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Abstract. The authorization problem is to decide whether, according to a secu-
rity policy, some principal should be allowed access to a resource. In the trust-
management system SPKI/SDSI, the security policy is given by a set of cer-
tificates, and proofs of authorization take the form of certificate chains. The
certificate-chain-discovery problem is to discover a proof of authorization for a
given request. Certificate-chain-discovery algorithms for SPKI/SDSI have been
investigated by several researchers. We consider a variant of the certificate-chain
discovery problem where the certificates are distributed over a number of servers,
which then have to cooperate to identify the proof of authorization for a given
request. We propose two protocols for this purpose. These protocols are based on
distributed model-checking algorithms for weighted pushdown systems (WPDSs).
These protocols can also handle cases where certificates are labeled with weights
and where multiple certificate chains must be combined to form a proof of autho-
rization. We have implemented these protocols in a prototype and report prelim-
inary results of our evaluation.

1 Introduction

In access control of shared computing resources, the authorization problem ad-
dresses the following question: “Given a security policy, should a principal be
allowed access to a specific resource?” In trust-management systems [4, 5, 25],
such as SPKI/SDSI [9], the security policy is given by a set of signed certificates,
and a proof of authorization consists of a set of certificate chains. In SPKI/SDSI,
the principals are the public keys, i.e., the identity of a principal is established by
checking the validity of the corresponding public key. In SPKI/SDSI, name cer-
tificates define the names available in an issuer’s local name space; authorization
certificates grant authorizations, or delegate the ability to grant authorizations.
The certificate-chain-discovery problem is to discover a set of certificate chains
that provides a proof of authorization for a request by a principal to access a
resource.

An efficient certificate-chain-discovery algorithm for SPKI/SDSI was pre-
sented by Clarke et al. [8]. An improved algorithm was presented by Jha and
Reps [14]. The latter algorithm is based on translating SPKI/SDSI certificates
to rules in a pushdown system [10, 11]. In [14] it was also demonstrated how this
translation enables many other questions to be answered about a security policy
expressed as a set of certificates. Algorithms presented in [8] and [14] assume
that the proof of authorization consists of a single certificate chain. In general,
however, a proof of authorization in SPKI/SDSI requires a set of certificate



chains, each of which proves some part of the required authorization. Hence, the
certificate-chain-discovery algorithms presented in [8, 14] are incomplete. This
observation is also the basis for the observation by Li and Mitchell [19] that the
“5-tuple reduction rule” of [9] is incomplete.

Schwoon et al. [24] introduced a new algorithm for certificate-chain discovery
that translates SPKI/SDSI certificates to rules in a weighted pushdown system
(WPDS) [22]. The algorithm presented by Schwoon et al. [24] can discover proofs
of authorization that consist of multiple certificate chains. Moreover, the algo-
rithm presented in [24] addresses such issues as trust, privacy, and recency in the
context of authorization in SPKI/SDSI. As in [24], in this paper we translate
SPKI/SDSI certificates into rules in a WPDS, where the authorization specifica-
tions of the certificates are translated to weights on rules. This translation to a
WPDS yields a complete certificate-chain-discovery algorithm and is described
in Section 5.

The algorithms of [8, 14, 24] assume that the set of all certificates relevant to
a given request are known to a single site, which can then compute the answer to
the authorization problem for a given principal and a given resource. In practice,
however, there may be no such central authority. Certificates may be held by a
number of different sites, each of which knows only a subset of the certificates. If a
principal K from site S1 wants to access a resource at site S2, the certificate chain
authorizing K to do so may involve certificates from both S1 and S2 (and possibly
a number of other sites in between). For instance, consider the following example:
The Computer Sciences department (CS) at the University of Wisconsin (UW)
is part of the College of Letters and Sciences (LS). The department, the college,
and the university could be different sites in the sense above. UW might grant
access to some resource R to all of its faculty members by issuing a corresponding
authorization certificate. The actual principals authorized to access R would be
specified by name certificates, e.g., UW would declare that its faculty members
are (among others) those of LS, LS would declare that its faculty members are
(among others) those of CS, and CS would have a list of its faculty members.
If members of CS want to access R, they need a chain of certificates from UW,
LS, and CS, and none of these sites may know all of the certificates involved.

This paper makes two major contributions. First, we present a distributed
model-checking algorithm for WPDSs. Second, using this algorithm we develop
a distributed certificate-chain-discovery algorithm for SPKI/SDSI where the cer-
tificates are distributed across various sites. Background on the trust-management
system SPKI/SDSI is given in Section 4. A distributed certificate-chain-discovery
algorithm for SPKI/SDSI is described in Section 6. We have implemented a
prototype of our algorithm. Our experimental results, presented in Section 7,
demonstrate that the algorithm incurs a moderate overhead.

2 Related Work

A certificate-chain-discovery algorithm for SPKI/SDSI was first proposed by
Clarke et al. [8]. An improved certificate-chain-discovery based on the theory of
pushdown systems was presented by Jha and Reps [14]. As indicated earlier, both
of these algorithms are centralized and assume that the proof of authorization



consists of a single certificate chain. In the proof-carrying-authorization (PCA)
framework of Appel and Felten [2], a client uses the theorem prover Twelf [21] to
construct a proof of authorization, which the client presents to the server. How-
ever, they too assume that all logical facts used by the theorem prover reside at
a single server. Li et al. [20] presented a distributed certificate-chain-discovery
algorithm for the trust-management system RT0. Their algorithm allows cer-
tificates to be distributed, but the proof of authorization is maintained at one
site. SPKI/SDSI is a subset of RT0 (SPKI/SDSI is equivalent to RT0 without
role intersection). In our distributed certificate-chain-discovery algorithm, var-
ious sites summarize their part of the proof of authorization before sending it
to other sites; thus, the proof of authorization is distributed. Moreover, sum-
marizing intermediate results also provides some privacy. We also implemented
our algorithm in a trust-management server. To the best of our knowledge, Li et
al. did not implement their algorithm. Bauer et al. [3] present an algorithm for
assembling a proof that a request satisfies an access-control policy expressed in
formal logic [18]. Bauer et al. advocate a lazy strategy, in which a party enlists
help of others to prove particular subgoals. The precise relationship between the
distributed algorithm of Bauer et al. and the algorithm presented in this paper
will be explored in the future. The semantics of SPKI/SDSI has been widely
studied [13, 1, 12]. In this context, the work that is most relevant is by Li and
Mitchell [19], who pointed out that the “5-tuple reduction rule” of [9] is incom-
plete because, in general, a proof of authorization can require multiple certificate
chains. Our algorithm does not suffer from this problem, due to the translation
into a WPDS.

The work by Jim and Suciu on SD3 [16, 17], the successor of QCM, is also
related to ours. SD3 is a trust-management system based on Datalog that, like
our algorithms, allows for distributed evaluation of authorization queries. In [16],
the author claims that SD3 can express “roughly the same policies as SDSI 2”.
While this claim is not further substantiated in [16], we believe it to be true.
However, there are several differences that set our work apart from SD3:

– SD3 describes a generic evaluation algorithm where each instantiation corre-
sponds to a particular strategy for distributing the computation. We propose
several concrete evaluation strategies and argue that these strategies have
certain advantages with respect to efficiency and privacy.

– Since [16] does not provide a concrete encoding of SPKI/SDSI in SD3, any
comparison of the relative merits of our encoding vs SD3’s is bound to be
speculative. However, we believe that SD3’s site-safety requirement would
limit their evaluation to “forward” mode, whereas our algorithms can search
both forward and backward (the latter is explained in Section 6).

– Unlike SD3, our framework allows certificates to have weights. As pointed
out in [15], this provides a solution for situations in which proofs of autho-
rization require multiple certificate chains, each of which prove part of the
authorization. This solves the problem of semantic incompleteness pointed
out by Li and Mitchell [19]. Moreover, in [24], we pointed out that weights
allow to address such issues as privacy, recency, validity, and trust.



3 Weighted Pushdown Systems

Weighted pushdown systems were introduced in [7, 22–24]. In short, a pushdown
system defines an infinite-state transition system whose states involve a stack of
unbounded length. In a weighted pushdown system, the rules are given values
from some domain of weights. Our weight domains of interest are the bounded
idempotent semirings defined in Defn. 1.

Definition 1. A bounded idempotent semiring is a quintuple (D,⊕,⊗, 0, 1),
where D is a set, 0 and 1 are elements of D, and ⊕ (the combine operation) and
⊗ (the extend operation) are binary operators on D such that
1. (D,⊕) is a commutative monoid whose neutral element is 0, and where ⊕ is

idempotent.
2. (D,⊗) is a monoid with the neutral element 1.
3. ⊗ distributes over ⊕, i.e., for all a, b, c ∈ D we have a⊗ (b⊕ c) = (a⊗ b)⊕

(a⊗ c) and (a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c).
4. 0 is an annihilator with respect to ⊗, i.e., for all a ∈ D, a⊗ 0 = 0 = 0⊗ a.
5. In the partial order v defined by: ∀a, b ∈ D, a v b iff a ⊕ b = a, there are

no infinite descending chains.

Definition 2. A pushdown system is a triple P = (P, Γ, ∆), where P and Γ
are finite sets called the control locations and the stack alphabet, respec-
tively. The elements of Conf (P) := P × Γ ∗ are called the configurations
of P. ∆ contains a finite number of rules of the form 〈p, γ〉 ↪→P 〈p′, w〉, where
p, p′ ∈ P , γ ∈ Γ , and w ∈ Γ ∗, which define a transition relation ⇒P between
configurations of P as follows:

If r = 〈p, γ〉 ↪→P 〈p′, w〉, then 〈p, γw′〉 〈r〉==⇒P 〈p′, ww′〉 for all w′ ∈ Γ ∗.

We write c ⇒P c′ to express that there exists some rule r such that c
〈r〉==⇒P c′;

we omit the subscript P if P is understood. The reflexive transitive closure of ⇒
is denoted by ⇒∗.

Given a set of configurations C, we define pre(C) def= { c′ | ∃c ∈ C : c′ ⇒
c } and post(C) def= { c′ | ∃c ∈ C : c ⇒ c′ } as the sets of configurations that
are reachable—backwards and forwards, respectively—from elements of C in a
single step. Moreover, pre∗(C) def= { c′ | ∃c ∈ C : c′ ⇒∗ c } and post∗(C) def=
{ c′ | ∃c ∈ C : c ⇒∗ c′ } are the configuration reachable–backwards and forwards–
in arbitrarily many steps. C is called regular if for all p ∈ P the language
{w | 〈p, w〉 ∈ C } is regular.

Definition 3. A weighted pushdown system is a triple W = (P,S, f) such
that P = (P, Γ, ∆) is a pushdown system, S = (D,⊕,⊗, 0, 1) is a bounded idem-
potent semiring, and f : ∆ → D is a function that assigns a value from D to
each rule of P.

Let σ ∈ ∆∗ be a sequence of rules. Using f , we can associate a value to σ,
i.e., if σ = [r1, . . . , rk], then we define v(σ) def= f(r1)⊗ . . .⊗ f(rk). Moreover, for
any two configurations c and c′ of P, we let path(c, c′) denote the set of all rule
sequences [r1, . . . , rk] that transform c into c′, i.e., c

〈r1〉===⇒ · · · 〈rk〉===⇒ c′.



Definition 4. Let W = (P,S, f), where P = (P, Γ, ∆) and S = (D,⊕,⊗, 0, 1),
and let C be a set of configurations. A forwards (resp. backwards) (W, C)-
dag is an edge-labeled directed acyclic graph (V,E) where V ⊆ Conf (P) × D
and E ⊆ V ×∆× V such that

– if a vertex (c, d) has no incoming edges, then c ∈ C and d = 1;
– if ((c1, d1), r1, (c, d)), . . . , ((ck, dk), rk, (c, d)), k ≥ 1 are the incoming edges

of (c, d), then
• d =

⊕k
i=1(di ⊗ f(ri)) and ci

〈ri〉===⇒P c for all 1 ≤ i ≤ k (in a forwards
(W, C)-dag);

• d =
⊕k

i=1(f(ri)⊗ di) and c
〈ri〉===⇒P ci for all 1 ≤ i ≤ k (in a backwards

(W, C)-dag).

We call a (forwards/backwards) (W, C)-dag D a witness dag for (c, d) if D is
finite and (c, d) is the only vertex with no outgoing edges in D.

Notice that the extender operation ⊗ is used to calculate the value of a path.
The value of a set of paths is computed using the combiner operation ⊕. The
existence of a witness dag for (c, d) can be considered a proof that there exists
a set of paths from C to c (or vice versa) whose combined value is d. Because of
Defn. 1(5), it is always possible to identify a finite witness dag if such a set of
paths exists.

3.1 Known Results

We briefly review some known results about (weighted) pushdown systems.
Let P = (P, Γ, ∆) be a pushdown system, and let C be a regular subset of

Conf (P). Then, according to [10], the sets pre∗(C) and post∗(C) are also regular
and effectively computable (in the form of a finite automaton).

The results from [23, 24] show that the result can be extended to generalized
pushdown reachability (GPR) problems on weighted pushdown systems:

Definition 5. Let W = (P,S, f) be a weighted pushdown system, where P =
(P, Γ, ∆), and let C ⊆ P×Γ ∗ be a regular set of configurations. The generalized
pushdown predecessor (GPP) problem is to find for each c ∈ pre∗(C):

– δ(c) def=
⊕
{ v(σ) | σ ∈ path(c, c′), c′ ∈ C };

– a backwards witness dag for (c, δ(c)).
The generalized pushdown successor (GPS) problem is to find for each
c ∈ post∗(C):

– δ(c) def=
⊕
{ v(σ) | σ ∈ path(c′, c), c′ ∈ C };

– a forwards witness dag for (c, δ(c)).

In [23, 24], the solutions for GPS and GPP are computed in the form of
annotated finite automata. We describe the GPP case here; the GPS case is
analogous, modulo certain details. Moreover, for the sake of keeping the presen-
tation simple, we concentrate on the computation of the δ(c) values. A method
for computing the witness dags is given in [23], and it is straightforward to
transfer it to the distributed case.



Our input is a weighted pushdown systemW = (P,S, f), where P = (P, Γ, ∆)
and S = (D,⊕,⊗, 0, 1), together with a regular set of configurations C. The
output is δ(c) for each c ∈ pre∗(C). In general, there are infinitely many config-
urations in pre∗(C) even if C itself is finite, so we can only hope to compute the
solution symbolically. We use (annotated) finite automata for this purpose:

Definition 6. A P-automaton is a quintuple A = (Q,Γ, η, P, F ) where Q ⊇ P
is a finite set of states, η ⊆ Q×Γ ×Q is the set of transitions, and F ⊆ Q are
the final states. The initial states of A are the control locations P . We say that
a sequence of transitions (p, γ1, p1), . . . , (pn−1, γn, q) ∈ η reads configuration
〈p, γ1 . . . γn〉 if p1, . . . , pn1 , q are arbitrary states. The sequence is accepting iff
q is a final state. If c is a configuration of A, we denote by accA(c) the set of
all accepting transition sequences in A for c; we say that c is accepted by A if
accA(c) is non-empty.

Note that a set of configurations of P is regular if and only if it is accepted
by some P-automaton. In what follows, P is fixed; hence, we usually omit the
prefix P and speak simply of “automata”.

A convenient property of regular sets of configurations is that they are closed
under forwards and backwards reachability [6]. In other words, given an automa-
ton A that accepts the set C, one can construct automata that accept the sets
of all configurations that are forward or backwards reachable from C. Following
[23, 24], two additional labelings for the transitions of A are computed to solve
the GPP and GPS problems. The first, l : η → D assigns a weight from D to each
automaton transition and allows to compute δ (see below). The second allows
to compute the ω function. As mentioned earlier, we omit the second labeling
for the sake of simplicity.

Without loss of generality, we assume henceforth that for every rule 〈p, γ〉 ↪→
〈p′, w〉 we have |w| ≤ 2; this is not restrictive because every pushdown system
can be simulated by another one that obeys this restriction and is larger by only
a constant factor (e.g., [14]).

In the following, we first present an abstract version of the procedure given
in [23, 24], which is designed for centralized computation. We then proceed to
give an implementation for the distributed case.
Abstract algorithm Let A = (Q,Γ, η, P, F ) be a P-automaton that accepts
a set of configurations C. Without loss of generality, we assume that A has no
transition leading to an initial state.

Initially, we set l(t) := 1 for all t ∈ η. When we say that transition t should
be updated with value d, we mean the following action: if t is not yet in η, add
t to η and set l(t) := d; otherwise, update l(t) to l(t)⊕ d.

For GPP, we add new transitions to A according to the following saturation
rule:

If r := 〈p, γ〉 ↪→ 〈p′, w〉 is a rule, t1 . . . t|w| a sequence that reads 〈p, w〉
and ends in state q, then let d be l(t1)⊗ . . .⊗ l(t|w|) and update (p, γ, q)
with the value f(r)⊗ d.

The procedure terminates when the saturation rule can no longer be applied
(i.e., a fixed point has been reached).



Concrete algorithm A concrete implementation is given in [23] and repro-
duced in Figure 1. Each iteration of the loop starting at line 14 executes one
or more applications of the saturation rule. After the computation has finished,
the resulting automaton accepts all configurations c ∈ pre∗(C). Then, we have
δ(c) =

⊕
t1···tn∈accA′ (c)

l(t1)⊗ · · · ⊗ l(tn).
In [23] the time complexity of the GPP algorithm from Figure 1 was stated

as O(|Q|2 · |∆| · `), where ` is the length of the longest descending chain in S,
and the space complexity (determined by the number of transitions in the final
automaton) as O(|Q| · |∆|+ |η|).
Algorithm 1
Input: a weighted pushdown system W = (P,S, f), where P = (P, Γ, ∆) and

S = (D,⊕,⊗, 0, 1), and an automaton A = (Q, Γ, η0, P, F ) that accepts C,
such that A has no transitions into states from P .

Output: an automaton A′ = (Q, Γ, η, P, F ) that accepts pre∗(C),
with annotation function l : η → D

1 procedure update(t, v)
2 begin
3 η := η ∪ {t}
4 newValue := l(t)⊕ v
5 if newValue 6= l(t) then
6 workset := workset ∪ {t}
7 l(t) := newValue
8 end
9

10 η := η0; workset := η0; l := λt.0
11 for all t ∈ η0 do l(t) := 1
12 for all r = 〈p, γ〉 ↪→ 〈p′, ε〉 ∈ ∆ do
13 update((p, γ, p′), f(r))
14 while workset 6= ∅ do
15 remove some transition t = (q, γ, q′) from workset ;
16 for all r = 〈p1, γ1〉 ↪→ 〈q, γ〉 ∈ ∆ do
17 update((p1, γ1, q

′), f(r)⊗ l(t))
18 for all r = 〈p1, γ1〉 ↪→ 〈q, γγ2〉 ∈ ∆ do
19 for all t′ = (q′, γ2, q

′′) ∈ η do
20 update((p1, γ1, q

′′), f(r)⊗ l(t)⊗ l(t′))
21 for all r = 〈p1, γ1〉 ↪→ 〈p′, γ2γ〉 ∈ ∆ do
22 if t′ = (p′, γ2, q) ∈ η then
23 update((p1, γ1, q

′), f(r)⊗ l(t′)⊗ l(t))
24 return ((Q, Γ, η, P, F ), l)

Fig. 1. An algorithm for creating a weighted automaton for the GPP problem.

3.2 A Distributed Algorithm

We now discuss how the computation can be distributed when the rules in ∆
are distributed over a set Sites of servers. As in Section 3.1, we discuss both the
GPP and the GPS case, and give a concrete implementation for GPP, as the one
for GPS is very similar.



We fix a weighted pushdown system W = (P,S, f), where P = (P, Γ, ∆) and
S = (D,⊕,⊗, 0, 1), and a regular set C of configurations. The solution we discuss
here distributes the workload among the servers according to control locations,
i.e., for every control location there is a server that is ‘responsible’ for it. More
precisely, we make the following assumptions:
1. There exists a mapping fS : P → Sites that assigns control locations to sites.
2. Every rule 〈p, γ〉 ↪→ 〈p′, w〉 is stored at the site fS(p) (for the GPS problem),

or at fS(p′) (for the GPP problem).
Stating assumption 2 differently, we are working with a collection (Ws)s∈Sites

of weighted pushdown systems that differ only in their rules, i.e.,Ws = (Ps,S, f|∆s
)

and Ps = (P, Γ, ∆s), where the set ∆s satisfies assumption 2.
We say that a rule 〈p, γ〉 ↪→ 〈p′, w〉 is a boundary rule if p and p′ are

assigned to different sites. If such a boundary rule exists, we call the sites re-
sponsible for p and p′ neighboring sites.

Definition 7. Let D = (V,E) be a (W, C)-dag and s ∈ Sites. An edge (v, r, v′)
of D, where v = (〈p, w〉, d), is called a boundary edge if r is a boundary
rule. Moreover, v′ is called a boundary node of the site fS(p). We denote by
T (s) = { 〈p, w〉 | fS(p) = s, w ∈ Γ ∗ } the configurations that begin with the
control locations for which site s is responsible. Moreover, the s-region of D
is the subgraph (Vs, Es) of D, where Vs = { (c, d) ∈ V | c ∈ T (s) } and Es =
{ (v, r, v′) ∈ E | v ∈ Vs }.

Informally, the s-region contains the subgraph of D induced by Vs, i.e., the
nodes for whose configurations s is responsible, plus the “fringe” of this subgraph,
i.e., the boundary edges originating in Vs and their target nodes.

Abstract algorithm. We can now give an abstract description of the GPP and
GPS algorithms. Given W and C, every site s computes the set T C

pre(s)
def= (pre∪

id)(pre∗(C)∩T (s)) (in the GPP case) or T C
post(s)

def= (post ∪ id)(post∗(C)∩T (s))
(in the GPS case). In the following, we write T̄ (s) to mean T C

pre(s) or T C
post(s),

depending on the context.
Intuitively speaking, every site s computes a partition of pre∗(C) or post∗(C),

namely, the set of configurations that have control locations for which s is re-
sponsible, extended with the configurations reached by boundary rules. Note
that the set T̄ (s) contains all the configurations that can be generated using
rules stored at s.

The idea is that site s becomes involved in a GPP/GPS computation if it is
discovered that T̄ (s) 6= ∅. Initially, each site s starts with the set C ∩ T (s). If
a boundary rule causes a site s to discover configurations that belongs to T (s′)
(for some site s′ 6= s), then s will send those configurations to s′, and s′ continues
its GPP/GPS computation using those configuration.

Concrete algorithm. At a more concrete level of description, every site s com-
putes an automaton As that accepts T̄ (s), and appropriate labeling functions
for δ and for the witness dags. Basically, the distributed algorithm is a straight-
forward extension of the non-distributed case: every site s runs a GPP/GPS



algorithm similar to the one in Figure 1 with Ws. The main complication is that
some parts of the automata need to be shared between sites.

To be more precise, let A be an automaton that accepts C. Initially, As is an
automaton that accepts C ∩ T (s), which can be constructed by merely taking
the states and transitions of A that are reachable from initial states p such that
fS(p) = s.

Each site s then carries out the algorithm from Figure 1 using Ws. If s and s′

are neighboring sites, then, at some stage of the computation at s, the automaton
As may accept configurations from T (s′)∩T̄ (s), i.e., configurations that ought to
be maintained by s′. Let Ts,s′ be the set of transitions in

⋃
c∈T (s′) accAs(c), i.e.,

the transitions in As that form part of an accepting path for such configurations.
Whenever s detects a transition t that belongs to Ts,s′ (or an update in such a
transition), then s keeps t in its automaton, but also sends it to s′. Thus, every
site s ends up with an automaton that accepts T̄ (s).

Along with the configurations, every site also computes information to con-
struct the δ function and witness dags. Notice that the vertices in an s-region of
a (W, C)-dag D are labeled with configurations from T̄ (s), and that the edges of
the region are labeled with the rules stored at s. Thus, s has all the information
needed to construct the s-region of D. More precisely, the information needed
to construct an s-region can be generated by an annotation of the automaton
maintained by s, in the same way as in [23].

The δ function is computed in the form of another annotation that labels
automaton transitions with semiring values. When sending a transition from one
site to another, the semiring values are also sent. For a configuration c = 〈p, w〉,
the value of δ(c) can be obtained by evaluating the automaton AfS(p), as shown
in Section 3.1.

Figure 2 shows the changes that must be made to Algorithm 1 to implement
this approach. The figure shows the algorithm from the point of view of site s.
The algorithm maintains a mapping sites : Q → 2Sites. If s′ ∈ sites(q), then
the current automaton contains a path that leads from an initial state p, where
fS(p) = s′, to the state q. This means that all transitions of the form (q, y, q′)
are part of accepting paths for configurations from T (s′). As a consequence,
whenever such a transition is first generated or updated, it needs to be sent
to s′, and q′ must be added to sites(s′).

The changes to Algorithm 1 consist of three parts:

– The procedure update is replaced by a new version;
– there is an additional procedure add recursive;
– a couple of lines are added to the beginning of the main procedure.

The new lines in the main procedure initialize the sites function. The update
function is extended by lines 8–11. These lines send the updated transition to
other sites as required. Sending a transition t with value v to site s′ is represented
by updates′(t, v), which can be thought of as a remote procedure call (of the
function update) on site s′ that adds t to the worklist of s′. Finally, the target
state of t must be added to sites(s′). This is done by procedure add recursive,
which also takes care of sending additional transitions to s′, if required.



Algorithm 2 (running on site s)
Input: a weighted pushdown system Ws = (Ps,S, f|∆s|), where Ps = (P, Γ, ∆s), and

S = (D,⊕,⊗, 0, 1), and an automaton As = (Q, Γ, η0, P, F ) that accepts
C ∩ T (s), such that A has no transitions into states from P .

Output: an automaton A′
s = (Q, Γ, η, P, F ) that accepts T C

pre(s))’ with annotation
function l : η → D

Replacement for update procedure:

1 procedure update(t, v)
2 begin
3 η := η ∪ {t}
4 newValue := l(t)⊕ v
5 if newValue 6= l(t) then
6 workset := workset ∪ {t}
7 l(t) := newValue
8 // assume t = (p, γ, q)
9 for all s′ ∈ sites(p) do

10 updates′(t, l(t));
11 add recursive(q, s′);
12 end

New procedure add recursive:
1 procedure add recursive(q, s′)
2 begin
3 if s′ ∈ sites(q) then return;
4 sites(q) := sites(q) ∪ {s′};
5 for all t′ = (q, γ′, q′) ∈ η do
6 updates′(t

′, l(t′));
7 add recursive(q′, s′);
8 end

Additions to main procedure:

1 sites := λp.∅;
2 for all r = 〈p, γ〉 ↪→ 〈p′, w〉 ∈ ∆ do
3 if fS(p) 6= s then
4 sites(p) := sites(p) ∪ {fS(p)}

Fig. 2. Modification of Algorithm 1 for distributed GPP.

Complexity Let us state the complexity of Algorithm 1 when run on site s.
The main procedure is unchanged and runs in O(|Q|2 · |∆s| · `) time, where ` is
the longest descending chain in S. Additional work is required for sending and
receiving transitions to/from neighboring sites. Suppose that s has n neighboring
sites, and that these sites send t transitions to s. For every send or receive action,
s needs to perform some constant amount of work.

Note that t is bounded by O(|Q| · |∆|), and that every transition can be
received at most ` times, so the effort for received transitions is at most O(|Q| ·
|∆| · `), although in practice we expect it to be much lower.

In the worst case, s must send all of its transitions to all n neighbors at most
` times, i.e., O(|Q| · |∆| · n · `). Again, we expect his number to be much lower
in practice.

4 Background on SPKI/SDSI

In SPKI/SDSI, all principals are represented by their public keys, i.e., the prin-
cipal is its public key. A principal can be an individual, process, host, or any
other entity. K denotes the set of public keys. Specific keys are denoted by
K, KA,KB ,K ′, etc. An identifier is a word over some alphabet Σ. The set of
identifiers is denoted by A. Identifiers will be written in typewriter font, e.g., A
and Bob. A term is a key followed by zero or more identifiers. Terms are either
keys, local names, or extended names. A local name is of the form K A, where
K ∈ K and A ∈ A. For example, K Bob is a local name. Local names are impor-
tant in SPKI/SDSI because they create a decentralized name space. The local



name space of K is the set of local names of the form K A. An extended name
is of the form K σ, where K ∈ K and σ is a sequence of identifiers of length
greater than one. For example, K UW CS faculty is an extended name.

4.1 Certificates

SPKI/SDSI has two types of certificates, or “certs”:
Name Certificates (or name certs): A name cert provides a definition of a
local name in the issuer’s local name space. Only key K may issue or sign a cert
that defines a name in its local name space. A name cert C is a signed four-tuple
(K, A, S, V ). The issuer K is a public key and the certificate is signed by K. A
is an identifier. The subject S is a term. Intuitively, S gives additional meaning
for the local name K A. V is the validity specification of the certificate. Usually,
V takes the form of an interval [t1, t2], i.e., the cert is valid from time t1 to t2
inclusive.
Authorization Certificates (or auth certs): An auth cert grants or delegates
a specific authorization from an issuer to a subject. Specifically, an auth cert c
is a five-tuple (K, S,D, T, V ). The issuer K is a public key, which is also used to
sign the cert. The subject S is a term. If the delegation bit D is turned on, then
a subject receiving this authorization can delegate this authorization to other
keys. The authorization specification T specifies the permission being granted;
for example, it may specify a permission to read a specific file, or a permission
to login to a particular host. The validity specification V for an auth cert is the
same as in the case of a name cert.

A labeled rewrite rule is a pair (L −→ R, T ), where the first component is a
rewrite rule and the second component T is an authorization specification. For
notational convenience, we will write the labeled rewrite rule (L −→ R, T ) as
L

T−→ R. We will treat certs as labeled rewrite rules:3

– A name cert (K, A, S, V ) will be written as a labeled rewrite rule K A
>−→ S,

where > is the authorization specification such that for all other authoriza-
tion specifications t, >∩ t = t, and >∪ t = >. 4 Sometimes we will write
>−→ as simply −→, i.e., a rewrite rule of the form L −→ R has an implicit

label of >.
– An auth cert (K, S,D, T, V ) will be written as K �

T−→ S � if the delegation
bit D is turned on; otherwise, it will be written as K �

T−→ S �.

4.2 Authorization

Because we only use labeled rewrite rules in this paper, we refer to them as
rewrite rules or simply rules. A term S appearing in a rule can be viewed as
a string over the alphabet K ∪ A, in which elements of K appear only in the
beginning. For uniformity, we also refer to strings of the form S � and S � as
terms. Assume that we are given a labeled rewrite rule L

T−→ R that corresponds

3 In authorization problems, we only consider valid certificates, so the validity specification V
for a certificate is not included in its rule.

4 The issue of intersection and union of authorization specifications is discussed in detail in [9,
13].



to a cert. Consider a term S = LX. In this case, the labeled rewrite rule L
T−→ R

applied to the term S (denoted by (L T−→ R)(S)) yields the term RX. Therefore,
a rule can be viewed as a function from terms to terms that rewrites the left
prefix of its argument, for example,

(KA Bob −→ KB)(KA Bob myFriends) = KB myFriends

Consider two rules c1 = (L1
T−→ R1) and c2 = (L2

T ′

−→ R2), and, in addition,
assume that L2 is a prefix of R1, i.e., there exists an X such that R1 = L2X.

Then the composition c2 ◦ c1 is the rule L1
T∩T ′

−→ R2X. For example, consider the
two rules:

c1 : KA friends
T−→ KA Bob myFriends

c2 : KA Bob
T ′

−→ KB

The composition c2 ◦ c1 is KA friends
T∩T ′

−→ KB myFriends. Two rules c1 and
c2 are called compatible if their composition c2 ◦ c1 is well defined.5

4.3 The Authorization Problem in SPKI/SDSI
Assume that we are given a set of certs C and that principal K wants access
specified by authorization specification T . The authorization question is: “Can
K be granted access to the resource specified by T?”

A certificate chain ch = (ck◦ck−1◦· · ·◦c1) is a sequence such that for C, where
c1, c2, · · · , ck are certificates in C, certificate chain ch defines the transformation
ck◦ck−1◦· · ·◦c1. The label of ch, denoted by L(ch), is the label of ck◦ck−1◦· · ·◦c1.
We assume that the authorization specification T is associated with a unique
principal Kr (which could be viewed as the owner of the resource r to which
T refers). Given a set of certificates C, an authorization specification T , and
a principal K, a certificate-chain-discovery algorithm looks for a finite set of
certificate chains that “prove” that principal K is allowed to make the access
specified by T .

Formally, certificate-chain discovery attempts to find a finite set {ch1, · · · , chm}
of certificate chains such that for all 1 ≤ i ≤ m

chi(Kr �) ∈ {K �,K �} .

and T ⊆
⋃m

i=1 L(chi).
Clarke et al. [8] presented an algorithm for certificate-chain discovery in

SPKI/SDSI with time complexity O(n2
K |C|), where nK is the number of keys

and |C| is the sum of the lengths of the right-hand sides of all rules in C. How-
ever, this algorithm only solved a restricted version of certificate-chain discovery:
5 In general, the composition operator ◦ is not associative. For example, c3 can be compatible

with c2 ◦ c1, but c3 might not be compatible with c2. Therefore, c3 ◦ (c2 ◦ c1) can exist
when (c3 ◦ c2) ◦ c1 does not exist. However, when (c3 ◦ c2) ◦ c1 exists, so does c3 ◦ (c2 ◦ c1);
moreover, the expressions are equal when both are defined. Thus, we allow ourselves to omit
parentheses and assume that ◦ is right associative.



a solution could only consist of a single certificate chain. For instance, consider
the following certificate set:

c1 : (K, KA, 0, ((dir /etc) read), [t1, t2])
c2 : (K, KA, 0, ((dir /etc) write), [t1, t2])

Suppose that Alice makes the request

(KA, ((dir /etc) (* set read write))).

In this case, the chain “(c1)” authorizes Alice to read from directory /etc,
and a separate chain “(c2)” authorizes her to write to /etc. Together, (c1)
and (c2) prove that she has both read and write privileges for /etc. However,
both of the certificates c1 and c2 would be removed from the certificate set
prior to running the certificate-chain discovery algorithm of Clarke et al., be-
cause read 6⊇ (* set read write) and write 6⊇ (* set read write). Conse-
quently, no proof of authorization for Alice’s request would be found. Schwoon
et al. [24] presented algorithms for the full certificate-chain-discovery problem,
based on solving reachability problems in weighted pushdown systems. Their for-
malization allows a proof of authorization to consist of a set of certificate chains.
This paper uses the WPDS-based algorithm for certificate-chain-discovery intro-
duced in [24].

5 Weighted Pushdown Systems and SPKI/SDSI

In the section, we show that WPDSs are a useful tool for solving problems related
to certificate-chain discovery in SPKI/SDSI. The following definitions are largely
taken from [23].

The following correspondence between SPKI/SDSI and pushdown systems
was presented in [24]: let C be a (finite) set of certificates such that KC and
IC are the keys and identifiers, respectively, that appear in C. Moreover, let T
be the set from which the authorization specifications in C are drawn. Then
SC = (T ,∪,∩,⊥,>), where ∩,∪ are the intersection and union of auth specs as
discussed in [9, 13], forms a semiring with domain T . We now associate with C the
weighted pushdown systemWC = (PC ,SC , f), where PC = (KC , IC∪{�,�},∆C),
i.e., the keys of C are the control locations; the identifiers form the stack alphabet;
the rule set ∆C is defined as the set of labeled rewrite rules derived from the
name and auth certs as shown in Section 4.1; and f maps every rule to its
corresponding authorization specification.

The usefulness of this correspondence stems from the following simple obser-
vation: A configuration 〈K, σ〉 of PC can reach another configuration 〈K ′, σ′〉 if
and only if C contains a chain of certificates (c1, . . . , ck) such that (ck ◦ · · · ◦
c1)(K σ) = K ′ σ′. Moreover, the label of the certificate chain is precisely
v(c1 · · · ck). Thus, solving the GPP/GPS problem provides a way to find a set
of certificate chains to prove that a certain principal K ′ is allowed to access a
resource of principal K. Moreover, the solution of the problem identifies a set of
certificate chains such that the union of their labels is maximal (with respect to
the semiring ordering v).



In the authorization problem, we are given a set of certs C, a principal K, and
resource Kr. In the PDS context, K can access the resource with authorization
specification T iff the following statement is true: In the GPP problem for WC
and C = {〈K, �〉, 〈K, �〉}, it holds that δ(〈Kr,�〉) v T ; equivalently, in the
GPS problem for WC and C = {〈Kr,�〉} we have δ(〈K, �〉)⊕ δ(〈K, �〉) v T .

6 Distributed Certificate-Chain Discovery

The algorithms for GPR problems proposed in [23, 24] work under the assump-
tion that all pushdown rules (or certificates, resp.) are stored centrally at the
site that carries out the computation. In a real-world setting, certificates may
be issued by many principals, and centralized storage at one site may not be de-
sirable or possible. We therefore propose versions of these algorithms that solve
the problems in a distributed environment.

Let C be a (finite) set of certificates and WC = (PC ,SC , f) be the WPDS
associated with C (see Section 5 for details). As in Section 3.2, we assume that
the rules/certificates in ∆ are distributed over a set of servers, where the fS func-
tion describes the distribution of principals over the sites, and also assume that
every certificate/rule is stored at the site responsible for its issuer or subject.
In the remainder of this section, we consider distributed solutions for the fol-
lowing distributed certificate-chain-discovery problem, under the aforementioned
assumptions:

Given a principal r (the resource) and a principal c (the client) with
public keys Kr and Kc, is there a set of certificate chains in W that
allows c to access r and, if there is, what is their combined value?

The problem is equivalent to either of the following problems in the WPDS
setting:
– As a GPP problem: For C = {〈Kc,�〉, 〈Kc,�〉} and c = 〈Kr,�〉, compute

δ(c) and a backwards witness dag for (c, δ(c)).
– As a GPS problem: For C = {〈Kr,�〉}, c1 = 〈Kc,�〉, and c2 = 〈Kc,�〉,

compute δ(c1)⊕δ(c2) and forwards witness dags for (c1, δ(c1)) and (c2, δ(c2)).
Sections 6.1 and 6.2 propose protocols for the communication between the

client, the resource, and the servers that co-operate to solve the distributed
access problem. We propose two protocols, one based on the GPP formulation
of the above problem, the other on the GPS formulation. The protocols assume
algorithms for solving GPP and GPS in the distributed setting, and which are
provided in Section 3. The relative merits of the protocols, as well as security
and privacy-related issues, are discussed in Section 6.3.

6.1 The GPS Protocol for Distributed Certificate-Chain Discovery
In a distributed setting, multiple access requests may happen at the same time.
We shall use unique request ids to distinguish them. In the GPS variant, the
protocol consists of three phases.

Initialization: The initialization consists of the following steps:

1. The client c sends a message to the resource r requesting access. The message
contains the public key of the client, Kc.



2. The resource r responds by sending a unique request identifier reqid, which
will distinguish this request from other requests that may currently be in
progress.

3. The client sends a message to the site fS(Kc) (called the client site and
denoted sc from here on). The message contains (i) its key Kc, (ii) the
request id reqid, (iii) the so-called client certificate: the request id signed by
the client.

4. The client site checks whether the contents and signature of the client cer-
tificate match expectations. If the check is successful, the client site tells the
client that certificate discovery may begin.

5. The client asks the resource to initiate the search.
6. The resource sends a message to the site fS(Kr) (called the resource site and

written sr) containing its public key Kr, the request id reqid, and a request
to initiate certificate discovery.

Search: The resource site initiates a GPS query for the singleton set C =
{〈Kr,�〉}, where reqid is used to distinguish this query from others (so that
servers may work on multiple requests at the same time). The query is resolved
by all the servers together, and the details of the search algorithm are given in
Section 3. Here, the crucial points are that sr starts a local GPS computation,
and if it notices that post∗(C) intersects T (s) for some other site s (because of
some boundary certificate), then s is asked to participate in the search. Site s
may, in the course of its computation, contact other sites. Each site s constructs
the set T C

post(s) and maintains information that allows to construct the s-region
of the required witness dags.

Verification: Because of its earlier communication with the client, the client site
sc knows that c1 := 〈Kc,�〉 and c2 := 〈Kc,�〉 are the targets of the search.
Moreover, because c1, c2 ∈ T (sc), the client site knows whether the finished
search has reached c1, c2. To complete the algorithm, the result must be reported
to the resource. Thus, in the verification phase, the direction of the flow of
information is contrary to the search phase.

The client site starts by constructing the sc-region of the witness dags. It then
sends this sub-dag starting at its boundary nodes ‘upstream’ to the correspond-
ing neighboring sites. The neighboring sites use this information to complete
their own sub-dags and send them further upstream until sr has the full witness
dags for c1 and c2. The result is then reported by sr to the resource. More-
over, all communications in this phase are accompanied by the client certificate
mentioned earlier.

The resource verifies the result, i.e., checks the integrity of the dag, the sig-
natures on all certificates used in the dags, whether the client certificate matches
reqid, and whether its signature matches the client. Depending on the outcome,
access is allowed or denied to the client.

The verification of the complete dag may place a great workload on the
resource. An alternative is as follows: Instead of sending complete sub-dags, the
sites only report the sum (w.r.t. ⊕) of the paths inside the dags. Then, the
result given by sr to the resource consists of certificates issued by the resource



and the combined values of the paths below them. This also reduces the amount
of network traffic.

6.2 The GPP Protocol for Distributed Certificate-Chain Discovery

In this setting, the search is started at the client site, and, in comparison with
Section 6.1, the flow of information between the sites is reversed.

Initialization:

1. The client c sends a message to the resource r requesting access.
2. The resource generates reqid and sends the pair (R, reqid) to the resource

site sr (to notify it of an ‘incoming’ search). After sr has acknowledged
receipt of the message, the resource sends reqid to the client.

3. The client contacts the client site sc and asks it to initiate a GPP compu-
tation. Along with the request, it sends reqid and the client certificate as in
Section 6.1.

4. The client site again checks correctness of the client certificate. If correct, sc

begins the search.

Search: The search stage is analogous to the GPS protocol, except that it is
started at the client site and from the set C = {〈Kc,�〉, 〈Kc,�〉}. In brief, a site
s becomes involved in the search if pre∗(C) intersects T (s). Communications
between sites are tagged with both reqid and the client certificate.

Verification: At the end of the search, the resource site (which knows that the
search with id reqid has the target c = 〈Kr,�〉) can determine whether c was
reachable from C and what the value of δ(c) is.

To generate a complete witness dag, sr can request from the sites further
‘downstream’ their regions of the witness dag, and then pass the complete dag
along with the client certificate to the resource, which will verify it and (if
successful) grant access to the client.

As an alternative solution, sr may report to the resource just the certificates
issued by the resource and the combined values of the paths above them. In that
case, no further communication between the sites is necessary.

Example 1. Consider the rules shown below:

r1 := 〈Kr,�〉 ↪→ 〈Kuw, faculty�〉
r2 := 〈Kuw, faculty〉 ↪→ 〈Kls, faculty〉
r3 := 〈Kls, faculty〉 ↪→ 〈Kcs, faculty〉
r4 := 〈Kls, faculty〉 ↪→ 〈Kbio, faculty〉
r5 := 〈Kcs, faculty〉 ↪→ 〈KBob, ε〉

with f(r1) := t and f(ri) := > for 2 ≤ i ≤ 5. We assume that there are four
sites, UW, LS, CS, and BIO. The sitemap fS is as follows: fS(Kr) and fS(Kuw)
are equal to UW, fS(Kls) is equal to LS, fS(Kbio) is equal to BIO, and fS(Kcs)
and fS(KBob) are equal to CS. This example is used as Case 1 in Section 7.1.
Suppose that Bob (at site CS) wants to access resource R (at site UW ). Then,
the site CS starts the search with C = {〈KBob,�〉, 〈KBob,�〉} and discovers,



through r5 and r3, that pre∗(C) intersects T (LS), so site LS gets involved and
notices that (because of r2), site UW must also take part in the search. The
automata computed by CS, LS, and UW are shown in Figure 3; notice that
site Bio does not become involved. At the end of the computation, site UW sees
that 〈Kr,�〉 is accepted by its automaton AUW with weight t, and that is the
result reported to resource R.
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Fig. 3. pre∗ automata for 〈R, �〉 computed at sites CS, LS, and UW ; weights on
transitions shown in parentheses.

6.3 Discussion

Here, we discuss privacy and security-related topics, compare the two protocols,
and discuss possible improvements.

Privacy: During the search, the parties involved learn the following:

– Only the resource and the client know that the client has asked to access the
resource.

– The resource site knows that a request has been made to the resource, but
not by whom.

– The client site knows only that the client has made a request, but not to
whom.

– All other sites know only that a request has been made, but not by whom
or to whom. They may surmise something about the nature of the request
judging from the identifiers on the transitions, the direction from which the
query comes, and the direction from where a confirmation comes, but they
can only observe the communication with their neighbor sites.

Thus, the privacy of the access request is ensured during the search. However,
when the witness dag is constructed during the construction phase, all sites learn
the identity of the client. This can be avoided if the alternative method is used,
in which only the values of certain paths in the dag are transmitted among sites.
This alternative solution also prevents the unnecessary spread of certificates
among sites (which might contain sensitive information).



Security against attacks

Spoofing and eavesdropping. We assume that all parties involved in the search
can communicate securely and that no identification spoofing can take place.

Trusting the sites. Because the main part of the computation is carried out
by the sites, the protocols are potentially susceptible to malicious behavior of
the sites. A malicious site could either invent or ignore certificates. Ignoring
certificates would only be to the detriment of the users for which the site is
responsible, and seems unlikely to be a cause for concern.

Inventing certificates is also not a problem if the verification stage constructs
the full witness dag because in this case all certificates (which are signed by
their issuers) have to be supplied. The alternative solution, in which only values
are reported, is more problematic: in essence, reporting the value of the paths
in a sub-dag rooted at a node (〈K, w〉, d) amounts to issuing a confirmation (in
the name of principal K) that there is a certificate chain from 〈K, w〉 to the
client. Therefore, the alternative solution requires K to trust the site to use K’s
certificates truthfully. Note that if all boundary certificates have subjects that
are under direct control of the respective site operator, this is not a problem.

The client certificate. The resource must verify that the reported result is in-
deed valid for the client who has initiated the request. If the verification stage
constructs full witness dags, this becomes straightforward: the maximal nodes
of the dags must refer to the client.

If the alternative solution is used in the verification, the client certificate
serves this purpose, provided that both resource and client site verify its cor-
rectness.

A comparison of the two protocols In the GPP-based protocol, the search
starts at the client site; in the GPS-based protocol it starts at the resource site.
If a site is responsible for a ‘popular’ resource, the GPS-based protocol may put
too much workload on it. Moreover, denial-of-service attacks are conceivable in
which a malicious client causes a large number of GPS computations (under
different identities) that are doomed to fail. In the GPP-based protocol, this is
less likely to happen: the workload would fall mostly on the client site, which
can be assumed to have a relationship to the client (e.g., the site is the client’s
company, ISP, etc.), and thus there is some ‘social safeguard’ against denial-of-
service attacks.

Moreover, when the construction of complete witness dags is omitted, the
GPP-based solution does not require a separate verification stage. For these
reasons, it seems that the GPP-based solution has some advantages over the
GPS-based solution. However, we have yet to carry out a more precise investi-
gation of this issue.

Possible improvements

Caching results. Notice that the methods we describe do not have to be carried
out every time that a client tries to access a resource. This would only have to
be done for the first contact between a given client and a given resource. If the



outcome is successful, the resource may remember this and grant access without
a full search the next time.

Caching can also be used by the sites: unless a site is the client site or the
resource site for some request, the result of its local search is independent of the
request identifier. Therefore, sites may cache recent results and reuse them when
an identical request (modulo reqid) comes along.

Guided search. In both protocols, the sets pre∗(C)/post∗(C) may intersect the
domains of many sites; therefore, any request could involve many different sites
even if only a few of them are ‘relevant’ for the search. This increases the length
of the computation as well as the amount of network traffic. Thus, the protocol
could be improved by limiting the scope of the search. It is likely that the client
has an idea of why he/she should be allowed to access the resource; therefore,
one possibility would be to let the client and/or the client site suggest a set of
sites that are likely to contain suitable certificates.

Termination. In the distributed GPP/GPS computation, a standard termination-
detection algorithm can be applied to determine that the search has terminated,
which entails additional time and communication overhead. However, even be-
fore the search has terminated, or before all relevant certificate chains have been
found, the client site (in the GPS case) or the resource site (in the GPP case)
may have discovered some paths with a tentative value (which may be ‘larger’ –
with respect to the ordering – than the δ value). If the goal of the search is just
to establish that the δ value is no larger than a certain threshold, then this infor-
mation could be used to terminate the search early. Moreover, the computation
could be limited by a timeout.

7 Implementation

We have implemented a prototype of our distributed certificate-chain-discovery
algorithm. Figure 4 shows how a site is organized. Each SPKI/SDSI site consists
of a SPKI/SDSI server and a WPDS server. The SPKI/SDSI server deals with
SPKI/SDSI certificates and provides the interface for clients to perform requests
for authorization. The WPDS server implements distributed certificate-chain dis-
covery using an algorithm for solving reachability problems in Weighted Push-
down Systems (WPDS). The clients do not interact directly with the WPDS
servers. In a typical authorization-request scenario, a client first initiates the
request by contacting the SPKI/SDSI server (1). The SPKI/SDSI server then
parses the request and sends it to the WPDS server at the same site (2). At this
point, the WPDS server starts the distributed certificate-chain-discovery process
and contacts other WPDS servers (3, 4) as necessary. If a proof of authorization
is found and verified, the client is granted access to the resource; otherwise the
request is denied (5, 6).

7.1 Examples

We illustrate how the system works using three examples. A graph is used to
illustrate the configuration of sites for each example. In each graph, shaded
nodes represents distinct sites of a distributed SPKI/SDSI system, while labels



Fig. 4. Architecture Diagram Inside a Site

represent the cross-boundary SPKI/SDSI certificates. Nodes with a symbol (R)
denote the resource from where SPKI/SDSI auth certs are issued. The dashed
lines denote the certificate chain discovered by our algorithms when Bob requests
access to resource R.

– (Case 1): This case demonstrates the basic idea of distributed certificate-
chain discovery. Let us assume that a university has the hierarchical struc-
ture shown in Figure 5, where each site represents one level of the university.
Site UW denotes the top level of the University of Wisconsin; LS denotes
one of the colleges of UW, i.e., the college of Letters and Sciences; while
CS and BIO represent two departments under LS. Two sites are linked
together if a SPKI/SDSI certificate refers to both sites. For instance, the
site UW has issued two certificates with respect to site LS: the auth cert
Kr �

t−→ Kuw faculty � grants access right t to all Kuw’s faculty; the name
cert Kuw faculty → Kls faculty states that all Kls’s faculty are Kuw’s fac-
ulty. Let us assume that Bob, from CS, requests access to a service R located
at UW. The certificate-chain-discovery process starts from UW and continues
down the hierarchy (LS, then CS) until it reaches CS, where Bob is granted
access rights. Note that each individual site does not have sufficient knowl-
edge to decide the authorization request. Instead, the certificates along the
path must be used together to show that Bob has the required permissions.

– (Case 2) While Case 1 demonstrates the basic idea behind distributed
certificate-chain discovery, Case 2 illustrates the situation where certificates
from multiple paths must be combined to obtain the required authorization
specifications (i.e., access permission). For instance, continuing with the ex-
ample from Case 1, we now add a new joint department BCS, which is
formed from both CS and BIO departments. The new structure is shown in
Figure 6. Furthermore, LS issues two authorization certificates with distinct
authorization specifications t1 and t2, to CS and BIO, respectively. Suppose
that Bob, from BCS, wants to access R with both t1 and t2. This request
cannot be granted if we followed either one of the two possible paths sep-
arately. The WPDS approach solves this issue by combining authorizations
from both paths at BCS, and therefore will grant authorization to Bob.

– (Case 3): The third case, shown in Figure 7, builds on top of the first
two and demonstrates an even more complex environment. This case is con-
structed for two purposes. One, we want to demonstrate the scalability of
the WPDS algorithm. Two, we want to study the performance with respect



to certificate-chain length. We will measure computation time against the
length of chains in Section 7.2.

7.2 Performance Analysis

In this section, we report on the performance of our implementation, using the
examples discussed before. We use response time from the perspective of clients
as the performance metrics. Because we currently do not have the resources to
perform a real-world test, all tests are conducted under a simulated environment:
each site runs on a separate machine on a local area network. Therefore, the tim-
ing results do not reflect network latency in a real distributed environment. All
test machines have 800 MHz Pentium III processors, 256 MB of RAM, running
TAO Linux version 1.0.

For each experiment, we used three different configurations: base, simple,
and complex. For comparison purposes, we also collected performance data for
running certificate-chain discovery in centralized mode (i.e., all the certificates
are stored at a single site), using the complex configuration.

– Base configuration: The base uses only the bare minimum number of
certificates required for the tests (exactly as shown in Figures 5 - 7); the
number of certificates ranges from 6 to 16 certs in these tests. We use the
results from this configuration as the baseline for the other two test cases.

– Simple configuration: In a real-world scenario, each site would have more
certificates. Each simple configuration adds between 60 and 160 certificates
to the base configuration. For each site, we added a number of additional
certificates (for students, staff, etc.), such as Kuw student → Kls student,
and Kcs faculty → KprofA.

– Complex configuration: To measure how the system scales, we also tested
each case using between 760 and 1600 certificates.

Table 1 shows the performance results for the three configurations. As one
might expect, the more certificates there are in the system, the longer it takes
to perform certificate-chain discovery. However, the time it takes to perform
certificate-chain discovery increases at a lower rate compared to the increase in
the number of certificates. The data shows insignificant changes from the base
configuration to the simple configuration; and it shows a very small increase
(about 4% on average) from simple to complex. Figure 8 illustrates this using
data from case 3.6 In addition, Table 1 shows that the performance difference be-
tween running certificate-chain discovery in distributed and in centralized mode
is quite significant. For instance, in Case 3, distributed certificate-chain discov-
ery took more than ten times as long as the centralized version. This is because
in distributed certificate-chain discovery a significant percentage of time (about
80% to 93%) is spent on network-related operations, such as sending and re-
ceiving messages. We expect to be able to reduce some of the network overhead
through optimizations. For example, we can reduce the number of messages
exchanged during certificate-chain discovery by bundling several messages to-

6 Two other cases tested showed similar results and therefore are omitted here.
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gether and sending the bundle using one packet whenever possible. This is part
of planned future work.

Table 1. Performance Results

Time (ms)
Distributed Centralized

Client (Request) Base Simple Complex Complex

Case 1. See Figure 5

Bob ((dir /etc (read))) 661 685 713 54

Case 2. See Figure 6

Bob ((dir /etc (read))) 663 685 716 55

Bob ((dir /etc (write))) 717 730 741 55

Bob ((dir /etc (read write))) 723 736 741 55

Alice ((dir /etc (write))) 668 679 693 53

Case 3. See Figure 7

ManagerA ((fundA apply)) 654 683 664 118

ManagerB ((fundB apply)) 793 769 796 116

Chancellor ((fundA apply)) 979 960 996 107

Bob ((fundA apply)) 1146 1133 1218 110

Bob ((fundB apply)) 1132 1150 1232 115

Performance data from Case 3 also illustrates an area for future work: re-
ducing response time for long certificate chains. Here we define the length of a
certificate chain as the number of distinct sites between the request site and the
resource site. For example, Manager A is of chain length 1 since her site EDU is
only one hop away from the resource site NSF. As illustrated by the ascending
line at the top of Figure 9, the length of the certificate chain has a great impact
on performance: the longer the chain, the longer it takes to service the request.
For comparison purposes, the flat line shows the response time had we central-
ized all the certificates at one location. This time reflects the cost of running the
GPS algorithm at one site, and therefore does not contain any network overhead.
We are currently investigating techniques to improve the average performance
for long certificate chains. For instance, in Section 6.3 we have discussed the
possibility of using caching to reduce the discovery time.
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