An Architecture for Generating Semantics-Aware Signatures

Vinod Yegneswaran, Jonathon T. Giffin, Paul Barford, Somesh Jha

University of Wisconsin {vinod,giffin,pb,jha}@cs.wisc.edu

2005 USENIX Security Symposium

Worldview

Automatic Signature Generation

Specific signatures

Identify only characteristics of attack profiles

General signatures

Match variants of known attack profiles

Related Work

Controlled virus infection

[Kephart & Arnold 1994]

Honeycomb

[Kreibich & Crowcroft 2003]

Autograph

[Kim & Karp 2004]

Earlybird

[Singh et al. 2004]

Polygraph

[Newsome et al. 2005]

- Not aware of application-level protocol semantics
 - Distracted by irrelevant byte sequences

```
\r\nConnection: Keep-Alive\n\r\n
```

- Worm-oriented
- Real-time use

Semantics-Aware Signatures

Application Layer

Transport Layer

Network Layer

Link Layer

Physical Layer

- Aggregate TCP flows
- Canonical encoding of HTTP URLs
- Field weights indicate significance of data
- Defragment IP packets
- Reassemble TCP flows
- Prevent insertion & evasion attacks

Semantics-Aware Signatures

Application Layer

Transport Layer

Network Layer

Link Layer

Physical Layer

- Generate signatures for attacks where the exploit is a small part of entire payload
- Generate contextual connection- and session-level signatures for multi-step attacks
- Produce generalized signatures from small number of training samples
- Produce signatures that are easy to understand & validate

Architecture

Data Collection

- Problem: build signatures only for malicious traffic
- Solution: collect traffic sent to honeynet
 - Routed but unused IPs
 - Legitimate traffic never sent to honeynet
 - Actively respond to HTTP& NetBIOS traffic

[Yegneswaran et al. 2004]

Flow Aggregation

Flow Aggregation & HTTP Semantics

Flow Aggregation & HTTP Semantics

attacker:2492 → honeypot:80

GET /scripts/root.exe?/c+dir

Connection: Close

attacker:2492 ← honeypot:80

404 Object Not Found

Nimda exploiting Code Red backdoor

Flow Aggregation & HTTP Semantics

Session

```
Source IP = "attacker"
Destination IP = "honeynet"
```

Connection

```
Source port = 2492
Destination port = 80
```

Request

weight 1000: Method

weight 1: LaRipts

weight 50: Headerse?

weight 1: /c+dir

weight 0: Connection: close

Response

weight 1:46de #

weight 0: Regisonnot found

Architecture

Clustering

Star clustering algorithm

[Aslam *et al.* 1999]

- Construct similarity graph
 - Connections become nodes
 - Edges between nodes weighted with connection similarity
- Find a star cover comprised of star clusters
- Robust to data ordering
- Algorithm determines number of clusters
- Cosine similarity metric

Connection Clustering

attacker:2492 → honeypot:80

GET_/scripts/root.exe?/c+dir

Cor C1 on: Close

attacker:2492 oneypot:80

404 Object Not Found

attacker:2496 → honeypot:80

GET SADC/root.exe?/c+dir

Cor C2 pn:close

attacker:2496 noneypot:80

403 Access Forbidden

Connection Clustering

attacker:2492 → honeypot:80

GET_/scripts/root.exe?/c+dir

Cor C1 on: Close

attacker:2492 oneypot:80

404 Object Not Found

attacker:2496 → honeypot:80

GET SADC/root.exe?/c+dir

Cor C2 pn:close

attacker:2496 noneypot:80

403 Access Forbidden

Connection Signature

- PFSA generalization
 - Compute probability that each edge is traversed
 - Merge states when probabilistically indistinguishable
 - Add transitionsrepresenting reordering& repetition

Connection Signature

- Subsequence creation
 - Accept any data at points of high variability

Let $A, B \in \Sigma^*$ Let $w, x, y, z \in \Sigma$

Convert signature accepting AwB, AxB, AyB, AzB to A[.*]B

Connection Signature

Experiments

Trained on honeynet data (Two unused /19s)

-HTTP: 2 days 25,587 connections

-NetBIOS: 2 days 38,722 connections

• Detection effectiveness: 99.9%

-Test period: 7 days 2,846,783 connections

- False alarms and misdiagnoses: 0
 - U.Wisc. CSL HTTP production data
 - 19,000 clients 4,400 servers
 - -Test period: 8 hours 194,001 connections

Effective Detection—HTTP

	#	Nemean Detected		Snort (ver 2.1.0)
Signature	Present	Connection	Session	Detected
Options	1172	1172	1160	1171
Nimda	496	496	n/a	495
Propfind	229	229	205	229
Welchia	90	90	90	90
Win Media Player	89	89	89	89
Code Red Retina	4	4	4	0
Kazaa	2	2	2	2

Effective Detection—NetBIOS

		Nemean Detected
Signature	# Present	Connection
Srvsvc	19934	19930
Samr	8743	8741
Epmapper	1263	1258
NvcplDmn	62	61
Deloder	30	30
LovGate	1	0

Balancing Specificity & Generality

Specificity

- Honeynet data collection
- Clustering
- Application-level protocol semanticsawareness

Generality

- Normalization
- PFSA generalization
- Subsequence creation

Questions?

... or send us email:

Vinod Yegneswaran

Jonathon Giffin

Paul Barford

Somesh Jha

vinod@cs.wisc.edu

giffin@cs.wisc.edu

pb@cs.wisc.edu

jha@cs.wisc.edu

Thanks to:

U.Wisc. CSL

Christian Kreibich Fabian Monrose Vern Paxson