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Abstract. We perform host-based intrusion detection by constructinga model
from a program’s binary code and then restricting the program’s execution by
the model. We improve the effectiveness of such model-basedintrusion detection
systems by incorporating into the model knowledge of the environment in which
the program runs, and by increasing the accuracy of our models with a new data-
flow analysis algorithm for context-sensitive recovery of static data.

The environment—configuration files, command-line parameters, and envi-
ronment variables—constrains acceptable process execution. Environment de-
pendencies added to a program model update the model to the current environ-
ment at every program execution.

Our new static data-flow analysis associates a program’s data flows with spe-
cific calling contexts that use the data. We use this analysisto differentiate system-
call arguments flowing from distinct call sites in the program.

Using a new average reachability measure suitable for evaluation of call-stack-
based program models, we demonstrate that our techniques improve the precision
of several test programs’ models from 76% to 100%.

Key words: model-based anomaly detection, Dyck model, static binary analysis, static
data-flow analysis.

1 Introduction

A host-based intrusion detection system (HIDS) monitors a process’ execution to iden-
tify potentially malicious behavior. In a model-based anomaly HIDS or behavior-based
HIDS [3], deviations from a precomputed model of expected behavior indicate possible
intrusion attempts. An execution monitor verifies a stream of events, often system calls,
generated by the executing process. The monitor rejects event streams deviating from
the model. The ability of the system to detect attacks with few or zero false alarms relies
entirely upon the precision of the model.

Static analysis builds an execution model by analyzing the source or binary code
of the program [5, 10, 14, 20]. Traditionally, static analysis algorithms are conserva-
tive and produce models that overapproximate correct execution. In particular, previous
statically constructed models allowed execution behaviors possible in any execution en-
vironment. Processes often read the environment—configuration files, command-line
parameters, and environment variables known at process load time and fixed for the
entire execution of the process. The environment can significantly constrain a process’
execution, disabling entire blocks of functionality and restricting the process’ access.



If the process can generate the language of event sequencesLe given the current en-
vironmente, then previous program models constructed from static analysis accepted
the languageLs = ∪i∈ELi for E the set of all possible environments.Ls is a super-
set ofLe and may contain system call sequences that cannot be generated by correct
execution in environmente.

These overly general models may fail to detect attacks. For example, versions of
the OpenSSH secure-shell server prior to 3.0.2 had a design error that allowed users to
alter the execution of the root-level login process [19]. Ifthe configuration file setting
“uselogin” was disabled, then the ssh server disabled the vulnerable code. However, an
attacker who has subverted the process can bypass the “uselogin” checks by directly
executing the vulnerable code. Previous statically constructed models allowed all paths
in the program, including the disabled path. By executing the disabled code, the attacker
can undetectably execute root-level commands.

In this paper, we make statically constructed program models sensitive to the execu-
tion environment. Anenvironment-sensitiveprogram model restricts process execution
behavior to only the behavior correct in the current environment. The model accepts a
limited language of event sequencesLv, whereLe ⊆ Lv ⊆ Ls. Event sequences that
could not be correctly generated in the current environmentare detected as intrusive,
even if those sequences are correct in some other environment. In the OpenSSH exam-
ple, if “uselogin” was disabled, then the model disallows system calls and system-call
arguments reachable only via the vulnerable code paths. Themodel detects an entire
class of evasion attacks that manipulate environment data,as described in Sect. 7.4.

Environment dependenciescharacterize how execution behavior depends upon en-
vironment values. Similar to def-use relations in static data-flow analysis [15], an en-
vironment dependency relates values in the environment, such as “uselogin”, to values
of internal program variables. When an environment-sensitive HIDS loads a program
model for execution enforcement, it customizes the model tothe current environment
based upon these dependencies. In this paper, we manually identify dependencies. Our
long-term goal is to automate this procedure, and in Sect. 5.3 we postulate that auto-
mated identification will not be an onerous task.

Environment sensitivity works best with system-call argument analysis. Our static
analyzer includes powerful data-flow analysis to recover statically known system-call
arguments. Different execution paths in a program may set a system-call argument dif-
ferently. Our previous data-flow analysis recovered argument values without calling
context, in that the analysis algorithm ignored the association between an argument
value and the call site that set that value [9,10]. In this work, we encode calling context
with argument values to better model the correct execution behavior of a program. A
system-call argument value observed at runtime must match the calling context leading
up to the system call. Additionally, the data-flow analysis now crosses shared object
boundaries, enabling static analysis of dynamically-linked executables.

Although environment-sensitiveprogram modeling is the primary focus of our work,
we make an additional contribution: a new evaluation metric. The existing standard met-
ric measuring model precision, average branching factor, poorly evaluates models that
monitor a program’s call stack in addition to the system-call stream [5, 8]. We instead
use context-free language reachability to move forward through stack events to dis-



cover the next set of actual system calls reachable from the current program location.
Our newaverage reachability measurefairly evaluates the precision of program models
that include function call and return events. Using the average reachability measure, we
demonstrate the value of whole-program data-flow analysis and environment-sensitive
models. On four test programs, we improved the precision of context-sensitive models
from 76% to 100%.

In summary, we believe that this paper makes the following contributions:

– Static model construction of dynamically-linkedexecutables. In particular, the static
analyzer continues data-flow analysis across shared-object boundaries by learning
the API by which programs call library code, as described in Sect. 4.1.

– Context-sensitive encoding of recovered system-call arguments, detailed in Sect. 4.2.
Combined with whole-program analysis, this technique improved argument recov-
ery by 61% to 100% in our experiments.

– A formal definition of environment-sensitive program models and methods to en-
code environment dependencies into statically constructed program models. Envi-
ronment sensitivity and static system-call argument recovery improved the preci-
sion of program models by 76% to 100%. Section 5 presents thiswork.

– An extension to the commonly-used average branching factormetric suitable for
program models that require update events for function calls and returns (Sect. 6).
The average reachability measure provides a fairer comparison of call-stack-based
models and other models that do not monitor the call stack.

2 Related Work

In 1994, Fix and Schneider added execution environment information to a programming
logic to make program specifications more precise [7]. The logic better specified how
a program would execute, allowing for more precise analysisof the program in a proof
system. Their notion of environment was general, includingproperties such as sched-
uler behavior. We are proposing a similar idea: use environment information to more
precisely characterize expected program behavior in a program model. As our models
describe safety properties that must not be violated, we focus on environment aspects
that can constrain the safety properties.

Chinchaniet al. instrumented C source-code with security checks based upon envi-
ronment information [1]. Their definition of environment primarily encompassed low-
level properties of the physical machine on which a process executes. For example,
knowing the number of bits per integer allowed the authors toinsert code into a pro-
gram to prevent integer overflows. This approach is specific to known exploit vectors
and requires source-code editing, making it poorly suited for our environment-sensitive
intrusion detection.

One aspect of our current work uses environment dependencies and static analysis
to limit allowed values to system-call arguments. This specific problem has received
prior attention.

Static analysis can identify constant, statically known arguments. While extracting
execution models from C source code, Wagner and Dean identified arguments known
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Fig. 1.Prior static argument recovery. Argument values recoveredalong different execution paths
join together when the execution paths converge. (A) The association between a specific argument
value and an execution path is lost. (B) If an argument value cannot be statically recovered on
any execution path leading to a system call, all other recovered values must be discarded. The
argument is completely unconstrained

statically [20]. In earlier work, we used binary code analysis to recover arguments in
SPARC executables [9,10]. These efforts suffered from several problems:

– Earlier binary data-flow analysis required statically-linked executables. In this pa-
per, we use data-flow analysis to learn the API for a shared object. When analyzing
an executable, we continue data-flow analysis anywhere the library API is used.

– Values recovered were not sensitive to calling context. This forces two inaccura-
cies. First, the association between a system-call argument value and the execution
path using that value is lost (Fig. 1A). An attacker could undetectably use a value
recovered on one execution path on any other execution path to the same system
call. Second, if any execution path set an argument in a way not recoverable stati-
cally, all values recovered along all other execution pathsmust be discarded for the
analysis to be safe (Fig. 1B). Our current work avoids these two inaccuracies by
encoding calling context with recovered values.

– Static analysis cannot recover values set dynamically. In this paper, we make a
distinction between dynamic values set at load time and values set by arbitrary user
input. Environment dependencies augment static analysis and describe how values
set when the operating system loads a process flow to system-call arguments.

Dynamic analysis learns a program model by generalizing behavior observed during
a training phase. Kruegelet al. [13] and Sekaret al. [16] used dynamic analysis to learn
constraints for system-call arguments. These constraintswill include values from the
environment that are used as part of a system-call argument,which forces a tradeoff.
The training phase could modify environment values to learna general model, but such a
model fails to constrain later execution to the specific environment. Conversely, training
could use only the current environment. If the environment ever changes, however, then
the model no longer characterizes correct execution and retraining becomes necessary.
By including environment dependencies described in this paper, learning could be done



Static Binary
Analyzer

Binary
Program

Data−Flow
Models &

Summaries

Environment−Sensitive
Monitoring

Global
Model
Builder

Environment−Sensitive
Program Model

Execution
Program Environment

Monitor
Execution

System Call
Sequence

Accept or

Execution
Reject

Environment
Dependencies

Environment
Dependencies

Specification
System Call

Static Binary
Analyzer Data−Flow

Models &

Summaries

Shared Object Analysis

Shared Object

Environment
Dependencies

Specification
System Call

Static Binary
Analyzer Data−Flow

Models &

Summaries

Shared Object Analysis

Shared Object

.

.

.

Executable Analysis Model Assembly

Fig. 2. Architecture

only for arguments not dependent upon the environment. Environment dependencies
would resolve the remaining arguments to the current environment every time the model
was subsequently loaded.

Environment-sensitive models are well suited to the model-carrying code execution
design. Sekaret al. proposed that unknown, untrusted executables can includemodels
of their execution [16]. A consumer of the executable can usea model checker to verify
that the model does not violate their security policy and an execution monitor to limit
the program’s execution to that allowed by the model. The code producer must build the
program model, but they cannot know any consumer’s specific execution environment.
To avoid false alarms, the model must be general to suit all possible environments. Such
a general model may not satisfy a consumer’s security policy. If the code producer
adds environment dependencies to the model shipped with thecode, the model will
automatically adapt to every consumer’s unique environment. With the environment
constraints, the model is increasingly likely to satisfy a consumer’s security policy.

3 Overview

Model-based anomaly detection has two phases: construction of the program model and
execution enforcement using the model. Environment sensitivity affects both phases.
Figure 2 shows the overall architecture of our system, including how environment in-
formation is used in each phase. Analysis, at the left, occurs once per program or shared
object. The global model builder assembles all execution models into the single, whole-
program model. The panel on the right, execution monitoring, occurs every time the
program is loaded for execution.

The static analyzer builds a model of expected execution by reconstructing and an-
alyzing control flows in a binary executable. The control flowmodel that we construct
is the Dyck model, a context-sensitive model that uses a finite-state machine to enforce
ordering upon system-call events as well as correct function call and return behav-
ior [10]. The static analyzer encodes environment dependencies into the Dyck model.
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void parse args(int argc, char **argv) {
char *tn = tempnam(getenv("TMP"), "Mx");
int execmode = 1;
char c;

unlink("/home/user/tmpfile");
while ((c = getopt(argc, argv, "L:")) != -1)

switch (c) {
case ’L’:
execmode = 0;
unlink(tn);
link(optarg, tn);
break;

}

if (execmode)
exec("/sbin/mail");

}

Fig. 3. Example code, with calls to C library system-
call wrapper functions in boldface. Although we analyze
SPARC binary code, we show C source code for read-
ability. For conciseness, we omit error-handling code com-
monly required when calling C library functions

("/sbin/mail")exec (?,?)link

(?)unlink
(?)unlink

Fig. 4. A finite-state machine model
of the code. System calls include
argument restrictions identified by
static data-flow analysis

Environment dependencies describe the relationship between a value in the execution
environment and a variable in the program, as detailed further in Sect. 5.

A separate process, the runtime monitor, only allows process execution that matches
the program model. The monitor resolves environment dependencies in the Dyck model
given the actual environment in which the process is about toexecute. By parsing the
program’s command line, its configuration files, and the system’s environment vari-
ables, the monitor knows the execution environment when theoperating system loads
the program. It prunes portions of the model corresponding to code unreachable in the
current environment by determining the directions that branches dependent upon the
environment will take. It similarly propagates environment values along dependencies
to update system-call argument constraints before the monitored process begins execu-
tion. The model used for execution verification thus enforces restrictions arising from
environment dependencies.

Consider the example function in Fig. 3. Although the figure shows C source code
for readability, we analyze SPARC binary code in our experiments. This code uses
environment information in ways similar to many real programs. Thegetenv call
in line 2 returns the value of the environment variableTMP, which typically speci-
fies the system’s directory for temporary files. The returneddirectory name is used by
thetempnam call to construct a filename in the temporary directory. The filename is
used by thelink andunlink system calls in lines 11 and 12. Thegetopt function
call in line 7 parses options passed to the program via the command line and sets the
value of the C library global variableoptarg. The option “–L” requires one argument,
optarg, that is passed as an argument tolink at line 12. If the command line contains
the “–L” option, the case statement at line 9 will execute andthe execat line 17 will



not execute. If “–L” is not present, then the opposite holds:theexecwill execute but the
code inside the case statement will be skipped.

Figure 4 shows the finite-state machine model constructed for parseargsusing ear-
lier static analysis methods [9,10]. This model overapproximates the correct execution
of the function:

– The argument to bothunlink calls is unconstrained, so an attacker could unde-
tectably delete any file in a directory to which the process holds write access. The
arguments are not statically recovered because theunlink at line 11 depends upon
a dynamic value, the environment variableTMP. Bothunlink calls target the same
C library system-call wrapper function. Data-flow analysisof the system-call argu-
ment will join the values propagating from both call sites, as in Fig. 1B. Joining the
statically recovered value from line 6 with the unknown value from line 11 forces
the analyzer to discard the known value.

– Both arguments tolink are unconstrained because they are computed dynamically
from the execution environment.

– The two system calls inside the case statement and theexecsystem call are al-
ways accepted. In particular, all three calls would be accepted together. The branch
correlation that forceseitherthe case statement or theexecto execute has been lost.

At first glance, theexeccall appears safe because static analysis can constrain itsargu-
ment value. However, due to the overapproximations in the model described above, the
model accepts a sequence of system calls that will execute a shell process. The attack
first issues a nop call [21] and then relinks the statically recovered filename to a shell
before theexeccall occurs:

unlink(NULL); // Nop call
unlink("/sbin/mail");
link("/bin/sh", "/sbin/mail");
exec("/sbin/mail");

Note that the attack requires the initial nop call because the link transition in the model
is preceded by twounlink transitions.

Environment sensitivity and the static argument analysis presented in this paper
repair these imprecisions and produce a program model that better represents correct
execution. Context-sensitive encoding of system-call arguments will differentiate the
values passed from the two unique call sites to theunlink system-call wrapper, en-
abling recovery of the static argument at the line 6 call siteeven without recovering the
argument at line 11. Adding environment dependencies then produces the environment-
sensitive model shown in Fig. 5. The model is a template, containing dependencies that
must be resolved by the execution monitor.

The monitor instantiates the template model in the current environment. Suppose
the environment variableTMP is set to/tmp. For a command line without “–L”, the
unreachable case statement code is removed (Fig. 6A). For the command line “-L
/home/user/log”, the monitor will prune the unreachableexeccall and constrain
possible values to the remaining system-call arguments (Fig. 6B). The model better re-
flects correct execution in the specific environment. In bothcases, the model prevents
the relinking attack previously described.



("/home/user/tmpfile")unlink

("/sbin/mail")exec ("[L]", "[TMP]/Mx.*")link

("[TMP]/Mx.*")unlink
L+L−

Fig. 5.The environment-sensitive model produced by the static analyzer. The model is a template,
containing environment dependencies that are resolved when the model is loaded. The symbols
L- andL+ are branch predicates that allow subsequent system calls when the command-line pa-
rameter “–L” is omitted or present, respectively. The value[L] is the parameter value following
“–L” on the command line. The value[TMP] is the value of theTMP environment variable

("/home/user/tmpfile")unlink

("/sbin/mail")exec link ("/home/user/log", "/tmp/Mx.*")

("/home/user/tmpfile")unlink
("/tmp/Mx.*")unlink

(A) (B)

Fig. 6. The environment-sensitive model, after the execution monitor has resolved environment
dependencies. System-call arguments are encoded with calling context, so different calls toun-
link enforce different arguments. String arguments are regularexpressions. (A) When the com-
mand line does not contain “–L”, the code processing the option is pruned from the model.
(B) When “–L” is present, theexeccall is unreachable and pruned

4 System-Call Argument Analysis

Our analyzer attempts to recover system-call arguments that are statically known. It an-
alyzes data flows within program code and into shared object code to determine how
arguments may be constrained. The execution monitor enforces restrictions on any re-
covered system-call arguments and rejects any system call that attempts to use incorrect
argument values.

4.1 Learning a Library API

The object code of a program is linked at two distinct times.Static linkingoccurs as part
of a compilation process and combines object code to form a single program or shared
object file.Runtime linkinghappens every time a program is loaded for execution and
links code in separate shared objects with the main executable. Static analyzers inspect
object code after static linking but before the final runtimelink. Our analyzer simulates



the effects of the runtime link to build models for programs whose code is distributed
among shared object files. This model construction has two primary steps.

First, we analyze all shared objects used by a program. We build models for the
program code in each shared object and cache the models on disk for future reuse.
Our program models include virtual memory addresses of kernel traps and function call
sites; however, the addresses used by shared object code arenot known until runtime
linking occurs. The analyzer performssymbolic relocationfor shared object code. Each
shared object is given its own virtual address space indexedat 0 that is strictly symbolic,
and all addresses used in models reside in the symbolic address space. When later en-
forcing a program model, our execution monitor detects the actual address at which
the runtime linker maps shared object code and resolves all symbolic addresses to their
actual virtual addresses.

Second, we analyze the binary executable of interest. The executable may call func-
tions that exist in shared object code. Our analyzer simulates the runtime linker’ssymbol
resolutionto identify the code body targeted by the dynamic function call. It reads the
cached model of the shared object’s code from disk and incorporates it into the pro-
gram’s execution model.

The separate code analysis performed for each shared objectand for the main exe-
cutable complicates data-flow analysis for system-call argument recovery. System calls
generally appear only within C library functions. Frequently, however, the argument
values used at those system calls are set by the main executable and passed to the C
library through some function in the library’s API. Separate analysis of the library code
and the main executable code precludes our previous static data-flow analysis from re-
covering these arguments. The data flow is broken at the library interface.

To remedy this problem, we now performwhole-program data-flow analysisto
track data flowing between separate statically linked object files. The analyzer first
learns the API of a shared object. It initiates data-flow analysis at system-call sites with
type information for the call’s arguments (e.g. integer argument or string argument).
Data-flow analysis follows program control flows in reverse to find the instructions that
affect argument values. If any value depends upon a formal argument of a globally vis-
ible function, then that function is a part of the API that affects system-call arguments.
We cache adata-flow summary function[17] that characterizes how data flows from the
API function’s entry point to the system-call site in the shared object. For example, one
summary function for the C library stipulates that the first argument of the function call
unlink flows through to the first argument of the subsequentunlink system call.

When later analyzing an object file that utilizes a learned API, we continue data-
flow analysis at all calls to the API. The analyzer attempts tostatically recover the
value passed to the API call. By composing the cached data-flow summary function
with data dependencies to the API call site discovered via object code analysis, we can
recover the argument value used at the system call inside thelibrary.

4.2 Context-Sensitive Argument Recovery

Static argument recovery uses data-flow analysis to identify system-call values that are
statically known. The analysis recovers arguments using a finite-height lattice of values
and an algebra that defines how to combine values in the lattice. The lattice has a bottom



element (⊥) that indicates nothing is known about an argument because the argument
has not been analyzed. The top element (⊤) is the most general value and means that
an argument could not be determined statically.

Argument values may reach a system call via multiple, different execution paths, as
shown in Fig. 1. The algebra of the lattice defines how to compute the value that will
flow down the converged execution path. The join operator (⊔) combines values. Our
previous static argument analysis [10] recovered arguments using a standard powerset
latticeP . ForS the finite set of statically known strings and integers used by the pro-
gram, lattice values were elements ofDP = P(S) with ⊥P = ∅ and⊤P = S. The
algebra joined arguments with set union:A ⊔P B = A ∪ B for A andB any lattice
values. The value reaching the system-call site is the recovered argument.

Joins in latticeP diminish the precision of the analysis. The set union does not
maintain the association between an argument value and the execution path using that
value. As a result, an attacker can undetectably use a value recovered on one path on
any other execution path reaching the system call. Suppose aprogram opens both a
temporary file with write privileges and a critical file with read-only access. Even if
argument recovery can identify all arguments, the calling context is lost. The attacker
can use the write privilege from the temporary-file open to open the critical file with
write privilege as well.

Worse yet is the effect of values not recovered statically. If an argument cannot be
identified on one execution path, it takes the value⊤P . At a point of converging execu-
tion, such as the entry point of a C library function, the joinof ⊤P with any recovered
valueA discards the recovered value becauseA ⊔P ⊤P = ⊤P . This makes intuitive
sense: when monitoring execution, the monitor cannot determine when a recovered
value should be enforced without knowing the calling context of the value.

We solve this imprecision by extending the lattice domain toinclude calling con-
text. Our new data-flow analysis annotates the recovered string and integer values with
the address of the call site that passes the strings or integers as an argument. Stated
differently: we recover values using aseparatepowerset lattice for each calling con-
text. As a data value propagates through a call instruction,the analyzer annotates the
value with the return address of the call. We have found that asingle call site provides
enough context to sufficiently distinguish argument values, although this analysis could
be extended to include additional calling context as necessary. Note that the call site
annotation is not the call site nearest to the system call, but rather the originating call
site where the argument is first set. The originating call site may target any function
in the program, including C library calls or arbitrary wrapper functions around library
functions.

Data values recovered by our data-flow analysis are pairs(A, c), whereA ∈ DP is
a set of integers or strings as above, andc is the calling context information.

Definition 1. LetP be the powerset lattice over the setS of all statically-known strings
and integers used in the program, as defined above. LetC = {c0, . . . , cn} be call
site identifiers, withc0 = ∅ the special identifier indicating that no context informa-
tion is known. LetQ be the context-sensitive data-flow lattice defined with domain
DQ = P(DP × C), ⊥Q= {(⊥P , ∅)}, and⊤Q =

⋃n

i=0
{(⊤P , ci)}.
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("/home/user/log")unlink
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Fig. 8. The model for the program code of
Fig. 3 with context-sensitive argument val-
ues. Note that the argument is constrained on
the top-mostunlink transition even though
the argument at anotherunlink call site
could not be statically determined

LetA, B ∈ DQ beA = {(Ai, xi)}i andB = {(Bj , yj)}j
with ∀i : Ai ∈ DP , xi ∈

C; ∀j : Bj ∈ DP , yj ∈ C; andx0 = ∅ = y0. Define the join operator⊔Q as:

A ⊔Q B = {(Ai ⊔P Bj , xi) |xi = yj} ∪ (1)

∪{(Ai ⊔P B0, xi) | 6 ∃j xi = yj} ∪ {(Bj ⊔P A0, yj) | 6 ∃i xi = yj} . (2)

The join operation ofQ maintains calling context information at points of execution
path convergence. Part (1) joins values in the powerset latticeP only when those values
have identical calling context. Part (2) maintains correctness when joining against a
value that does not yet have context: the value may occur in any previously-identified
context. The latticeQ improves prior data-flow analysis in two important ways:

1. The convergence of a context-sensitive value with an unrecovered value is non-
destructive. The analyzer can continue to propagate the known value with execu-
tion context (Fig. 7). Figure 8 shows the model for the example code with context-
sensitive arguments. The statically known filename passed to the first call toun-
link (call site 1 in Fig. 7) constrains that call. Intuitively, weneed not discard the
recovered context-sensitive value because the monitor, atruntime, can compare the
value’s context information with the executing process’ call stack to determine if
the argument restriction should be enforced.

2. When multiple context-sensitive values converge, no information is lost. Distinct
calling contexts remain distinct. By preserving context, we can enforce the asso-
ciation between multiple arguments passed to a system call at the same call site.
Recall the previous example of opening both a temporary file and a critical file
with different access privileges. Since our analysis will annotate both the filename
and the access mode at each call site with that site’s callingcontext, an attacker
cannot open the critical file with anything other than read-only access.

The monitor enforces an argument restriction only when the execution path fol-
lowed to the system call contains the call-site address annotating the argument value.
The monitor walks the call stack of the process at every system call to identify the call-
ing context of the system call. If the call-site address thatannotates a value exists in



the calling context, the monitor enforces the corresponding argument restriction. If no
argument was recovered for a particular context, the monitor will not constrain allowed
values at runtime.

5 Environment-Sensitive Models

Environment-sensitive intrusion detection further restricts allowed process execution
based upon the known, fixed data in the execution environment. Environment-sensitive
program models do not include the data directly, but rather encode dependencies to en-
vironment data that will be evaluated immediately before the process begins execution.

We first formalize the notions of environment properties anddependencies between
the environment and a program.

Definition 2. Theenvironmentis program input known at process load time and fixed
for the entire execution of the process.

This includes environment variables, command-line parameters, and configuration file
contents. The definition excludes environment variables altered or overwritten during
execution. In our measurements, only about 3% of the programs installed with Solaris
8 modify at least one environment variable.

Definition 3. A propertyof the environment is a single variable, parameter, or config-
uration setting in a file.

A property may be present or omitted in the environment, and,if present, may have an
associated value. An environment dependency captures the relation between environ-
ment properties and the program’s execution behavior.

Definition 4. Let E be the set of all environments containing propertyx. Let I be the
set of all non-environment program inputs. LetV alue(p, d, e, i) denote the possibly-
infinite set of values program pointp may read from data locationd given environment
e and program inputi. Anenvironment dependencyexists betweenx andp if

∃f, d
[

∀e ∈ E ∀i ∈ I [V alue(p, d, e, i) = f(p, x)]
]

.

In words: over all possible executions, a program data valueat p depends only upon
the value ofx. The functionf characterizes how the data value depends upon the envi-
ronment property.

The definition is intuitively similar to the definition of a def-use relation in pro-
gramming language analysis [15]. The environment defines a data value that is later
used by the executing process. Where existing program analyses examine only rela-
tions between instructions in the program, we extend the notion of value definition to
the environment.

Dependencies are of interest only if they affect program behavior visible to the exe-
cution monitor. We focus on two classes of dependencies, both of which are present in
the example code of Fig. 3.Control-flow dependenciesexist at program branches where
the branch direction followed depends upon an environment property.Data-flow depen-
denciesoccur when a visible data value, such as a system-call argument, is dependent
upon the environment. The value of the environment propertyflows to the system-call
argument.



("/home/user/tmpfile")unlink

("/sbin/mail")exec (?,?)link

(?)unlink
L+L−

Fig. 9. Dyck model with environment branch dependencies. The symbols L- andL+ are branch
predicates that allow subsequent system calls when the command-line parameter “–L” is omitted
or present, respectively

5.1 Control-Flow Dependencies

Control-flow dependencies restrict allowed execution paths based upon the values of
the environment. The variable tested at a program branch maybe dependent upon an
environment property. For example, theif statement of line 16 guards theexeccall
so that it executes only when “–L” is omitted from the commandline. The program’s
data variable used in the branch test is dependent upon “–L”,as in Definition 4. As an
immediate consequence, the branch direction followed depends upon “–L”. Similarly,
theswitch statement at line 8 has an environment control-flow dependency upon “–L”
and will execute thecase at line 9 only when “–L” is present.

The static analyzer can encode control-flow dependencies into the Dyck model with
predicate transitions. Figure 9 shows the model of Fig. 8 with predicate transitions
characterizing the environment dependency. The predicateL- is satisfied only when the
command line does not contain “–L”. Likewise,L+ is satisfied when “–L” is present.

The execution monitor evaluates predicate transitions when loading the model for a
program about to execute. Predicates satisfied by the environment becomeǫ-transitions.
An ǫ-transition is transparent and allows all events followingthe transition. Conversely,
the monitor deletes edges with predicates that are not satisfied by the environment, as
legitimate process execution cannot follow that path. If the command line passed to the
example code of Fig. 3 does not contain “–L”, then theL- transition in Fig. 9 will allow
the subsequentexecand theL+ transition will be removed to prevent the model from
accepting the followingunlink andlink calls.

5.2 Data-Flow Dependencies

System-call argument values may also depend upon environment properties. In partic-
ular, programs frequently use environment values when computing strings passed to
system calls as filenames. These values can significantly restrict the allowed access of
the process, and hence an attacker that has subverted the process. In the example code
(Fig. 3), the environment variableTMP gives the system temporary directory used as the
prefix to the filename argument of lines 11 and 12. The propertyconstrains theunlink



at line 11 so that the only files it could remove are temporary files. The parameter to
the command-line property “–L” fully defines the filename passed as the first argument
to link . Many real-world programs exhibit similar behavior. The Apache web server,
for example, uses the command-line property “–d” to specifythe server’s root direc-
tory [11].

Environment data-flow dependencies augment existing system-call arguments re-
covered using techniques from Sect. 4. Figure 5 adds argument dependencies to the
previous model of Fig. 9. A bracketed environment property indicates that the argu-
ment is simply a template value and must be instantiated withthe actual value of the
property at program load time.

Figure 5 is the completed environment-sensitive Dyck modelwith context-sensitive
argument encoding. When the program of Fig. 3 is loaded for execution, the monitor
reads the current environment and instantiates the model inthat environment. Template
argument values are replaced with the actual values of the environment properties upon
with the argument depends. The final, instantiated models appear in Fig. 6, as described
in Sect. 3.

5.3 Dependency Identification

This paper aims to demonstrate the value of environment-sensitive intrusion detection
and does not yet consider the problem of automated dependency identification. We
assume that environment dependencies have been precomputed or manually specified.

In our later experiments, we manually identified environment dependencies viait-
erative model refinement. At a high-level, this process parallels counterexample-guided
abstraction refinement used in software model checking: theDyck model is an abstrac-
tion defining correct execution, and we iteratively refine the model with environment
dependencies to improve the abstraction [2]. We monitored aprocess’ execution and
collected a trace of reachable and potentially malicious system calls as described in
Sect. 6. The trace included the calling context in which eachpotentially malicious call
occurred. We inspected the program’s code to determine if either:

– The argument passed to a call-site in the calling context depended upon environ-
ment information and reached the system call; or

– A branch guarded one of the call-sites and the branch predicate depended upon the
environment.

Function-call arguments and branch predicates depend uponthe environment if a back-
ward slice of the value reaches a function known to read the environment, such as
getenv or getopt. We added the dependency to the Dyck model and repeated the
iteration. In practice, the number of dependencies added via iterative refinement was
small: each program in our experiments contained between 10and 24 dependencies.

Manual specification clearly has drawbacks. It requires theuser to understand low-
level process execution behavior and Dyck model characteristics. Manual work is error-
prose and can miss dependencies obscured by control-flows that are difficult to com-
prehend. However, we believe that dependency identification is not limited to manual
specification.



We postulate that automated techniques to identify environment dependencies with
little or no direction by an analyst are certainly feasible.Summary functions for C li-
brary calls that read the environment would enable our existing static data-flow analysis
to automatically construct environment-dependent execution constraints. Complex de-
pendencies could be learned via dynamic analysis. A dynamictrace analyzer could
correlate environment properties with features of an execution trace to produce depen-
dencies.

This paper makes clear the benefits of model specialization based upon environment
dependencies. The improvements noted in Sect. 7 motivate the need for implementation
of the techniques to automatically identify dependencies.We expect future work will
address these implementation issues.

6 Average Reachability Measure

Measurements of a model’s precision and its ability to prevent attacks indicate the ben-
efits of various analyses and model construction techniques. Previous papers have mea-
sured model precision using the average branching factor metric [5, 9, 10, 20, 22]. This
metric computes the average opportunity for an attacker whohas subverted a process’
execution to undetectably execute a malicious system call.After processing a system
call, the monitor inspects the program model to determine the set of calls that it would
accept next. All potentially malicious system calls in the set, such asunlink with an
unconstrained argument, contribute to the branching factor of the current monitor con-
figuration. The average of these counts over the entire execution of the monitor is the
average branching factor of the model. Lower numbers indicate better precision, as there
is less opportunity to undetectably insert a malicious call. The set of potentially mali-
cious system calls was originally defined by Wagner [22] and has remained constant for
all subsequent work using average branching factor.

Average branching factor poorly evaluates context-sensitive program models with
stack update events, such as the Dyck model used in this paper. Typical programs have
two characteristics that limit the suitability of average branching factor:

– Programs often have many more function calls and returns than system calls. The
number of stack update events processed by the monitor will be greater than the
number of actual system-call events.

– Programs rarely execute a system-call trap directly. Rather, programs indirectly
invoke system calls by calling C library functions.

These characteristics have important implications for both the stream of events observed
by the monitor and the structure of the Dyck model. The first characteristic implies that
stack updates dominate the event stream. The second characteristic implies that at any
given configuration of the monitor, the set of events accepted next are predominantly
safe stack update events that do not contribute to the configuration’s branching factor. In
fact, a potentially malicious system call is not visible as the next possible event until the
process’ execution path has entered the C library function and the monitor has processed
the corresponding stack event for that function call. The number of potentially malicious
system calls visible to the monitor decreases, artificiallyskewing the computed average



Table 1.Test programs, workloads, and instruction counts. Instruction counts include instructions
from any shared objects used by the program

Program Workload Instruction Count

procmailFilter a 1 MB message to a local mailbox. 374,103
mailx Send mode: send one ASCII message. 207,977

Receive mode: check local mailbox for new email.
gzip Compress 13 MB of ASCII text. 196,242
cat Write 13 MB of ASCII text to a file. 185,844

branching factor downward. The call-stack-based model is not as precise as its average
branching factor makes it appear.

We have extended average branching factor so that it correctly evaluates context-
sensitive models with stack update events and does not skew results. Ouraverage reach-
ability measureuses context-free language reachability [23] to identify the set of actual
system calls reachable from the current configuration of themonitor. Rather than simply
inspecting the next events that the monitor may accept, the average reachability measure
walks forward through all stack events until reaching actual system calls. The forward
inspection respects call-and-return semantics of stack events to limit the reachable set
of system calls to only those that monitor operation could eventually reach. After each
actual system-call event, we recalculate the set of reachable system calls and count the
number that are potentially malicious. The sum of these counts divided by the number
of system calls generated by the process is the average reachability measure.

The average reachability measure subsumes average branching factor. Both met-
rics have the identical meaning for context-insensitive models and for context-sensitive
models without stack events, such as Wagner and Dean’sabstract stackmodel [20], and
will compute the same value for these model types. Average reachability measures for
call-stack-based models may be directly compared against measures for other models,
allowing better understanding of the differences among thevarious model types.

We implemented the average reachability measure using thepost* algorithm from
push-down systems (PDS) research [4]. We converted the Dyckmodel into a PDS rule-
set and generatedpost* queries following each system call. Thepost* algorithm is
the same as that used by Wagner and Dean to operate their abstract stack model. Note
that we use the expensivepost* algorithm for evaluation purposes only; the monitor
still verifies event streams via the efficient Dyck model.

7 Experimental Results

We evaluated the precision of environment-sensitive program models using average
reachability. A precise model closely represents the program for which it was con-
structed and offers an adversary little ability to execute attacks undetected. To be use-
ful, models utilizing environment sensitivity and our argument analysis should show
improvement over our previous best techniques [5, 10]. On test programs, our static
argument recovery improved precision by 61%–100%. Adding environment sensitivity
to the models increased the gains to 76%–100%. We end by arguing that model-based
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Fig. 10. Precision of program models with increasing sensitivity todata-flows and the environ-
ment. The y-axis indicates precision using theaverage reachability measure: the average number
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have value less than0.01

intrusion detection systems that ignore environment information leave themselves sus-
ceptible to evasion attacks.

7.1 Test Programs

We measured model precision for four example UNIX programs.Table 1 shows work-
loads and instruction counts for the programs tested. Note that instruction counts in-
clude instructions from all shared objects on which the program depends.Procmail
additionally uses code in shared objects loaded explicitlyby the program viadlopen.
As our static analyzer does not currently identify libraries loaded withdlopen, we
manually added the dependencies to this program.

These programs, our static analyzer, and our runtime monitor run on Solaris 8 on
SPARC. The monitor executes as a separate process that traces a process’ execution via
the Solaris/proc file system. To generate stack events for the Dyck model, the monitor
walks the call stack of the process before every system call,as done by Fenget al. [6].
By design, the full execution environment of the traced process is visible to the moni-
tor. The environment is actually passed to the monitor, and the monitor then forks and
executes the traced process in that environment with an environment-sensitive model.

7.2 Effects of Static Argument Analysis

We used average reachability to evaluate models constructed for these four test pro-
grams. We compared three different versions of the Dyck model using varying degrees
of static data-flow analysis (Fig. 10). We report two sets of results formailx because
it has two major modes of execution, sending and receiving mail, that produce signifi-
cantly different execution behavior. Other programs with modes, such as compressing
or decompressing data ingzip, did not exhibit notable changes in precision measure-
ments.



Table 2.Environment dependencies in our test programs. We manuallyidentified the dependen-
cies via inspection of source code and object code

Program Environment dependencies

procmail• Program branching depends upon “–d” command-line argument.
• Program branching depends upon “–r” command-line argument.
• Filename opened depends upon user’s home directory.

mailx • Program branching depends upon “–T” command-line argument.
• Program branching depends upon “–u” command-line argument.
• Program branching depends upon “–n” command-line argument.
• Filename created depends upon the parameter to the “–T” command-line argument.
• Filename opened depends upon theTMP environment variable.
• Filename opened depends upon the user’s home directory.
• Filename unlinked depends upon theTMP environment variable.

gzip • Argument tochowndepends upon the filename on the command line.
• Argument tochmoddepends upon the filename on the command line.
• Filename unlinked depends upon the filename on the command line.

cat • Filename opened depends upon the filename on the command-line.

First, we used a Dyck model without any data-flow analysis forsystem-call ar-
gument recovery. Although there is some overlap between ourcurrent test programs
and test programs previously used with a Dyck model [10], we reiterate that the re-
sults computed here by the average reachability measure arenotcomparable to average
branching factor numbers previously reported for the Dyck model. Our current results
may be compared with previous average branching factor numbers for non-stack-based
models [9,20].

Second, we added system-call argument constraints to the Dyck model when the
constraints could have been recovered by a previously reported analysis technique [9,
10, 20]. Arguments values are recovered only when a value is recovered along all ex-
ecution paths reaching a system call. If the value from one execution path cannot be
identified statically, then the entire argument value is unknown. Furthermore, any data-
flows that cross between a shared object and the program are considered unknown. This
limited data-flow analysis improved model precision from 0%to 20%.

Last, we enabled all static data-flow analyses described in Sect. 4. Our new argu-
ment analysis improved precision from 61% to 100%.

7.3 Effects of Environment Sensitivity

We then made the models environment sensitive. For each program, we manually iden-
tified execution characteristics that depended upon environment properties. Stated more
formally, we defined the functionsf of Definition 4 that describe data-flows from an en-
vironment property to a program variable used as a system-call argument or as a branch
condition. Table 2 lists the dependencies added to the Dyck model for each program.
The system-call argument dependencies augmented values recovered using the static
data-flow analyses presented in Sect. 4. Immediately beforeexecution, the monitor in-
stantiates the model in the current environment by resolving the dependencies.
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Fig. 11. Percentage of potentially malicious system calls identified by the average reachability
measure made safe by constraints upon their arguments. The Dyck model with no data-flow
analysis constrained no arguments

Figure 10 reports the average reachability measure for eachprogram’s execution
when monitored using these environment-sensitive models.Model precision has im-
proved from 76% (procmail) to 100% (gzip andcat). Bothgzip andcat had
average reachability measures of zero, indicating that an adversary had no opportunity
to undetectably insert a malicious system call at any point in either process’ execution.

Successful argument recovery constrains system calls so that an attacker can no
longer use the calls in a malicious manner. We evaluated the ability of our techniques
to constrain system calls. Figure 11 shows the percentage ofpotentially malicious
system calls discovered during computation of the average reachability measure that
were restricted because of system call argument analysis and environment-sensitivity.
In this figure, higher bars represent the improved constraints upon system calls that pro-
duced the correspondingly lower bars previously shown in Fig. 10. For three programs,
mailx, gzip, andcat, environment-sensitive models constrained 99–100% of the
potentially dangerous calls.

We expect environment-sensitive program models to affect the performance of run-
time execution monitoring. The monitor must both update theprogram model at load
time to remove paths unreachable in the current environmentand enforce context-
sensitive argument restrictions at every system call. Table 3 shows the execution time
overhead arising from the model update and the more precise enforcement. These over-
heads are modest: about one-half second for the short-livedprocessesprocmail and
mailx and two seconds for the longer-runningcat. Although the overheads forproc-
mail andmailx are high when viewed as a percentage of the original runtime,this
occurs due to the short lifetime of these processes and the monitor’s upfront fixed cost of
pruning unreachable paths. Longer-lived processes such ascat give a better indication
of relative cost: here, 2.8%.

Further, improved argument recovery may increase the size of program models
as the model must contain the additional constraints. For all programs, environment-
sensitive models required 16 KB (2 pages) more memory than a Dyck model with no
argument recovery or environment-sensitivity.



Table 3.Performance overheads due to execution enforcement using environment-sensitive mod-
els.Model updateis the one-time cost of pruning from the model execution paths not allowed in
the current environment. Theenforcementtimes include both program execution and verification
of each system call executed against the program’s model

Program
No model update Environment-sensitive

Overhead
No enforcement Model update Enforcement Total

procmail 0.55 s 0.41 s 0.67 s 1.08 s 0.53 s
mailx (send) 0.08 s 0.38 s 0.16 s 0.54 s 0.46 s
mailx (receive) 0.07 s 0.38 s 0.14 s 0.52 s 0.45 s
gzip 6.26 s 0.00 s 6.11 s 6.11 s 0.00 s
cat 56.47 s 0.00 s 58.06 s 58.06 s 1.59 s

We believe that these results strongly endorse our proposedenvironment-sensitive
intrusion detection. The precision measurements demonstrate that with the right analy-
sis tools, program execution can be safely constrained to the point that attackers have
little ability to undetectably execute attacks against theoperating system via a vulner-
able program. We certainly do not constrain all execution: for example, our models do
not enforce iteration counts on loops or verify data read or written to files. However,
we strongly limit process execution that can adversely affect the underlying operating
system or other processes executing simultaneously.

7.4 Evasion Attacks

Intrusion detection systems that are not environment-sensitive are susceptible to evasion
attacks. These attacks mimic correct process execution forsomeenvironment [18, 21],
just not the current environment. To demonstrate the effectiveness of environment sen-
sitivity in defense against such attacks, we designed an attack againstmailx that over-
writes command-line arguments stored in the process’ address space to change the pro-
cess’ execution. Although the original command line passedto the program directed it
to check for new mail and exit, our attack changes the environment data so thatmailx
instead reads sensitive information and sends unwanted email.

Our attack makes use of a buffer overrun vulnerability whenmailx unsafely copies
the string value of theHOME environment variable. We assume that the attacker can alter
the HOME variable, possibly before the monitor resolves environment dependencies.
The attacker changes the variableHOME to contain the code they wish to inject into
mailx. The exploit follows the typical “nop sled + payload + address” pattern [12].

1. The first part consists of a sequence of nops (a “sled”) thatexceeds the static buffer
size, followed by an instruction sequence to obtain the current address on the stack.

2. The payload then rewrites the command-line arguments in memory. The change
to the command-line arguments alters execution so that the process will perform a
different operation, here sending spam and leaking information.

3. The return address at the end of the payload is selected to reentergetopt so that
the new command-line arguments update appropriate state variables. If necessary,
an evasive exploit can alter its reentry point so that no additional system calls or



stack frames occur between the overflow and the resumed flow. In our attack, reen-
tering atgetopt was sufficient.

We implemented themailx exploit, loaded it viaHOME, and caused the program
to read arbitrary files and send unwanted email. Since the exploit did not introduce
additional system calls and reentered the original execution path, the attack perfectly
mimicked normal execution for some environment, with one exception caused by the
register windows used by the SPARC architecture. To effectively manipulate the return
address, exploit code must return from acalleefunction after corrupting the stack [12].
This “double return” makes exploit detection slightly easier on SPARC machines, be-
cause an exploit that attempts to reenter a function alters return addresses in a detectable
way. This attack limitation is not present on the more commonx86 architecture.

Environment-sensitive models can detect these evasion attacks. The monitor re-
solves environment dependencies before process executionbegins, and hence before
the attack alters the environment data. In this example, theexecution paths thatmailx
followed subsequent to the attack, reading sensitive files and sending email, do not
match the expected paths given the command-line input.

8 Conclusions

Program models used for model-based intrusion detection can benefit from our new
analyses. Our static argument recovery reduces attack opportunities significantly further
than prior argument analysis approaches. Adding environment sensitivity continues to
strengthen program models by adding environment features to the models. The useful-
ness of these model-construction techniques is shown in theresults, where the models
could severely constrain several test programs’ execution.
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