
acros. In
Condor,
d most of
nipulate

tect such

is. This
model

e begin
prove its
nificant
it harder

strate how
timized

recision

the

6]
n-
ly
ir
ld-
le
d
te

ne
he
ss-
s-
t
n
-

nd

e
e

job
ily
e
ng
re
Detecting Manipulated Remote Call Streams

Abstract

In the Internet, mobile code is ubiquitous and includes such examples as browser plug-ins, Java applets, and document m
this paper, we address an important vulnerability in mobile code security that exists in remote execution systems such as
Globus, and SETI@Home. These systems schedule user jobs for execution on remote idle machines. However, they sen
their important system calls back to the local machine for execution. Hence, an evil process on the remote machine can ma
a user’s job to send destructive system calls back to the local machine. We have developed techniques to remotely de
manipulation.

Before the job is submitted for remote execution, we construct a model of the user’s binary program using static analys
binary analysis is applicable to commodity remote execution systems and applications. During remote job execution, the
checks all system calls arriving at the local machine. Execution is only allowed to continue while the model remains valid. W
with a finite-state machine model that accepts sequences of system calls and then build optimizations into the model to im
precision and efficiency. We also propose two program transformations, renaming and null call insertion, that have a sig
impact on the precision and efficiency. As a desirable side-effect, these techniques also obfuscate the program, thus making
for the adversary to reverse engineer the code. We have implemented a simulated remote execution environment to demon
optimizations and transformations of the binary program increase the precision and efficiency. In our test programs, unop
models increase run-time by 0.5% or less. At moderate levels of optimization, run-time increases by less than 13% with p
gains reaching 74%.

1 Introduction

Code moves around the Internet in many forms, includ-
ing browser plug-ins, Java applets, document macros,
operating system updates, new device drivers, and
remote execution systems such as Condor [26], Globus
[13,14], SETI@Home [32], and others [1,11,35].
Mobile code traditionally raises two basic trust issues:
will the code imported to my machine perform mali-
cious actions, and will my remotely running code exe-
cute without malicious modification? We are addressing
an important variant of the second case: the safety of my
code that executes remotely and makes frequent service
requests back to my local machine (Figure 1). In this
case, we are concerned that a remotely executing pro-

cess can be subverted to make malicious requests to
local machine.

The popular Condor remote scheduling system [2
is an example of a remote execution environment. Co
dor allows a user to submit a job (program), or possib
many jobs, to Condor to run on idle machines in the
local environment and on machines scattered wor
wide. Condor jobs can execute on any compatib
machine with no special privilege, since the jobs sen
their file-access and other critical system calls to execu
on their home machines. The home or local machi
acts as a remote procedure call (RPC) server for t
remote job, accepting remote call requests and proce
ing each call in the context of the user of the local sy
tem. This type of remote execution, with frequen
interactions between machines, differs from executio
of “mobile agents” [17,30], where the remote job exe
cutes to completion before attempting to contact a
report back to the local machine.

If the remote job is subverted, it can request th
local machine to perform dangerous or destructiv
actions via these system calls. Subverting a remote
is not a new idea and can be done quickly and eas
with the right tools [16,27]. In this paper, we describ
techniques to detect when the remote job is maki
requests that differ from its intended behavior. We a

Jonathon T. Giffin Somesh Jha Barton P. Miller

Computer Sciences Department
University of Wisconsin, Madison

{giffin,jha,bart}@cs.wisc.edu

This work is supported in part by Office of Naval Research grant
N00014-01-1-0708, Department of Energy grants DE-FG02-
93ER25176 and DE-FG02-01ER25510, Lawrence Livermore
National Lab grant B504964, and NSF grant EIA-9870684.

The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes, notwithstanding any copyright
notices affixed thereon.

The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied, of the
above government agencies or the U.S. Government.

of
c-
d
n-
-

l
ng
s.
re-
e.
lse
k

n-
er
e-
he
al
es,
e

ci-

s:

g
e
n-

h-
er
n
C
by
ns
ed

-
he
se
r-

i-
se,
es

it-

ile
e
g

a
nt

to
addressing the issue of the local host’s safety; we are not
protecting the remote job from inappropriate access to
its data nor are we detecting modification of its calcu-
lated result (beyond those which would appear as inap-
propriate remote system calls).

A local machine that accepts calls as valid without
first verifying that the remote job generated the calls
during correct execution is vulnerable to maliciously
generated calls. Conventional authentication methods
using secret data fail in this inherently risky environ-
ment. An attacker knows everything present in the
remote code, including an authentication mechanism or
key, and can manipulate this code at will. Thus,
although the local machine must distrust calls from
remotely executing code, it has little ability to validate
these requests. This vulnerability currently exists in the
thousands of machines worldwide running Condor, Glo-
bus, Java applets, and similar systems. Our techniques
address this deficiency.

Our basic approach to detecting malicious system
call streams is to perform a pre-execution static analysis
of the binary program and construct a model represent-
ing all possible remote call streams the process could
generate. As the process executes remotely, the local
agent operates the model incrementally, ensuring that
any call received remains within the model. Should a
call fall outside the set of expected next calls determined
by the model, we consider the remote process manipu-
lated. Reasonably, a precise model should closely mirror
the execution behavior of the application.

As others have noticed [23,36,37], specification of a
program’s intended behavior can be used for host-based
intrusion detection. Our approach brings four benefits to
these intrusion detection systems:
• Direct operation on binary code.
• Automated construction of specifications.
• Elimination of false alarms.
• Protection against new types of attacks.
We further address an important new source of vulnera-
bilities: request verification when even cryptographic
authentication mechanisms cannot be trusted.

Any program model representing sequences
remote system calls is valid. Previous model constru
tion techniques include human specification [22] an
dynamic analysis. A dynamic analyzer completes trai
ing runs over multiple execution traces to build proba
bility distributions indicating the likelihood of each cal
sequence [12,15,39]. False alarms occur if the traini
runs do not exercise all possible program control flow
Static analysis produces non-probabilistic models rep
senting all control flow paths through an executabl
These models are conservative, producing no fa
alarms [36,37] but potentially accepting an attac
sequence as valid.

Our models are finite-state machines. We use co
trol flow graphs generated from the binary code und
analysis to construct either a non-deterministic finit
state automaton or a push-down automaton to mirror t
flow of control in the executable. Automata are natur
structures to represent sequences of remote call nam
with push-down automata being more precise. W
develop several optimizations to further increase pre
sion while maintaining run-time efficiency.

We evaluate our program models using two metric
precisionandefficiency. Precision measures how tightly
the model fits the application it represents. Improvin
precision reduces the opportunity for an attack to b
accepted as valid by the model. Efficiency rates the ru
time impact of model operation. To evaluate our tec
niques and models, we built a prototype static analyz
and model builder for a simulated remote executio
environment. We read binary programs on SPAR
Solaris machines and produce a model for operation
a simulated local agent. The agent receives notificatio
from the application when system calls are encounter
during execution and operates the model accordingly.

Our models are efficient. Non-deterministic finite
state automaton (NFA) models add 0.5% or less to t
run-times of our test applications. In the less preci
NFA models, optimizations become invaluable. Mode
ate optimization levels improve precision up to 74%
while keeping run-time overheads below 13%. Opt
mized push-down automaton models are more preci
but keep overheads as low as 1%. The precision valu
of these optimized models approach zero, indicating l
tle opportunity for an adversary to begin an attack.

Other strategies have been used to counter mob
code manipulation exploits. Generally orthogonal, on
finds the greatest security level when incorporatin
components of all three areas into a solution.

Replication. A form of the Byzantine agreement
[24], a remote call will be accepted as genuine if
majority of replicated processes executing on differe
machines generate the identical call. Sometimes used

Figure 1: Remote execution with system calls being
executed on home (local) machine.

Local
Agent

Local Host Remote Host

Remote
System Calls

Application
Process

e-
s a
ro-
]
m

e.
ck
ite

,
-

e-
n.

ar-
e

h

An
a
g-
s,
n,

he
in
s
a

ch
les
n
In
k-

ity
to

of
verify the results returned by mobile agents [31], such
techniques appear limited in an environment with fre-
quent system call interactions over a wide network.

Obfuscation. A program can be transformed into
one that is operationally equivalent but more difficult to
analyze [7,8,30,38]. We are applying a variant of such
techniques to improve our ability to construct precise
state machines and hamper an adversary’s ability to
understand the semantics of the program. Even though it
has been popular in recent years to discount obfuscation
based upon Barak et. al. [5], in Section 3.4.2 we discuss
why their theoretical results do not directly apply in our
context.

Sandboxing. Running a program in an environment
where it can do no harm dates back to the early days of
the Multics operating system project [29]. CRISIS, for
example, maintains per-process permissions that limit
system access in WebOS [6]. Our techniques could be
considered a variety of sandboxing, based on strong
analysis of the binary program and construction of a
verifying model to support that analysis.

This paper makes contributions in several areas:
Binary analysis. We target commodity computa-

tional Grid environments where the availability of
source code for analysis cannot be assumed. Further, our
analysis is not restricted to a particular source language,
so our techniques have wide applicability.

Model optimizations. We develop and use tech-
niques to increase the precision of the finite-state
machines we generate, limiting the opportunities for an
attacker to exploit a weakness of the model. In particu-
lar, we reduce the number of spurious control flows in
the generated models withdead automata removal,
automata inlining, the bounded stack model, and the
hybrid model. Argument recoveryreduces opportunities
for exploit. We also present a linear timeε-reduction
algorithm to simplify our non-deterministic state
machines.

Reduced model non-determinism with obfuscatory
benefits. Many different call sites in a program generate
requests with the same name. (All opens, for example.)
Our technique ofcall site renaminggives us a great abil-
ity to reduce the non-determinism of our models by
uniquely naming every call site in the program and
rewriting the executable. We further insertnull calls–
dummy remote system calls–at points of high non-deter-
minism to provide a degree of context sensitivity to the
model. Call site renaming and null call insertion addi-
tionally obfuscate the code and the remote call stream.
With binary rewriting, other obfuscation techniques are
likewise possible.

Context-free language approximations. In general,
the language generated by the execution trace of a pro-

gram is context-free. A push-down automaton–a finit
state machine that includes a run-time stack–define
context-free language. However, such automata are p
hibitively expensive to operate incrementally [36,37
and stack growth potentially consumes all syste
resources. We usestack abstractionsthat over-approxi-
mate a context-free language with a regular languag
Our push-down automata with bounded run-time sta
are less expensive to operate and require fin
resources.

We provide background on the Condor system
remote execution in the computational Grid environ
ment, and security exploits in Section 2. Section 3 pr
sents our analysis techniques in an algorithmic fashio
Experimental results are found in Section 4 and comp
ison to previous work in Section 5. Related work can b
found in Section 6. We conclude in Section 7 wit
descriptions of several areas of continuing work.

2 Threats

Remote execution is becoming a common scenario.
important class of remotely executing jobs require
communication path back to the local machine that ori
inated the job; the job sends its critical system call
such as those for file access or network communicatio
back to the local machine to execute in the context of t
submitting user. This type of remote execution occurs
the Condor distributed scheduling system [26], Globu
computational Grid infrastructure [13,14], and Jav
applets.

The implementation associated with our resear
takes place in the context of Condor. Condor schedu
jobs on hosts both within the originator’s organizatio
and on machines belonging to other organizations.
addition to scheduling these remote jobs, Condor chec
points and migrates the jobs as necessary for reliabil
and performance reasons. It is possible for a given job

Figure 2: Grid environment exploit. A lurker process
attaches to the remote job, inserting code that takes control

the network link.

Local
Agent

Application
Process

Local Host Remote Host

Malicious
Remote Calls

Lurker

te

r
to
di-

a-
e-

e

o

s
e

d

lly
on-
nal
.
r-

e
er-
i-

li-

le
execute, at different times, on several hosts in several
different administrative domains.

Condor is a prevalent execution environment, par-
ticularly for scientific research. For example, in the year
2000, researchers used Condor to solve a 32-year-old
unsolved combinatorial optimization problem called
nug30 [2]. Remote jobs ran on 2510 processors across
the United States and Italy and outside the administra-
tive control of the program’s authors. Furthermore, the
network path between each remote process and its origi-
nating host included public Internet links. A malicious
third party with access to either the execution machines
or network links could have manipulated the originating
machine, as we now detail.

Remote system calls in Condor are simply a variant
of a remote procedure call (RPC). A clientstublibrary is
linked with the application program instead of the stan-
dard system call library. The stub functions within this
library package the parameters to the call into a mes-
sage, send the message over the network to the submit-
ting machine, and await any result. Alocal agenton the
submitting machine services such calls, unpacking the
request, executing the call, and packaging and sending
any result back to the remote machine.

This RPC model exposes the submitting machine to
several vulnerabilities. These vulnerabilities have the
common characteristic that a malicious entity on the
remote machine can control the job, and therefore con-
trol its remote system call stream. This malicious system
call stream could cause a variety of bad things to be
done to the submitting user. The simplest case of a mali-
cious remote host is when the host’s owner (with admin-
istrative privileges) takes control of the remote job.
More complex and harder-to-track cases might be
caused by previous malicious remote jobs. A previously
discovered vulnerability in Condor had this characteris-
tic [27]. When a remote job executes, it is typically run
as a common, low privilege user, such as “nobody.” A
malicious user could submit a job that forks (creates a
new process) and then terminates. The child process
remains running, but it appears to Condor as if the job
has terminated. When a new job is scheduled to run on
that host, the lurking process detects the newly arrived
job and dynamically attaches to the job and takes con-
trol of it. The lurker can then generate malicious remote
calls that will be executed to the detriment of the
machine that originated the innocent job (see Figure 2).

Similar results are possible with less unusual
attacks. If the call stream crosses any network that is not
secure, a machine on the network may impersonate the
application process, generating spoofed calls that may
be treated by the local host as genuine. Imposter applets
have successfully used impersonation attacks against the

servers with whom the original applets communica
[16].

3 Generating Models Using Static Analysis

We start with the binary program that is submitted fo
execution. Before execution, we analyze the program
produce two components: a checking agent and a mo
fied application (see Figure 3). Thechecking agentis a
local agent that incorporates the model of the applic
tion. As the agent receives remote system calls for ex
cution, it first verifies the authenticity of each call by
operating the model. Execution continues only while th
model remains in a valid state. Themodified application
is the original program with its binary code rewritten t
improve model precision while also offering a modicum
of obfuscation. The modified application execute
remotely, transmitting its remote system calls to th
checking agent.

Our various models are finite-state machines:non-
deterministic finite automata(NFA) and push-down
automata(PDA). Each edge of an automaton is labele
with an alphabet symbol–here the identity of a remote
system call. The automaton hasfinal states, or states
where operation of the automaton may successfu
cease. The ordered sequences of symbols on all c
nected sequences of edges from the entry state to a fi
state define thelanguageaccepted by the automaton
For a given application, the language defined by a pe
fect model of the application is precisely all possibl
sequences of remote system calls that could be gen
ated by the program in correct execution with an arb
trary input.

Construction of the automaton modeling the app
cation progresses in three stages:
1. A control flow graph(CFG) is built for each proce-

dure in the binary. Each CFG represents all possib
execution paths in a procedure.

Figure 3: Our static analyzer reads a binary program and
produces a local checking agent and a modified application
that executes remotely. The checking agent incorporates a

model of the application.

Analyzer

Binary
Program

Checking
Agent

Modified
Application

n

er-

on

o-

m
in
b)
e
tes

m-

rate

ng
h

e
f
trol
2. We convert the collection of CFGs into a collectio
of local automata. Each local automaton models
the possible streams of remote system calls gen
ated in a single procedure.

3. We compose these automata at points of functi
calls internal to the application, producing aninter-
procedural automatonmodeling the application as
a whole.

The interprocedural automaton is the model incorp
rated into the checking agent.

Figure 4(a) shows an example C language progra
that writes a string to the standard output. The ma
function translates to the SPARC code in Figure 4(
when compiled. We include the C code solely for th
reader’s ease; the remainder of this section demonstra
analysis of the binary code that a compiler and asse
bler produces from this source program.

3.1 From Binary Code to CFGs
We use a standard tool to read binary code and gene
CFGs. TheExecutable Editing Library(EEL) provides
an abstract interface to parse and edit (rewrite) SPARC
binary executables [25]. EEL builds objects representi
the binary under analysis, including the CFG for eac
procedure and acall graph representing the interproce-
dural calling structure of the program. Nodes of th
CFG, or basic blocks,contain linear sequences o
instructions and edges between blocks represent con

main (int argc, char **argv) {
if (argc > 1) {

write(1,argv[1],10);
line(1);
end(1);

} else {
write(1,“none\n”,6);
close(1);

}
}

line (int fd) {
write(fd, “\n”, 1);

}

end (int fd) {
line(fd);
close(fd);

}

main:
save
cmp %i0, 1
ble L1main
mov 1, %o0
ld [%i1+4], %o1
call write
mov 10, %o2
call line
mov 1, %o0
call end
mov 1, %o0
b L2main
nop

L1main:
sethi %hi(Dnone), %o1
or %o1, %lo(Dnone), %o1
call write
mov 6, %o2
call close
mov 1, %o0

L2main:
ret
restore

(a) (b)

Figure 4: Code Example. (a) This C code writes tostdout a command line argument as text or the string “none\n ” if no
argument is provided. (b) The SPARC assembly code formain . We do not show the assembly code for line or end.

Figure 5: Control Flow Graph for main . Control transfers in
SPARC code have one delay slot. Outgoing edges of each

basic block are labeled with the name of the call in the block.

CFG ENTRY

save
cmp %i0, 1
ble
mov 1, %o0

ld [%i1+4], %o1
call write
mov 10, %o2

call line
mov 1, %o0

call end
mov 1, %o0

b
nop

ret
restore

CFG EXIT

sethi %hi(Dnone), %o1
or %o1, %lo(Dnone), %o1
call write
mov 6, %o2

call close
mov 1, %o0

ε

ε
ε

ε

ε

close

write

write

line

end

of
m-
te.

6).

t
s of
al.
rall

a
-

the

-

w

the
flow; i.e. the possible paths followed at branches.
Figure 5 shows the CFG formain from Figure 4.

3.2 From CFGs to Local Automata
For each procedure, we use its CFG to construct an NFA
representing all possible sequences of calls the proce-
dure can generate. This is a natural translation of the
CFG into an NFA that retains the structure of the CFG
and labels the outgoing edges of each basic block with
the name of the function call in that block, if such a call
exists. Outgoing edges of blocks without a function call
are labeledε. The automaton mirrors the points of con-
trol flow divergence and convergence in the CFG and
the possible streams of calls that may arise when tra-
versing such flow paths.

Formally, we convert each control flow graph
into an NFA given by ,Q

being the set of states,Σ the input alphabet,δ the transi-
tion relation,q0 the unique entry state, andF the set of
accepting states; where:

To reduce space requirements, each NFA isε-
reduced and minimized. The classicalε-reduction algo-
rithm simultaneously determinizes the automaton, an
exponential process [19]. We develop a linear timeε-
reduction algorithm, shown below, thatdoes not deter-
minize the automaton. The algorithm recognizes that a

set of states in a strongly connected component made
ε-edges are reachable from one another without consu
ing an input symbol and collapses them to a single sta

The resultant graph is the reduced automaton (Figure
Using standard algorithms and data structures, ourε-
reduction procedure runs in linear time.

Automaton minimization recognizes equivalen
states, where equivalence indicates that all sequence
symbols accepted following the states are identic
Such states are collapsed together, reducing the ove
size and complexity of the automaton. AnO(n log n)
algorithm exists to minimize deterministic automat
[18], but it is not easily abstracted to an NFA. Our proto
type uses anO(n2) version of the algorithm suitable for
an NFA.

Figure 6: Local Automata. The local automata for each of
the three functions given in Figure 4 afterε-reduction.

is the unique CFG entry

line end

main

line

close

writeline

close

write

write

end

G V E,〈 〉= A Q Σ δ q0 F, , , ,()=

Q V=
Σ ID v V∈ v contains a call labeled ID,∃{ }=

q0 v0=

F v v is a CFG exit{ }=

δ
s t

ε
if no call ats→

s t
ID

if call labeled ID ats→

s t E∈→
∪=

Figure 7: Final NFA Model. The automaton produced
following call site replacement.ε-reduction has not been

performed. The dotted line represents a path not present in
original program but accepted by the model.

1. Abstract the automaton to a directed graph.
2. Using only ε-edges, calculate thestrongly con-

nected components of the graph.
3. All states in the same strongly connected compo

nent may reach any other by a sequence ofε-transi-
tions, so the states are collapsed together. We no
have adirected acyclic graph(DAG) over the col-
lapsed states, with the remainingε-edges those that
connect strongly connected components.

4. For all non-ε-edgese originating at a staten in the
DAG, add copies ofe originating from all statesm
such thatm reaches n by a sequence ofε-edges.

5. Remove theε-edges that connect strongly con-
nected components.

6. Remove unreachable states and edges from
graph.

line end

main

close

write

close

write

write

ε

εε

ε
ε

ε

k,
ess

n
ra-
the

ges
ra-
A

ot

ing

is

o
el

-
l

3.3 From Local Automata to an Interprocedural
Automaton
Constructing an Interprocedural NFA. We extend the
notion of a single procedure NFA model to a model of
the entire application. The local automata are composed
to form one global NFA bycall site replacement. We
replace every edge representing a procedure call with
control flow through the automaton modeling the callee,
a common technique used elsewhere to construct system
dependence graphs [20] and also used by Wagner and
Dean in their work [36,37].

Where there was an edge representing a called function,
control now flows through the model of that function.
Recursion is handled just as any other function call. Call
site replacement reintroducesε-edges, so the automaton
is reduced as before. Figure 7 presents the final automa-
ton, withoutε-reduction for clarity.

There is no replication of automata. Call site
replacement links multiple call sites to the same proce-
dure to thesamelocal automaton. Every final state of
the called automaton hasε-edges returning to all call
sites.Impossible pathsexist: control flow may enter the
automaton from one call site but return on anε-edge to
another (Figure 7). Such behavior is impossible in actual
program execution, but a malicious user manipulating
the executing program may use such edges in the model
as an exploit. In applications with thousands of proce-
dures and thousands more call sites, such imprecision
must be addressed.

Constructing an Interprocedural PDA. Introduction
of impossible paths is a classical program analysis prob-
lem arising fromcontext insensitiveanalysis (see e.g.
[28]). A push-down automaton eliminates impossible
paths by additionally modeling the state of the applica-
tion’s run-time stack. An executing application cannot
follow an impossible path because the return site loca-
tion is stored on its run-time stack. A PDA iscontext
sensitive, including a model of the stack to precisely
mirror the state of the running application.

This is an interprocedural change. We construct
local automata as before. Theε-edges added during call
site replacement, though, now contain an identifier
uniquely specifying each call edge’s return state
(Figure 8). Eachε-edge linking the source of a function
call edge to the entry state of the called automaton

pushes the return state identifier onto the PDA stac
just as the executing program pushes the return addr
onto the run-time stack. Theε-edges returning control
flow from the callee pop the identifier from the PDA
stack, mirroring the application’s pop of the retur
address from its run-time stack. Such a pop edge is t
versed only when the identifier on the edge matches
symbol at the top of the stack. The identifiers on theε-
edges define matched sets of edges. Only return ed
that correspond to a particular entry edge may be t
versed when exiting the called automaton. Since a PD
tracks this calling context, impossible paths cann
exist.

We link local automata using modified call site
replacement:

Formally, let the interprocedural PDA be
, whereQ is the set of states,Σ

is the input alphabet,Γ is the stack alphabet,δ is the
transition relation,q0 is the unique entry state,Z0 is the
initial stack configuration, andF is the set of accepting
states. Given local NFA models

1. Add anε-edge from the source state of the call
edge to the entry state of the called automaton.

2. Add ε-edges from every final state of the called
automaton back to the destination state of the call
edge.

3. Remove the original call edge.

Figure 8: PDA Model. Theε-edges into and out of a called
automaton are paired so that only a return edge correspond

to the edge traversed at call initiation can be followed.

1. Uniquely mark each local automaton state that
the target of a non-system call edge.

For each non-system call edge, do steps 2, 3, and 4:
2. Add anε-edge from the source state of the edge t

the entry state of the destination automaton. Lab
theε-edge withpush X, whereX is the identifier at
the target of the call edge.

3. Add anε-edge from each final state of the destina
tion automaton to the target of the call edge. Labe
eachε-edge withpop X, whereX is the identifier
from step 2.

4. Delete the original call edge.

line end

main

close

write

close

write

write

ε

εε

εε

ε

B

A C

pop B

pop A pop C

push B

push Cpush A

P Q Σ Γ δ q0 Z0 F, , , , , ,()=

Ai Qi Σi δi q0 i, Fi, , , ,()=

on

s.
all
y

he

o
a
ion

e
m

at
he
ss
ible
lly
es

-
ne
a
-
l

t
ay

en
un-
-
ted
ly
lar

w

ys

e
re

e
r-
for the procedures, the PDAP for the program is given
by:

The initially executed automaton, here denoted byA0, is
that modeling the function to which the operating sys-
tem first transfers control, e.g._start or main .

Unfortunately, a PDA is not a viable model in an
operational setting. In a straightforward operation of the
automaton, the run-time stack may grow until it con-
sumes all system resources. In particular, the stack size
is infinite in the presence of left recursion. To counter
left recursion challenges, Wagner and Dean operate the
PDA with an algorithm similar to thepost* algorithm
used in the context of model checking of push-down
systems [10]. They demonstrate the algorithm to be pro-
hibitively expensive [36,37]. Addressing imprecision
requires a more reasonable approach.

3.4 Optimizations to Address Sources of Impre-
cision
Imprecisions in the models arise from impossible paths,
context insensitive analysis, and malicious argument
manipulation. We develop several optimizations that tar-
get these particular sources of imprecision while main-
taining efficiency.

3.4.1 Impossible Paths

Discarding push-down automata as not viable requires
impossible paths to be readdressed. Impossible paths
arise at the final states of automata that are spliced into
multiple call sites. Theε-return edges introduce diver-
gent control flow where no such divergence exists in the
application. We have developed several NFA model

optimizations to reduce the effect of return edges up
the paths in the model.

Dead Automata Removal. A leaf automatonis a
local automaton that contains no function call edge
Any leaf automaton that contains no remote system c
edges is dead–it models no control flow of interest. An
other local automaton that contains a call edge to t
dead leaf may replace that call edge with anε-edge. This
continues, recursively, backward up the call chain. T
eliminate impossible paths introduced by linking to
dead automaton, we insert this dependency calculat
step prior to call site replacement.

Automata Inlining. Recall that in call site replace-
ment, all calls to the same function are linked to th
same local automaton. Borrowing a suitable phrase fro
compilers, we useautomata inliningto replace each call
site with a splice to auniquecopy of the called automa-
ton. Impossible paths are removed from this call site
the expense of a larger global automaton. In theory, t
global automaton may actually be smaller and le
dense because false edges introduced by imposs
paths will not be present, however we have genera
found that the state space of the automaton do
increase significantly in practice.

Single-Edge Replacement. An inlining special case,
single-edge replacement is a lightweight inlining tech
nique used when the called automaton has exactly o
edge. The function call edge is simply replaced with
copy of the edge in the callee. This is inexpensive inlin
ing, for no states norε-edges are added, yet the mode
realizes inlining gains.

Bounded Stack Model. Revisiting the idea of a PDA
model, we find that both the problems of infinite lef
recursion and, more generally, unbounded stacks m
be solved simply by limiting the maximum size of the
run-time stack. For someN, we model only the topN
elements of the stack; all pop edges are traversed wh
the stack becomes empty. The state space of the r
time automaton is now finite, requiring only finite mem
ory resources. Correspondingly, the language accep
by the bounded-stack PDA is regular, but more close
approximates a context-free language than a regu
NFA.

Unfortunately, a bounded stack introduces a ne
problem at points of left recursion. Any recursion
deeper than the maximum height of the stack destro
all context sensitivity: the stack first fills with only the
recursive symbol; then, unwinding recursion clears th
stack. All stack symbols prior to entering recursion a
lost.

Hybrid Model. This recursion effect seems to be th
opposite of what is desired. For many programs, recu
sion typically involves a minority of its functions. We

of the initially executed automaton

 are the final states of the initially executed
automaton

, for a a
remote call

, wherea
is a procedure call with andr is identi-
fied byID

, wherea
is a procedure call with andp is identi-
fied byID

Q Qi
i

∪=

Σ Σi
i

∪=

Γ ID ID is the destination identifier of a call edge{ }=

q0 v0=

Z0 ∅=

F F0=

δ q a ε, ,() p ε,() if i s.t. q∃ p
a δi∈→=

δ q ε ε, ,() p ID,() if i r s.t. q,∃ r
a δi∈→=

p q0 a,=

δ q ε ID, ,() p ε,() if i r s.t. r,∃ p
a δi∈→=

q Fa∈

e
r-
he
n-
e
u-
h

ls
f
t
et,
s.
e

are
ed

ss
tic
n-
i-
y
e
er
ay
a

ds
h

x-
a
y
”,
he
he
o
r
re-
lly
n.
er
y
al
or-
lts
r

he
he
u-
consider that it may be more precise to discard recursive
symbols rather than symbols prior to entering recursion.
Our hybrid model uses both NFA and PDA edges during
interprocedural construction to accomplish this. Call site
replacement uses simpleε-edges when the procedure
call is on a recursive cycle. A stack symbol is used only
when a call is not recursive. Recursion then adds no
symbols to the PDA stack, leaving the previous context
sensitivity intact. As in the bounded-stack PDA, the
hybrid automaton defines a regular language that over-
approximates the context-free grammar accepted by a
true PDA.

3.4.2 Context Insensitivity

Regardless of the technique used to construct the inter-
procedural model, the analysis basis for all local models
is context insensitive. We take all control flow paths as
equally likely irrespective of the previous execution flow
and do not evaluate predicates at points of divergence.
This straightforward analysis leads to a degree of non-
determinism in the local automata that we seek to
reduce. Reducing non-determinism decreases the size of
the frontier of possible current states in the automaton at
run-time. There are, in turn, fewer outgoing edges from
the frontier, improving efficiency and precision.

Renaming. During program analysis, every remote
call site is assigned a randomly generated name. We
produce a stub function with this random name that
behaves as the original call and rewrite the binary pro-
gram so that the randomly named function is called.
That is, rather than calling a remote system call stub
named, say,write , the call is to a stub named_3998 . We
are essentially passing all call site names through a one-
time encryption function. The key is stored at the check-
ing agent (on the submitting machine), which translates
the random name back to the original call name before
execution.

All call sites are thus differentiated. Two separat
calls to the same function now appear as calls to diffe
ent functions. The random names label edges in t
automaton and serve as the input symbol at model ru
time. Renaming reduces non-determinism, for th
model knows precisely where the program is in exec
tion after every received call. Comparing Figure 9 wit
Figure 6, we see that the automaton formain becomes
fully deterministic with renamed call sites.

This is an alphabet change, moving from symbo
indicating call names to the potentially larger set o
symbols defining individual call sites. An attacker mus
specify attacks given this randomly generated alphab
thus requiring analysis to recover the transformation
Further, only remote calls that are actually used in th
program may be used in an attack. Renamed calls
generated from call sites, blocking from use any unus
remote call stub still linked into the application.

Call site renaming produces equivalent but le
human-readable program text, acting as a simplis
obfuscation technique [8]. The checking agent mai
tains the transformations; recovery by a malicious ind
vidual requires program analysis to indicate likel
remote call names given the context of the call in th
program. Since we can rewrite the binary code, furth
obfuscation techniques are applicable: arguments m
be reordered and mixed with dummy arguments on
per-call-site basis, for example. More general metho
to obscure control flow are similarly possible, althoug
we have not pursued such techniques.

A recent paper by Barak et. al. presents a comple
ity-theoretic argument that proves the impossibility of
specific class of obfuscating transformations [5]. The
define an obfuscated program as a “virtual black box
i.e., any property that can be computed by analyzing t
obfuscated program can also be computed from t
input-output behavior of the program. In contrast t
their work, we require that it is computationally hard fo
an adversary to recover the original system calls cor
sponding to the renamed calls, i.e., it is computationa
hard for the adversary to invert the renaming functio
Hence, our obfuscation requirement is much weak
than the “virtual blackbox” requirement imposed b
Barak et. al. However, we are not claiming theoretic
guarantees of the strength of our obfuscation transf
mation but merely observing that the theoretical resu
presented by Barak et. al. do not directly apply in ou
context.

Null calls. Insertion of null calls–dummy remote
system calls that translate to null operations at t
checking agent–provides similar effects. We place t
calls within the application so that each provides exec

Figure 9: The automaton for main after call site renaming.
Edges labeled with function calls internal to the application
are not renamed, as these edges are splice points for call site

replacement.

main

line

_297

_154
_3998

end

s

ce.
r-

n.
e
if
ng
ta-

te
de
te
ect
rd
-

-
.

g
s.

l
his
ve
nt
d
d
-

ps

ad
l-
he
g

tion context to the checking agent, again reducing non-
determinism.

For example, null calls may be placed immediately
following each call site of a frequently called function.
Recall that we introduce impossible paths during call
site replacement, and specifically where we link the final
states of a local automaton to the function call return
states. Inserting the null calls at the function call return
sites distinguishes the return locations. Only the true
return path will be followed because only the symbol
corresponding to the null call at the true return site will
be transmitted. The other impossible paths exiting from
the called automaton are broken.

There is a run-time element to renaming and null
call insertion. While reducing non-determinism, the
possible paths through the automaton remain unchanged
(although they are labeled differently). To an attacker
with knowledge of the transformations, the available
attacks in a transformed automaton are equivalent to
those in the original,provided the attacker takes control
of the call stream before any remote calls occur. An
attacker who assumes control after one or more remote
callswill be restricted because operation of the model to
that point will have been more precise.

3.4.3 Argument Manipulation

A remote system call exists within a calling context that
influences the degree of manipulation available to a
malicious process. For example, at a call site toopen , a
malicious process could alter the name of the file passed
as the first argument to the call. A model that checks
only the names of calls in the call stream would accept
the open call as valid even though it has been mali-
ciously altered. The context of the open call, however,
may present additional evidence to the checking agent
that enables such argument modifications to be detected
or prevented.

Argument Recovery. As local automata are con-
structed, we recover all statically determined arguments
by backward slicing on the SPARC argument registers.
In backward register slicing, we iterate through the pre-
vious instructions that affect a given register value [34].
Essentially, we are finding the instructions that comprise
an expression tree. We simulate the instructions in soft-
ware to recover the result, used here as an argument to a
call. We successfully recover numeric arguments known
statically and strings resident in the data space of the
application. The checking agent stores all recovered
arguments so that they are unavailable for manipulation.

In Figure 10, the backward slice of register%o1 at
the point of the second call towrite in function main

iterates through the two instructions that affect the value
of %o1. Only the emphasized instructions are inspected;

instructions that do not affect the value%o1are ignored.
In this case,Dnone is a static memory location indicating
where in the data space the string for “none\n ” resides.
We recover the string by first simulating the instruction
sethi and or in software to compute the memory
address and then reading the string from the data spa

A similar analysis is used to determine possible ta
gets of indirect calls. Every indirect call site is linked to
every function in the program that has its address take
We identify such functions by slicing backward on th
register written at every program point to determine
the value written is an entry address. Our register slici
is intraprocedural, making this a reasonable compu
tion.

3.5 Unresolved Issues
Dynamic Linking. A dynamically linked application
loads shared object code available on the remo
machine into its own address space. Although this co
is non-local, we can fairly assume that the remo
machine provides standard libraries to ensure corr
execution of remote jobs. Analysis of the local standa
libraries would then provide accurate models of dynam
ically linked functions.

Although straightforward, we have not yet imple
mented support for dynamically linked applications
Some libraries on Solaris 8, such aslibnsl.so , use
indirect calls extensively. As we improve our handlin
of indirect calls, we expect to handle these application

Signal Handling. During execution, receipt of a sig-
nal will cause control flow to jump in and out of a signa
handler regardless of the previous execution state. T
entry and exit is undetectable to the checking agent sa
the alarms it may generate. As we already instrume
the binary, we expect to insert null calls at the entry an
exit points of all signal handlers to act as out-of-ban
notifications of signal handler activity. These instrumen
tations have not yet been implemented.

Multithreading. Both kernel and user level thread
swaps are invisible to the checking agent; thread swa
will likely cause the run-time model to fail, and this
remains an area for future research. User level thre
scheduling would allow instrumentation of the schedu
ing routines so that the checking agent could swap to t
corresponding model for the thread. A kernel schedulin

Figure 10: Register Slicing. We iterate backwards through
the instructions that modify register%o1 prior to the call site.

sethi %hi(Dnone), %o1

call write

or %o1, %lo(Dnone), %o1

a-

nt
0
a
all
in
ly
or

y

s

s
ds
lt
e

or

as

the
ore
sis
to
d
e

the

nd
.
is
e
a

n

on

-
ing
er
he
al
the
at
monitor would require kernel modifications and is cur-
rently not under consideration.

Interpreted Languages. Programs written in lan-
guages such as SML [3] and Java are compiled into an
intermediate form rather than to native binary code. To
execute the program, a native-code run-time interpreter
reads this intermediate representation as data and exe-
cutes specific binary code segments based upon this
input. Binary code analysis will build a model of the
interpreter that accepts all sequences of remote calls that
could be generated byanycompiled program. A precise
model for a specific application can be built either with
knowledge of the intermediate representation and the
way it is interpreted by the run-time component or by
partial evaluation of the interpreter [21]. However, if the
program is compiled into native code before execution,
as is common in many Java virtual machine implemen-
tations [33], our techniques could again be used to con-
struct program-specific models of execution.

4 Experimental Results

We evaluate our techniques using two criteria:precision
andefficiency. A precise model is one that incorporates
all sequences of calls that may be generated by an appli-
cation but few or no sequences that cannot. An efficient
model is one that adds only a small run-time overhead.
Only efficient models will be deployed, and only precise
models are of security interest.

This section looks first at a prototype tool we used
to evaluate our techniques and models. We examine
metrics that measure precision and propose a method to
identify unsafe states in an automaton. Our tests show
that although null call insertion markedly improves the
precision of our models, care must be used so that the
additional calls do not overwhelm the network. We
finally examine optimizations, including renaming,
argument recovery, and stack abstractions that improve
the quality of our models.

4.1 Experimental Setup
We implemented an analyzer and a run-time monitor for
a simulated remote execution environment to test the
precision and efficiency of our automaton models. The
analyzer examines the submitted binary program and
outputs an automaton and a modified binary. The autom-
aton is read and operated by a stand-alone process, the
monitor, that acts as the checking local agent, communi-
cating with the modified program using message-pass-
ing inter-process communication. The monitor is not an
RPC server and only verifies that the system call
encountered by the program is accepted by the model. If
the monitor successfully updates the automaton, the

original system call proceeds in the rewritten applic
tion.

Our analyzer and simulated execution environme
run on a Sun Ultra 10 440 Mhz workstation with 64
Mb of RAM running Solaris 8. To simulate a wide-are
network, we add a delay per received remote system c
equivalent to the round trip time between a computer
Madison, Wisconsin and a computer in Bologna, Ita
(127 ms). We do not include a delay for data transfer, f
we do not statically know what volume of data will be
transferred. Null calls require no reply, so the dela
added per null call is the average time to callsend with a
20 byte buffer argument (13µs). During evaluation, the
collection of Solaris libc kernel trap wrapper function
defines our set of remote system calls.

We present the analysis results for six test program
(see Table 1 for program descriptions and workloa
and Table 2 for statistics). All workloads used defau
program options; we specified no command lin
switches.

As we have not implemented general support f
dynamically linked functions, we statically link all pro-
grams. However, several network libraries, such
libresolv.so , can only be dynamically linked on
Solaris machines. We analyze these libraries using
same techniques as for an application program, but st
the generated automata for later use. When our analy
of a program such as procmail or finger reveals a call
a dynamically linked function, we read in the store
local automaton and continue. We currently ignore th
indirect calls in dynamically linked library functions
unless the monitor generates an error at run-time at
indirect call location.

4.2 Metrics to Measure Precision and Efficiency
We wish to analyze both the precision of our models a
the efficiency with which the monitor may operate them
Precision dictates the degree to which an adversary
limited in their attacks, and thus the usefulness of th
model as a counter-measure. Efficient operation is
requirement for deployment in real remote executio
environments.

For comparison, we measure automaton precisi
using Wagner and Dean’sdynamic average branching
factormetric [36,37]. This metric first partitions the sys
tem calls into two sets, dangerous and safe. Then, dur
application execution and model operation, the numb
of dangerous calls that would next be accepted by t
model is counted following each operation. The tot
count is averaged over the number of operations on
model. Smaller numbers are favorable and indicate th
an adversary has a small opportunity for exploit.

ad
ing
ll

on-
cy

s.
at

er
e

f
te-
f

g
s

jha,”

jha,”

lude

%

Our efficiency measurements are straightforward.
Using the UNIX utility time , we measure each applica-
tion’s execution time in the simulated environment with-
out operating any model. This is a baseline measure
indicating delay due to simulated network transit over-
head, equivalent to a remote execution environment’s
run-time conditions. We then turn on checking and vari-
ous optimizations to measure the overhead introduced
by our checking agent. We find the NFA model efficient
to operate but the bounded PDA disappointingly slow.
However, the extra precision gained from inclusion of
null calls into the bounded PDA model dramatically
improves efficiency.

4.3 The NFA Model
We evaluate the models of the six test programs with
respect to precision and efficiency. Our baseline ana-

lyzer includes renaming, argument recovery, de
automaton removal, and single-edge replacement. Us
the NFA model, we compare the results of several nu
call placement strategies against this baseline and c
sider the trade-off between performance and efficien
due to the null call insertion.

We use four different null call placement strategie
First, no calls are inserted. Second, calls are inserted
the entry point of every function with afan-in of 10 or
more–that is, the functions called by 10 or more oth
functions in the application. Third, we insert calls at th
entry point of every function with a fan-in of 5 or
greater. Fourth, we instrument functions with a fan-in o
2 or more. We have tried three other placement stra
gies but found they occasionally introduced a glut o
null calls that would overwhelm the network: addin
calls to all functions on recursive cycles; to all function

Program Description Workload

entropy Calculates the conditional probabilities of packet
header fields from tcpdump data.

Compute one conditional probability from 100,000
data records.

random1 Generates a randomized sequence of numbers from
three seed values.

Randomize the numbers 1-999.

gzip Compresses and decompresses files. Compress a single 13 Mb text file.

GNU finger Displays information about the users of a computer. Display information for three users, “bart,” “
and “giffin.”

finger Displays information about the users of a computer. Display information for three users, “bart,” “
and “giffin.”

procmail Processes incoming mail messages. Process a single incoming message.

Table 1: Test program descriptions and test workloads.

Program
Source

Language
Lines of Code

(Source)
Compiler

Number of Func-
tions (Binary)

Instructions
(Binary)

entropy C 1,047 gcc 868 58,141

random1 Fortran 172 f90 1,232 133,632

gzip C 8,163 gcc 883 56,686

GNU finger C 9,504 cc 1,469 95,534

finger C 2,456 gcc 1,370 90,486

procmail C 10,717 cc 1,551 107,167

Table 2: Test programs statistics.Source code line counts do not include library code. Statistics for the binary programs inc
code in statically linked libraries.

Program No model
No null
calls

% increase
Null calls
fan-in 10

% increase
Null calls
fan-in 5

% increase
Null calls
fan-in 2

% increase

entropy 208.33 208.48 0.1 % 208.50 0.1 % 208.41 0.0 % 287.27 37.9

gzip 81.49 81.61 0.1 % 82.16 0.8 % 82.26 0.9 % 675.47 728.9 %

random1 9.68 9.69 0.1 % 10.80 11.5 % 10.92 12.8 % 10.68 10.4 %

GNU finger 55.22 55.30 0.1 % 55.46 0.4 % 56.23 1.8 % 55.50 0.5 %

finger 30.23 30.25 0.1 % 30.28 0.2 % 32.59 7.8 % 33.72 11.5 %

procmail 20.90 21.00 0.5 % 21.04 0.7 % 21.08 0.9 % 21.00 0.5 %

Table 3: NFA run-time overheads. Absolute overheads indicate execution time in seconds.

.
r-

of

e

n

n

th
g
in

ct
nd
d

g,
did
y
d
d

al
e

v-
e
tor

ent
th
ci-
g
-

u-
g

on
whose modeling automaton’s entry state is also a final
state, ensuring every call chain generates at least one
symbol; and to functions with fan-in of 1 or more. As
we expected, this sequence of greater instrumentation
increases the precision and quality of the automata
while negatively impacting performance as the extra
calls require additional network activity. More gener-
ally, the problem of selecting good null call insertion
points is similar to that of selecting optimal locations to
insert functions for program tracing, a topic of previous
research [4]. We will investigate the use of such selec-
tion algorithms for our future implementations.

We found that null call insertion dramatically
improved precision. Figure 11 shows the dynamic aver-
age branching factor for the six test programs at each of
the null call placement strategies. Instrumenting at the
maximum level improves precision over non-instru-
mented models by an order of magnitude or more. Even
though null call insertion adds edges to the local autom-
ata, we observe that the number of edges in the final
automaton are usually significantly lower, indicating
that call site replacement introduces fewer impossible
paths. The edge count in procmail’s model drops by an
order of magnitude even though the state count
increases modestly. We believe these results demon-
strate the great potential of introducing null calls.

Although unfortunate, null call insertion has the
expected detrimental effect on application run-times.
Each null call encountered during execution drops
another call onto the network for relay to the checking
agent. The application need not wait for a response, but
each call is still an expensive kernel trap and adds to net-
work traffic. Table 3 shows the additional execution

time resulting from operation of models with null calls
Table 4 lists the bandwidth requirements of each inse
tion level for null calls that each consume 100 bytes
bandwidth.

We make two primary observations from thes
results. First,our NFA model is incredibly efficient to
operate at run-time when no null calls have bee
inserted. Second,inserting null calls in functions with
fan-in 5 or greater is a good balance between precisio
gain and additional overhead in our six test programs.
Unfortunately, two programs require moderate bandwi
at this instrumentation level. We believe the varyin
bandwidth needs among our test programs are due
part to our naive null call insertion strategies. We expe
that an algorithm such as that developed by Ball a
Larus [4] will reduce bandwidth requirements an
improve consistency among a collection of programs.

4.4 Effects of Optimizations
We analyzed procmail further to evaluate renamin
argument recovery, and our stack abstractions. We
not analyze automaton inlining here, for it surprisingl
proved to be an inefficient optimization. Inlining adde
significant overhead to model construction but delivere
little gain in precision. Similarly, we found the run-time
characteristics of the hybrid model to be nearly identic
to those of the bounded PDA. We will not examin
inlining or the hybrid model in any greater detail.

To see the effects of renaming and argument reco
ery, we selectively turned off these optimizations. Th
graph in Figure 12 measures average branching fac
dependent on use of call site renaming and of argum
recovery in the program procmail. As we expected, bo
renaming and argument recovery reduced the impre
sion in the model. The reduction produced by renamin
is solely due to the reduction in non-determinism. Argu
ment recovery reduces imprecision by removing arg
ments from manipulation by an adversary. Renamin
and argument recovery together reduce imprecisi
more than either optimization alone.

Figure 11: NFA precision.Models included all baseline
optimizations.

entropy
gzip

random1

GNU finger

finger
procmail

0

2

4

6

8

10

12
A

ve
ra

ge
 B

ra
nc

hi
ng

 F
ac

to
r

NFA Precision

No null calls
Null calls in functions with fan-in >= 10
Null calls in functions with fan-in >= 5
Null calls in functions with fan-in >= 2

* Value < 0.001

* * *

Program
Null calls
fan-in 10

Null calls
fan-in 5

Null calls
fan-in 2

entropy 0.0 0.0 1198.3
gzip 3.9 9.3 4350.5
random1 223.9 296.6 314.8

GNU finger 0.9 8.3 12.9

finger 0.8 144.0 270.9

procmail 4.1 12.6 17.7

Table 4: Null call bandwidth requirements, in Kbps. The
programs used NFA models with baseline optimizations.

e

h-
r-

m

ls.
or
e
s a
a

ear
fe

ck

ily
tic

r
ly.

d

:
-

el
ns
un-
-

an

nd
rk
l,

,
t.

-
inst
g,
he
ry.
ce-
nt
nd

ars
At first glance, it may seem counter-intuitive that
argument recovery should reduce imprecision to a
greater degree than renaming. Argument recovery is,
after all, a subset of renaming; static arguments distin-
guish the call site. However, an attacker cannot manipu-
late a recovered argument, so system calls that were
dangerous with unknown arguments become of no
threat with argument recovery.

We analyzed the bounded PDA model for procmail
with stack bounds from 0 to 10. Figure 13 shows the
average branching factors of our PDA at varying levels
of null call instrumentation and bounded stack depth.
Figures 14 and 15 show the run-time overheads of these
models at two different time scales.

Null call insertion has a surprising effect on opera-
tion of the bounded stack models. The added precision
of the null calls actually decreases run-time overheads.
We were surprised to discover cases wherethe bounded-
stack PDA with null call instrumentation was nearly as
efficient to operate as an NFA model, but at a higher
level of precision. Observe that higher levels of null call
instrumentation actually reduce the execution times, as
operation of the models becomes more precise.

Increasing the stack size produces a similar effect.
The plots for instrumentation in functions with fan-in of
5 in Figure 14 and in functions with fan-in of 10 in
Figure 15 show a common pattern. Up until a stack
bound of size 6, the model’s efficiency improves. More
execution context is retained, so fewer paths in the
model are possible. As the state grows past a bound of 6,
the cost of increased state begins to dominate. Finding

this transition value is an important area for futur
research.

4.5 Discussion on Metrics
Measuring precision with the dynamic average branc
ing factor metric ignores several important conside
ations:
1. An attack likely consists of a sequence of syste

calls and is not a single call in isolation. A call may
be dangerous only when combined with other cal

2. The attacker could steer execution through one
more “safe” system calls to reach a portion of th
model that accepts an attack sequence. Perhap
typical run of the program does not reach this are
of the model, so the dangerous edges do not app
in the dynamic average branching factor. Such sa
edges should not cover the potential for an atta
downstream in the remote call sequence.

We do not see any obvious dynamic metric that eas
overcomes these objections. The straightforward sta
analogue to dynamic average branching factor isstatic
average branching factor, the same count averaged ove
the entire automaton with all states weighted equal
The prior complaints remain unsatisfied.

We propose a metric that combines static an
dynamic measurements. Ouraverage adversarial
opportunitymetric requires two stages of computation
first, the automaton modeling the application is com
posed with a set of attack automata to identify all mod
states with attack potential; then, the monitor maintai
a count of the dangerous states encountered during r
time. “Attack potential” indicates a known attack is pos
sible beginning at the current state orat a state reach-
able from it. We are locating those positions in the
model where an adversary could successfully insert
attack and counting visits to those states at run-time.

5 Comparison with Existing Work

We measured dynamic average branching factor a
execution overhead for comparison with the earlier wo
of Wagner and Dean. We compare only the NFA mode
as it is the only model our work has in common with
their own. They analyzed four programs; two of them
procmail and finger intersect our own experimental se
Although we do not know what version of finger Wag
ner and Dean used, we compared their numbers aga
our analysis of GNU finger. We used call site renamin
argument recovery, and single-edge replacement. T
results for Wagner and Dean include argument recove
(They have no analogue to renaming or edge repla
ment). On the two programs, we observed a significa
discrepancy between their reported precision values a
those we could generate. Upon investigation, it appe

Figure 12: Precision improvements with renamed call sites
and argument recovery.

None
Rename

Arg Capture

Both

0

2

4

6

8

10

12

14

A
ve

ra
ge

 B
ra

nc
hi

ng
 F

ac
to

r
NFA Precision -

Effects of Optimizations (procmail)

No null calls
Null calls in functions with fan-in >= 10
Null calls in functions with fan-in >= 5
Null calls in functions with fan-in >= 2

Figure 13: Effect of stack depth and null call insertion upon PDA precision.Baseline optimizations were used.

Figure 14: Effect of stack depth and null call insertion upon PDA run-time overhead, 7 second time scale.Baseline
optimizations were used. This time scale shows trends for null call insertion for fan-ins of 5 and 2.

Figure 15: Effect of stack depth and null call insertion upon PDA run-time overhead, 700 second time scale.The source data
is identical to that of Figure 14. This time scale shows trends for no null call insertion and insertion for fan-in of 10.

0 1 2 3 4 5 6 7 8 9 10

Stack Bound

0
1
2
3
4
5
6
7
8
9

10
11
12

A
ve

ra
ge

 B
ra

nc
hi

ng
 F

ac
to

r PDA Precision - Effect of Stack Depth (procmail)

No null calls
Null calls in functions with fan-in >= 10
Null calls in functions with fan-in >= 5
Null calls in functions with fan-in >= 2

0 1 2 3 4 5 6 7 8 9 10

Stack Bound

0

1

2

3

4

5

6

7

O
ve

rh
ea

d
(s

ec
on

ds
)

PDA Overhead - Effect of Stack Depth - 7 sec Time Scale (procmail)

No null calls
Null calls in functions with fan-in >= 10
Null calls in functions with fan-in >= 5
Null calls in functions with fan-in >= 2

> 12 sec

0 1 2 3 4 5 6 7 8 9 10

Stack Bound

0

100

200

300

400

500

600

700

O
ve

rh
ea

d
(s

ec
on

ds
)

PDA Overhead - Effect of Stack Depth - 700 sec Time Scale (procmail)

No null calls
Null calls in functions with fan-in >= 10
Null calls in functions with fan-in >= 5
Null calls in functions with fan-in >= 2

756 sec

e
ys-

del
n-

e
ur
to be caused by the differences in library code between
our respective test platforms. Wagner and Dean ana-
lyzed programs compiled on Red Hat Linux, but we use
Solaris 8. Solaris is an older operating system and
includes more extensive library code in its standard
libraries. Solaris libc, for example, is structured differ-
ently than glibc on Linux and includes functionality not
found in glibc. To see the differences, compare
Figure 17, the automaton for the socket system call in
glibc, with Figure 16, the automaton for the same func-
tion in Solaris libc. In this case, the Solaris socket func-
tion includes code maintaining backwards compatibility
with an earlier method of resolving the device path for a
networking protocol. While socket has the greatest dif-
ference of the functions we have inspected, we have
found numerous other library functions with a similar
characteristic. Simply, Linux and Solaris have different
library code and we have found the Solaris code to be
the more complex.

To better understand the influence of this different
library code base, we identified several functions in
Solaris libc that differed significantly from the equiva-

lent function in glibc. We instrumented the code of th
identified functions so that each generates a remote s
tem call event in a manner similar to glibc. As we
expected, the average branching factor of each mo
dropped significantly (Figure 18). Because we inte
tionally instrument the library functions incorrectly, the
model generated is semantically invalid. However, w
believe the change in precision values reinforces o
hypothesis.

Figure 16: Thesocket model in Solaris libc.

Figure 17: Thesocket model in Linux glibc.

Entry Exit
socket

Figure 18: Comparison of our baseline NFA models with
the prior results of Wagner and Dean.

Finger Procmail
0

2

4

6

8

10

12

A
ve

ra
ge

 B
ra

nc
hi

ng
 F

ac
to

r

Precision

Full Solaris libc
glibc Emulation
Wagner and Dean

* Value <= 0.01

* *
Finger Procmail

0

2

4

6

8

10

12

O
ve

rh
ea

d
(s

ec
on

ds
)

Efficiency

Our NFA Model
Wagner and Dean

* Value <= 0.01

*

ful

e-
se
ly-
or
re

en
of
-

ng
ns
e

er-
he
-
l
e
-
e
e-
o-
an
to
al

e,

ed
r-
k
ger
lop

s-
n
e
d
g
s
n
k
s-
s.

ful
Our model operation improves significantly over
the work of Wagner and Dean. Figure 18 also shows
overheads in each of the two programs attributed to
model operation. Our gain is partly due to implementa-
tion: Wagner and Dean wrote their monitor in Java. Our
code runs natively and is highly efficient, introducing
only negligible delay.

6 Related Work

There are three areas with techniques and goals similar
to those considered in this paper: applications of static
analysis to intrusion detection, statistical anomaly-
detection-based intrusion detection, and secure agentry.
We compare the techniques presented in this paper with
the existing research in the three areas.

Our work applies and extends the techniques
described by Wagner and Dean [36,37]. To our knowl-
edge, they were the first to propose the use of static anal-
ysis for intrusion detection. However, they analyzed C
source code by modifying a compiler and linker to con-
struct application models. Our analysis is performed on
binaries, independent of any source language or com-
piler, removing the user’s burden to supply their source
code. We also propose several optimizations and pro-
gram transformations that improve model precision and
efficiency. We believe the optimizations proposed in this
paper are important contributions and can be used by
other researchers working in this area.

There is a vast body of work applying dynamic
analysis to intrusion detection. In statistical anomaly-
detection-based intrusion detection systems such as
IDES [9], a statistical model of normal behavior is con-
structed from a collection of dynamic traces of the pro-
gram. For example, a sequence of system calls, such as
that produced by the utilitiesstrace and truss , can be
used to generate a statistical model of the program (see
Forrest et al. [12]). Behaviors that deviate from the sta-
tistical model are flagged as anomalous but are not a
guarantee of manipulation. Theoretically, we can use a
statistical program model in our checking agent. Practi-
cally, however, these models suffer from false alarm
rates; i.e. they reject sequences of system calls that rep-
resent acceptable but infrequent program behavior.
Human inspection of jobs flagged as anomalous is inap-
propriate in our setting so we did not pursue this
approach.

The literature on safe execution of mobile agents on
malicious hosts (also known as secure agentry) is vast.
The reader is referred to the excellent summary on vari-
ous techniques in the area of secure agentry by
Schneider [31]. We are currently exploring whether

techniques from this area, such as replication, are use
in our setting.

7 Future Work

We continue progressing on a number of fronts. For
most, we are working to expand our infrastructure ba
of static analysis techniques to include points-to ana
sis for binaries and regular expression construction f
arguments. Standard points-to analysis algorithms a
designed for a higher-level source language and oft
rely on datatype properties evident from the syntax
the code. We will adapt the algorithms to the weakly
typed SPARC code. For arguments, we envision usi
stronger slicing techniques to build regular expressio
for arguments not statically determined. Better cod
analyses will produce more precise models.

We have two research areas targeting run-time ov
head reductions in our complex models. To reduce t
impact of null call insertions, we will investigate adapta
tions of the Ball and Larus algorithm to identify optima
code instrumentation points for minimum-cost cod
profiling [4]. To reduce the overhead of our PDA mod
els, we will collapse all run-time values at the sam
automaton state into a single value with a DAG repr
senting all stack configurations. When traversing outg
ing edges, a single update to the DAG is equivalent to
individual update to each previous stack. Our hope is
make our complex and precise models attractive for re
environments.

We will add general support for dynamically linked
applications and signal handlers to our analysis engin
enabling analysis of larger test programs.

To better measure the attack opportunities afford
by our models, we will implement the average adversa
ial opportunity metric and create a collection of attac
automata. Having an accurate measure of the dan
inherent in an automaton better enables us to deve
strategies to mitigate the possible harm.

Acknowledgments

We thank David Wagner for patiently answering que
tions about his work and for providing his specificatio
of dangerous system calls. David Melski pointed out th
relevance of the Ball and Larus research [4]. We ha
many insightful discussions with Tom Reps regardin
static analysis. Hong Lin initially researched solution
to the remote code manipulation vulnerability. Glen
Ammons provided helpful support for EEL. We than
the other members of the WiSA security group at Wi
consin for their valuable feedback and suggestion
Lastly, we thank the anonymous referees for their use
comments.

le
t

.

y

s

,

t,

s

r
y

Availability

Our research tool remains in development and we are
not distributing it at this time. Contact Jonathon Giffin,
giffin@cs.wisc.edu , for updates to this status.

References
[1] A.D. Alexandrov, M. Ibel, K.E. Schauser, and C.J.

Scheiman, “SuperWeb: Towards a Global Web-Based
Parallel Computing Infrastructure”,11th IEEE
International Parallel Processing Symposium,
Geneva, Switzerland, April 1997.

[2] K. Anstreicher, N. Brixius, J.-P. Goux, and J.
Linderoth, “Solving Large Quadratic Assignment
Problems on Computational Grids”,17th International
Symposium on Mathematical Programming, Atlanta,
Georgia, August 2000.

[3] A.W. Appel and D.B. MacQueen, “Standard ML of
New Jersey”, Third International Symposium on
Programming Language Implementation and Logic
Programming, Passau, Germany, August 1991. Also
appears in J. Maluszynski and M. Wirsing, eds.,
Programming Language Implementation and Logic
Programming, Lecture Notes in Computer Science
#528, pp. 1-13, Springer-Verlag, New York (1991).

[4] T. Ball and J.R. Larus, “Optimally Profiling and
Tracing Programs”, ACM Transactions on
Programming Languages and Systems16, 3, pp. 1319-
1360, July 1994.

[5] B. Barak, O. Goldreich, R. Impagaliazzo, S. Rudich, A.
Sahai, S. Vadhan, and K. Yang, “On the
(Im)possibility of Obfuscating Programs”,21st Annual
International Cryptography Conference, Santa
Barbara, California, August 2001. Also appears in J.
Kilian, ed.,Advances in Cryptology - CRYPTO 2001,
Lecture Notes in Computer Science #2139, pp. 1-18,
Springer-Verlag, New York (2001).

[6] E. Belani, A. Vahdat, T. Anderson, and M. Dahlin,
“The CRISIS Wide Area Security Architecture”,
Seventh USENIX Security Symposium, San Antonio,
Texas, January 1998.

[7] S. Chow, Y. Gu, H. Johnson, and V.A. Zakharov, “An
Approach to the Obfuscation of Control-Flow of
Sequential Computer Programs”,Information Security
Conference ‘01, Malaga, Spain, October 2001.

[8] C. Collberg, C. Thomborson, and D. Low, “Breaking
Abstractions and Unstructuring Data Structures”,IEEE
International Conference on Computer Languages,
Chicago, Illinois, May 1998.

[9] D.E. Denning and P.J. Neumann,Requirements and
Model for IDES–A Real-Time Intrusion Detection
System, Technical Report, SRI International, August
1985.

[10] J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon,
“Efficient Algorithms for Model Checking Pushdown
Systems”, 12th Conference on Computer Aided
Verification, Chicago, Illinois, July 2000. Also appears

in E.A. Emerson and A.P. Sistla, eds.,Computer Aided
Verification, Lecture Notes in Computer Science
#1855, pp. 232-247, Springer-Verlag, New York
(2000).

[11] G.E. Fagg, K. Moore, and J.J. Dongarra, “Scalab
Networked Information Processing Environmen
(SNIPE)”, Supercomputing ‘97, San Jose, California,
November 1997.

[12] S. Forrest, S.A. Hofmeyr, A. Somayaji, and T.A
Longstaff, “A Sense of Self for Unix Processes”,1996
IEEE Symposium on Research in Security and Privac,
Oakland, California, May 1996.

[13] I. Foster and C. Kesselman, “Globus: A
Metacomputing Infrastructure Toolkit”, The
International Journal of Supercomputer Application
and High Performance Computing11, 2, pp. 115-129,
Summer 1997.

[14] I. Foster and C. Kesselman, eds.,The Grid: Blueprint
for a New Computing Infrastructure , Morgan
Kaufmann, San Francisco (1998).

[15] A.K. Ghosh, A. Schwartzbard, and M. Schatz
“Learning Program Behavior Profiles for Intrusion
Detection”, 1st USENIX Workshop on Intrusion
Detection and Network Monitoring, Santa Clara,
California, April 1999.

[16] J.T. Giffin and H. Lin, “Exploiting Trusted Applet-
Server Communication”, Unpublished Manuscrip
2001. Available athttp://www.cs.wisc.edu/~giffin/.

[17] F. Hohl, “A Model of Attacks of Malicious Hosts
Against Mobile Agents”,4th ECOOP Workshop on
Mobile Object Systems: Secure Internet Computation,
Brussels, Belgium, July 1998.

[18] J. Hopcroft,Ann log nAlgorithm for Minimizing States
in a Finite Automaton, Theory of Machines and
Computations, pp. 189-196, Academic Press, New
York (1971).

[19] J.E. Hopcroft, R. Motwani, and J.D. Ullman,
Introduction to Automata Theory, Languages, and
Computation, Addison Wesley, Boston (2001).

[20] S. Horwitz and T. Reps, “The Use of Program
Dependence Graphs in Software Engineering”,14th
International Conference on Software Engineering,
Melbourne, Australia, May 1992.

[21] N.D. Jones, C.K. Gomard, and P. Sestoft,Partial
Evaluation and Automatic Program Generation,
Prentice Hall International Series in Compute
Science, Prentice Hall, Englewood Cliffs, New Jerse
(1993).

[22] C. Ko, G. Fink, and K. Levitt, “Automated Detection of
Vulnerabilities in Privileged Programs by Execution
Monitoring”, 10th Annual Computer Security
Applications Conference, Orlando, Florida, 1994.

[23] C. Ko, “Logic Induction of Valid Behavior
Specifications for Intrusion Detection”,2000 IEEE
Symposium on Security and Privacy, Oakland,
California, 2000.

:

n

:

l

,

r,

d

[24] L. Lamport, R. Shostak, and M. Pease, “The Byzantine
Generals Problem”, ACM Transactions on
Programming Languages and Systems4, 3, pp. 382-
401, July 1982.

[25] J.R. Larus and E. Schnarr, “EEL: Machine-
Independent Executable Editing”,SIGPLAN ‘95
Conference on Programming Language Design and
Implementation, La Jolla, California, June 1995.

[26] M. Litzkow, M. Livny, and M. Mutka, “Condor–A
Hunter of Idle Workstations”, 8th International
Conference on Distributed Computer Systems, San
Jose, California, June 1988.

[27] B.P. Miller, M. Christodorescu, R. Iverson, T. Kosar,
A. Mirgorodskii, and F. Popovici, “Playing Inside the
Black Box: Using Dynamic Instrumentation to Create
Security Holes”,Parallel Processing Letters11, 2/3,
pp. 267-280, June/September 2001. Also appears in the
Second Los Alamos Computer Science Institute
Symposium, Sante Fe, NM (October 2001).

[28] T. Reps, “Program Analysis via Graph Reachability”,
Information and Software Technology40, 11/12, pp.
701-726, November/December 1998.

[29] J.H. Saltzer, “Protection and the Control of
Information Sharing in Multics”,Communications of
the ACM17, 7, pp. 388-402, July 1974.

[30] T. Sander and C.F. Tschudin, “Protecting Mobile
Agents Against Malicious Hosts”, in G. Vigna, ed.,
Mobile Agents and Security, Lecture Notes in
Computer Science #1419, pp. 44-60, Springer-Verlag,
New York (1998).

[31] F.B. Schneider, “Towards Fault-tolerant and Secure
Agentry”, 11th International Workshop on Distributed
Algorithms, Saarbrucken, Germany, September 1997.

[32] SETI@home: Search for Extraterrestrial Intelligence
at Home, 23 January 2002,
http://setiathome.ssl.berkeley.edu/.

[33] Sun Microsystems,Java Virtual Machines, 11 May
2002, http://java.sun.com/j2se/1.4/docs/guide/vm/.

[34] F. Tip, “A Survey of Program Slicing Techniques”,
Journal of Programming Languages3, 3, pp.121-189,
September 1995.

[35] A. Vahdat, T. Anderson, M. Dahlin, E. Belani, D.
Culler, P. Eastham, and C. Yoshikawa, “WebOS
Operating System Services for Wide Area
Applications”, Seventh International Symposium o
High Performance Distributed Computing, Chicago,
Illinois, July 1998.

[36] D.A. Wagner,Static Analysis and Computer Security
New Techniques for Software Assurance, Ph.D.
Dissertation, University of California at Berkeley, Fal
2000.

[37] D. Wagner and D. Dean, “Intrusion Detection via
Static Analysis”,2001 IEEE Symposium on Security
and Privacy, Oakland, California, May 2001.

[38] C. Wang, J. Davidson, J. Hill, and J. Knight
“Protection of Software-based Survivability
Mechanisms”, International Conference of
Dependable Systems and Networks, Goteborg,
Sweden, July 2001.

[39] C. Warrender, S. Forrest, and B. Pearlmutte
“Detecting Intrusions Using System Calls: Alternative
Data Models”,1999 IEEE Symposium on Security an
Privacy, Oakland, California, May 1999.

	Detecting Manipulated Remote Call Streams
	Jonathon T. Giffin
	Somesh Jha
	Barton P. Miller
	Computer Sciences Department University of Wisconsin, Madison
	{giffin,jha,bart}@cs.wisc.edu

	Abstract
	In the Internet, mobile code is ubiquitous and includes such examples as browser plug-ins, Java a...
	Before the job is submitted for remote execution, we construct a model of the user’s binary progr...
	1 Introduction
	Figure�1: Remote execution with system calls being executed on home (local) machine.
	Figure�2: Grid environment exploit. A lurker process attaches to the remote job, inserting code t...

	2 Threats
	Figure�3: Our static analyzer reads a binary program and produces a local checking agent and a mo...

	3 Generating Models Using Static Analysis
	Figure�4: Code Example. (a) This C code writes to stdout a command line argument as text or the s...
	Figure�5: Control Flow Graph for main. Control transfers in SPARC code have one delay slot. Outgo...
	1. A control flow graph (CFG) is built for each procedure in the binary. Each CFG represents all ...
	2. We convert the collection of CFGs into a collection of local automata. Each local automaton mo...
	3. We compose these automata at points of function calls internal to the application, producing a...
	Figure�6: Local Automata. The local automata for each of the three functions given in Figure�4 af...

	3.1 From Binary Code to CFGs
	3.2 From CFGs to Local Automata
	Figure�7: Final NFA Model. The automaton produced following call site replacement. e-reduction ha...
	1. Abstract the automaton to a directed graph.
	2. Using only e-edges, calculate the strongly connected components of the graph.
	3. All states in the same strongly connected component may reach any other by a sequence of e-tra...
	4. For all non-e-edges e originating at a state n in the DAG, add copies of e originating from al...
	5. Remove the e-edges that connect strongly connected components.
	6. Remove unreachable states and edges from the graph.

	3.3 From Local Automata to an Interprocedural Automaton
	1. Add an e-edge from the source state of the call edge to the entry state of the called automaton.
	2. Add e-edges from every final state of the called automaton back to the destination state of th...
	3. Remove the original call edge.
	Figure�8: PDA Model. The e-edges into and out of a called automaton are paired so that only a ret...

	1. Uniquely mark each local automaton state that is the target of a non-system call edge.
	2. Add an e-edge from the source state of the edge to the entry state of the destination automato...
	3. Add an e-edge from each final state of the destination automaton to the target of the call edg...
	4. Delete the original call edge.

	3.4 Optimizations to Address Sources of Imprecision
	3.4.1 Impossible Paths
	Figure�9: The automaton for main after call site renaming. Edges labeled with function calls inte...

	3.4.2 Context Insensitivity
	3.4.3 Argument Manipulation
	Figure�10: Register Slicing. We iterate backwards through the instructions that modify register %...

	3.5 Unresolved Issues

	4 Experimental Results
	4.1 Experimental Setup
	Table 1: Test program descriptions and test workloads.
	Table 2: Test programs statistics. Source code line counts do not include library code. Statistic...
	Table 3: NFA run-time overheads. Absolute overheads indicate execution time in seconds.

	4.2 Metrics to Measure Precision and Efficiency
	Figure�11: NFA precision. Models included all baseline optimizations.

	4.3 The NFA Model
	Table 4: Null call bandwidth requirements, in Kbps. The programs used NFA models with baseline op...

	4.4 Effects of Optimizations
	Figure�12: Precision improvements with renamed call sites and argument recovery.

	4.5 Discussion on Metrics
	1. An attack likely consists of a sequence of system calls and is not a single call in isolation....
	2. The attacker could steer execution through one or more “safe” system calls to reach a portion ...

	5 Comparison with Existing Work�������
	Figure�13: Effect of stack depth and null call insertion upon PDA precision. Baseline optimizatio...
	Figure�14: Effect of stack depth and null call insertion upon PDA run-time overhead, 7 second tim...
	Figure�15: Effect of stack depth and null call insertion upon PDA run-time overhead, 700 second t...
	Figure�16: The socket model in Solaris libc.
	Figure�17: The socket model in Linux glibc.
	Figure�18: Comparison of our baseline NFA models with the prior results of Wagner and Dean.

	6 Related Work
	7 Future Work
	Acknowledgments
	Availability

	References
	[1] A.D. Alexandrov, M. Ibel, K.E. Schauser, and C.J. Scheiman, “SuperWeb: Towards a Global Web-B...
	[2] K. Anstreicher, N. Brixius, J.-P. Goux, and J. Linderoth, “Solving Large Quadratic Assignment...
	[3] A.W. Appel and D.B. MacQueen, “Standard ML of New Jersey”, Third International Symposium on P...
	[4] T. Ball and J.R. Larus, “Optimally Profiling and Tracing Programs”, ACM Transactions on Progr...
	[5] B. Barak, O. Goldreich, R. Impagaliazzo, S. Rudich, A. Sahai, S. Vadhan, and K. Yang, “On the...
	[6] E. Belani, A. Vahdat, T. Anderson, and M. Dahlin, “The CRISIS Wide Area Security Architecture...
	[7] S. Chow, Y. Gu, H. Johnson, and V.A. Zakharov, “An Approach to the Obfuscation of Control-Flo...
	[8] C. Collberg, C. Thomborson, and D. Low, “Breaking Abstractions and Unstructuring Data Structu...
	[9] D.E. Denning and P.J. Neumann, Requirements and Model for IDES–A Real-Time Intrusion Detectio...
	[10] J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon, “Efficient Algorithms for Model Checki...
	[11] G.E. Fagg, K. Moore, and J.J. Dongarra, “Scalable Networked Information Processing Environme...
	[12] S. Forrest, S.A. Hofmeyr, A. Somayaji, and T.A. Longstaff, “A Sense of Self for Unix Process...
	[13] I. Foster and C. Kesselman, “Globus: A Metacomputing Infrastructure Toolkit”, The Internatio...
	[14] I. Foster and C. Kesselman, eds., The Grid: Blueprint for a New Computing Infrastructure, Mo...
	[15] A.K. Ghosh, A. Schwartzbard, and M. Schatz, “Learning Program Behavior Profiles for Intrusio...
	[16] J.T. Giffin and H. Lin, “Exploiting Trusted Applet- Server Communication”, Unpublished Manus...
	[17] F. Hohl, “A Model of Attacks of Malicious Hosts Against Mobile Agents”, 4th ECOOP Workshop o...
	[18] J. Hopcroft, An n log n Algorithm for Minimizing States in a Finite Automaton, Theory of Mac...
	[19] J.E. Hopcroft, R. Motwani, and J.D. Ullman, Introduction to Automata Theory, Languages, and ...
	[20] S. Horwitz and T. Reps, “The Use of Program Dependence Graphs in Software Engineering”, 14th...
	[21] N.D. Jones, C.K. Gomard, and P. Sestoft, Partial Evaluation and Automatic Program Generation...
	[22] C. Ko, G. Fink, and K. Levitt, “Automated Detection of Vulnerabilities in Privileged Program...
	[23] C. Ko, “Logic Induction of Valid Behavior Specifications for Intrusion Detection”, 2000 IEEE...
	[24] L. Lamport, R. Shostak, and M. Pease, “The Byzantine Generals Problem”, ACM Transactions on ...
	[25] J.R. Larus and E. Schnarr, “EEL: Machine- Independent Executable Editing”, SIGPLAN ‘95 Confe...
	[26] M. Litzkow, M. Livny, and M. Mutka, “Condor–A Hunter of Idle Workstations”, 8th Internationa...
	[27] B.P. Miller, M. Christodorescu, R. Iverson, T. Kosar, A. Mirgorodskii, and F. Popovici, “Pla...
	[28] T. Reps, “Program Analysis via Graph Reachability”, Information and Software Technology 40, ...
	[29] J.H. Saltzer, “Protection and the Control of Information Sharing in Multics”, Communications...
	[30] T. Sander and C.F. Tschudin, “Protecting Mobile Agents Against Malicious Hosts”, in G. Vigna...
	[31] F.B. Schneider, “Towards Fault-tolerant and Secure Agentry”, 11th International Workshop on ...
	[32] SETI@home: Search for Extraterrestrial Intelligence at Home, 23 January 2002, http://setiath...
	[33] Sun Microsystems, Java Virtual Machines, 11 May 2002, http://java.sun.com/j2se/1.4/docs/guid...
	[34] F. Tip, “A Survey of Program Slicing Techniques”, Journal of Programming Languages 3, 3, pp....
	[35] A. Vahdat, T. Anderson, M. Dahlin, E. Belani, D. Culler, P. Eastham, and C. Yoshikawa, “WebO...
	[36] D.A. Wagner, Static Analysis and Computer Security: New Techniques for Software Assurance, P...
	[37] D. Wagner and D. Dean, “Intrusion Detection via Static Analysis”, 2001 IEEE Symposium on Sec...
	[38] C. Wang, J. Davidson, J. Hill, and J. Knight, “Protection of Software-based Survivability Me...
	[39] C. Warrender, S. Forrest, and B. Pearlmutter, “Detecting Intrusions Using System Calls: Alte...

