been the focus of many re-
searchers. Cohen [10] and Chess-White [9] showed that in general the problem of virus detection is undecidable.
Similarly, several important static analysis problems are undecidable or computationally hard [26, 33].

However, the problem considered in this paper is slightly different than the one considered by Cohen [10] and Chess-
White [9]. Assume that we are given a vanilla virusV which contains a malicious sequence of instructionsσ. Next
we are given an obfuscated versionO(V ) of the virus. The problem is to find whether there exists a sequence of
instructionsσ′ in O(V ) which is “semantically equivalent” toσ. A recent result by Vadhanet. al. [3] proves that in
general program obfuscation is impossible. This leads us to believe that a computationally bounded adversary will not
be able to obfuscate a virus to completely hide its malicious behavior. We will further explore these theoretical issues
in the future.

2.2 Other Detection Techniques

Our work is closely related to previous results on static analysis techniques for verifying security properties of soft-
ware [1, 4, 8, 7, 23, 27]. In a larger context, our work is similar to existing research on software verification [2,
13]. However, there are several important differences. First, viewing malicious code detection as an obfuscation-
deobfuscation game is unique. The obfuscation-deobfuscation viewpoint lead us to explore obfuscation attacks upon
commercial virus scanners. Second, to our knowledge, all existing work on static analysis techniques for verifying
security properties analyze source code. On the other hand, our analysis technique works on executables. In certain
contexts, such as virus detection, source code is not available. Finally, we believe that using uninterpreted variables in
the specification of the malicious code is unique (Section6.2).

We plan to enhance our framework by using the ideas from existing work on type systems for assembly code. We
are currently investigating Morrisettet. al.’s Typed Assembly Language[30, 31]. We apply a simple type system
(Section6) to the binaries we analyze by manually inserting the type annotations. We know of no compiler that can
produce Typed Assembly Language, and thus we plan to support external type annotations to enhance the power of
our static analysis.

Dynamic monitoring can also be used for malicious code detection. Cohen [10] and Chess-White [9] propose a
virus detection model that executes code in a sandbox. Another approach rewrites the binary to introduce checks
driven by an enforceable security policy [16] (known as theinline reference monitoror the IRM approach). We
believe static analysis can be used to improve the efficiency of dynamic analysis techniques, e.g., static analysis can
remove redundant checks in the IRM framework. We construct our models for executables similar to the work done
in specification-based monitoring [19, 43], and apply our detection algorithm in a context-insensitive fashion. Other
research used context-sensitive analysis by employing push-down systems (PDSs). Analyses described in [7, 23]
use the model checking algorithms for pushdown systems [17] to verify security properties of programs. The data
structures used in interprocedural slicing [21], interprocedural DFA [37], and Boolean programs [2] are hierarchically
structured graphs and can be translated to pushdown systems.

2.3 Other Obfuscators

While deciding on the initial obfuscation techniques to focus on, we were influenced by several existing tools.Mistfall
(by z0mbie) is a library for binary obfuscation, specifically written to blend malicious code into a host program [46]. It
can encrypt, morph, and blend the virus code into the host program. Our binary obfuscator is very similar to Mistfall.
Unfortunately, we could not successfully morph binaries using Mistfall, so we could not perform a direct comparison
between our obfuscator and Mistfall.burneye(by TESO) is a Linux binary encapsulation tool. burneye encrypts a
binary (possibly multiple times), and packages it into a new binary with an extraction tool [42]. In this paper, we
have not considered encryption based obfuscation techniques. In the future, we will incorporate encryption based
obfuscation techniques into our tool, by incorporating or extending existing libraries.

3



3 Background on Obfuscating Viruses

To detect obfuscated viruses, antivirus software have become more complex. This section discusses some common
obfuscation transformations used by virus writers and how antivirus software have historically dealt with obfuscated
viruses.

A polymorphic virususes multiple techniques to prevent signature matching. First, the virus code is encrypted, and
only a small in-clear routine is designed to decrypt the code before running the virus. When the polymorphic virus
replicates itself by infecting another program, it encrypts the virus body with a newly-generated key, and it changes
the decryption routine by generating new code for it. To obfuscate the decryption routine, several transformations
are applied to it. These include:nop -insertion, code transposition (changing the order of instructions and placing
jump instructions to maintain the original semantics), and register reassignment (permuting the register allocation).
These transformations effectively change the virus signature (Figure1), inhibiting effective signature scanning by an
antivirus tool.

Original code Obfuscated code
E8 00000000 call 0h E8 00000000 call 0h
5B pop ebx 5B pop ebx
8D 4B 42 lea ecx, [ebx + 42h] 8D 4B 42 lea ecx, [ebx + 45h]
51 push ecx 90 nop
50 push eax 51 push ecx
50 push eax 50 push eax
0F01 4C 24 FE sidt [esp - 02h] 50 push eax
5B pop ebx 90 nop
83 C3 1C add ebx, 1Ch 0F01 4C 24 FE sidt [esp - 02h]
FA cli 5B pop ebx
8B 2B mov ebp, [ebx] 83 C3 1C add ebx, 1Ch

90 nop
FA cli
8B 2B mov ebp, [ebx]

Signature New signature
E800 0000 005B 8D4B 4251 5050 E800 0000 005B 8D4B 42 90 5150
0F01 4C24 FE5B 83C3 1CFA 8B2B 5090 0F01 4C24 FE5B 83C3 1C90

FA8B 2B

Figure 1: Original code and obfuscated code from Chernobyl/CIH, and their corresponding signatures. Newly added
instructions are highlighted.

The obfuscated code in Figure1 will behave in the same manner as before since thenop instruction has no effect other
than incrementing the program counter1. However the signature has changed. Analysis can detect simple obfuscations,
like nop -insertion, by using regular expressions instead of fixed signatures. To catchnop insertions, the signature
should allow for any number ofnops at instruction boundaries (Figure2). In fact, most modern antivirus software use
regular expressions for virus signatures.

E800 0000 00(90)* 5B(90)* 8D4B 42(90)*
51(90)* 50(90)* 50(90)* 0F01 4C24 FE(90)*
5B(90)* 83C3 1C(90)* FA(90)* 8B2B

Figure 2: Extended signature to catchnop -insertion.

Antivirus software deals with polymorphic viruses by performing heuristic analyses of the code (such as checking
only certain program locations for virus code, as most polymorphic viruses attach themselves only at the beginning
or end of the executable binary [35]), and even emulating the program in a sandbox to catch the virus in action [34].
The emulation technique is effective because at some point during the execution of the infected program, the virus
body appears decrypted in main memory, ready for execution; the detection comes down to frequently scanning the
in-memory image of the program for virus signatures while the program runs.

Metamorphic virusesattempt to evade heuristic detection techniques by using more complex obfuscations. When they
1Note that the subroutine address computation had to be updated to take into account the newnops. This is a trivial computation and can be

implemented by adding the number of insertednops to the initial offset hard-coded in the virus-morphing code.
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replicate, these viruses change their code in a variety of ways, such as code transposition, substitution of equivalent
instruction sequences, and register reassignment [41, 48]. Furthermore, they can “weave” the virus code into the host
program, making detection by traditional heuristics almost impossible since the virus code is mixed with program code
and the virus entry point is no longer at the beginning of the program (these are designated asentry point obscuring
(EPO) viruses [24]).

As virus writers employ more complex obfuscation techniques, heuristic virus-detection techniques are bound to fail.
Therefore,there is need to perform a deeper analysis of malicious code based upon more sophisticated static-analysis
techniques. In other words, inspection of the code to detect malicious patterns should use structures that are closer to
the semantics of the code, as purely syntactic techniques, such as regular expression matching, are no longer adequate.

3.1 The Suite of Viruses

We have analyzed multiple viruses using our tool, and discuss four of them in this paper. Descriptions of these viruses
are given below.

3.1.1 Detailed Description of the Viruses

Chernobyl (CIH)
According to the Symantec Antivirus Reseach Center (SARC),Chernobyl/CIHis a virus that infects 32-bit Windows
95/98/NT executable files [38]. When a user executes an infected program under Windows 95/98/ME, the virus
becomes resident in memory. Once the virus is resident, CIH infects other files when they are accessed. Infected files
may have the same size as the original files because of CIH’s unique mode of infection: the virus searches for empty,
unused spaces in the file2. Next it breaks itself up into smaller pieces and inserts its code into these unused spaces.
Chernobyl has two different payloads: the first one overwrites the hard disk with random data, starting at the beginning
of the disk (sector 0) using an infinite loop. The second payload tries to cause permanent damage to the computer by
corrupting the Flash BIOS.

zombie-6.b
Thez0mbie-6.bvirus includes an interesting feature – the polymorphic engine hides every piece of the virus, and the
virus code is added to the infected file as a chain of differently-sized routines, making standard signature detection
techniques almost useless.

f0sf0r0
The f0sf0r0virus uses a polymorphic engine combined with an EPO technique to hide its entry point. According to
Kaspersky Labs [25], when an infected file is run and the virus code gains control, it searches for Portable Executable
files in the system directories and infects them. While infecting, the virus encrypts itself with a polymorphic loop
and writes a result to the end of the file. To gain control when the infected file is run, the virus does not modify the
program’s start address, but instead writes a “jmp 〈virus entry 〉” instruction into the middle of the file.

Hare
Finally, theHare virus infects the bootloader sectors of floppy disks and hard drives, as well as executable programs.
When the payload is triggered, the virus overwrites random sectors on the hard disk, making the data inaccessible.
The virus spreads by polymorphically changing its decryption routine and encrypting its main body.

The Hare and Chernobyl/CIH viruses are well known in the antivirus community, with their presence in the wild
peaking in 1996 and 1998, respectively. In spite of this, we discovered thatcurrent commercial virus scanners could
not detect slightly obfuscated versions of these viruses.

4 Obfuscation Attacks on Commercial Virus Scanners

We tested three commercial virus scanners against several common obfuscation transformations. To test the resilience
of commercial virus scanners to common obfuscation transformations, we have developed an obfuscator for binaries.
Our obfuscator supports four common obfuscation transformations: dead-code insertion, code transposition, register
reassignment, and instruction substitution. While there are other generic obfuscation techniques [11, 12], those de-
scribed here seem to be preferred by malicious code writers, possibly because implementing them is easy and they add

2Most executable formats require that the various sections of the executable file start at certain aligned addresses, to respect the target platform’s
idiosyncrasies. The extra space between the end of one section and the beginning of the next is usually padded with nulls.
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little to the memory footprint.

4.1 Common Obfuscation Transformations

4.1.1 Dead-Code Insertion

Also known astrash insertion, dead-code insertion adds code to a program without modifying its behavior. Inserting a
sequence ofnop instructions is the simplest example. More interesting obfuscations involve constructing challenging
code sequences that modify the program state, only to restore it immediately.

Some code sequences are designed to fool antivirus software that solely rely on signature matching as their detection
mechanism. Other code sequences are complicated enough to make automatic analysis very time-consuming, if not
impossible. For example, passing values through memory rather than through registers or the stack requires accurate
pointer analysis to recover values. The example shown in Figure3 should clarify this. The code marked by (*) can be
easily eliminated by automated analysis. On the other hand, the second and third insertions, marked by (**), do cancel
out but the analysis is more complex. Our obfuscator supports dead-code insertion.

Original code Code obfuscated through Code obfuscated through
dead-code insertion code transposition

call 0h call 0h call 0h
pop ebx pop ebx pop ebx
lea ecx, [ebx + 42h] lea ecx, [ebx + 45h] jmp Step2
push ecx nop (*) Step3: push eax
push eax nop (*) push eax
push eax push ecx sidt [esp - 02h]
sidt [esp - 02h] push eax jmp Step4
pop ebx inc eax (**) add ebx, 1Ch
add ebx, 1Ch push eax jmp Step6
cli dec [esp - 0h] (**) Step2: lea ecx, [ebx + 45h]
mov ebp, [ebx] dec eax (**) push ecx

sidt [esp - 02h] jmp Step3
pop ebx Step4: pop ebx
add ebx, 1Ch cli
cli jmp Step5
mov ebp, [ebx] Step5: mov ebp, [ebx]

Figure 3: Examples of obfuscation through dead-code insertion and code transposition. Newly added instructions are
highlighted.

Not all dead-code sequence can be detected and eliminated, as this problem reduces to program equivalence (i.e.,Is
this code sequence equivalent to an empty program?), which is undecidable. We believe that a great many common
dead-code sequences can be detected and eliminated with acceptable performance. To quote the documentation of the
RPME virus permutation engine [47],

[T]rash [does not make the] program more complex [...] . If [the] detecting algorithm will be written
such as I think, then there is no difference between NOP and more complex trash.

Our detection tool, SAFE, identifies several kinds of such dead-code segments.

4.1.2 Code Transposition

Code transposition shuffles the instructions so that the order in the binary image is different from the execution order,
or from the order of instructions assumed in the signature used by the antivirus software. To achieve the first variation,
we randomly reorder the instructions and insert unconditional branches orjumpsto restore the original control-flow.
The second variation swaps instructions if they are not interdependent, similar to compiler code generation, but with
the different goal of randomizing the instruction stream.

The two versions of this obfuscation technique differ in their complexity. The code transposition technique based
upon unconditional branches is relatively easy to implement. The second technique that interchanges independent
instructions is more complicated because the independence of instructions must be ascertained. On the analysis side,
code transposition can complicate matters only for a human. Most automatic analysis tools (including ours) use an
intermediate representation, such as the control flow graph (CFG) or the program dependence graph (PDG) [21], that
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is not sensitive to superfluous changes in control flow. Note that an optimizer acts as a deobfuscator in this case by
finding the unnecessary unconditional branches and removing them from the program code. Currently, our obfuscator
supports only code transposition based upon inserting unconditional branches.

4.1.3 Register Reassignment

The register reassignment transformation replaces usage of one register with another in a specific live range. This
technique exchanges register names and has no other effect on program behavior. For example, if registerebx is
dead throughout a given live range of the registereax , it can replaceeax in that live range. In certain cases, register
reassignment requires insertion of prologue and epilogue code around the live range to restore the state of various
registers. Our binary obfuscator supports this code transformation.

The purpose of this transformation is to subvert the antivirus software analyses that rely upon signature-matching.
There is no real obfuscatory value gained in this process. Conceptually, the deobfuscation challenge is equally complex
before or after the register reassignment.

4.1.4 Instruction Substitution

This obfuscation technique uses a dictionary of equivalent instruction sequences to replace one instruction sequence
with another. Since this transformation relies upon human knowledge of equivalent instructions, it poses the toughest
challenge for automatic detection of malicious code. The IA-32 instruction set is especially rich, and provides several
ways of performing the same operation. Coupled with several architecturally ambivalent features (e.g., a memory-
based stack that can be accessed both as a stack using dedicated instructions and as a memory area using standard
memory operations), the IA-32 assembly language provides ample opportunity for instruction substitution.

Original code Obfuscated code
call 0h call 0h
pop ebx pop ebx
lea ecx, [ebx + 42h] lea ecx, [ebx + 42h]
push ecx sub esp, 03h
push eax
push eax
sidt [esp - 02h] sidt [esp - 02h]
pop ebx add [esp], 1Ch

mov ebx, [esp]
add ebx, 1Ch inc esp
cli cli
mov ebp, [ebx] mov ebp, [ebx]

Figure 4: Example of obfuscation through instruction substitution. Newly added instructions are highlighted.

To handle obfuscation based upon instruction substitution, an analysis tool must maintain a dictionary of equivalent
instruction sequences, similar to the dictionary used to generate them. This is not a comprehensive solution, but it
can cope with the common cases. In the case of IA-32, the problem can be slightly simplified by using a simple
intermediate language that “unwinds” the complex operations corresponding to each IA-32 instruction. In some cases,
a theorem prover such as Simplify [15] or PVS [36] can also be used to prove that two sequences of instructions are
equivalent.

4.2 Testing Commercial Antivirus Tools

We tested three commercial virus scanners using obfuscated versions of the four viruses described earlier. The re-
sults were quite surprising:a combination ofnop -insertion and code transposition was enough to create obfuscated
versions of the viruses that the commercial virus scanners could not detect. Moreover, the Norton antivirus software
could not detect an obfuscated version of the Chernobyl virus using justnop -insertions. SAFE was resistant to the
two obfuscation transformations. The results are summarized in Table1. A ✓ indicates that the antivirus software
detected the virus. A✕ means that the software did not detect the virus. Notice that unobfuscated versions of all four
viruses were detected by all the tools.
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Norton® McAfee® Command®
SAFEAntivirus VirusScan Antivirus

7.0 6.01 4.61.2

Chernobyl
original ✓ ✓ ✓ ✓

obfuscated ✕[1] ✕[1,2] ✕[1,2] ✓

z0mbie-6.b
original ✓ ✓ ✓ ✓

obfuscated ✕[1,2] ✕[1,2] ✕[1,2] ✓

f0sf0r0
original ✓ ✓ ✓ ✓

obfuscated ✕[1,2] ✕[1,2] ✕[1,2] ✓

Hare
original ✓ ✓ ✓ ✓

obfuscated ✕[1,2] ✕[1,2] ✕[1,2] ✓

Obfuscations considered: [1] = nop-insertion (a form of dead-code insertion)
[2] = code transposition

Table 1: Results of testing various virus scanners on obfuscated viruses.

5 Architecture

This section gives an overview of the architecture ofSAFE(Figure5). Subsequent sections provide detailed descrip-
tions of the major components of SAFE.

Pattern

Loader
Definition

Loader
ExecutableBinary

Executable

Annotator

Executable
CFG for the

Detector

Notrace found in program)
Yes (with malicious code

Annotated

CFG

Definitions
Pattern

for the Patterns
Intermediate Form

Static Analyzer for Executables (SAFE)

Malicious

Automaton
Code

Figure 5: Architecture of the static analyzer for executables (SAFE).

To detect malicious patterns in executables, we build an abstract representation of the malicious code (here a virus).
The abstract representation is the “generalization” of the malicious code, e.g., it incorporates obfuscation transfor-
mations, such as superfluous changes in control flow and register reassignments. Similarly, one must construct an
abstract representation of the executable in which we are trying to find a malicious pattern. Once the generalization of
the malicious code and the abstract representation of the executable are created, we can then detect the malicious code
in the executable. We now describe each component of SAFE.

Generalizing the malicious code: Building the malicious code automaton
The malicious code is generalized into an automaton with uninterpreted symbols. Uninterpreted symbols (Section6.2)
provide a generic way of representing data dependencies between variables without specifically referring to the storage
location of each variable.

Pattern-definition loader
This component takes a library ofabstraction patternsand creates an internal representation. These abstraction pat-
terns are used as alphabet symbols by the malicious code automaton.
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IDA Pro

Connector

CodeSurfer

Executable Loader:

Figure 6: Implementation of executable loader module.

The executable loader
This component transforms the executable into an internal representation, here the collection of control flow graphs
(CFGs), one for each program procedure. The executable loader (Figure6) uses two off-the-shelf components,IDA
Pro andCodeSurfer. IDA Pro (by DataRescue [39]) is a commercial interactive disassembler.CodeSurfer(by Gram-
maTech, Inc. [22]) is a program-understanding tool that performs a variety of static analyses. CodeSurfer provides an
API for access to various structures, such as the CFGs and the call graph, and to results of a variety of static analyses,
such as points-to analysis. In collaboration with GrammaTech, we have developed a connector that transforms IDA
Pro internal structures into an intermediate form that CodeSurfer can parse.

The annotator
This component inputs a CFG from the executable and the set of abstraction patterns and produces an annotated CFG,
the abstract representation of a program procedure. The annotated CFG includes information that indicates where
a specific abstraction pattern was found in the executable. The annotator runs for each procedure in the program,
transforming each CFG. Section6 describes the annotator in detail.

The detector
This component computes whether the malicious code (represented by the malicious code automaton) appears in the
abstract representation of the executable (created by the annotator). This component uses an algorithm based upon
language containment and unification. Details can be found in Section7.

Throughout the rest of the paper, the malicious code fragment shown in Figure7 is used as a running example. This
code fragment was extracted from the Chernobyl virus version 1.4.

To obtain the obfuscated code fragment depicted (Figure8), we applied the following obfuscation transformations:
dead-code insertion, code transposition, and register reassignment. Incidentally, the three commercial antivirus soft-
ware (Norton, McAfee, and Command) detected the original code fragment shown. However, the obfuscated version
was not detected by any of the three commercial antivirus software.

6 Program Annotator

This section describes the program annotator in detail and the data structures and static analysis concepts used in the
detection algorithm. The program annotator inputs the CFG of the executable and a set of abstraction patterns and
outputs an annotated CFG. The annotated CFG associates with each noden in the CFG a set of patterns that match
the program at the point corresponding to the noden. The precise syntax for an abstraction pattern and the semantics
of matching are provided later in the section.

Figure9 shows the CFG and a simple annotated CFG corresponding to the obfuscated code from Figure8. Note that
one node in the annotated CFG can correspond to several nodes in the original CFG. For example, the nodes annotated
with “IrrelevantInstr” corresponds to one or morenop instructions.

The annotations that appear in Figure9 seem intuitive, but formulating them within a static-analysis framework re-
quires formal definitions. We enhance the SAFE framework with a type system for x86 based on the typestate system
described in [45]. However, other type systems designed for assembly languages, such asTyped Assembly Lan-
guage[30, 31], could be used in the SAFE framework. Definitions, patterns, and the matching procedure are described
in Sections6.1, 6.2and6.3respectively.
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Original code
WVCTF:

mov eax, dr1
mov ebx, [eax+10h]
mov edi, [eax]

LOWVCTF:
pop ecx
jecxz SFMM
mov esi, ecx
mov eax, 0d601h
pop edx
pop ecx
call edi
jmp LOWVCTF

SFMM:
pop ebx
pop eax
stc
pushf

Figure 7: Original code fragment from Chernobyl
virus version 1.4.

Obfuscated code
WVCTF:

mov eax, dr1
jmp Loc1

Loc2:
mov edi, [eax]

LOWVCTF:
pop ecx
jecxz SFMM
nop
mov esi, ecx
nop
nop
mov eax, 0d601h
jmp Loc3

Loc1:
mov ebx, [eax+10h]
jmp Loc2

Loc3:
pop edx
pop ecx
nop
call edi
jmp LOWVCTF

SFMM:
pop ebx
pop eax
push eax
pop eax
stc
pushf

Figure 8: Obfuscated version based upon code in Fig-
ure7.

6.1 Basic Definitions

This section provides the formal definitions used in the rest of the paper.

Program Points
An instructionI is a function application,I : τ1 × · · · × τk → τ . While the type system does not preclude higher-
order functions or function composition, it is important to note that most assembly languages (including x86) do
not support these concepts. AprogramP is a sequence of instructions〈I1, . . . , IN 〉. During program execution,
the instructions are processed in the sequential order they appear in the program, with the exception of control-flow
instructions that can change the sequential execution order. The index of the instruction in the program sequence is
called aprogram point(or program counter), denoted by the functionpc : {I1, . . . , IN} → [1, . . . , N ], and defined as

pc(Ij)
def
= j, ∀ 1 ≤ j ≤ N . The set of all program points for programP is ProgramPoints(P )

def
= {1, . . . , N}.

Thepc function provides a total ordering over the set of program instructions.

Control Flow Graph
A basic blockB is a sequence of instructions〈Il, . . . , Im〉 that contains at most one control-flow instruction, which
must appear at the end. Thus, the execution within a basic block is by definition sequential. LetV be the set of basic
blocks for a programP , and letE ⊆ V ×V ×{T, F} be the set of control flow transitions between basic blocks. Each
edge is marked with eitherT or F corresponding to the condition (true or false) on which that edge is followed.
Unconditional jumps have outgoing edges always marked withT . The directed graphCFG(P ) = 〈V,E〉 is called
thecontrol flow graph.

Predicates
Predicates are the mechanism by which we incorporate results of various static analyses such as live range and points-
to analysis. These predicates can be used in the definition of abstraction patterns. Table2 lists predicates that are
currently available in our system. For example, code between two program pointsp1 andp2 can be verified as dead-
code (Section4.1.1) by checking that for every variablem that is live in the program range[p1, p2], its value at point
p2 is the same as its value at pointp1. The change inm’s value between two program pointsp1 andp2 is denoted by
Delta(m, p1, p2) and can be implemented using polyhedral analysis [14].
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mov eax, dr1

jmp n_11

mov ebx, [eax+10h]

mov edi, [eax]

Loop: pop ecx

jecxz n_18

nop

(F)

pop ebx

(T)

mov esi, ecx

nop

nop

mov eax, 0d601h

jmp n_13

pop edx

jmp n_02

pop ecx

nop

call edi

jmp Loop

pop eax

push eax

pop eax

stc

pushf

Assign( eax, dr1 )

IrrelevantJump

Assign( ebx, [eax+10h] )

IrrelevantJump

Assign( edi, [eax] )

Loop: Pop( ecx )

If( ecx == 0 )

IrrelevantInstr

Assign( esi, ecx )

IrrelevantInstr

Assign( eax, 0d601h )

IrrelevantJump

Pop( edx )

Pop( ecx )

IrrelevantInstr

IndirectCall( edi )

GoTo( Loop )

Pop( ebx )

Pop( eax )

IrrelevantInstr

Assign( Carry, 1 )

Push( flags )

mov eax, dr1

jmp n_11

mov edi, [eax+10h]

jmp n_02

mov edi, [eax]

Loop: pop ecx

jecxz n_18

nop    

(F)

pop ebx

(T)

mov esi, ecx

nop    

nop    

mov eax, 0d601h

jmp n_13

pop edx

pop ecx

nop    

call edi

jmp Loop  

pop eax

push eax

pop eax

stc     

pushf

Figure 9: Control flow graph of obfuscated code fragment, and annotations.
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Dominators(B) the set of basic blocks that dominate the basic blockB
PostDominators(B) the set of basic blocks that are dominated by the basic blockB
Pred(B) the set of basic blocks that immediately precedeB
Succ(B) the set of basic blocks that immediately followB
First(B) the first instruction of the basic blockB
Last(B) the last instruction of the basic blockB

Previous(I)

{ ⋃
B′∈Pred(BI ) Last(B

′) if I = First(BI)

I ′ if BI = 〈. . . , I ′, I, . . . 〉

Next(I)

{ ⋃
B′∈Succ(BI ) First(B

′) if I = Last(BI)

I ′ if BI = 〈. . . , I, I ′, . . . 〉

Kills(p, a) true if the instruction at program pointp kills variablea
Uses(p, a) true if the instruction at program pointp uses variablea
Alias(p, x, y) true if variablex is an alias fory at program pointp
LiveRangeStart(p, a) the set of program points that start thea’s live range that includesp
LiveRangeEnd(p, a) the set of program points that end thea’s live range that includesp

Delta(p,m, n) the difference between integer variablesm andn at program pointp
Delta(m, p1, p2) the change inm’s value between program pointsp1 andp2

PointsTo(p, x, a) true if variablex points to location ofa at program pointp

Table 2: Examples of static analysis predicates.

Explanation of the static analysis predicates shown in Table2 are standard and can be found in a compiler textbook
(such as [32]).

Instructions and Data Types
The type constructors build upon simple integer types (listed below as thegroundclass of types), and allow for array
types (with two variations: the pointer-to-start-of-array type and the pointer-to-middle-of-array type), structures and
unions, pointers, and functions. Two special types⊥(n) and>(n) complete the type system lattice.⊥(n) and>(n)
represent types that are stored onn bits, with⊥(n) being the least specific (“any”) type and>(n) being the most
specific type. Table3 describes the constructors allowed in our type system.

τ :: ground Ground types
| τ [ n] Pointer to the base of an array of typeτ and of sizen
| τ ( n] Pointer into the middle of an array of typeτ and of sizen
| τ ptr Pointer toτ
| s{µ1, . . . , µk} Structure (product of types ofµi)
| u{µ1, . . . , µk} Union
| τ1 × · · · × τk → τ Function
| >( n) Top type ofn bits
| ⊥( n) Bottom type ofn bits (type “any” of n bits)

µ :: ( l, τ , i) Member labeledl of typeτ at offseti

ground :: int( g: s: v) | uint( g: s: v) | . . .

Table 3: A simple type system.

The typeµ( l, τ , i) represents the type of a field member of a structure. The field has a typeτ (independent of the
types of all other fields in the same structure), an offseti that uniquely determines the location of the field within the
structure, and a labell that identifies the field within the structure (in some cases this label might be undefined).

Physical subtyping takes into account the layout of values in memory [6, 45]. If a type τ is aphysical subtypeof τ ′
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Code Type
call 0h
pop ebx ebx : ⊥( 32)
lea ecx, [ebx + 42h] ecx : ⊥( 32) , ebx : ptr ⊥( 32)
push ecx ecx : ⊥( 32)
push eax eax : ⊥( 32)
push eax eax : ⊥( 32)
sidt [esp - 02h]
pop ebx eax : ⊥( 32)
add ebx, 1Ch ebx : int( 0:1:31)
cli
mov ebp, [ebx] ebp : ⊥( 32) , ebx : ptr ⊥( 32)

Figure 10: Inferred types from Chernobyl/CIH virus code.

(denoted it byτ ≤ τ ′), then the memory layout of a value of typeτ ′ is a prefix of the memory layout of a value of type
τ . We will not describe the rules of physical subtyping here as we refer the reader to Xu’s thesis [45] for a detailed
account of the typestate system (including subtyping rules).

The typeint( g: s: v) represents a signed integer, and it covers a wide variety of values within storage locations. It
is parametrized using three parameters as follows:g represents the number of highest bits that are ignored,s is the
number of middle bits that represent the sign, andv is the number of lowest bits that represent the value. Thus the type
int( g: s: v) uses a total ofg + s+ v bits.

dg+s+v . . . ds+v+1︸ ︷︷ ︸
ignored

ds+v . . . dv+1︸ ︷︷ ︸
sign

dv . . . d1︸ ︷︷ ︸
value

The typeuint( g: s: v) represents an unsigned integer, and it is just a variation ofint( g: s: v) , with the middles
sign bits always set to zero.

The notationint( g: s: v) allows for the separation of the data and storage location type. In most assembly languages,
it is possible to use a storage location larger than that required by the data type stored in it. For example, if a byte is
stored right-aligned in a (32-bit) word, its associated type isint( 24: 1: 7) . This means that an instruction such as
xor on least significant byte within 32-bit wordwill preserve the leftmost24 bits of the 32-bit word, even though the
instruction addresses the memory on 32-bit word boundary.

This separation between data and storage location raises the issue of alignment information, i.e., most computer
systems require or prefer data to be at a memory address aligned to the data size. For example, 32-bit integers
should be aligned on 4-byte boundaries, with the drawback that accessing an unaligned 32-bit integer leads to either
a slowdown (due to several aligned memory accesses) or an exception that requires handling in software. Presently,
we do not use alignment information as it does not seem to provide a significant covert way of changing the program
flow.

Figure10 shows the types for operands in a section of code from the Chernobyl/CIH virus. Table4 illustrates the
type system for Intel IA-32 architecture. There are other IA-32 data types that are not covered in Table4, including
bit strings, byte strings, 64- and 128-bit packed SIMD types, and BCD and packed BCD formats. The IA-32 logical
address is a combination of a 16-bit segment selector and a 32-bit segment offset, thus its type is the cross product of
a 16-bit unsigned integer and a 32-bit pointer.

6.2 Abstraction Patterns

An abstraction patternΓ is a3-tuple (V,O,C), whereV is a list of typed variables,O is a sequence of instructions,
andC is a boolean expression combining one or more static analysis predicates over program points. Formally, a
patternΓ = (V,O,C) is a3-tuple defined as follows:

V = { x1 : τ1, . . . , xk : τk }
O = 〈 I(v1, . . . , vm) | I : τ1 × · · · × τm → τ 〉
C = boolean expression involving static

analysis predicates and logical operators
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IA-32 Datatype Type Expression

Unsigned Integer Types
byte unsigned int uint( 0:0:8)

word unsigned int uint( 0:0:16)
doubleword unsigned int uint( 0:0:32)
quadword unsigned int uint( 0:0:64)
double quadword unsigned int uint( 0:0:128)

Signed Integer Types
byte signed int int( 0:1:7)

word signed int int( 0:1:15)
doubleword signed int int( 0:1:31)
quadword signed int int( 0:1:63)
double quadword signed int int( 0:1:127)

Floating-Point Types
single precision float float( 0:1:31)
double precision float float( 0:1:63)
double extended precision float float( 0:1:79)

Pointers to Memory Locations
near pointer ⊥( 32)

far pointer (logical address) uint( 0:0:16) × uint( 0:0:32) →⊥( 48)

Registers
eax, ebx, ecx, edx ⊥( 32)

esi, edi, ebp, esp ⊥( 32)

eip int( 0:1:31)
cs, ds, ss, es, fs, gs ⊥( 16)

ax, bx, cx, dx ⊥( 16)

al, bl, cl, dl ⊥( 8)

ah, bh, ch, dh ⊥( 8)

Table 4: IA-32 datatypes and their corresponding expression in the type system from Table3.

An instruction from the sequenceO has a number of arguments(vi)i≥0, where each argument is either a literal value
or a free variablexj . We write Γ(x1 : τ1, . . . , xk : τk) to denote the patternΓ = (V,O,C) with free variables
x1, . . . , xk. An example of a pattern is shown below.

Γ( X : int(0 : 1 : 31) ) =
( {X : int(0 : 1 : 31) },
〈 p1 : “pop X” ,
p2 : “add X, 03AFh” 〉,

p1 ∈ LiveRangeStart(p2, X) )

This pattern represents two instructions that pop a registerX off the stack and then add a constant value to it (0x03AF ).
Notice the use of uninterpreted symbolX in the pattern. Use of the uninterpreted symbols in a pattern allows it to
match multiple sequences of instructions, e.g., the patterns shown above matches any instantiation of the pattern where
X is assigned a specific register. The typeint(0 : 1 : 31) of X represents an integer with31 bits of storage and one
sign bit.

We define abindingB as a set of pairs[variablev, valuex]. Formally, a bindingB is defined as{ [x, v] | x ∈ V, x :
τ, v : τ ′, τ ≤ τ ′ }. If a pair [x, v] occurs in a bindingB, then we writeB(x) = v. Two bindingsB1 andB2 are said
to becompatibleif they do not bind the same variable to different values:

Compatible(B1,B2)
def
=

∀ x ∈ V.( [x, y1] ∈ B1 ∧ [x, y2] ∈ B2 )
⇒ (y1 = y2)
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Theunion of two compatible bindingsB1 andB2 includes all the pairs from both bindings. For incompatible bindings,
the union operation returns an empty binding.

B1 ∪ B2
def
=


{ [x, vx] : [x, vx] ∈ B1 ∨ [x, vx] ∈ B2 }

if Compatible(B1,B2)

∅ if ¬ Compatible(B1,B2)

When matching an abstraction pattern against a sequence of instructions, we use unification to bind the free variables
of Γ to actual values. The function

Unify ( 〈. . . , opi(xi,1, . . . , xi,ni), . . . 〉1≤i≤m, Γ)

returns a “most general” bindingB if the instruction sequence〈op1(x1,1, . . . , x1,n1), . . . , opm(xm,1, . . . , xm,nm)〉 can
be unified with the sequence of instructionsO specified in the patternΓ. If the two instruction sequences cannot be
unified,Unify returnsfalse. Definitions and algorithms related to unification are standard and can be found in [18].3

6.3 Annotator Operation

The annotator associates a set of matching patterns with each node in the CFG. The annotated CFG of a program
procedureP with respect to a set of patternsΣ is denoted byPΣ. Assume that a noden in the CFG corresponds
to the program pointp and the instruction atp is Ip. The annotator attempts to match the (possibly interprocedural)
instruction sequenceS(n) = 〈. . . , P revious2(Ip), P revious(Ip), Ip〉 with the patterns in the setΣ = {Γ1, . . . ,Γm}.
The CFG noden is then labeled with the list of pairs of patterns and bindings that satisfy the following condition:

Annotation(n) = { [Γ,B] : Γ ∈ {Γ1, . . . ,Γm} ∧
B = Unify(S(n),Γ) }

If Unify(S(n),Γ) returnsfalse (because unification is not possible), then the noden is not annotated with[Γ,B].
Note that a patternΓ might appear several times (albeit with different bindings) inAnnotation(n). However, the pair
[Γ,B] is unique in the annotation set of a given node.

7 Detector

The detector takes as its inputs an annotated CFG for an executable program procedure and a malicious code au-
tomaton. If the malicious pattern described by the malicious code automaton is also found in the annotated CFG, the
detector returns the sequence of instructions exhibiting the pattern. The detector returnsno if the malicious pattern
cannot be found in the annotated CFG.

7.1 The Malicious-Code Automaton

Intuitively, the malicious code automaton is a generalization of the vanilla virus, i.e., the malicious code automa-
ton also represents obfuscated strains of the virus. Formally, amalicious code automaton(or MCA) A is a 6-tuple
(V,Σ, S, δ, S0, F ), where
• V = {v1 : τ1, . . . , vk : τk} is aset of typed variables,
• Σ = {Γ1, . . . ,Γn} is a finite alphabetof patterns parametrized by variables fromV , for 1 ≤ i ≤ n, Pi =
(Vi, Oi, Ci) whereVi ⊆ V ,
• S is a finite set ofstates,
• δ : S × Σ→ 2S is atransition function,
• S0 ⊆ S is a non-empty set ofinitial states,
• F ⊆ S is a non-empty set offinal states.

An MCA is a generalization of an ordinary finite-state automaton in which the alphabets are a finite set of patterns
defined over a set of typed variables. Given a bindingB for the variablesV = {v1, . . . , vk}, the finite-state automaton
obtained by substitutingB(vi) for vi for all 1 ≤ i ≤ k in A is denoted byB(A). Notice thatB(A) is a simple finite-
state automaton. We explain this using an example. Consider the MCAA shown in Figure11with V = {A,B,C,D}.

3We use one-way matching which is simpler than full unification. Note that the instruction sequence does not contain any variables. We
instantiate variables in the pattern so that they match the corresponding terms in the instruction sequence.
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The automata obtained fromA corresponding to the bindingsB1 andB2 are shown in Figure11. The uninterpreted
variables in the MCA were introduced to handle obfuscation transformations based on register reassignment. The ma-
licious code automaton corresponding to the code fragment shown in Figure7 (from the Chernobyl virus) is depicted
in Figure12.

S0

S1

Move(A,B)

S2

Move(C,0d601h)

S3

Pop(D)

S4

Pop(B)

mov esi, ecx
mov eax, 0d601h
pop edx
pop ecx

B1 = { [A, esi ],
[B, ecx ],
[C, eax ],
[D, edx ] }

mov esi, eax
mov ebx, 0d601h
pop ecx
pop eax

B2 = { [A, esi ],
[B, eax ],
[C, ebx ],
[D, ecx ] }

Figure 11: Malicious code automaton for a Chernobyl virus code fragment, and instantiations with different register
assignments, shown with their respective bindings.

7.2 Detector Operation

The detector takes as its inputs the annotated CFGPΣ of a program procedureP and a malicious code automaton
MCA A = (V,Σ, S, δ, S0, F ). Note that the set of patternsΣ is used both to construct the annotated CFG and as the
alphabet of the malicious code automaton. Intuitively, the detector determines whether there exists a malicious pattern
that occurs inA andPΣ. We formalize this intuitive notion. The annotated CFGPΣ is a finite-state automaton where
nodes are states, edges represent transitions, the node corresponding to the entry point is the initial state, and every
node is a final state. Our detector determines whether the following language is empty:

L(PΣ) ∩

( ⋃
B∈BAll

L(B(A))

)

In the expression given above,L(PΣ) is the language corresponding to the annotated CFG andBAll is the set of all
bindings to the variables in the setV . In other words, the detector determines whether there exists a bindingB such
that the intersection of the languagesPΣ andB(A) is non-empty.

Our detection algorithm is very similar to the classic algorithm for determining whether the intersection of two regular
languages is non-empty [20]. However, due to the presence of variables, we must perform unification during the
algorithm. Our algorithm (Figure13) combines the classic algorithm for computing the intersection of two regular
languages with unification. We have implemented the algorithm as a data-flow analysis.

• For each noden of the annotated CFGPA we associate pre and post listsLpren andLpostn respectively. Each element
of a list is a pair[s,B], wheres is the state of the MCAA andB is the binding of variables. Intuitively, if[s,B] ∈ Lpren ,
then it is possible forA with the bindingB (i.e. forB(A)) to be in states just before noden.

• Initial condition: Initially, both lists associated with all nodes except the start noden0 are empty. The pre list
associated with the start node is the list of all pairs[s, ∅], wheres is an initial state of the MCAA, and the post list
associated with the start node is empty.

• The do-until loop: The do-until loop updates the pre and post lists of all the nodes. At the end of the loop, the
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S0 IrrelevantJump()

S1

Move(A,dr1)

IrrelevantJump()

S2

Move(B,[A+10h])

IrrelevantJump()

S3

Move(E,[A])

IrrelevantJump()

S4

Pop(C)

IrrelevantJump()

S5

JumpIfECXIsZero()

S11

JumpIfECXIsZero()

IrrelevantJump()

S6

Move(F,C)

IrrelevantJump()

S7

Move(A,0d601h)

IrrelevantJump()

S8

Pop(D)

IrrelevantJump()

S9

Pop(C)

IrrelevantJump()

S10

IndirectCall(E)

Jump()

IrrelevantJump()

IrrelevantJump()

S12

Pop(B)

IrrelevantJump()

S13

Pop(A)

IrrelevantJump()

S14

SetCarryFlag()

IrrelevantJump()

S15

PushEFLAGS()

IrrelevantJump()

Figure 12: Malicious code automaton corresponding to code fragment from Figure7.

worklist WS contains the set of nodes whose pre or post information has changed. The loop executes until the pre
and post information associated with the nodes does not change, and a fixed point is reached. The join operation that
computesLprei takes the list of state-binding pairs from all of theLpostj sets for program points precedingi and copies
them toLprei only if there are no repeated states. In case of repeated states, the conflicting pairs are merged into a
single pair only if the bindings are compatible. If the bindings are incompatible, both pairs are thrown out.

•Diagnostic feedback:Suppose our algorithm returns a non-empty set, meaning a malicious pattern is common to the
annotated CFGPΣ and MCAA. In this case, we return the sequence of instructions in the executable corresponding
to the malicious pattern. This is achieved by keeping an additional structure with the algorithm. Every time the post
list for a noden is updated by taking a transition inA (see the statement14 in Figure13), we store the predecessor
of the added state, i.e., if[δ(s,Γ),Bs ∪ B] is added toLpostn , then we add an edge froms to δ(s,Γ) (along with the
bindingBs ∪ B) in the associated structure. Suppose we detect thatLpostn contains a state[s,Bs], wheres is a final
state of the MCAA. Then we traceback the associated structure froms until we reach an initial state ofA (storing the
instructions occurring along the way).

8 Experimental Data

The three major goals of our experiments were to measure the execution time of our tool and find the false positive
and negative rates. Our testing proceeded as follows:
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Input: A list of patternsΣ = {P1, . . . , Pr}, a malicious code automatonA = (V,Σ, S, δ, S0, F ),
and an annotated CFGPΣ =< N,E >
Output: true if the program is likely infected,false otherwise
MALICIOUSCODECHECKING(Σ,A, PΣ)
(1) Lpren0 ← { [s, ∅] | s ∈ S0 }, wheren0 ∈ N is the entry node ofPΣ

(2) foreachn ∈ N doLpren ← ∅
(3) foreachn ∈ N doLpostn ← ∅
(4) WS ← ∅
(5) do
(6) WSold ←WS
(7) WS ← ∅
(8) foreachn ∈ N // update pre information
(9) if Lpren 6=

⋃
m∈Previous(n) L

post
m

(10) Lpren ←
⋃
m∈Previous(n) L

post
m

(11) WS ←WS ∪ {n}
(12) foreachn ∈ N // update post information
(13) NewLpostn ← ∅
(14) foreach [s,Bs] ∈ Lpren

(15) foreach [Γ,B] ∈ Annotation(n) // follow a transition
(16) ∧ Compatible(Bs,B)
(17) add [ δ(s,Γ), Bs ∪ B ] to NewLpostn

(18) if Lpostn 6= NewLpostn

(19) Lpostn ← NewLpostn

(20) WS ←WS ∪ {n}
(21) until WS = ∅
(22) return ∃ n ∈ N . ∃ [s,Bs] ∈ Lpostn . s ∈ F

Figure 13: Algorithm to check a program model against a malicious code specification.

• First, we constructed ten obfuscated versions of the four viruses. LetVi,k (for 1 ≤ i ≤ 4 and1 ≤ k ≤ 10) denote
thek-th version of thei-th virus. The obfuscated versions were created by varying the obfuscation parameters, e.g.,
number of nops and inserted jumps. For thei-th virus,Vi,1 denoted the “vanilla” or the unobfuscated version of the
virus.

• LetM1,M2,M3 andM4 be the malicious code automata corresponding to the four viruses.

Testing environment: The testing environment consisted of a Microsoft Windows 2000 machine. The hardware con-
figuration included an AMD Athlon 1 GHz processor and 1 GB of RAM. We used CodeSurfer version 1.5 patchlevel
0 and IDA Pro version 4.1.7.600.

Testing on malicious code:We will describe the testing with respect to the first virus. The testing for the other viruses
is analogous. First, we ran SAFE on the10 versions of the first virusV1,1, . . . , V1,10 with malicious code automaton
M1. This experiment gave us the false negative rate, i.e., the pattern corresponding toM1 should be detected in all
versions of the virus.

Next, we executed SAFE on the versions of the virusesVi,k with the malicious code automatonMj (wherei 6= j).
This helped us find the false positive rate of SAFE.

We found that SAFE’s false positive and negative rate were0. We also measured the execution times for each run.
Since IDA Pro and CodeSurfer were not implemented by us, we did not measure the execution times for these com-
ponents. We report the average and standard deviation of the execution times in Tables5 and6.

Testing on benign code:We considered a suite of benign programs (see Section8.1 for descriptions). For each
benign program, we executed SAFE on the malicious code automaton corresponding to the four viruses. Our detector
reported “negative” in each case, i.e., the false positive rate is0. The average and variance of the execution times are
reported in Table7. As can be seen from the results, for certain cases the execution times are unacceptably large. We
will address performance enhancements to SAFE in the future.
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Annotator Detector
avg. (std. dev.) avg. (std. dev.)

Chernobyl 1.444 s (0.497 s) 0.535 s (0.043 s)
z0mbie-6.b 4.600 s (2.059 s) 1.149 s (0.041 s)
f0sf0r0 4.900 s (2.844 s) 0.923 s (0.192 s)
Hare 9.142 s (1.551 s) 1.604 s (0.104 s)

Table 5: SAFE performance when checking obfus-
cated viruses for false negatives.

Annotator Detector
avg. (std. dev.) avg. (std. dev.)

z0mbie-6.b 3.400 s (1.428 s) 1.400 s (0.420 s)
f0sf0r0 4.900 s (1.136 s) 0.840 s (0.082 s)
Hare 1.000 s (0.000 s) 0.220 s (0.019 s)

Table 6: SAFE performance when checking obfus-
cated viruses for false positives against the Cher-
nobyl/CIH virus.

8.1 Descriptions of the Benign Executables

tiffdither.exeis a command line utility in thecygwin toolkit version 1.3.70, a UNIX environment developed by Red
Hat, for Windows.
winmine.exeis the Microsoft Windows 2000 Minesweeper game, version 5.0.2135.1.
spyxx.exeis a Microsoft Visual Studio 6.0 Spy++ utility, that allows the querying of properties and monitoring of
messages of Windows applications. The executable we tested was marked as version 6.0.8168.0.
QuickTimePlayer.exeis part of the Apple QuickTime media player, version 5.0.2.15.

Executable .text Procedure Annotator Detector
size size count avg. (std. dev.) avg. (std. dev.)

tiffdither.exe 9,216 B 6,656 B 29 6.333 s (0.471 s) 1.030 s (0.043 s)
winmine.exe 96,528 B 12,120 B 85 15.667 s (1.700 s) 2.283 s (0.131 s)
spyxx.exe 499,768 B 307,200 B 1,765 193.667 s (11.557 s) 30.917 s (6.625 s)
QuickTimePlayer.exe 1,043,968 B 499,712 B 4,767 799.333 s (5.437 s) 160.580 s (4.455 s)

Table 7: SAFE performance in seconds when checking clean programs against the Chernobyl/CIH virus.

9 Conclusion and Future Work

We presented a unique view of malicious code detection as a obfuscation-deobfuscation game. We used this view-
point to explore obfuscation attacks on commercial virus scanners, and found that three popular virus scanners were
susceptible to these attacks. We presented a static analysis framework for detecting malicious code patterns in executa-
bles. Based upon our framework, we have implemented SAFE, a static analyzer for executables that detects malicious
patterns in executables and is resilient to common obfuscation transformations.

For future work, we will investigate the use of theorem provers during the construction of the annotated CFG. For
instance, SLAM [2] uses the theorem prover Simplify [15] for predicate abstraction of C programs. Our detection
algorithm is context insensitive and does not track the calling context of the executable. We will investigate the use of
the PDS formalism, which would make our algorithm context sensitive. However, the existing PDS formalism does
not allow uninterpreted variables, so it will have to be extended to be used in our context.
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