On the Completeness of Attack Mutation Algorithms

Shai Rubin, Somesh Jha, and Barton P. Miller
University of Wisconsin, Madison
Computer Sciences Department
{shai,jha,baft@cs.wisc.edu

Abstract ample, the same attack can be split into TCP or IP packets
in many different ways. Therefore, the reliability of a NIDS
An attack mutation algorithm takes a known instance ultimately depends on its ability to detect any instance of

of an attack and transforms it into many distinct instances a given attack. Unfortunately, researchers (and attagkers
by repeatedly applying attack transformations. Such algo- have successfully evaded many NIDS by mutating an at-
rithms are widely used for testing intrusion detection sys- tack instance that the NIDS recognizes into an instance that
tems. We investigate the notion of completeness of a mutait misses. For example, to evade a NIDS that only uses a
tion algorithm: its capability to generate all possible atk signature of ASCII characters, they used tHeL encoding

instances from a given set of attack transformations. transformation that replaces the ASCII characters of a URL
We define the notion of @-complete mutation algo-  With their equivalent hexadecimal values [8, 29].
rithm. Given a set of transformation, an algorithm is To increase NIDS reliability, NIDS developers should

complete with respect #®, if it can generate every instance test the NIDS against as many attack instances as possible.
that the transformations i® derive. We show that if the To generate many instances of the same attack, develop-
rules in® are uniform and reversible then®&complete al- ers commonly use aattack mutation systeffi3, 17, 24,
gorithm exists. Intuitively speaking, uniform and revielesi 25, 29]. Such a system usually has two components: a set
transformations mean that we can first exclusively apply of attack transformation rulessuch as the URL encoding
transformations that simplify the attack, then exclusivel above, and autation algorithm To use such a system for
apply transformations that complicate it, and still get all testing, a developer first constructs exemplary instance
possible instances that are derived by the rule®in of a given attack. Then, the developer feeds the exemplary

Although uniformity and reversibility may appear se- instance to the mutation algorithm. The algorithm repeat-
vere restrictions, we show that common attack transforma- edly applies the transformations according to some prede-
tions are indeed uniform and reversible. Therefore, dur ~ termined (or random) order and generates new instances of
complete algorithm can be incorporated into existing test- the attack for testing purposes.
ing tools for intrusion detection systems. Furthermore, Attack mutation systems have successfully uncovered
we show that ab-complete algorithm is useful, not only vulnerabilities in various NIDS [13, 17, 21, 24, 29]. How-
for testing purposes, but also for determining whether two ever, to the best of our knowledge, the fundamental ques-
packet traces are two different mutations of the same attack tion underlying NIDS testing is yet to be investigated. This
guestion is theesting coverage questiomhich instances,
out of all the instances that can be derived by the rules, does
the mutation algorithm generate and which does it miss?

The goal of a network intrusion detection system (NIDS) ~ We address the coverage question: we develop- a
is to detect malicious activities, or attacks, on the nekwor completemutation algorithm. Given an exemplary attack
A misuse NIDS defines an attack via an attack signature,instance and a set of transformatiohsa mutation algo-
typically a regular expression that matches a pattern ofrithm is ®-complete if it can generate all the instances, up
the attack [18, 23]. Ideally, each time an ongoing activity to a given lengttk, that are derived from the exemplary in-
matches an attack signature, the NIDS raises an alarm.  stance using the rules .

Conceptually, a NIDS signature corresponds to a sin-  Two observations should be noted aboub-&omplete
gle attack, a sequence of events that exploits a given vul-mutation algorithm. First, an algorithm that exhaustively
nerability. In practice, however, a signature should match applies the rules in all possible combination is not negessa
many equivalent attack forms, attack instancesFor ex- ily ®-complete. The problem is that it is unclear when to

1. Introduction



stop the generation, because instances that are longer tha@ach other, we know that only one of the two following
k might eventually derive instances that are shorter than  options are possible. First, the instances are derived from
Second, ab-complete algorithm doesot necessarily ~ €ach other but our algorithm does not use the transforma-
generatall possibleinstances of a given attack. It can do tions that were used to derive the instances. In this case, th
so, theoretically at least, if we assert that the rule® iep- algorithm helps us uncover a new transformation. Second,
resent all possible ways to transform the attack. Neverthe-the instances are not derived from each other; in that case,
less, the ability to prove that an algorithmdscomplete  the algorithm helps us define a new attack. Although the
is the first step toward a mutation system that generates aldistinction between the two cases requires manual interven

possible instances of an attack. Having said so, howeverfion, note that an incomplete algorithm is even less useful
determining whether a system contains all possible trans-because itintroduces a third case in which the instances are

formations is beyond the scope of this paper. derivable from each other but the algorithm was not able to

Achieving ®-completeness To achieve ¢-  determine that fact. _ N
completeness, our algorithm requires that the rules in Ve show that ab-complete algorithm can efficiently
® arereversibleanduniform Reversibility means that each ~ Solve the forensics problem when the rulegiare uniform

transformation in our system has a corresponding inverse 2nd reversible. Given two instancesand, the algorithm
Uniformity means that if an attack instaneederives an  first computes the atom ofand then checks whethercan

instancer, then there exists a derivation fromto r in D€ derived from this atom. The correctness of this algo-
which we first simplify as much as possible and then fithm stems from the fact that two instances are derivable
complicate the result until we reach We define “sim- ~ from each other if and only if they have the same atom.

plify” and “complicate” using a novel complexity metric In summary, this paper makes the following contribu-

for attack instances. For example, we say that an attacktions:
instance that contains HEX encoding is more complex thanl_ The notion of d-complete attack mutation algorithm.

an instance that does not contain such encodings. Such an algorithm addresses the coverage question

We show that when the rules b are uniform and re- which is the core of any rigorous NIDS testing process.
versible, the instances thétderives can be derived from a

few representative instances, call@ms We prove that
atoms split attack instances into equivalence classes: two
instances are in the same class if and only if they are derived
from the same atom. Using this property, we developed a
two-phase mutation algorithm. Given an attack instance, we
first automatically compute its atom; then, we generate all

2. Conditions for ®-completeness We develop the no-
tion of uniformity and reversibility for attack transforma
tions. We show how to use these concepts to prove that
our proposed algorithm i$-complete. We also develop
the union property that helps proving the uniformity of a
union of two sets of transformations.

instances that are derivable from this atom. 3. A practical instance of a uniform and reversible set
We also develop thenion propertyfor preserving re- of transformations. We show that common attack
versibility and uniformity of two sets of transformations.  transformations are uniform and reversible. Our set of
Given®; and®,, where each set is uniform and reversible, rules include transformations like TCP-fragmentation,
we show that if®; and®, are positively commutativéas TCP-permutation, and TCP-retransmission as well as
defined Section 4.4), theh; U ®, is also uniform and re- application-level transformation like the URL encoding.

versible. Practically speaking, this property helps usero

the uniformity and reversibility of a large set of rules. For 2. Related Work

example, we develop one set of uniform and reversible rules  We review related work in the areas of attack transforma-

for TCP and one for HTTP. We use the union property to tions, NIDS testing, abstract reduction systems, and using

show that the union of the two sets is uniform and reversible uniform proofs in logic programming.

and therefore our algorithm i&-complete with respect to Attack transformations. Fundamentally, network at-

our TCP and HTTP rules. tacks can be modified, or transformed, at any level of the
Other usages of a®-complete algorithm. During protocol stack. Ptacek and Newsham [20, 21] as well as

NIDS development we usually encounter tfa@ensics Handley and Paxson [10, 18] were the first to introduce

problem given a set of rules, determine whether two attack IP and TCP transformations (e.g., fragmentation, packet re

instances are derived from each other. This problem arisesordering).

when we need to determine whether a trace of packets is Based on their work, tools that use attack transforma-

an instance of a known attack. As we show in Section 4, tions for NIDS testing, or evasion, have been developed.

a d-complete algorithm can be used to assert whether twoFragroute, which transforms TCP-based attacks [28], and

instances are derived from each other. Whdreomplete Whisker, which transforms HTTP attacks [22], randomly

algorithm asserts that two instances are not derived fromcombine transformations specified by the user. Mucus [17]



uses attack transformations to perform cross-testing of tw paper is the only work that explores uniform derivations as
NIDS: it builds packets that match a signature of the first the basis for generating attack mutations for NIDS testing.
NIDS, transforms them, and checks whether the other NIDS . .

identifies the modified packets. Recently, Vigna et al. [29] 3. Technical Overview

developed a tool that applies application-level transfrm We use an exemplary attack to demonstrate the funda-
tions (e.g., HTTP encoding, injection of Telnet escape-char mental concepts of attack mutation that we use later in the
acters) in addition to TCP/IP transformations. Othertgsti ~ paper: transformations, mutation algorithm, atoms, arid un
tools that are based on attack transformations are Snqt [27]form derivation.

Stick [9], and Thor [1, 13]. The perl-in-cgi exploit (CAN-1999-0509 [16]): a Perl
The tools mentioned above successfully found attack in- interpreter is installed in thegi - bi n directory on a Web
stances that evade the NIDS they had tested. However, t&€rver, allowing remote attackers to execute arbitrary-com

the best of our knowledge, the researchers that developednands. _ _ .

these tools have not addressed the completeness question. Attack transformations. Consider an instance girl-
Recently, Rubin et al. [24] developed a tool called AGENT in-Cgi, denoted, that contains a single HTTEET request:
that exhaustively applies transformation rules in all fdes ~ ~GET <web page>/ cgi - bi n/ per| . exe". Assume
combinations. However, they did not provide formal proof thato uses a single TCP segment (not including the TCP
that AGENT can really generate all possible instances. In- handshake segments). Consider the following transforma-
deed, as we argue in Section 4.1, exhaustiveness does ndton rules that we can use to create other instanceedf
guarantee completeness. in-cgifromo:

Dacier et al. [7] use attack mutation to evaluate the po-1. frag" (TCP-fragmentation): if- is obtained fromy by
tential of a set of different IDSs to handle a Iarge set of Copying o’s SegmentS, or TCP packets' and then frag_
transformations. However, unlike our work here, they did  menting a single segment into two segments, th&nan
not investigate the completeness property of their system.  jnstance operl-in-cgi.

Reduction systems and uniform proofs. Our formal
methodology is closely related to abstract reduction sys-
tem [2]. A reduction system is a pdif, —), wherez — y

is a binary relation such that,y € A. In our casey and ) o )
y are attack instances and the relationis defined using > http-p_lpé’ (HTTP pipelining): if7 is obtained froms by
transformation rules. inserting a benign HTTBET request (e.g.,GET <web

page>/ i ndex. ht m ") before the maliciouszET re-
quest, therr is an instance gberl-in-cgi.

2. url* (URL encoding): ifr is obtained fromv by replac-
ing a printable character s URL with its hexadecimal
ASCII value, therr is an instance gberl-in-cgi.

However, to the best of our knowledge, a classic re-
duction system does not distinguish between shrinking
(i.e., simplifying) and expanding (i.e., complicating)es. Denote the set of the three rules®s. We say that an
Hence, the general results for such systems cannot be usefhstancer is derivable fromo with respect to®s if 7 is
unmodified. For example, our concept of an atom (Sec- the result of applying a rule fron; on o. Naturally, we
tion 4.2.2) is equivalent to the concept of a normal form in extend the definition of derivability to a sequence of rule
lambda calculus [3]: an elementhat cannot be furtherre-  applications.
duced (i.e., there is ng such thatr — y). However, an An attack mutation algorithm generates many in-
atom is an element that cannot be reduced using shrinkingstances operl-in-cgiby repeatedly applying the rulesdn
rules only, while a uniform form in lambda calculus cannot on the initial instance. We say that the algorithm som-
be reduced by any rule. Also note that every instance in ourplete with respect té@3, denotedbs-complete, if it can gen-
reduction system is strongly normalized with respect to our erate all (up to a certain leng#h) instances that are derived
shrinking rules, that is every instance has an atom. from o using the rules inPs;. Notice that ads;-complete

Miller et al. [15] describe uniform proofs where right- algorithm doesiot generate all possible instancespafl-
introduction rules, which are analogous to shrinking rules in-cgi, but only the instances that can be derived using the
(Section 4.2.1), appear before left-introduction rulelsicl rules in®s. For example, &3-complete algorithm will not
are similar to expanding rules. The main intuition behind generate instances that are based on other TCP transforma-
introducing uniform proofs was to capture goal-directed tions, such as TCP-retransmission.
search. They also proved that in the framework of logic  Partial order of attack instances It is clear thafrag",
programming uniform proofs are complete, i.e., if a term is url*, andhttp-pip€ can be used to complicate we can
provable then it has an uniform proof. Uniform proofs have add arbitrary benign HTTP commands, obfuscate URLs,
also been in explored in other contexts [11, 26]. Special and fragment into smaller TCP segments. At the same
structures of derivation also have also been used in sgeurit time, the impact of the rules ieversible we can undo
protocol verification [4, 5, 6, 14]. To our knowledge, our frag” by merging TCP segments, undd* by normalizing



URL to only use printable characters, and urndp-pipé of ®-completeness (Section 4.1). We also discuss why, for
by removing benign HTTP requests. a general set of rules, an algorithm that recursively applie
Thus, a transformation has two forms: arpanding  the rules is unlikely to bé-complete. Next, we discuss the
form that complicates an instance anshainkingform that reversibility and uniformity of transformations (Sectié:2)
simplifies it. Given an arbitrary attack instance, an attack and prove that our proposed algorithmbiscompletaf @ is
mutation algorithm should use both expanding and shrink- reversible and uniform (Section 4.3). Last, we develop the
ing transformations to generate all possible instances. Weunion propertythat states the necessary conditions under
denote the shrinking, or reverse, versionfraf”, url”, and which a union of two sets of rules is uniform and reversible.
http-pip€ asfrag, url’, andhttp-pip€, respectively. Notice that the discussion in this sectidoes notimply
Expanding and shrinking transformations imply a par- that every set of transformations is uniform and reversible
tial order over the instances pérl-in-cgi. The length (in ~ Our goal is just to reveal the properties necessary for prov-
bytes) of an instance can be used to rank the instance coming ®-completeness. While an arbitrary definition of trans-

plexity: the longer the instance the higher its complexity. formationsis unlikely to have these properties, we show tha
Note thatfrag®, url*, andhttp-pip€ increase instance com- common TCP transformations (Section 5) and HTTP trans-

plexity, while frag’, url", and http-pip€ reduce it. frag® formations (Section 6) can be defined such that they are in-
increases the complexity because each additional TCP segdeed uniform and reversible.
ment requires an additional TCP header.) 4.1. An Attack Mutation Algorithm

Atoms. Intuitively, the instancer is atomic. First, we
cannot shrinks any further because it uses a single TCP
segment, does not include benign HTTP requests, and con
tains only printable characters. Secondis the simplest
form of the attack, any byte is is required for a successful
attack. Third, with respect to our rules,is the building
block of all other instances. Using expanding rules alone,
o derives anyperl-in-cgi instance that is fragmented into
several (non-overlapping) TCP segments, contains benign
HTTP commands, and its URLs use either printable char-\, o« = and o’ are strings oveE, and pre and post are

acters o_r their hegadgumal ASCII vglues. o predicates. The rule is interpreted as follows: if a string
A uniform derivation. In a uniform derivation all satisfies the predicagere, theno” is derivable fromv pro-

shrinking transformations precede all expanding ones. As,;iqed thatpost (o, o’) is true. If a strings’ can be derived
we discuss in the next section, to prove that our proposedfrom o using a ruler, we write it aso > o’

mutation algorithm isb3-complete, we need to show that if Let ® be a set of transformation rules. We say that a
o derivesr, then there is also a uniform derivation fram inao’ is derivable f ith d b 2

to 7. For example, it is easy to see that if we first expand stringo” Is derivable fromy with respect tab, denotedr =

an instance by fragmenting it (i.e., usifigg”) and then re- f’/' ifand only if therg exists asequernce ofTrUQeg T ’T’;z

placing an hexadecimal ASCII value with a printable char- N ®, called aderivation such that — o1 = .01 =

acter (i.e., usingirl’), then it is possible to first replace the o+ =0". Given astringr and a set of rule#, theclosureof

character and then to fragment the instance. o with respect tab, denotedCls (o), is the set of strings that
Summary of observations. Shrinking and expanding ~ are derivable fromr. Formally,Cls(0) = {0’ | ¢ = o'}.

transformations correspond to our intuition that we can sim Given a finite set of string§' C ¥, its closureCls (5) is

plify or complicate attack instances. Atoms correspond to given byl J, ¢ Cls (o).

our intuition that some attack instances cannot be simglifie A mutation algorithm denotedViA, takes a finite set of

any further and these instances are the building blocks forstringsS C ¥* and returns another set of strinyBA(.S)

other attack instances. Uniformity corresponds to our-intu such thatS € MA(S). Intuitively, a mutation algorithm

ition that it is possible to derive all instances from a given takes a set of attack instances and returns a larger set of

instance by first simplifying the instance as much as pos-instances that are mutations of the original ones.

sible, using shrinking rules, and then only use expanding

rules to generate all instances.

In this section we model attack instances as strings over
the alphabek.

Let X2 be an alphabet sef;* be the set of strings over
¥, andX* C ¥* be the set of strings of lengtd k. A
transformation rule has the following form:

o, pre(o)
o', post(o,0’)

Definition 1 (A sound and complete mutation algorithm)
Let MA be a mutation algorithmp a set of transformation
4. Achieving ®-Completeness rules, andS C ¥* a set of strings.

Our goal in this section is to developdacomplete at- e MA s calledsound with respect to®, denotedb-sound,
tack mutation algorithm. To do so, we first formally define if an only if for all S C ¥*, MA(S) C Clg(S). In-
transformation rules, a mutation algorithm, and the notion  tuitively, MA is®-sound if its mutation algorithm only



generates attack instances that are derivable fHwmith
respect tod.

MA is calledcomplete with respect to®, denoted®-
complete, if and only if for allS C ¥*, MA(S) 2
Clgs(S). Intuitively, MA is ®-complete if its mutation
algorithm covers all possible strings that are derivable
from .S with respect tob.

MA is calledk-complete with respect to®, denotedb”*-
complete, if and only if for als € ¥*, MA(S) N % D
Clg (S) N Xk, Intuitively, MA isd*-complete if its muta-
tion algorithm covers all possible strings of lengthk
that are derivable front with respect tob.

For practical applications, we would like to bound the
number of instances that a mutation algorithm derives.
Hence, our focus in the rest of this paper is®@ficomplete

algorithms. Furthermore, since a sound mutation algorithm
is trivial to construct, we take soundness for granted and do

not mention this property unless required.

To better understand the difficulty in constructing’
complete mutation algorithm, consider a standard wotk-lis
algorithm that builds a closure by recursively deriving the
successors of the initial instanee It is difficult to deter-

mine when to terminate such a derivation process. Suppose

we derive an instance’ such thatlengthic’) > k. Intu-
itively, sinceo’ is too long to be included i€lg (o) N ¥,
we would be inclined to believe that cannot derive any
instance that is part &ls (o) N *. However, in a general

mutation system, each rule might have an arbitrary effect.

So, even thoughk’ is too long, it might derive a shorter in-
stance that is part of the closure.

4.2. Uniformity and Reversibility

The difficulty in constructing ab*-complete algorithm

suggests that such a system requires ordering of attack in

stances. The goal of uniformity and reversibility is to for-
malize the concepts of simplifying and complicating an at-
tack instance.

4.2.1 Uniformity and Reversibility

Let < be a partial order on the sgt. We say that < 3 if
and only ifoc < §ando # (.

Given a set of transformatioris and a partial order,
a ruler is called ashrinking ruleif for all & ando’ such
thato = o' we have that = o’. A rule r is called an
expanding ruleif for all o ando’ such thatr = o' we
have thatr < ¢’. &~ and®* denote subsets @b con-
sisting of shrinking and expanding rulesdn respectively.
Intuitively, shrinking rules are used to simplify an attaek
stance while expanding rules are used to complicate it.

A derivation(ry, ..., r) is calleduniformif there does
not exist ani < j such thatr; is an expanding rule and
is a shrinking rule. Alternatively, in a uniform derivation
shrinking rules are applied before expanding rules.

Definition 2 (Uniformity of ®). Let® be a set of transfor-
mation rules. ® is calleduniform if there exists a partial
order =< on X* such that the following conditions hold: (i)
with respect to< each rule in® is either shrinking or ex-

panding, and (ii) for alloc and¢’ such thato 2 o, there
exists a uniform derivation frorar to ¢’. In other words,
any derivation ind has a corresponding uniform one.

Definition 3 (Reversibility of®). Let® be a set of transfor-
mation rules.® is calledreversible if every rule in® has
an inverse. Inverse of a rule denoted-—1, is a rule such

. —1
that for all o ando’ holds: o = ¢ if and only if¢’ '— o.

Two important observations should be noted. First, in a
uniform and reversible set of transformations each shrink-
ing rule is the inverse of an expanding rule, and vice-versa.
We use this observation when we construgk-aomplete
algorithm (Section 4.3).

Second, as already mentioned in the beginning of this
section, not every set of transformations is uniform and re-
versible. However, in Sections 5 and 6 we show that it is
possible to define common transformations used by existing
mutation systems such that they are uniform and reversible.
In the rest of the paper, we assume that for a partial or-
der used by our mutation system any descending chain is
finite. A chain of attack instancésy, o1, .. .) is called de-
scending if and only it; > o;11. This assumption states
that shrinking rules cannot be applied infinitely, which-cor
responds to the fact that we cannot simplify an attack in-
stance beyond a certain point. For example, the instance
in Section 3 is the simplest form of theerl-in-cgi attack
with respect to the rules we considered.

4.2.2 Computing Atoms
An atom is the simplest instance of an attack. We formalize

this intuition using shrinking and expanding rules.

Given a partial orde< and a set of transformatioris
in which each rule is either expanding or shrinking with re-
spect to=, a stringo is called a®-atomif there does not
exist a shrinking rule- in ® such thatr = ¢’: no shrink-
ing rule from® can be applied to &-atom. Given a string
o, the sefatoms; (o) is the set ofP-atoms that are derived
from o. For a finite set of strings, the setatoms; (S) is

defined asJ),cs{atoms(0)}.

Theorem 1. Let & be a set of transformations. # is
uniform and reversible, then for every string the set
atomsg (o) is a singleton set.

Proof of Theorem 1: Suppose there are two sequences
o4 andop in the setatomss (o). By definition, there
are derivationsry, 7z, ..., ;) and(ry,ry,...,r;) fromo

to o4 and fromo to op, respectively. Sinceb is re-
versible, (r;*,...,r ) is derivation fromo, to o and
the following sequence of rules is a derivation frem to



input : A stringo and
a set of uniform and reversible rulés
output: atomss (o) (a singleton set).

1 currentString = o;

2 while true do

3 if a shrinking rule cannot be applied to
currentStringhen break;

4 else Pick a ruler from &~ that can be applied to
currentString then perform
currentString = r(currentString;

5 end

6 return currentString

Algorithm 1: Computingatomsg (o) for a uniform
and reversibled. r(currentString is the string ob-
tained by applying the rule to currentString

-1

og: (r; !

, Ty, ..., ). Henceop is derivable

ooy T T

from o 4. Since® is uniform, there is a uniform derivation

(ri,ry,--- 1) fromoy4 to op. There can be two cases:

1. r{ is a shrinking rule. Then, a shrinking rule can be ap-

plied too 4, violating the fact thatr 4 is an atom.

2. r! is an expanding rule. Singe’’,r5,--- 7)) is a uni-

form derivation that starts with an expanding rule, by

definition all rulesr) for 1 < ¢ < [ must be expand-

ing rules. Hence(r;)~! is a shrinking rule that can be

applied too g, violating the fact that i is an atom[]

Algorithm 1 shows how to computgoms; (o). Initially,
the algorithm setsurrentStringo o. Each time in the while
loop, a shrinking ruler is applied tocurrentString If a
shrinking rule cannot be applied toirrentString the algo-
rithm terminates.

Claim 1. Let ® be a set of transformations amdbe a string.

If ® is uniform and reversible then Algorithm 1 computes

atomse (o).

Proof of Claim 1: Algorithm 1 computes only descending

input : A set of stringsS, and a set of transformations
ruleso.
output: A set of test strings.

1 worklist = §;

2// conpute atomss(S).

3 forall o € S do

4 Computeatoms; (o) using Algorithm 1;
5 worklist = worklistu atoms (o)
6 end

7// Conpute the closure.

8 tests = worklist;

9 while worklist # () do

10 Pick o € worklist,

11 worklist = worklist— {a};

12 ComputeM = &*({a})NXk;
13 forall elements3 of M do

14 if 8 ¢ teststhen

15 worklist = worklistu {5}
16 end

17 end

ik} tests = testsU M,

o end

Po return tests

Algorithm 2 : A mutation algorithm. Theorem 2 proves
that, when® is uniform and reversible, this algorithm
is ®*-complete and>-sound.

« is picked from theworklist, only its successor sequences

that are of length k& denotedd™ ({a})NX*, are generated.
For instance-generation purposes, we assume=that

length preservingif a =< 3 thenlengthla) < length(3).

As we show in Sections 5 and 6, this assumption holds for

common attack transformations.

Claim 2. Algorithm 2 terminates.

Proof of Claim 2: We need to show that after a finite num-

chains. Since we assume that any descending chain is finitd€r Of stepsvorklist is empty. First, notice that any new

(Section 4.2.1), the algorithm must terminate. Itis clbatt

instance generated in Line 12, is added only oncevirtrk-

the algorithm computes an atom. Theorem 1 proves thatlist. This is because we add every newly gene.rated in_stance
for a uniform and reversible set of transformations, the set 0 tests(Line 18) and we add an instanceworklistonly if
atomse (o) is a singleton set. Hence, the algorithm com- the instance is not found irests(Line 14). Second, notice

putes the seitomsq (o). O
4.3. A®k-Complete Mutation Algorithm

We show thaif ® is uniform and reversibléhen there
exists ab-complete mutation algorithm.

Algorithm 2 presents &-complete mutation algorithm
First, we compute

when ¢ is uniform and reversible.
atomsq(S) using Algorithm 1 (Lines3-6). Then, we apply
expanding rules fron®™ to all sequences intomsqs(S) to

that the total number of different instances that are added
into tests(Line 18) is bounded, becaus¥ is finite. There-
fore, the number of instances that are addedaoklist is
bounded. Third, notice that in each iteration of the while
loop an instance is removed fromorklist (Line 11). Also

note that each instance that is removed must existsts

so it cannot be added again. We conclude that the size of
worklistis bounded and each iteration removes an instance,
thereforeworklist must be emptied after a finite number of

generate additional sequences. Notice that when a sequendterations.]



Theorem 2. Let ® be a set of transformations aMh the
mutation algorithm from Algorithm 2. I is uniform and
reversible according to a length preserving partial order,
thenMA is ®*-complete andb-sound.

Proof of Theorem 2: Soundness of Algorithm 2 follows
from the fact that we only apply rules frod to generate
test cases. To prove*-completeness we need to show that

for everyo € Sif o 2 o andlengthl’) < k then Algo-
rithm 2 generates’. More formally, we have to show that
every sequence’ in the setClg(S) N XF is generated by
Algorithm 2.

Assumer € S and consider an arbitrapy € Clg(o) N
¥*. Since we assume thatis uniform and reversible, there
is a uniform derivation frona to ¢’. Let the uniform deriva-
tion be of the following form:

Ty Ty T Tm /
0 =00 =01 —0j —0441 " —0j4m = O

- + +

Considers;, the last sequence obtained after applying
shrinking rules. There are two cases:

1. o; is an atom ob, that iso; € atomss (o). o’ will be
generated by Algorithm 2 because (i) we start derivation
from atomsqg (o) (Line 5), and (ii) sincdengthic’) <

k and < is length preserving, thea;, ..., 0,4, have
length< k. The fact that< is length preserving is impor-
tant because it ensures that the lengtlo pf. . o5, is
less than or equal te and therefore the algorithm would

generate all those instances, includirig

. 0 is not an atom o&. Denotes 4 as the atom of. We
construct a new uniform derivation that derivgsfrom
o and “passes through? 4. Note that showing such a
derivation implies that Algorithm 2 generates

Sinces 2 o; and ® is uniform and reversible, then
atomsg(0) = atomse(0;) = o4 € atomsg (o) (See

Claim 3 below). Hence, there exists a derivatn'qng
o4 and sinced is reversible there exists a derivation
0j EN oA g o;. Note that since< is length preserv-
ing the length of every instance in this derivatiorisk.
Now, insert this derivation after; in the original deriva-
tion fromo to o’. We obtained a uniform derivation that
passes through a sequencetnmsq (o). O

Claim 3. Let ® be a set of transformations. {# is uni-
form and reversible andr = o', then atomse (o) =

atomsg(a’).

Proof of Claim 3: According to Theorem lgtomss (o)
andatomsqe (c’) are singletons. Assume by contradiction
thatos = atomse (o) # atomse(c’) = op. First, note

- +
thato 2> o4 and therefore by reversibility we gety LA

. X Ht
o. So, we got a derivation frora, to op: 04 =

o2
PN op. Second, sinc® is uniform, we conclude that
there exists a uniform derivation froey to og. Last, we
follow the proof of Theorem 1 and show that such a uniform
derivation does not exist unless either or o is not an

atom.]
4.4. Combining Mutation Systems

For the purpose of attack mutation, it is usually conve-
nient to have separate sets of rules for different network
protocols. For example, a set for TCP transformations and
a set for HTTP transformations. Such separation faciltate
a modular testing process in which we test our NIDS first
against TCP transformations, then against HTTP transfor-
mations, and last against attack instances that are derived
using both TCP and HTTP transformations.

Theorem 2 proved that fo®; and ®, that are uni-
form and reversible, Algorithm 2 i®%-complete andb5-
complete, respectively. However, this does not mean that
Algorithm 2 is@’g—complete wher@s; = &; U &,

One way to prove that Algorithm 2 &%-complete is to
prove, from scratch, the reversibility and uniformity o&th
transformations inb;. However, we show that this is not
necessary whef; and®, are uniform and reversible with
respect to the same partial orgerd arepositively commu-
tative. This result simplifies the completeness proof of com-
plex mutation systems because it is usually easier to prove
commutativity of two sets of rules rather than the unifogmit
of their union.

Definition 4 (Positively Commutative Transformations)

Letr* be an expanding rule ansi~ a shrinking rule with

respect to some partial ordex. We say that+ and s~

are positively commutative if for all ¢ and = such that
rt s sT o.rT

oc— p=>rT1,thenc = p — 7.

Let R and .S be sets of transformations. Letbe a par-
tial order such that for allr € Rands € S, r ands are
either expanding or shirking rules with respectto We say
that R and.S are set-wise positively commutative if:

1. Forallrt € RT ands™ € S, rt ands™ are positively

commutative; and

foralls™ € St andr~ € R, s andr™ are positively
commutative.

2.

Note that positive commutativity is a weaker condition
than full commutativity. Positive commutativity does not

. . ’!‘+ S+ S+ ~ ’!‘+ .
require that ifc — p — 7 then alsooc — p — 7 or if
T st st .r™
oc— p=>r7thenalsar = p — 7.
Claim 4. Let R and S be transformation sets that are set-
T o
wise positively commutative. Themié P 5. rthenalso
ST . RF . ST RT RT . ST
oc=p=randifc = p= 7rthenalsar = p = 7.



Proof of claim 4: Intuitively, the claim expands the no-
tion of positive commutativity to a derivation that is lomge
than two rules. Letr{,...,r/,s7,...,s;) be a deriva-

tion. SinceS and R are set-wise positively commuta-
tive, we can “shift left’s] & times and get the derivation

sy, .. .,r,j,sg, .. .,s;>. We can repeat this shifting
process and get the derivatidr; , .. .,s;,rf, . ,r,j>.

Analogously, we prove that i& g p &, 7, then also
R_ . ST
c=p=71.0
Notice that positive commutativity does not imply that
R U S is a uniform set of rules. Consider, for example, the

+ - z
derivationo % p1 EN P2 & 7. Positive commutativity

_ n _
implies thato EN 04 LN D2 &, 7 and this derivation is not
uniform. Only if R is uniform, then the last derivation can

- - +
be converted inter 2> P41 EN 05 £ 7 which is uniform,
The next theorem generalizes this observation.

Theorem 3. Let R and S be two sets of transformations
rules such that ()R and S are reversible and uniform with
respect to a partial order<, and (ii) R and S are set-wise
positively commutative. Thefr,= R U S is reversible and
uniform with respect tex.

Proof of Theorem 3: It is clear that a union of transforma-
tion sets preserves reversibility. It is left to show tkais
uniform: given a derivationr 2 7 there exists a derivation

- +
oL LT

Let o = 7 be a derivation fromr to 7. The proof is
similar to the proof of Claim 4: we use the uniformity and
commutativity of R and S to “shift” the shrinking rules to
the beginning of the derivation fromto 7.

First, we express 2 7 in terms of subderivations that
only use rules from eitheR or S (without lose of generality
we assume the derivation starts with rules fr&n

R
g = -

R

i

=7

1)

Second, since bottiz and S are uniform we express
Derivation 1 using uniform subderivations:

RY s st

B B 5 5%

R Rf S;7 Sf
. = .

oL B E )

Last, we prove by induction that Derivation 2 can be con-
verted into the uniform derivation of the form:

St

=,

RT

B

S,

By 5y

57 Ry

i

o }iﬁ . g . g T (3)

We use theS instead ofS, to indicate that the deriva-
tion might have been changed during the “shifting” process.
Our induction is on the number aiiformity violationsin
Derivation 2. A uniformity violation is an occurrence of
one of the following derivations:™ followed by s~ or s™
followed byr~—. The induction is given in appendix B.

input : Two stringses ando”’, and
® a set of transformations
output: true/false
Computes 4 = atomsq (o) using Algorithm 1;
Computes g = atomse(o’) using Algorithm 1;
if (c4 = op) return true;
else returnfalse;
Algorithm 3: Given a uniform and reversiblé, the
algorithm solves the forensics problem.

1
2
3
4

4.5. Summary of Theoretical Results

We formulated attack transformations and their unifor-
mity and reversibility. We proved that ® is a uniform
and reversible set of transformatioiisen Algorithm 2 is
d*-complete andb-sound (Theorem 2). We developed an
algorithm to compute atoms (Algorithm 1) and showed that
when @ is uniform and reversiblatoms (o) is a single-

ton set. We showed that when= o’ thenatoms; (o) =
atoms; (¢’) (Claim 3). This observation immediately leads
to an algorithm that, given a uniform and reversildie
solves the forensics problem (Algorithm 3). Last, we in-
vestigated the union property that ensures that a union of
two sets of uniform and reversible transformations is also
uniform and reversible.

In the next section, we show that, when carefully defined,
common attack transformations are uniform and reversible.

5. Uniform and Reversible TCP Rules

We present a set of common TCP transformations that
are reversible and uniform. To prove that our transforma-
tions are reversible and uniform, we first formally define the
notion of a TCP sequence and the semantics of our trans-
formations (Section 5.1). Next, we define a partial order
over TCP streams, calleshmplexitySection 5.2). Last, we
prove that our rules are reversible and uniform with respect
to complexity(Section 5.3).

The reader should be advised that the proof of uniformity
and reversibility is based on the semantics of our rules. In
other words, we do not claim that all previous attack mu-
tation systems that include these types of transformations
define the transformations so they are reversible and uni-
form. The reader is encouraged to check that our seman-
tics closely represents the nature of these transfornmtion
Therefore, we believe that our rule definitions can be easily
adopted by mutation systems with which we are familiar.

5.1. Semantics of TCP Transformations

A TCP sequence represents the communication between
an attacker and a victim. A sequence is a list of segments,
(s1,...,8n), Where each segment represents a single mes-
sage that the attacker and victim exchange. Each segment



Name Description Example
frag* Fragments a payload of a TCP segment into two segments. @ateapverlapping ((0,abcd)) o, ((0,abc), (1, bed))
segments of the payload.
frag™ Defragments two TCP segments into a single one. Removetapperg segments of ((0,abc), (1, bcd)) g, ((0,abcd))
the payload.
swap | Swaps two TCP segments such that they are sent out-ofrder. ((0,abc), (1, bcd)) i ((1,bcd), (0,abc))
swap~ | Swaps two TCP segments such that they are sent in-order. ((1, bed), (0,abc)) swap ((0,abc), (1, bcd))
ret* Retransmits a TCP segment. Can retransmit only part of thieg@é Note that appli- ((0,abcd)) LN ((0,abcd), (1,bc))
cation of this rule can produce an identical resulirém™ application.
ret Remove retransmitted segments from a TCP stream. Notephtation of this rule ((0,abcd), (1,bc)) =, ((0, abcd))
may produce an identical result tdrag™ application.

Table 1. ®p: a uniform and reversible set of TCP transformations.

2n TCP jargon, out-of-order means not in the order of thejjuemce numbers.

is formulated as a paifseq payload, wheres;.seqrepre- the same payload in their overlapping parts. This defi-
sents the sequence-numberphinds;.payloadrepresents nition of retransmission facilitates the uniformity proof
the message (in bytes) thatcontains. Section 8 discusses retransmission of different data.

The position of a segment in a sequence determines th

time this segment is sent by the attackglis sent only after %'2' A Partial Order for TCP Sequences

s; have been sent for gl < i, and befores;, for all k > 4. To show that®,, (Table 1) is uniform, we must show
For brevity, our TCP sequence definition only includes the that the rules inb;.,, are either shrinking or expanding with
segments sent by the attacker. respect to a partial order.

Table 1 present®y, a set of transformationsinour TCP ~ We order TCP sequences according to tikemplexity

mutation system. The superscripdenotes expanding rules  We say that is more complex than if it delivers a longer
and the superscript denotes shrinking rules. Formally, Ppayload, delivers the same payload but uses more segments,

each rule has the form Oﬁ;gsri(:l) (Section 4.1). Several Or delivers the same paquad with the same number of seg-
i ’ ments but the segments inare more disordered (as we

observations should be noted: ) _
define below) than the segmentsrin

1. Our system includes TCP rules that fragment a TCP _ . ..
stream, deliver segments out-of-order, and add retrans-Deflnltlon 5 (Length of a TCP se_quence)_et o =
mitted segments. Table 1 informally describes each rule <Sl.’ e S">nbe a}TCP sequence. Defilengti(c) to be the
and provides an example of its effects. The formal se- pair (n, >_,_, sizeof(s; payload). ) )
mantics of the rules are presented in Appendix A. Letlength(c) = (n, k) andlength(r) = (m, j) then:

1. We say thatength(c)=lengthr) if and only ifn = m

2. Our TCP fragmentation rule can create overlapping TCP andk = j

segments. This definition is broader than previous ones

that define fragmentation as splitting (e.g., [21]). It&rn 2. We say thalength(o)<length(7) if and only if (n <m)

out that splitting alone is not enough for uniformity. The ~ Of (n=m Ak < j).

existence of retransmission with merging, or unsplitting,

can create overlapping segments and the only way to The nextcomponent @omplexitys thedisorder levebf

simplify such segments is by defining de-fragmentation @ TCP sequence. The disorder levebafounts the number

(i.e.,frag™) with overlapping. of segment pairs that are sent out-of-order. For example,

. . ) the disorder level of a sequence that sends segments ordered

3. There are cases in which fragmentation and re- according to their sequence numbers is zero. Similarly, the

transm|SS|on+ have the same effect.  For exaH‘nple'disorder level of a sequence that sends the segments in their

((0,abc)) % ((0,abc), (1,bc)) and((0,abc)) ™2 reverse order i€,

((0,abc), (1,bc)). However, each of the rules also has o )

a unique effect. The retransmission rule always retrans-Definition 6 (TCP sequence disorder levellet o =

mits a substring of a segment, while the fragmentation (51:- - -S> - -,Sj>- - - ,sn) be @ TCP sequence. Define:

rule can split a segment into two. 1. not_in_order(o, s;,s;) = 1 if and only ifi < j and

4. Our TCP retransmission rule retransmits the same data. 5i-S€d4> 5;-S€q
This means that if two segments overlap, they transmit2. disordeto) = 3", -, not_in_order(c, sk, s1).



Definition 7 (Complexity of a TCP sequenceletos be a
TCP sequence.
Definecomplexityc) = (length(o), disorde(o)).

1. We say thatomplexity(c) = complexity(r) if and only
ifo=r.

2. We say thatomplexity(c) < complexity() if and only
if (lengthlo) < length(7)) or (lengthlo) = length() A
(disordefo)<disordefr)).

We say thav is less complex tham, denoteds < T, if
complexity(c) < complexity(r).

Note thatcomplexityis a partial order; it ranks sequence

using length as the primary index andisorder as a sec-

rules, we get a TCP sequence in which (i) all segments are
ordered according to their sequence numbers (otherwise we
could applyswap), (ii) each byte is transmitted exactly
once (otherwise we could apply eithieag— or ret~), and

(iii) we use the least number of TCP segments as possible
(otherwise we could applyag™). Therefore, by repeatedly
applying shrinking rules, we get an atomafthat is, con-
dition (v) holds.

Considers and itso 4. o4 is the single atom of be-
cause our rules do not change the payload of the TCP se-
guence and according to the TCP specifications [19], there
is only a single way in which one can transmit a payload
such that each byte is transmitted exactly once, in order,
with the least number of segments. Stoms, (o) is a

ondary one. As required in Section 4.2.1, any descendingSingleton set and condition (iv) holds.

chain of complexity is finite: we cannot simplify an attack

. Dy . .
Last, consides andr such that = 7. Since according

instance infinitely simply because length is bounded by zeroto the TCP specifications the rulesdn., do not alter the

segments. Furthermorepmplexityis length preserving as
required by Theorem 2.

Claim 5. With respect tacomplexity, each rule in®y, is
either shrinking or expanding.

The proof of Claim 5 is presented in Appendix B.
5.3. Uniformity Proof of ®,

To prove thatb, is uniform we prove that all the condi-
tions of the following claim hold.

Claim 6. Let® be a set of transformations. If (f is re-

versible, and (ii) each rule ir is either shrinking or ex-
panding with respect to a partial ordet, and (iii) for all &

andr such thatr = atoms; (o) = atoms(7), and (iv)

for all o, atoms; (o) is a singleton set, and (v) &4 is an

atom ofo, there exists a derivation from to o 4 that only
uses shrinking rules, theh is uniform with respect tex.

Proof of claim 6: We show that ifc = 7, then there
exists a uniform derivation from to 7. According to con-
ditions (iii) and (iv), we know that there existsy such that
oa = atoms (o) = atomsg (7). According to condition

(v), we know that the following derivations exist: 2, oA
andr & ca. Since® is reversible (condition (i)), we get
N . L
o4 = 7. S0, we have a uniform derivation fromto 7:
- +
o q;> oA g 7.0

Notice that for®, condition (i) holds because the rules

payload of a TCP sequencem’fq;ip 7 it means that botlr
andr transmits the same payload. Since both have a single
atom and both atoms transmit the same payload, according
to the TCP specification, the two atoms must be identical.
So, condition (iii) holds.

We showed that fob, all the conditions in Claim 6
hold, so®, is uniform and reversible with respect¢om-
plexity.

6. Uniform and Reversible HTTP Rules

We illustrate a uniform and reversible set of transfor-
mations for the HTTP protocol. We illustrate two rep-
resentative transformationddTTP paddingthat pads an
HTTP request with spaces (either before or after a URL)
andHTTP encodinghat encodes a URL using hexadeci-
mal values. We chose these transformations because they
have been successfully used to evade NIDS [24, 29]. Fur-
thermore, these transformations represent other applicat
level transformations that modify the attack payload. We
further discuss other application-level transformatiams
Section 8.

We abstract an HTTP attack as a single string, for ex-
ample, ‘GET /cgi - bi n/ perl.exe HITP/ 1.1". To
define an HTTP attack, we use a regular language that con-
forms to the HTTP specifications [8], denotBgly:

Lhttp =m:- (59+ “ Lyn - (Sg+ : (HTTP)

where:

in ®p are based on string operations that are reversiblee L, defines a URL as a string over ASCII charac-

(e.g., concatenation, permutation). Furthermore, cardit
(if) holds because the rules i, are either shrinking or
expanding with respect toomplexity(Claim 5).

Let o be a TCP sequence. The reader is encouraged to

check that for any overlapping betwegisegments, and for

any order ofc segments, if we repeatedly apply shrinking

ters or their hexadecimal encodings. Formally, C
{(ASCIlU h(ASCIl)*} where ASCII is the standard
ASCII character set and(ASCII) is a regular substitu-
tion [12] that maps an ASCII character to a string repre-
senting the character’'s hexadecimal encoding, for exam-
pleh('a’)="961".



Name Pre Condition Post Condition
pad; (m)(SP)*(ur)(SP)I(HTTP) A (1 > 1,5 > 1) (m)(SP)* T (url)(SP)7 (HTTP)
pad; (m)(SP)*(ur)(SP)I(HTTP) A (i > 1,5 > 1) (m)(SP)*~1(ur)(SP)J (HTTP)
pad, | (m)(SP*(ur)(SP)’(HTTP) A (i > 1,5 > 1) (m)(SP"(url)(SP)7TI(HTTP)
pad, | (m)(SP)?!(url)(SP)(HTTP) A (i > 1,5 > 1) (m)(SP)*(ur)(SP)I L (HTTP)
url* | (m)(SP)(axB)(SP) (HTTP) Az € ASCII (m)(SP)* (ayB)(SP)? (HTTP) A (v = h(z))
url” (m)(SP)*(ayB)(SP)? (HTTP) A v € h(ASCI|) (m)(SP)*(azB)(SP)I (HTTP) A (h~1(v) = x)
Table 2. ®nyp:A uniform and reversible set of transformations for HTTP-b ased attacks. h is a regular

substitution from ASCII characters to their hexadecimal en codings.

e SPstands for white-space characters. indifferent to changes in the way TCP transfers the payload.
e m € {GET,POST}, these are the most common HTTP This independency is the basis of the commutativity proof.
methods used in HTTP attacks. The rules in®nyp represent an HTTP attack as a single

string while the rules ib, represent an attack as a TCP se-

Table 2 presents our set of HTTP transformations, de'quence (Section 5.1). When we unify, andd;e, we must

noted®nep. The rulespad, andpad, change the number ,qq 5 single representation for attacks. Hence, we should
of spaces between the attack components.urhule, en- - 4jst the definitions of the rules iy, to work with mul-
codes a single ASCII character in the attack’s URL into its tiple TCP segments. Due to space constraints, we discuss

hexadecimal encoding. this adjustment in Appendix C.
To proof the uniformity®y, we show that all the con-

ditions in Claim 6 hold: Claim 7. ®icp U Phyp is uniform and reversible.
1. il;r:)er\r;ggtiﬁedefmltlon (Table 2) it is clear that each rule Proof of Claim 7. Notice that all the rules ity U B

are either shrinking or expanding with respect to the plartia
2. {pad;, pad,,url’} are shrinking rules with respect to  grdercomplexity(Definition 7). To show tha®ep U Preep iS
complexity (Definition 7). Since each of these rules yniform, we need to show that these sets are set-wise posi-
reduces the number of bytes of an instance, it re- tively commutative (Definition 4). Then, the uniformity of
duces the instancelength(Definition 5). Analogously, Byep U Bpyp follows from Theorem 3.
{pady, pad;, url" } are expanding rules. To show thatPc, and ®nyp are positively commutative,
3. The proofs thaatoms;,,,(o) is a singleton set and that
atoms,, (o) = atoms,, (7) are similar to the proofs o
presented fol, (Section 5.3). In this case, however, o "%  there exists an equivalent derivation of the form
the proofs are based on the HTTP specification [8] which  sea,, | reof, o
states that there is only a single most-concise way to de-c — ¢ — 7 and that for every derivation of the

. +
T €¢h“p
—

we show that for every derivation of the form

. col €D . . .
liver an HTTP attack. formo —% o' *—% - there exists an equivalent deriva-
.. . ) o= cat
7. Combining ®nip With iy tion of the formo  —2° o/ "% - Table 3 presents the

We show thatbnip U rep is uniform and reversible. We — major cases of all these derivations; other cases are simila
can do that by showing that the conditions of Claim 6 hold. and we omit them for brevity.
However, this becomes more difficult as we add transforma- . .
tions to our system. For example, in the uniformity proof of 8. Modeling Other Transformations
Pyep (Section 5.3) we assumed that the rules do not change We discuss the uniformity and reversibility of transfor-
the attack payload, an assumption that is no longer true formations that are not part of odtc, and ®pp.
the case ofPnyyp. Modeling other TCP transformations. Header change
We illustrate a different method for proving uniformity. TCP transformations operate on the header of a TCP seg-
We use Theorem 3 and show thBgy, U Picp is uniform ment; for example, they modify the TCP flags [8, 21].
becaus@py, anddyp are positively commutative. While we do not prove it, we believe that these transforma-
Using Theorem 3 is particulary suitable for proving uni- tions are uniform because they only involve syntactic ma-
formity of sets of transformations in protocols that belong nipulation at the TCP level. To prove their uniformity one
to different levels of the protocol stack. For example, sinc should first extend the representation of a TCP sequence
TCP is a transformation-level protocol while HTTP is an (Section 5.1) to include a representation for a TCP header.
application-level protocol, TCP specification is inditfet Then, one should extend the definitionamplexity so it
to changes in the HTTP payload and HTTP specification is will enforce the notion of expanding and shrinking rules.



Original Change to
5 4.0, b)Zn 40,00, (1,b)>f:—g£ ((0,a.b)) ((0,2), (0, b>>f:g (o, ab>>u:a§ {(0,a.b))
& “O’a)’(l’b”un ((0,%1), (1,b)) 1‘5(0’%1” ((0,2),(1,b)) "= — ((0,ab)) =t ((0,%1b))
= ol ((0,ab), (1,b)) " ((0,a%2), (1,%62)) "= ((0,a%2)) ((0,ab), (1,b)) "% ((0,ab)) "> ((0,a%62))
s 3 (0,a%2) ™ U (0,a%2), (2,6)) "> ((0,ab), (1,¢)) (0,a%2)) "5 ((0,ab)) "™ ((0,ab), (1,€))
%‘f <(ova%2)> "9 (0,a), (1 %2» "L ((0,2), (1,b)) <(ova°/62>> () ab>> "8 (0,2, (1,6))
£ 2| (0,a0) "™ ((0,a.b), (0,ab)) ™ ((0,ab), (0,ab)) ((0,a.0)) " ((0,ab)) """ ((0,ab), (0, b))

Table 3. Positive commutativity of

@http and @tcp.

The biggest challenge is to prove the uniformity and re- References

versibility of TCP transformations that contain TCP re-an
mission of a different payload. The problem is that the con-
tent of the bytes is different across different TCP segments
This ambiguity creates a difficulty to defingt because we
must choose only one of the values.

Notice that there is no ambiguity in practice because the
end host resolves the ambiguity. For example, most Linux
kernels prefer the first byte they receive. In comparison,
other operating systems (e.g., openBSD) prefer the last byt
they got. This suggests that it is possible the define TCP re-
transmission in a way that preserves uniformity, according
to the policy defined by a particular operating system. We
leave this investigation for future work.

Modeling application-level transformations.
Application-level transformations operate on the at-
tack payload. For exampld;TP padding[13, 24] adds
benign commands before the malicious commands of an
FTP attack. Since such transformations are similar to the
transformations inPnyy, We believe that their uniformity
can be proved in a similar way.

Modeling network-level transformation. Network-
level transformations (e.g., IP, UDP) change the way the
attack is delivered; for example, IP transformations [21]
might split IP packets. Such transformations are similar
in nature to our TCP transformations and their uniformity
proofs should be similar to the proofs .

9 Conclusion

NIDS testing is a challenging problem in intrusion de-
tection. Experience has shown that many NIDS are evaded
easily and frequently. We believe thatbacomplete muta-
tion algorithm can serve as the basis for a rigorous testing
process, even when it is infeasible to test all possible mu-
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A Formal Definition of ®g, A I N )

The formal definition of®y, is given in Table 4. The "
predicates used in this table are given below. Finally, we use the same technique to sI%it into the
right side of Derivation 5[]
Proof of Claim 5:

frag*, ret*. Based on oulengthdefinition (Definition 5),
fragmenting (or retransmitting) a TCP segment increases
the sequenckength therefore increases the sequence com-
plexity.

swap®. This rule swaps two segments such that they
1. si.payload= pf ands,.payload= sf. are delivered out of order. This operation increases the
2. s1.seq = s.segand sy.seq= s.segrsizeof(s.payloagh disorder of the sequence and therefore increases the se-

size of(sf). qguencecomplexity Formally, Leto=(s1...p...q...$p).

Definition 8 (Fragmentation and defragmentation of a TCP
segment) Lets = {segq, payload} be a TCP segmergf be

a (possibly empty) prefix efpayload andsf be a (possibly
empty) suffix of.payloadsuch thatsize of(pf)+sizeof(sf)

> sizeof(s.payload) Then, definsegfrag(s) = (s1,s2)
such that:



Name|

pre-conditions

post-conditions

frag

0=(S1...8i...5n)

T=(81...8{-1,71,72,8i41..-5n)
frag-seds;) = (r1,r2)

T={(S1...5-1,T1,542-..5n)

frag* 0':(31 ce .84y 8i41 - ..Sn> frag_sequ) — (5i78i+1)

swag| o= (s1...5;...55...5n) T=(S1,...8j...8;...5n)
s;.seq < sj.seq

swap | o = (s1,...8;...5;...5n) T=(S1...5j...8;...5n)
Si.5eq > sj.seq

ret" | o= (s1,...,8i,...5n) T=(S1y-y8i,Ty--,5n)

r = retranys;)
ret™ | o= {(s1,...,8i,7y...,8n) T={(S1,...,8i,...5n)

r = retrangs;)

Assumeos —

Table 4. Formal definitions of transformation rules. Each ru

+
swap

Tandt = (sy...q...p...s,) such that

olj]=r[k]=p andco[k]=7[j]=¢q . From the definition oswap
we know thatp.seq< ¢.seq(Table 1). Note the following:

1. For alli such that >k, notin_order(o, ¢, s;) = 1 if and
only if notin_order(r, ¢, s;) =1.

2. For alli such that > k, notin_order(o, p, s;) = 1 if and
only if notin_order(r, p, s;) =1.

3. For alli such that < j, notin_order(o, s;,p) = 1 if and
only if notin_order(r, s;, p) =1.

4. For alli such that < j, notin_order(o, s;,¢) = 1 if and
only if notin_order(r, s;,q) = 1.

5. Foralli suchthatj < i < k:

@)

(b)

(©)

(d)

Assume p.seq < s;.5eq < g.seq Then
notin_order(c, p, s;) = 0 and notin_order(o, s;, q)
= 0. However, notin_order(r,s;,p) = 1 and
notin_order(t, ¢, s;) = 1. This means that the swap
operation contributes to the valuedisorderr).
Assume p.seq < g¢.seq < s;.Seq Then
notin_order(o, p, s;) = 0 and notin_order(c, s;, q)
= 1, but notinorder(r,s;,p) = 1 and
notin_order(r,q,s;) = 0. This means that
disordel(r) is at least aslisordeo).

Assume s;.seq < p.seq < g¢.Sseq Then
notin_order(c, p, s;) = 1 and notin_order(o, s;, q)
= 0, but notinorder(r,s;,p) = 0 and
notin_order(r,q,s;) = 1. This means that
disordel(7) is at least aslisordefo).

Note that other orderings pf ¢ ands; are impossible
because.seq< ¢.seq

6. Since we usedwag, notin_order(o,p,q) = 0 but
notin_order(r, ¢,p) = 1.

Proofs that shrinking transformations redwoenplexity
are analogous to the proofs above. Hence,caumnplex-

ity order is suitable for a uniform and reversible attack

mutation system’]

o,pre(o)
T,post(o,7)"

le has the form

From properties (a) to (f), we conclude that
disordefr) > disordefc) + 1. Since the swap
transformation does not change the length of a stream,
complexityo) < complexityr) ando < 7.

C Adjusting ®pyp

The rules in®ny represent an HTTP attack as a single
string while the rules inby, represent an attack as a TCP
sequence (Section 5.1). When we unifl, and @y, we
must use a single representation. Since our TCP representa-
tion contains the payload, it is natural to express the HTTP
transformations in terms of TCP sequences. However, we
need to preserve the properties of our HTTP and TCP rules:

1. We need to express how HTTP rules change the sequence
numbers of a TCP sequence. Since our HTTP rules in-
sert (or remove) bytes, they need to “shift” the bytes that
follow the inserted bytes. For example)® should up-
date sequence numbers of TCP segments that are differ-
ent than the segment in whichl* encoded the byte:

((0,ab), (2,cd), (4, ef ))
((0,2962), (4,cd), (6,ef ))

2. Recall thatby, does not support retransmission of dif-
ferent payload (Section 5.1). This means that when an
HTTP rule insert, remove, or change a byte in the TCP
stream it must do so for every copy of the byte in the
stream. For example:

((0,abc), (1,bed), (4, ef ))
((0,a9%82c), (1,9%2cd), (6,ef ))

These two changes of our HTTP rules can be formally
expressed as a simple procedure that traverses the segments
of a TCP sequence and modify them as necessary.



