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Abstract

A key function of a host-based intrusion detection sys-
tem is to monitor program execution. Models constructed
using static analysis have the highly desirable feature that
they do not produce false alarms; however, they may still
miss attacks. Prior work has shown a trade-off between
efficiency and precision. In particular, the more accurate
models based upon pushdown automata (PDA) are very
inefficient to operate due to non-determinism in stack ac-
tivity. In this paper, we present techniques for determiniz-
ing PDA models. We first provide a formal analysis frame-
work of PDA models and introduce the concepts of deter-
minism and stack-determinism. We then present the VP-
Static model, which achieves determinism by extracting in-
formation about stack activity of the program, and the Dyck
model, which achieves stack-determinism by transforming
the program and inserting code to expose program state.
Our results show that in run-time monitoring, our models
slow execution of our test programs by 1% to 135%. This
shows that reasonable efficiency needs not be sacrificed for
model precision. We also compare the two models and dis-
cover that deterministic PDA are more efficient, although
stack-deterministic PDA require less memory.

1. Introduction

A typical host-based intrusion detection system (HIDS)
monitors execution of a process to identify potentially mali-
cious behavior. An anomaly detection HIDS identifies vari-
ations from a preconstructed model of normal program be-
havior. Such a system interposes a monitor between a pro-

cess and the operating system. All events (usually system
calls) that flow from the program to the operating system
are validated against the model. Events that do not conform
to the model are rejected by the monitor. Figure 1 shows a
typical HIDS architecture.

There are several techniques to construct the program
model used in an anomaly detection HIDS. Learning-based
techniques [4, 5, 8, 12, 14, 15, 22, 26] construct the program
model by training on a set of execution traces. Sometimes
a specification of the program provided by a domain expert
is also used as a program model [11]. This paper focuses on
program models constructed using static analysis [6,23,24].
In the context of static analysis, there is a trade-off between
efficiency and precision. Non-deterministic finite automa-
ton (NFA) models are efficient to operate, but introduce im-
possible paths because they do not model the call-return se-
mantics of the program. Pushdown automaton (PDA) mod-
els eliminate impossible paths by incorporating the pro-
gram’s stack, but they are inefficient to operate. The inef-
ficiency in the PDA models occurs because the stack ac-
tivity of the program is hidden from the model and results
in non-determinism. Therefore, the state space of the PDA
model can become prohibitively large during operation. We
call this the curse of non-determinism. This paper formally
presents several techniques to handle this problem. Specifi-
cally, we make the following contributions:

• Formal framework. Formal models in intrusion de-
tection research have received scant attention, and
we address this shortcoming. Investigating for-
malisms drives the discovery of why certain pro-
gram models do or do not exhibit reasonable per-
formance. Our primary purpose is to formally an-
alyze recently proposed models rather than to in-
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Figure 1. Architecture of a host-based intrusion detection system.

troduce all-new models. A commonality of these
models is the exposure of process execution state be-
yond a simple system call stream. For example,
Sekar et al. [19] proposed using program counter in-
formation. Feng et al. [2] and Giffin et al. [7] ex-
posed the stack activity of a program. We show
that a context-free language (CFL) is homomor-
phic to a deterministic CFL. The proof of this result
is similar to that of Chomsky [1] and provides in-
tuition about techniques that expose program state.
Non-determinism in stack activity is the major fac-
tor contributing to the time and space complexity of
operating PDA models. Motivated by this observa-
tion, we define a stack-deterministic PDA model in
which the stack activity is deterministic. Section 3 dis-
cusses these formalisms.

• Model determinizing techniques. Techniques for de-
terminizing the PDA models essentially incorporate
additional program state (such as the program counter
and stack activity) into the model. We describe two
techniques incorporating additional state of the pro-
gram. In the observational technique, the monitor ex-
tracts the relevant information from the program. For
example, the monitor can extract information about the
stack activity of the program by walking the call stack.
Our VPStatic model, a statically-constructed variant of
the VtPath model [2], implements this technique. The
rewriting or instrumentation technique transforms the
program to introduce additional code that exposes pro-
gram state. For example, additional system calls intro-
duced before a call to function f indicate to the model
that a call to f is about to happen. Our recent Dyck
model implements this approach [7]. We also compare
the observational and rewriting approaches to deter-
minizing the PDA model. Sections 4 and 5 present the
two models.

• Evaluation. Our results show that the formalisms of
deterministic and stack-deterministic push-down au-
tomata enable construction of context-sensitive pro-

gram models suitable for online security monitoring.
The VPStatic automaton operation slows execution of
our test programs by 0% to 17%, although the unop-
timized stack walking algorithm adds up to 80% ad-
ditional overhead. The Dyck model is slightly less ef-
ficient due to state non-determinism, with overheads
of 8% to 135%. However, the Dyck model has a com-
pact representation, requiring only 38% to 49% more
memory for program instrumentation and the state ma-
chine. These results vindicate context sensitive mod-
els, showing that reasonable efficiency needs not be
sacrificed for model precision. Complete results are
given in Section 6.

2. Related Work

Significant intrusion detection systems research has fo-
cused upon static and dynamic analysis techniques to au-
tomatically generate program models. Wagner et al. pro-
duced models via static analysis of C source code [23, 24].
They described the precise abstract stack model, which is
a non-deterministic pushdown automaton (PDA). Due to
the stack state maintained in a PDA, this model captured
the precise call and return behavior of function calls. Un-
fortunately, runtime automaton operation in the monitor
was prohibitively high for some programs, reaching sev-
eral tens of minutes per transaction. We observed similar
results with PDA models extracted using static binary anal-
ysis of SPARC executables [6]. Both papers concluded that
imprecise, context-insensitive models must be used for rea-
sonable performance.

However, only context-sensitive models, such as the
PDA, can detect the impossible path exploits described by
Wagner et al. [23,24]. Such attacks force control flow to en-
ter a function from one call site but to return to a different
call site, presumably in a portion of the program code suit-
able for the attack. A context-sensitive model detects this il-
licit control flow by modeling the state of a program’s call
stack.



Our experience indicates that severe non-determinism in
this stack state is the major contributing factor to the time
and space complexity of PDA operation. The Dyck model
proved this: by eliminating non-determinism on stack tran-
sitions, a context-sensitive model could be efficiently oper-
ated [7]. This paper formalizes the Dyck model and proves
that it is a stack deterministic PDA. We further improve the
model by eliminating the additional system calls required
by the previous model construction. Our VPStatic model
goes further. It is a fully deterministic PDA and requires no
modifications to the original, analyzed binary.

Dynamic analysis extends the original work of For-
rest et al. [3] and constructs a program model based upon
observed system call traces from numerous training runs
[4,5,8,12,14,15,22,26,27].Sekar et al. showed that learning
a deterministic automaton is possible by associating each
system call with its corresponding program counter [19].
This model does not monitor context information and may
miss attacks due to this imprecision. It may also miss at-
tacks on dynamically linked libraries due to its oversimpli-
fied handling of dynamic objects.

Our previous VtPath model improved the precision of
dynamically constructed models [2]. This model addition-
ally monitors return addresses on the call stack. Our VP-
Static model is a natural extension of VtPath constructed
using static analysis techniques. Again, we add formalism
to the previous work. The VtPath model calculates an ad-
hoc virtual path from the call stacks of two adjacent system
calls and verifies the validity of that path. VPStatic is a prov-
ably deterministic PDA. The use of an automaton localizes
transitions to states, making VPStatic more precise. More-
over, the VPStatic model does not suffer the false alarms of
VtPaths due to its conservative static analysis.

Others have pioneered work outside of static and dy-
namic analysis. These approaches monitor execution based
upon specifications of system calls [10] or of expected pro-
gram behavior [11]. When provided by a domain expert,
these specifications can likely enhance the quality of auto-
matically generated models.

The VPStatic model has an anomaly recovery property
not considered by previous approaches. After an anomaly
occurs, we can still uniquely determine the expected state
and stack context for the next valid system call by monitor-
ing its program counter and call stack. Thus, we can con-
tinue to operate the automaton and potentially detect more
attacks such as a root-level exploit following a probe. This
also allows for a greater variety of security policies by en-
abling the system to fail an anomalous system call and con-
tinue execution rather than terminate the program. For ex-
ample, a monitor that terminates a network daemon after
an anomalous system call could be used for a denial of ser-
vice attack. We can instead prevent just the anomalous call
and allow process execution and monitoring to continue.

3. Formal Models

We begin by formally describing pushdown automata,
deterministic pushdown automata, and stack-deterministic
pushdown automata. These finite state machines are the un-
derlying constructs of our program models used for intru-
sion detection.

Definition 1 [PDA and DPDA]
A pushdown automaton (PDA) P is 7-tuple

P = (Q, Σ, Γ, δ, q0, z0, F ), where Q is the set of states, Σ
is the input alphabet, Γ is the stack alphabet, δ is the tran-
sition relation mapping Q × (Σ ∪ {ε}) × Γ to finite sub-
sets of Q × (Γ ∪ {ε})?, q0 ∈ Q is the unique initial state,
z0 ∈ Γ is the initial stack start symbol, and F ⊆ Q is
the set of accepting states. There are three types of transi-
tions in δ:

1. (Input consumption or ε transition): (p, z) ∈ δ (q, a, z)
where a ∈ Σ ∪ {ε}.
The top of the stack is z and stack contents do not
change. If a = ε, then this represents a transition from
q to p that consumes no input. If a ∈ Σ and P is in
state q, then consume input a and move to state p.

2. (Push transition; pushes z′ onto the stack): (p, zz′) ∈
δ (q, a, z) where a ∈ Σ ∪ {ε}.
The explanation is the same as (1), but now z ′ is
pushed onto the stack.

3. (Pop transition; pops z from stack): (p, ε) ∈ δ (q, a, z)
where a ∈ Σ ∪ {ε}.
The explanation is the same as (1), but now z is popped
from the stack.

A PDA P = (Q, Σ, Γ, δ, q0, Z0, F ) is called determinis-
tic if the transition relation δ satisfies the following condi-
tions [9]:

• (Condition 1): For all q ∈ Q and z ∈ Γ, whenever
δ(q, ε, z) is nonempty, then δ(q, a, z) is empty for all
a ∈ Σ.

• (Condition 2): For all q in Q, a ∈ Σ∪ {ε} and z ∈ Γ,
δ(q, a, z) contains at most one element.

A deterministic PDA is abbreviated as DPDA.

Our definition allows only one stack symbol to be pushed
onto or popped from the stack. The most general definition
of a PDA (as found in [9]) allows more than one stack sym-
bol to be pushed on the stack. However, it is easy to see
that a PDA P (according to the general definition) can al-
ways be converted into a PDA which conforms to our defini-
tion (the construction essentially transforms pushing many
symbols on the stack into a sequence of pushes of one sym-
bol.)

Given a PDA P = (Q, Σ, Γ, δ, q0, z0, F ), a configura-
tion c is a tuple (q, γ), where q ∈ Q is the current state and



γ is a string of stack symbols representing the stack con-
tents. Given two configurations c and c′ and a ∈ Σ, we say
that c ⇒a

P c′ if c is transformed into c′ by a sequence of
transitions of the PDA P while consuming input a. The re-
lation ⇒a

P can be extended to words w ∈ Σ?, i.e., given two
configurations c and c′ and w ∈ Σ?, c ⇒w

P c′ if c is trans-
formed into c′ by a sequence of transitions of the PDA P
while consuming input from string w. When P is clear from
the context, we simply write ⇒w instead of ⇒w

P . The lan-
guage L(P ) accepted by P = (Q, Σ, Γ, δ, q0, z0, F ) is de-
fined as

{w|(q0, z0) ⇒
w
P (p, γ) for some p ∈ F and γ ∈ Γ?}

PDAs accept context free languages (CFL). If a language
L is accepted by DPDA, it is called a deterministic con-
text free language or DCFL. Theorem 1 proves that every
CFL L is homomorphic [9] to a DCFL L′. Moreover, the
proof of the theorem gives a procedure for determinizing a
PDA by expanding the input alphabet. This proof is simi-
lar to that of Chomsky [1].

Theorem 1 Let L be a CFL. There exists a DCFL LD and
a homomorphism h such that h(LD) = L.

Proof: Let P = (Q, Σ, Γ, δ, q0, z0, F ) be a PDA accepting
L. We will construct a new input alphabet ΣD. There are
three types of symbols in ΣD.

• Input: For each a ∈ Σ∪{ε} and p ∈ Q, there is an in-
put symbol ea,p. The input symbol ea,p represents con-
suming input a and transitioning to state p.

• Push: For each a ∈ Σ ∪ {ε}, p ∈ Q and z ∈ Γ, there
is an input symbol fa,p,z. The input symbol fa,p,z rep-
resents consuming input a, pushing z on to the stack,
and transitioning to state p.

• Pop: For each a ∈ Σ ∪ {ε}, p ∈ Q and z ∈ Γ, there
is an input symbol ga,p,z. The input symbol ga,p,z rep-
resents consuming input a, popping z from the stack,
and transitioning to state p.

Next, we will construct a DPDA PD =
(Q, ΣD, Γ, δD, q0, z0, F ). Notice that the only compo-
nents different between P and PD are the input alpha-
bet and the transition relation. The transition relation for
the DPDA PD is defined as follows:

• For each transition (p, z) ∈ δ (q, a, z) in P , we have
the transition δD (q, ea,p, z) = {(p, z)}.

• For each transition (p, zz′) ∈ δ (q, a, z) in P , we have
the transition δD (q, fa,p,z′ , z) = {(p, zz′)}.

• For each transition (p, ε) ∈ δ (q, a, z) in P , we have
the transition δD (q, ga,p,z, z) = {(p, ε)}.

It is easy to see that PD is deterministic. Consider the fol-
lowing homomorphism h:

h(ea,p) = a

h(fa,p,z) = a

h(ga,p,z) = a

Let L(PD) be the language accepted by the DPDA PD .
Then h(L(PD)) = L(P ) = L. �

The construction used in the proof of Theorem 1 expands
the input alphabet by exposing the stack operations and the
target state of the transition. For example, the input sym-
bol fa,p,z indicates to the DPDA PD that it should consume
input a, push z on the stack, and transition to state p. Sup-
pose that a PDA P models a program Pr. In this case, the
DPDA PD models the program Pr, where internal state of
the program Pr (such as stack activity) is exposed. In other
words, exposing program state corresponds to the input al-
phabet expansion used in Theorem 1.

3.1. Intrusion Detection using PDAs and DPDAs

In model-based intrusion detection, one constructs a
model M(Pr) of a program Pr (see Figure 1). Pr gen-
erates a sequence of symbols (usually a sequence of sys-
tem calls). After receiving a symbol a from the program,
the model M(Pr) determines whether there exist transi-
tions on symbol a. If there does not exist a transition on
the input symbol a, the monitor reports an intrusion. Other-
wise, the model processes symbol a and updates its state.

PDA models. Suppose that the model M(Pr) is a PDA
(Q, Σ, Γ, δ, q0, z0, F ). The state of the model is the set of
configurations. The model’s initial state is {(q0, z0)}. Let C
be the set of possible configurations for M(Pr) after pro-
cessing a sequence of symbols w from Pr. Suppose the next
symbol that Pr generates is a. The new state of the program
is succ(C, a), which represents all configurations that re-
sult from configurations in C after processing input a. For-
mally, succ(C, a) is defined as {c′|∃c ∈ C.c ⇒a c′}. If
succ(C, a) is empty, the monitor reports an intrusion. Oth-
erwise, the new state of the model M(Pr) is succ(C, a) and
the processing continues.

In general, the state of the model can be infinite. For ex-
ample, suppose the model is in the state C = {(p, z)} and
receives a symbol a. Assume that the model has the follow-
ing transitions:

δ(p, ε, z) = {(p, zz)} (1)
δ(p, a, z) = {(q, ε)} (2)

It is easy to see that succ(C, a) is the infinite set {(q, zi) i ≥
0}. Notice that the infiniteness arises from rule 1, which cor-
responds to left recursion in a program. However, it turns



out that the state of the model (which is a set of configura-
tions) is regular and can be represented as a finite-state au-
tomaton [18, 23]. The time and space complexity of updat-
ing the state of the model after receiving a symbol is unfor-
tunately cubic in the size of the model. Wagner and Dean
concluded that operating a PDA model for intrusion detec-
tion was prohibitively expensive [23, 24].

DPDA models. Suppose the model M(Pr) is a DPDA.
Given an input symbol a ∈ Σ, a configuration c, and a
DPDA M(Pr), there exists at most one configuration c′

such that c ⇒a c′. Therefore, it is easy to see that during
monitoring the set of configurations C has at most one con-
figuration. The time and space complexity of updating the
state of the model after receiving a symbol is O(1).

Stack-deterministic PDA models. In our experience, non-
determinism in stack activity is the major contributing fac-
tor to the time and space complexity of operating PDA mod-
els. This motivates our definition of a stack-deterministic
PDA model, which allows non-determinism but requires
the state of the stack be left unchanged at points of non-
determinism. Formally, a PDA P = (Q, Σ, Γ, δ, q0, z0, F )
is called a stack-deterministic PDA or sDPDA if it satisfies
the following two conditions:

• (Condition 1): No stack activity on ε-transitions.
There is no push or pop transition δ(q, a, z) such that
a = ε.

• (Condition 2): Stack activity only depends upon the
input symbol and the top of the stack.
For all a ∈ Σ and z ∈ Γ, there does not exist two states
q1 and q2 (not necessarily different), such that

(p1, w1) ∈ δ(q1, a, z) ,

(p2, w2) ∈ δ(q2, a, z) ,

where w1 6= w2.

Assume that we use an sDPDA model M(Pr) of a pro-
gram Pr for intrusion detection. Let C be the set of config-
urations obtained after processing a sequence of symbols w.
From the two conditions given above, all configurations in
C must have the same stack. Formally, C ∈ 2Q×Γ?, where
Q and Γ are the set of states and stack alphabets for the
model M(Pr). Since the size of C can be at most n = |Q|,
the time and space complexity for processing a new sym-
bol a is O(n). If a language L is accepted by sDPDA, it
is called a stack-deterministic context free language or sD-
CFL. Theorem 3 in Appendix A proves that the language
accepted by a sDPDA is a DCFL. Therefore, an sDPDA is
not fundamentally more powerful than a DPDA.

Theorem 2 Let L be a CFL. There exists a sDCFL LD and
a homomorphism h such that h(LD) = L.

Proof: Let P = (Q, Σ, Γ, δ, q0, Z0, F ) be a PDA accepting
L. We will construct a new set of input symbols ΣsD. There
are three types of symbols in ΣsD.

• Input: This is simply the input alphabet Σ of the PDA
P .

• Push: For each a ∈ Σ∪ {ε} and z ∈ Γ, there is an in-
put symbol fa,z. The input symbol fa,z represents con-
suming input a and pushing z onto the stack.

• Pop: For each a ∈ Σ ∪ {ε} and z ∈ Γ, there is an in-
put symbol ga,z. The input symbol ga,z represents con-
suming input a and popping z from the stack.

Next, we will construct a sDPDA PsD =
(Q, ΣsD, Γ, δsD, q0, z0, F ). Notice that the only com-
ponents different between P and PsD are the input alpha-
bet and the transition relation. The transition relation for
the sDPDA PsD is defined as follows:

• For each transition (p, z) ∈ δ (q, a, z) in P , we have
the transition (p, z) ∈ δsD (q, a, z).

• For each transition (p, zz′) ∈ δ (q, a, z) in P , we have
the transition (p, zz′) ∈ δsD (q, fa,z′ , z).

• For each transition (p, ε) ∈ δ (q, a, z) in P , we have
the transition (p, ε) ∈ δsD (q, ga,z, z).

It is easy to see that PsD is stack-deterministic. Consider
the following homomorphism h:

h(a) = a

h(fa,z) = a

h(ga,z) = a

Let L(PsD) be the language accepted by PsD . Then
h(L(PsD)) = L(P ) = L. �

The construction used in the proof of Theorem 2 expands
the input alphabet by exposing the stack operations. For ex-
ample, the input alphabet fa,z indicates to the sDPDA PD

that it should consume input a and push z onto the stack.
Recall that in the proof of Theorem 1 we expanded the in-
put alphabet to expose the stack activity and the target of the
transition, e.g., fa,p,z indicated that it should consume input
a, push z on the stack, and transition to state p. In construct-
ing an sDPDA, we exposed the stack activity of the PDA but
not the target of the transition.

Table 1 summarizes the time and space complexity of
processing a new symbol for the three models. The size of
input alphabet for the three models is also shown. From
Theorems 1 and 2 it is clear that the size of the input al-
phabets for DPDA and sDPDA models is larger than for the
corresponding PDA.



Model Time complexity Space complexity Input alphabet size
PDA O(nm2) O(nm2) k

DPDA O(1) O(1) Θ(knr)
sDPDA O(n) O(n) Θ(kr)

Table 1. Time and space complexities for pro-
cessing an input symbol with various mod-
els. The number of states and transitions in
the model are denoted by n and m respec-
tively. The size of the input and stack alpha-
bets in the PDA are denoted by k and r re-
spectively.

3.2. Connection to Existing Techniques

Several authors have proposed exposing program
state to improve the precision of the models. For ex-
ample, Sekar et al. [19] propose using program counter
information. This is equivalent to expanding the input al-
phabet to expose the target of the transition. Giffin et al. [7]
and Feng et al. [2] expose the stack activity of a program.
In our context, this is equivalent to expanding the input al-
phabet by exposing the stack activity (this is very similar
to the homomorphism demonstrated in the proof of Theo-
rem 2). Therefore, the formal framework of PDA, DPDA,
sDPDA, and homomorphisms provides a systematic way of
understanding and evaluating techniques that expose addi-
tional program state.

4. The VPStatic Model: Determinizing via
Stack Exposure

The VPStatic model is a statically-constructed variant of
the context-sensitive VtPath model [2]. Like its dynamic
counterpart, it uses stackwalks during execution to deter-
mine the call stack state of the monitored process. Com-
bined with program counter monitoring, this produces the
extra symbols necessary to fully determinize the model.

4.1. Model Generation by Static Analysis

The VPStatic model is generated by statically analyzing
the binary executable of a program. We first introduce no-
tation. There is a function entry state Entry(f) and exit
state Exit(f) for each function f in the executable, sys-
tem call state S for each system call instruction, and call
site entry state C (state right before the call) and exit state
C ′ (state right after the return) for each function call site.
Addr(S), Addr(C), and Addr(C ′) denote the address of
the corresponding system call or function call instruction
(Addr(C) = Addr(C ′)). Func(a) is the function contain-
ing the instruction at address a.

                              States
char* filename;
pid_t[2] pid;
int prepare(int index) {      Entry(prepare)
  char buf[20];
  pid[index] = getpid();      S_getpid
  strcpy(buf, filename);
  return open(buf, O_RDWR);   S_open
}                             Exit(prepare)
void action() {               Entry(action)
  uid_t uid = getuid();       S_getuid
  int handle;
  if (uid != 0) {
    handle = prepare(1);      C1, C1’
    read(handle, ...);        S_read
  } else {
    handle = prepare(0);      C0, C0’
    write(handle, ...);       S_write
  }
  close(handle);              S_close
}                             Exit(action)

Figure 2. A simple code fragment example.

We use a simple program fragment, shown in Figure 2,
as a running example. The automaton and the left side list
of transitions in Figure 3 describe a non-deterministic PDA
for the example program that is quite similar to the call-
graph model [24]. As for the callgraph model, system call
numbers are the only observed inputs to simulate the au-
tomaton. We use “none” (or more commonly ε) as a place
holder when transitions are not associated with any system
call. This PDA is non-deterministic since we have not ex-
posed stack activities and targets of transitions. To make the
PDA deterministic, we extract address information from the
binary to expose internal state. The automaton and the right
side list of transitions in Figure 3 describe the final DPDA.

The input symbols of the DPDA have the forms in the
proof of Theorem 1, with slight modifications. Namely, for
system call and call site states, we use Addr(p) instead
of p to expose the state, since the address information is
what we can extract from program counter and call stack
when dynamically monitoring program executions. For ex-
ample, g(a, Addr(p), z) or g(a, p, z) means the automaton
consumes the input symbol, pops z from the stack, and tran-
sitions to state p. This is equivalent to the transition ga,p,z

used in the proof of Theorem 1. Other symbols can be sim-
ilarly explained. All three forms of input symbols e(. . .),
f(. . .) and g(. . .) appear in Figure 3. The formal models
section proved this pushdown automaton is deterministic.
A detailed description of the model is in Appendix B.

4.2. Online Detection by Dynamic Monitoring

After the profile is generated, we can simulate the au-
tomaton during online program monitoring. When each sys-



Entry(action)

S_getuid

C1

e1

e2

C0

C1' C0'

S_read S_write

S_close

Exit(action)

e4 e5

e8

e3

e6 e7

Entry(prepare)

S_getpid

Exit(prepare)

S_open

e9

e10

e11

e12

e14

e13

e15

e1: e(getuid, Addr(S_getuid))
e2: e(none, Addr(C1))
e3: e(none, Addr(C0))
e4: e(read, Addr(S_read))
e5: e(write, Addr(S_write))
e6: e(close, Addr(S_close))
e7: e(close, Addr(S_close))
e8: e(none, Exit(action))
e9: e(getpid, Addr(S_getpid))
e10: e(open, Addr(S_open))
e11: e(none, Exit(prepare))
e12: f(none, Entry(prepare), Addr(C1))
e13: f(none, Entry(prepare), Addr(C0))
e14: g(none, Addr(C1'), Addr(C1'))
e15: g(none, Addr(C0'), Addr(C0'))

e1: getuid
e2: none
e3: none
e4: read
e5: write
e6: close
e7: close
e8: none
e9: getpid
e10: open
e11: none
e12: none  Push(Addr(C1))
e13: none  Push(Addr(C0))
e14: none  Pop(Addr(C1'))
e15: none  Pop(Addr(C0'))

Figure 3. The PDA and VPStatic DPDA generated for the code example.

e(none, Exit(Func(am+1)))
g(none, am, am)

e(none, Exit(Func(am)))
g(none, am−1, am−1)

...
e(none, Exit(Func(al+1)))

g(none, al, al) (3)
e(none, bl) (4)

f(none, Entry(Func(bl+1)), bl)
e(none, bl+1)

f(none, Entry(Func(bl+2)), bl+1)

...
e(none, bn)

f(none, Entry(Func(bn+1)), bn) (5)
e(sB , bn+1) (6)

Figure 4. VPStatic input symbol sequence
generated for system call SB .

tem call is made, we extract all the call site addresses for
the functions that have not returned yet into a virtual stack
list (VSL), ordered from the outermost function to the in-
nermost function. The definition of VSL is similar to that
in [2].

Assume A = a1, a2, . . . , am and B = b1, b2, . . . , bn

are the virtual stack lists of the last and the current system
calls, respectively. Also, assume sB is the current system
call and bn+1 is its address (the current program counter),
and sA and am+1 are the last system call and its address, re-
spectively. Suppose l is the first index for A and B so that
the corresponding items are not equal, namely, ai = bi for
i = 1, 2, . . . , l− 1, and al 6= bl. For the current system call,
we generate a sequence of input symbols and feed them to
the automaton one by one. The input symbol sequence gen-
erated is shown in Figure 4.

For example, assume an ordinary user (not root) exe-

cutes the example program and runs to the getpid line
in Figure 2. The virtual stack list A here should look
like “prefix, Addr(C1)”, where prefix is a sequence of ad-
dresses corresponding to the functions that lead to action.
The system call SA is getpid. If the program executes
to open, the virtual stack list B here is the same as A
since the call stack does not change, and system call SB

is open. So from Figure 4, the symbol sequence gener-
ated is e(open, Addr(Sopen)), which successfully leads the
automaton to the next state Sopen. However, if an attacker
overflows a buffer using strcpy, she could change the re-
turn address of prepare to Addr(C0), to gain unautho-
rized write access to the file after prepare returns. In that
case, the virtual stack list B changes to “prefix, Addr(C0)”.
Since Addr(C0) 6= Addr(C1), from Figure 4, the symbol
sequence generated will be:

e(none, Exit(prepare))

g(none, Addr(C1), Addr(C1))

e(none, Addr(C0)) (7)
f(none, Entry(prepare), Addr(C0))

e(open, Addr(Sopen))

However, since state Sgetpid does not have a transition asso-
ciated with e(none, Exit(prepare)), an alarm will be trig-
gered and the intrusion is detected.

After all input symbols generated for a system call are
processed, the current state should be the state correspond-
ing to the system call, and the current automaton stack con-
text is just the VSL of this system call. Namely, the current
state and stack context can be uniquely decided for a valid
system call. If there is no corresponding transition to fol-
low for an input symbol, then anomalous execution indica-
tive of an intrusion attempt has occurred.
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Figure 5. Local Dyck models.

5. The Dyck Model: Determinizing via Instru-
mentation

As shown in Section 3, adding stack determinism to a
PDA requires additional alphabet symbols to make stack-
modifying transitions deterministic. Statically constructed
program models use the PDA stack to model the running
process’s call stack. Stack operations then occur at func-
tion call sites and returns. The Dyck model [7] uses bi-
nary rewriting to insert code before and after each func-
tion call site to generate the extra symbols needed for stack-
determinism.

5.1. Static Model Construction

The Dyck static analyzer reads a binary program image
and produces both an Dyck model and an instrumented ver-
sion of the binary. This requires four steps:

1. For each function, construct a control flow graph
(CFG).

2. Convert each CFG into a local model: a non-
deterministic finite automaton that accepts all se-
quences of function calls and kernel traps that
the function could generate under correct execu-
tion.

3. Classify function calls and insert code around func-
tion call sites to generate symbols necessary for stack-
determinism. This instrumentation adds new events
into the call stream, so we update local models to
match.

4. Combine the collection of modified local models into a
single sDPDA modeling the entire rewritten program.

Recall that Figure 2 shows code for two example functions,
prepare and action. Although we show C source code
for readability, we analyze SPARC binary code.

We convert each function’s CFG into a local model. This
is straightforward: a CFG is already a non-deterministic fi-
nite state machine with all edges unlabeled. If a basic block
contains a user call or kernel trap site, we label all outgoing

void action () {
  uid_t uid = getuid();
  int handle;
  if (uid != 0) {
    precall(A);
    handle = prepare(1);
    postcall(A);
    read(handle, ...);
  } else {
    precall(B);
    handle = prepare(0);

    write(handle, ...);
  }
  close(handle);
}

    postcall(B);

Figure 6. Example Code With Dyck Instru-
mentation. Inserted code appears in bold-
face.

edges of that block with the call name. We label all other
edges ε and convert all basic blocks into automaton states.
The ε-reduced and minimized local automata for the exam-
ple code are shown in Figure 5. Appendix C.1 gives the for-
mal definition of a local model.

Next, we add edges to the local models around func-
tion call transitions that model the call stack changes occur-
ring at runtime. An edge before each call transition pushes
a unique identifier onto the PDA stack kept in the runtime
monitor; an edge after the call pops that identifier off. Each
call site has a unique push and pop symbol, so the moni-
tor can differentiate between different call sites to the same
function. The NFA local models are now PDAs.

To add stack-determinism to these PDA models, we must
add symbols to the event stream that distinguish each stack
operation. The analyzer rewrites the binary image of the
program by inserting a history stack into the program’s data
space and adding code immediately before and after each
call site. The history stack records stack changes occurring
since the last kernel trap. Precall code before call site A
pushes the symbol fε,A onto the history stack. If the call
generates a kernel trap before returning, then the monitor
reads all collected symbols from the history stack to iden-
tify the execution path followed in the program. If the call
returns without generating a kernel trap, then the postcall
code pops fε,A from the history stack and discards it. Oth-
erwise, it adds the symbol gε,A to the history stack. Figure 6
shows the rewritten code for action with instrumented
call sites to prepare.

Adding code instrumentation at recursive call sites has
potentially high runtime cost. We add neither stack tran-
sitions to the local models nor code to the binary image
around call sites that may recurse.

Lastly, we compose the collection of modified local au-
tomata at points of function calls to form the global model
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Figure 7. Dyck model.

of the entire program. The analyzer replaces each function
call transition with ε-edges entering and returning from the
model of the target function. Figure 7 shows the completed
Dyck model for the example functions. Note the similar-
ity to the VPStatic model described earlier. Here, the input
symbol fε,A additionally pushes the identifier A onto the
PDA stack. The symbol gε,A is an input symbol that pops
A. Appendix C.1 formally defines the model using language
theory. The Dyck model is an sDPDA (see Appendix C.2).

5.2. Runtime Monitoring

The user executes the rewritten binary in her security-
critical environment, with the runtime monitor tracing its
execution at system calls. The monitor enforces the model,
guaranteeing that process execution does not deviate from
the possible sequences of system call streams.

Dyck model operation is more straightforward than VP-
Static operation. Although the model is a PDA, the mon-
itor keeps only one PDA stack due to stack-determinism.
When the traced process generates a kernel trap, the moni-
tor reads all saved symbols from the process’s history stack.
Each symbol is an input to the automaton that modifies the
stack state and corresponds to a return from or a call to an-
other function. These symbols are equivalent to the virtual
path symbols calculated from stack walks in the VPStatic
model. The monitor then processes the kernel trap symbol,
permitting execution only if the symbol has a valid transi-
tion in the model.

6. Performance Measurements

To compare the performance of the VPStatic and Dyck
models, we measured two costs of execution monitoring.
First, we measured the increase in execution time when
monitoring. Second, we calculated the increased memory
use due to the program models and Dyck instrumentation.

We analyzed performance for three test programs. Our
tools currently build models only for statically-linked pro-
grams. As a result, the set of test programs is not repre-

sentative of those with greatest security concern, although
they do contain a mix of computation-intensive and syscall-
intensive programs. Table 2 lists the three programs and
workloads and statistics for each. htzipd is a proprietary
implementation of httpd which is the only httpd imple-
mentation we successfully compiled statically under So-
laris.

Execution time overheads are calculated by subtracting
a base execution time from monitored execution time. All
times are averaged over several runs. Execution times do
not include setup time in the monitor during which the pro-
gram model is read from disk. The current implementation
of both the VPStatic and Dyck monitors execute in user
space and detect system call events via Solaris process trac-
ing. To better evaluate the cost of operating each model, the
base execution time is measured with process tracing en-
abled. At each system call stop, the monitor does nothing
but resume the execution of the stopped process. The differ-
ence between base time and monitored time then captures
exactly the overhead of model operation.

We calculated memory usage similarly. The value of in-
terest is the increase in state required for each process. In
particular, the static code of the monitoring process is of
little meaning as it may be shared among all audited pro-
cesses. For the VPStatic model, we compute the per process
state by taking the difference between memory use with full
auditing enabled and with an empty profile loaded with au-
diting disabled. The memory used by the Dyck model also
includes the cost of binary code inserted into the original
application.

This section does not include measurements with
the previously used average branching factor met-
ric [23]. This metric is poorly suited for measurements
of context-sensitive languages as stack transitions enter-
ing system call wrapper functions obscure the reachable
system calls. Lacking an appropriate metric, we rely in-
stead upon our theoretical discussions in the previous
sections as an evaluation of the strength of our mod-
els. Strength metrics may be applied in the future if
new research develops reasonable measurement algo-
rithms.

6.1. Execution Time Overhead Results

Table 3 contains execution time overheads for the VP-
Static and Dyck models. Base execution times are presented
twice because differences in monitor implementations re-
sult in somewhat different base times. Due to the high cost
of the stack walk operation in the VPStatic model, we sep-
arate the model’s runtime into two components: the time
to operate the automaton and the time to perform the stack
walk. The Dyck model does not walk the call stack, so no
such separation is presented.



Program Workload Instructions Functions Call Sites
htzipd Service 500 client requests, transferring 151.7 MB in total. 110,096 1455 6928
gzip Compress a 23.5 MB tar file. 57,271 884 2844
cat Concatenate 38 files totalling 500 MB to a file. 52,601 838 2728

Table 2. Test programs, workloads, and statistics.

VPStatic Dyck
Program Untraced Base Automaton % Stackwalk % Base Automaton %
htzipd 16.66 22.06 3.80 17 17.54 80 20.50 27.72 135
gzip 13.72 14.69 0.03 0 0.17 1 13.99 1.17 8
cat 46.20 59.14 2.56 4 15.81 28 54.84 30.60 56

Table 3. Model execution times in seconds. Base execution time includes system call tracing without
automaton operation. Percentages compare against base execution.

Program VPStatic Dyck
htzipd 225 300
gzip 389 415
cat 170 289

Table 4. Average system call verification
time, in microseconds.

Table 4 shows the average monitor execution time, in mi-
croseconds, per system call event received. Each system call
requires the monitor to update its calling context informa-
tion and to verify that the system call is a valid operation
in the program model. The times to perform these opera-
tions remained relatively constant even as the number of
stack symbols read from the monitored process changed, al-
though outlying points did occur.

The tables show two interesting results. First, these de-
terministic or stack-deterministic models are efficient to op-
erate. Automaton operations in the deterministic VPStatic
model are extremely fast. Second, the VPStatic model is
more efficient to operate than the Dyck model.

This second result occurs for two reasons. First, it illus-
trates the operational differences between deterministic and
stack-deterministic automata. The DPDA used with the VP-
Static model operates in constant time, but the sDPDA un-
derlying the Dyck model requires linear time operation (Ta-
ble 1). This effect is clearly visible in the respective run-
times of the two models. Second, the Dyck model has addi-
tional execution at many function call sites due to the in-
jected code. This cost arises even if the process follows
an execution path that does not generate system calls. The
VPStatic model incurs monitoring cost only at system call
events.

6.2. Memory Use Overhead Results

Table 5 presents the memory needs of execution moni-
toring for the two models. We divide the memory costs of
the Dyck model into the cost of the current rewriting in-
frastructure, which doubles the size of each program’s code
segment, and the cost of our code insertions and state ma-
chine representation. The infrastructure cost is excessive,
but could be significantly reduced by shifting to a more ef-
ficient rewriter.

The VPStatic state machine cost is greater than the cor-
responding Dyck models. Again, this highlights differences
between DPDA and sDPDA models. An automaton al-
lowing non-determinism in state transitions naturally has
a more compact representation. Hence, the Dyck model
will produce smaller automaton structures than the VPStatic
model. Moreover, we have not yet optimized the VPStatic
model size. For example, we could remove all the function
entry and exit nodes using techniques similar to the automa-
ton reduction used for Dyck model. We kept the original for-
mat of the model since it is a recent development and is con-
ceptually clearer this way.

6.3. Discussion

We draw two primary conclusions from this work. First,
the formalisms of deterministic and stack-deterministic
push-down automata result in highly accurate and highly
efficient program models. Non-deterministic context-
sensitive models produced overheads orders of magni-
tude worse than base execution [6, 23, 24] and would never
be suitable for real-world operation. Our automaton oper-
ation overheads, while not yet as low as we would like,
show that context-sensitivity and precise program mod-
els need not be sacrificed for performance.

Second, the differences in these models suggests that hy-
bridization of the two construction and monitoring tech-



VPStatic Dyck
Program Unmonitored State Machine % Infrastructure % Instrumentation State Machine %
htzipd 568 1040 183 504 89 48 168 38
gzip 600 560 93 288 48 48 232 47
cat 280 544 194 272 97 32 104 49

Table 5. Memory use in KB due to monitoring. Percentages are increases over unmonitored execu-
tion.

niques may be beneficial. The Dyck model produces no
context information at points of recursion or dynamic link-
ing to non-instrumented binaries. The VPStatic model can
identify this missing information by inspecting existing pro-
gram state. If instrumented libraries are available, the Dyck
model can more easily use these libraries at runtime as
memory offsets of return addresses are not an issue. The
Dyck model can also successfully reveal context informa-
tion in optimized binaries where stack walking may be dif-
ficult or impossible. On the other hand, binary rewriting
does occasionally fail. We can then rely on the stack walk
technique to recover state information. Likewise, we may
wish to limit instrumentation to some set of critical pro-
gram points and rely upon stack walking elsewhere. A hy-
brid model would combine both state recovery mechanisms
to capture the complete context of a system call. The hybrid
would gain from the strengths of both models while mini-
mizing the drawbacks of each.

7. Limitations

Although our approaches produce more sensitive and
more accurate models than other approaches, there are still
limitations. It is well documented [16, 17, 25] that attack-
ers can exploit weaknesses and limitations of intrusion de-
tection models to avoid detection. Short of complete in-
strumentation, which amounts to essentially interpreting
the program, our statically-generated models do not have
complete information about the state of the executing pro-
gram. An attacker can exploit incomplete information in the
model to evade the HIDS.

7.1. Incomplete Sensitivity

Models discussed in this paper incorporate information
about the stack activity of the program. Thus, our models
are context sensitive. However, since our model does not
track predicates used in branches, they are neither flow nor
path sensitive. This incompleteness can result in our model
allowing extraneous behavior. For example, consider the
following code fragment:

char *str, *user;

str = (char *) calloc (...);
user = (char *) calloc (...);
...

if (strncmp (user, "admin", 5)) {
sys_1 ();

} else {
sys_2 ();

}
strcpy (str, someinput);
if (strncmp (user, "admin", 5)) {

sys_3 ();
} else {

sys_4 ();
}

There are two possible system call sequences for the code
fragment:
sys 1, sys 3, and
sys 2, sys 4.
The sequences correspond to the predicate
strncmp(user,"admin",5) being true or false re-
spectively. Notice that the predicates used in both the
branches are the same. However, since our models do
not track the values of branch predicates, they will al-
low the following four sequences:
sys 1, sys 3,
sys 1, sys 4,
sys 2, sys 3, and
sys 2, sys 4.
An attacker can exploit this limitation to avoid detec-
tion. In the example given above, an attack uses a large
someinput in strcpy to overflow str on the heap to
change the value of user. If user is “guest” and the
overflow in strcpy changes user to “admin”, then the
illegal sequence sys 1, sys 4 is executed, which is ac-
cepted by our model and hence the attack is not de-
tected.

7.2. Incomplete Set of Events

Events monitored by our model are system calls. As
pointed out by Wagner and Soto [25] and Tan et al. [20,21],
an attacker can evade detection if it generates sequence
of events accepted by our model. We previously presented
such an attack using the following code segment [2]:



...
f(); //f has no system calls, a buffer-overflow occurs

// so that after f the program jumps to IP

if (regular_user) {
return ();

}

IP: //super user privileges
execve (‘‘/bin/sh’’);

An attack that uses a buffer overflow in f to force the
program to jump to IP can (illegally) obtain a root shell.
Without inserting code instrumentation before and after f,
our models will miss this attack because there is no sys-
tem call in the code segment between the call to f and IP.
In other words, no matter how the program control flow is
illegally modified within the code segment, there is no ob-
servable events to our models. However, when code instru-
mentation is added right before and after the call to f, the
attack will be detected by our model.

An attack can also evade detection if it simply replaces
the system call parameters [25]. We recover some argu-
ments of system calls using static analysis, but there are
several system calls where we have incomplete information
about the arguments.

7.3. Playing Inside the Sandbox: Mimicry Attacks

We assume that attackers have complete knowledge
about our model-construction algorithm. In mimicry at-
tacks, an adversary transforms her attack in such a way
that the resulting sequence is accepted by the detec-
tion model [25]. For example, the attacker can mimic
the legal program behavior by generating (legal) sys-
tem calls and inserting them in the original attack se-
quence. An attacker can use a different attack sequence
that is semantically equivalent to the original attack se-
quence. These attacks are very serious and can easily evade
simple detection models, such as the n-gram model pro-
posed by [3]. However, incorporating additional informa-
tion about the program in the model makes it difficult to
mount mimicry attacks. Our models monitors informa-
tion about system calls, program counter, and call stack.
Therefore, to mount a successful mimicry attack an adver-
sary is required to produce correct call stack and program
counter information along with the sequence of sys-
tem calls which is equivalent to the attack.

8. Conclusions

We formally described statically-constructed context-
sensitive program models for host-based intrusion detec-
tion. Seeking to add efficiency to the precision of these
models, we examined deterministic PDAs and introduced
stack-deterministic PDAs. The proofs of language equiva-
lence between the homomorphic image of a DCFL or sD-
CFL and a CFL give rise to monitoring techniques that

make these models possible. The VPStatic model walks a
process’s call stack to harvest return addresses revealing
context information enabling a deterministic model. Using
program instrumentation, the Dyck model eliminates stack
non-determinism. Experiments demonstrate that context-
sensitivity and efficiency can coexist in these program mod-
els, benefiting all such intrusion detection systems.
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A. Proof for Section 3

Theorem 3 The language L accepted by an sDPDA is a
DCFL.

Proof: First, remove ε transitions. Let P =
(Q, Σ, Γ, δ, q0, z0, F ) be an sDPDA. Recall that an sD-
PDA does not have stack activity on ε-transitions. Given
states q and q′ and a stack symbol z ∈ Γ, we say that
(q, z) ⇒ε (q′, z) if there exists an ε-transition such that
(q′, z) ∈ δ(q, ε, z). Let ⇒?

ε be the reflexive and transi-
tive closure of ⇒ε. Notice that ⇒?

ε can be computed in
polynomial time using standard graph reachability al-
gorithms. We will transform the transition relation δ
of P to δ′ to remove ε transitions. First, δ′ will con-
tain all the non-ε transitions δ(q, a, z). For each transi-
tion, (q′, z) ∈ δ(q, a, z) (where a 6= ε), δ′(q, a, z) contains
all (q′′, z) such that (q′, z) ⇒?

ε (q′′, z).
Second, remove state non-determinism. Due to the

step given above, we can assume that the sDPDA
P does not contain ε-transitions. Next we can re-
move the “state” non-determinism of P using the
standard subset construction used in determinizing
a NFA. Let P = (Q, Σ, Γ, δ, q0, z0, F ) be an sD-
PDA without ε-transitions. We will construct a DPDA
DP = (Q1, Σ, Γ, δ1, q

1
0 , z0, F1), where Q1 = 2Q,

q1
0 = {q0}, F1 are all subsets of Q such that F1 ∩ F 6= ∅,

and δ1 is defined as follows: δ1(q1, a, z) contains (q2, z
′),

where q2 is the following set:

{q′ | ∃q ∈ q1 : (q′, z′) ∈ δ(q, a, z)}

Recall that because of condition 2 in the definition of sD-
PDA the stack activity is completely determined by the in-
put a and top of the stack z. Therefore, the definition of δ1



is well defined. It is easy to see that DP is a DPDA and ac-
cepts the same language as the sDPDA P . �

B. Definition of VPStatic Model

We expand the notation in Section 4. SysCall(S) is the
system call made at S, and Target(C) = Target(C

′

) is
the target function of the call site C/C ′.

The computation model is a DPDA (Q, Σ, Γ, δ, q0, z0, F ).
We still use the simple program fragment, shown in Fig-
ure 2, as a running example. Its corresponding automaton
is shown in Figure 3.

Q is the set of states. The example program has 14
states. Note we have five different kinds of states in the au-
tomaton: function entry states (Entry(action) and
Entry(prepare)), function exit states (Exit(action) and
Exit(prepare)), system call states (S getuid, S read and
so on), call site entry states (C1 and C0) and call site exit
states (C1

′

and C0
′

).
Σ is the input alphabet. The input symbols of this DPDA

have the forms in the proof of Theorem 1, with slight mod-
ifications. Namely, for system call and call site states, we
use Addr(p) instead of p to expose the state. For example,
g(a, Addr(p), z) or g(a, p, z) means the automaton con-
sumes the input symbol, pops z from the stack, and tran-
sitions to state p. This is equivalent to the transition ga,p,z

used in the proof of Theorem 1. Other symbols can be simi-
larly explained using the proof of Theorem 1. During online
detection, we monitor the call stack and program counter to
expose address information Addr(p). We use none as the
placeholder when no system call is involved for the tran-
sition. All three forms of input symbols e(. . .), f(. . .) and
g(. . .) appear in Figure 3.

Γ is the stack alphabet. For our model, Γ is

{Addr(p)|p ∈ Q and p is a function call site state} ∪ {z0}

where z0 is the initial stack start symbol. We use the au-
tomaton stack of the DPDA to simulate the program call
stack.

The start state q0 is the entry state of the program entry
function. F is the set of accepting states. If we require the
program to exit normally, F is the set of all states for exit
system calls. If the program can be killed anytime, F is the
set of all states, or F = Q. Since the example program is
only a program fragment, the start and the accept state set
are not shown in Figure 3.

δ is the transition function. The automaton is constructed
by interconnecting the transformed control flow graph of
each function. If both the states connected by a transition
e are in the same function, we call e an intra-function
transition. Otherwise, we call e an inter-function transi-
tion. Intra-function transitions are always marked with in-
put symbols of the form e(...) since they do not deal with

automaton stack. For example, in Figure 3, transition e6:
e(close, Addr(S close)) means that if the current state is
S read, the program issues a system call close, and we ob-
serve that its program counter is Addr(S close), then the
current state is moved to S close.

Inter-function transitions modify the automaton stack.
They only exist between a call site entry state and its target
function entry state, and between a target function exit state
and a corresponding call site exit state. If T1 is a call site
entry state and T2 is the corresponding target function en-
try state, we add a transition from T1 to T2 and label it with
f(none, T2, Addr(T1)), which means the program is call-
ing a function, and we push the address of the correspond-
ing call site into the automaton stack. In Figure 3, transi-
tions e12 and e13 belong to this case. If T2 is a call site
exit state, and T1 is the corresponding target function exit
state, we add a transition from T1 to T2 and label it with
g(none, Addr(T2), Addr(T2)), which means we only fol-
low this transition if the address of the call site the program
is returning to matches the top symbol on automaton stack,
and we pop this address. In Figure 3, transitions e14 and e15

belong to this case.
This completes our model definition. The formal mod-

els section proved this pushdown automaton is determinis-
tic. Note recursive function call and return transitions are
handled just like non-recursive ones.

C. Definitions and Proofs for Section 5

C.1. Definition of Dyck Model

Let S be the set of system call sites (traps to the operat-
ing system) and C be the set of function call sites. Let θ(c)
denote the target function of call site c. Note that two differ-
ent call sites c1, c2 ∈ C are unique, even if θ(c1) = θ(c2).

Definition 2 [Local Model]
Let G = 〈V, E〉, E ⊆ V × V be the control flow graph

of program Pr. Let a / v indicate that vertex v ∈ V con-
tains call site a. The local model for each function i ∈ Pr
is Ai = (Qi, Σi, δi, q0,i, Fi), where:

• Qi = V

• Σi = Si ∪ Ci ∪ {ε} where Si ⊆ S and Ci ⊆ C

• q0,i ∈ V is the unique CFG entry state

• Fi = {v ∈ V \ q0,i |v is a CFG exit }

• q ∈ δi(p, a) if a / p and (p, q) ∈ E

• q ∈ δi(p, ε) if ∀a ∈ Si ∪ Ci : a 6 p and (p, q) ∈ E

This definition simply labels CFG edges as described in
Section 5.1. All local models are ε-reduced and minimized
to reduce their storage requirements.



The definition of the global Dyck model depends upon
a classification of function call sites. Let C1, C2, C3, and C4

partition C as follows:

• a ∈ C1 if a does not recurse and θ(a) must generate at
least 1 system call before returning.

• a ∈ C2 if a does not recurse and θ(a) may condition-
ally generate a system call before returning.

• a ∈ C3 if a does not recurse and θ(a) will never gener-
ate a system call before returning.

• a ∈ C4 if a may recurse.

We write C12 to denote C1 ∪ C2.

Definition 3 [Dyck Program Model]
Let i range over all functions in Pr with τ the entry

point function. Let f and g be the symbols used in the
proof of Theorem 2, with F = {fε,γ : γ ∈ C12} and
G = {gε,γ : γ ∈ C12}. Then D is a Dyck model if there
exists Dε = (Q, Σ ∪ {ε}, Γ, δε, q0, z0, F ) with:

1. Q =
⋃

i

Qi

2. Γ = C12

3. Σ = S ∪ F ∪ G

4. q0 = q0,τ

5. z0 = ε

6. F = Fτ

7. (q, z) ∈ δε(p, a, z) if a ∈ S and ∃i : q ∈ δi(p, a)

8. (q, z) ∈ δε(p, ε, z) if

(a) ∃a ∈ C2 ∪ C3 ∃i : q ∈ δi(p, a) ; or

(b) ∃a ∈ C4 ∃i ∃r ∈ Qi : r ∈ δi(p, a)∧ q = q0,θ(a) ;
or

(c) ∃a ∈ C4 ∃i ∃r ∈ Qi : q ∈ δi(r, a) ∧ p ∈ Fθ(a)

9. (q, za) ∈ δε(p, fε,a, z) if a ∈ C12 ∧ ∃i ∃r ∈ Qi : r ∈
δi(p, a) ∧ q = q0,θ(a)

10. (q, ε) ∈ δε(p, gε,a, a) if a ∈ C12 ∧ ∃i ∃r ∈ Qi : q ∈
δi(r, a) ∧ p ∈ Fθ(a)

and D = (Q, Σ, Γ, δ, q0, z0, F ) is Dε under ε-reduction.

Several properties of the definition require explanation.
Property 3 adds push and pop symbols to the alphabet of
system calls. Property 7 maintains the system call transition
property of the local automata: a system call will not mod-
ify stack state. Property 8(a) adds ε-edges around call sites
that may not generate a system call. Properties 8(b) and (c)
link automata at recursive call sites with ε-edges rather than
with edges that update the PDA stack. Properties 9 and 10
describe transitions for precalls and postcalls that modify
stack state.

C.2. Stack-determinism of Dyck Model

Theorem 4 The Dyck model is an sDPDA.

Proof: Clearly, the Dyck model is a PDA.
ε /∈ Σ ⇒ ∀z ∈ Γ 6 ∃p ∈ Q : δ(p, ε, z) 6= ∅, so sDPDA

condition 1 is satisfied.
Suppose ∃q1, q2 ∈ Q so that for some σ ∈ Σ and z ∈

Γ, δ(q1, σ, z) = (p1, w1) and δ(q2, σ, z) = (p2, w2) with
w1 6= w2. Proof by contradiction in three cases:

1. If σ ∈ S, then w1 = z = w2 by Property 7.

2. If σ ∈ F , then ∃γ ∈ C12 : σ = fε,γ and w1 = zγ =
w2 by Property 9.

3. If σ ∈ G, then ∃γ ∈ C12 : σ = gε,γ . Then z = z′γ and
w1 = z′ = w2 by Property 10.

Thus, sDPDA condition 2 holds. �


