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Abstract

An attack mutation algorithm takes a known instance
of an attack and transforms it into many distinct instances
by repeatedly applying attack transformations. Such algo-
rithms are widely used for testing intrusion detection sys-
tems. We investigate the notion of completeness of a muta-
tion algorithm: its capability to generate all possible attack
instances from a given set of attack transformations.

We define the notion of aΦ-complete mutation algo-
rithm. Given a set of transformationsΦ, an algorithm is
complete with respect toΦ, if it can generate every instance
that the transformations inΦ derive. We show that if the
rules inΦ are uniform and reversible then aΦ-complete al-
gorithm exists. Intuitively speaking, uniform and reversible
transformations mean that we can first exclusively apply
transformations that simplify the attack, then exclusively
apply transformations that complicate it, and still get all
possible instances that are derived by the rules inΦ.

Although uniformity and reversibility may appear se-
vere restrictions, we show that common attack transforma-
tions are indeed uniform and reversible. Therefore, ourΦ-
complete algorithm can be incorporated into existing test-
ing tools for intrusion detection systems. Furthermore,
we show that aΦ-complete algorithm is useful, not only
for testing purposes, but also for determining whether two
packet traces are two different mutations of the same attack.

1. Introduction

The goal of a network intrusion detection system (NIDS)
is to detect malicious activities, or attacks, on the network.
A misuse NIDS defines an attack via an attack signature,
typically a regular expression that matches a pattern of
the attack [18, 23]. Ideally, each time an ongoing activity
matches an attack signature, the NIDS raises an alarm.

Conceptually, a NIDS signature corresponds to a sin-
gle attack, a sequence of events that exploits a given vul-
nerability. In practice, however, a signature should match
many equivalent attack forms, orattack instances. For ex-

ample, the same attack can be split into TCP or IP packets
in many different ways. Therefore, the reliability of a NIDS
ultimately depends on its ability to detect any instance of
a given attack. Unfortunately, researchers (and attackers)
have successfully evaded many NIDS by mutating an at-
tack instance that the NIDS recognizes into an instance that
it misses. For example, to evade a NIDS that only uses a
signature of ASCII characters, they used theURL encoding
transformation that replaces the ASCII characters of a URL
with their equivalent hexadecimal values [8, 29].

To increase NIDS reliability, NIDS developers should
test the NIDS against as many attack instances as possible.
To generate many instances of the same attack, develop-
ers commonly use anattack mutation system[13, 17, 24,
25, 29]. Such a system usually has two components: a set
of attack transformation rules, such as the URL encoding
above, and amutation algorithm. To use such a system for
testing, a developer first constructs anexemplary instance
of a given attack. Then, the developer feeds the exemplary
instance to the mutation algorithm. The algorithm repeat-
edly applies the transformations according to some prede-
termined (or random) order and generates new instances of
the attack for testing purposes.

Attack mutation systems have successfully uncovered
vulnerabilities in various NIDS [13, 17, 21, 24, 29]. How-
ever, to the best of our knowledge, the fundamental ques-
tion underlying NIDS testing is yet to be investigated. This
question is thetesting coverage question: which instances,
out of all the instances that can be derived by the rules, does
the mutation algorithm generate and which does it miss?

We address the coverage question: we develop aΦ-
completemutation algorithm. Given an exemplary attack
instance and a set of transformationsΦ, a mutation algo-
rithm is Φ-complete if it can generate all the instances, up
to a given lengthk, that are derived from the exemplary in-
stance using the rules inΦ.

Two observations should be noted about aΦ-complete
mutation algorithm. First, an algorithm that exhaustively
applies the rules in all possible combination is not necessar-
ily Φ-complete. The problem is that it is unclear when to
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stop the generation, because instances that are longer than
k might eventually derive instances that are shorter thank.

Second, aΦ-complete algorithm doesnot necessarily
generateall possible instances of a given attack. It can do
so, theoretically at least, if we assert that the rules inΦ rep-
resent all possible ways to transform the attack. Neverthe-
less, the ability to prove that an algorithm isΦ-complete
is the first step toward a mutation system that generates all
possible instances of an attack. Having said so, however,
determining whether a system contains all possible trans-
formations is beyond the scope of this paper.

Achieving Φ-completeness. To achieve Φ-
completeness, our algorithm requires that the rules in
Φ arereversibleanduniform. Reversibility means that each
transformation in our system has a corresponding inverse.
Uniformity means that if an attack instanceσ derives an
instanceτ , then there exists a derivation fromσ to τ in
which we first simplifyσ as much as possible and then
complicate the result until we reachτ . We define “sim-
plify” and “complicate” using a novel complexity metric
for attack instances. For example, we say that an attack
instance that contains HEX encoding is more complex than
an instance that does not contain such encodings.

We show that when the rules inΦ are uniform and re-
versible, the instances thatΦ derives can be derived from a
few representative instances, calledatoms. We prove that
atoms split attack instances into equivalence classes: two
instances are in the same class if and only if they are derived
from the same atom. Using this property, we developed a
two-phase mutation algorithm. Given an attack instance, we
first automatically compute its atom; then, we generate all
instances that are derivable from this atom.

We also develop theunion propertyfor preserving re-
versibility and uniformity of two sets of transformations.
GivenΦ1 andΦ2, where each set is uniform and reversible,
we show that ifΦ1 andΦ2 arepositively commutative(as
defined Section 4.4), thenΦ1 ∪ Φ2 is also uniform and re-
versible. Practically speaking, this property helps us prove
the uniformity and reversibility of a large set of rules. For
example, we develop one set of uniform and reversible rules
for TCP and one for HTTP. We use the union property to
show that the union of the two sets is uniform and reversible
and therefore our algorithm isΦ-complete with respect to
our TCP and HTTP rules.

Other usages of aΦ-complete algorithm. During
NIDS development we usually encounter theforensics
problem: given a set of rules, determine whether two attack
instances are derived from each other. This problem arises
when we need to determine whether a trace of packets is
an instance of a known attack. As we show in Section 4,
a Φ-complete algorithm can be used to assert whether two
instances are derived from each other. When aΦ-complete
algorithm asserts that two instances are not derived from

each other, we know that only one of the two following
options are possible. First, the instances are derived from
each other but our algorithm does not use the transforma-
tions that were used to derive the instances. In this case, the
algorithm helps us uncover a new transformation. Second,
the instances are not derived from each other; in that case,
the algorithm helps us define a new attack. Although the
distinction between the two cases requires manual interven-
tion, note that an incomplete algorithm is even less useful
because it introduces a third case in which the instances are
derivable from each other but the algorithm was not able to
determine that fact.

We show that aΦ-complete algorithm can efficiently
solve the forensics problem when the rules inΦ are uniform
and reversible. Given two instances,σ andτ , the algorithm
first computes the atom ofσ and then checks whetherτ can
be derived from this atom. The correctness of this algo-
rithm stems from the fact that two instances are derivable
from each other if and only if they have the same atom.

In summary, this paper makes the following contribu-
tions:

1. The notion of Φ-complete attack mutation algorithm.
Such an algorithm addresses the coverage question
which is the core of any rigorous NIDS testing process.

2. Conditions for Φ-completeness. We develop the no-
tion of uniformity and reversibility for attack transforma-
tions. We show how to use these concepts to prove that
our proposed algorithm isΦ-complete. We also develop
the union property that helps proving the uniformity of a
union of two sets of transformations.

3. A practical instance of a uniform and reversible set
of transformations. We show that common attack
transformations are uniform and reversible. Our set of
rules include transformations like TCP-fragmentation,
TCP-permutation, and TCP-retransmission as well as
application-level transformation like the URL encoding.

2. Related Work
We review related work in the areas of attack transforma-

tions, NIDS testing, abstract reduction systems, and using
uniform proofs in logic programming.

Attack transformations. Fundamentally, network at-
tacks can be modified, or transformed, at any level of the
protocol stack. Ptacek and Newsham [20, 21] as well as
Handley and Paxson [10, 18] were the first to introduce
IP and TCP transformations (e.g., fragmentation, packet re-
ordering).

Based on their work, tools that use attack transforma-
tions for NIDS testing, or evasion, have been developed.
Fragroute, which transforms TCP-based attacks [28], and
Whisker, which transforms HTTP attacks [22], randomly
combine transformations specified by the user. Mucus [17]



uses attack transformations to perform cross-testing of two
NIDS: it builds packets that match a signature of the first
NIDS, transforms them, and checks whether the other NIDS
identifies the modified packets. Recently, Vigna et al. [29]
developed a tool that applies application-level transforma-
tions (e.g., HTTP encoding, injection of Telnet escape char-
acters) in addition to TCP/IP transformations. Other testing
tools that are based on attack transformations are Snot [27],
Stick [9], and Thor [1, 13].

The tools mentioned above successfully found attack in-
stances that evade the NIDS they had tested. However, to
the best of our knowledge, the researchers that developed
these tools have not addressed the completeness question.
Recently, Rubin et al. [24] developed a tool called AGENT
that exhaustively applies transformation rules in all possible
combinations. However, they did not provide formal proof
that AGENT can really generate all possible instances. In-
deed, as we argue in Section 4.1, exhaustiveness does not
guarantee completeness.

Dacier et al. [7] use attack mutation to evaluate the po-
tential of a set of different IDSs to handle a large set of
transformations. However, unlike our work here, they did
not investigate the completeness property of their system.

Reduction systems and uniform proofs. Our formal
methodology is closely related to abstract reduction sys-
tem [2]. A reduction system is a pair(A,→), wherex → y

is a binary relation such thatx, y ∈ A. In our case,x and
y are attack instances and the relation→ is defined using
transformation rules.

However, to the best of our knowledge, a classic re-
duction system does not distinguish between shrinking
(i.e., simplifying) and expanding (i.e., complicating) rules.
Hence, the general results for such systems cannot be used
unmodified. For example, our concept of an atom (Sec-
tion 4.2.2) is equivalent to the concept of a normal form in
lambda calculus [3]: an elementx that cannot be further re-
duced (i.e., there is noy such thatx → y). However, an
atom is an element that cannot be reduced using shrinking
rules only, while a uniform form in lambda calculus cannot
be reduced by any rule. Also note that every instance in our
reduction system is strongly normalized with respect to our
shrinking rules, that is every instance has an atom.

Miller et al. [15] describe uniform proofs where right-
introduction rules, which are analogous to shrinking rules
(Section 4.2.1), appear before left-introduction rules, which
are similar to expanding rules. The main intuition behind
introducing uniform proofs was to capture goal-directed
search. They also proved that in the framework of logic
programming uniform proofs are complete, i.e., if a term is
provable then it has an uniform proof. Uniform proofs have
also been in explored in other contexts [11, 26]. Special
structures of derivation also have also been used in security-
protocol verification [4, 5, 6, 14]. To our knowledge, our

paper is the only work that explores uniform derivations as
the basis for generating attack mutations for NIDS testing.

3. Technical Overview
We use an exemplary attack to demonstrate the funda-

mental concepts of attack mutation that we use later in the
paper: transformations, mutation algorithm, atoms, and uni-
form derivation.

The perl-in-cgi exploit (CAN-1999-0509 [16]): a Perl
interpreter is installed in thecgi-bin directory on a Web
server, allowing remote attackers to execute arbitrary com-
mands.

Attack transformations. Consider an instance ofperl-
in-cgi, denotedσ, that contains a single HTTPGET request:
“GET <web page>/cgi-bin/perl.exe”. Assume
that σ uses a single TCP segment (not including the TCP
handshake segments). Consider the following transforma-
tion rules that we can use to create other instances ofperl-
in-cgi from σ:

1. frag+ (TCP-fragmentation): ifτ is obtained fromσ by
copyingσ’s segments, or TCP packets, and then frag-
menting a single segment into two segments, thenτ is an
instance ofperl-in-cgi.

2. url+ (URL encoding): ifτ is obtained fromσ by replac-
ing a printable character inσ’s URL with its hexadecimal
ASCII value, thenτ is an instance ofperl-in-cgi.

3. http-pipe+ (HTTP pipelining): ifτ is obtained fromσ by
inserting a benign HTTPGET request (e.g., “GET <web
page>/index.html”) before the maliciousGET re-
quest, thenτ is an instance ofperl-in-cgi.

Denote the set of the three rules asΦ3. We say that an
instanceτ is derivable fromσ with respect toΦ3 if τ is
the result of applying a rule fromΦ3 on σ. Naturally, we
extend the definition of derivability to a sequence of rule
applications.

An attack mutation algorithm generates many in-
stances ofperl-in-cgiby repeatedly applying the rules inΦ3

on the initial instanceσ. We say that the algorithm iscom-
plete with respect toΦ3, denotedΦ3-complete, if it can gen-
erate all (up to a certain lengthk) instances that are derived
from σ using the rules inΦ3. Notice that aΦ3-complete
algorithm doesnot generate all possible instances ofperl-
in-cgi, but only the instances that can be derived using the
rules inΦ3. For example, aΦ3-complete algorithm will not
generate instances that are based on other TCP transforma-
tions, such as TCP-retransmission.

Partial order of attack instances. It is clear thatfrag+,
url+, andhttp-pipe+ can be used to complicateσ: we can
add arbitrary benign HTTP commands, obfuscate URLs,
and fragmentσ into smaller TCP segments. At the same
time, the impact of the rules isreversible: we can undo
frag+ by merging TCP segments, undourl+ by normalizing



URL to only use printable characters, and undohttp-pipe+

by removing benign HTTP requests.
Thus, a transformation has two forms: anexpanding

form that complicates an instance and ashrinkingform that
simplifies it. Given an arbitrary attack instance, an attack
mutation algorithm should use both expanding and shrink-
ing transformations to generate all possible instances. We
denote the shrinking, or reverse, versions offrag+, url+, and
http-pipe+ asfrag-, url-, andhttp-pipe-, respectively.

Expanding and shrinking transformations imply a par-
tial order over the instances ofperl-in-cgi. The length (in
bytes) of an instance can be used to rank the instance com-
plexity: the longer the instance the higher its complexity.
Note thatfrag+, url+, andhttp-pipe+ increase instance com-
plexity, while frag-, url-, andhttp-pipe- reduce it. (frag+

increases the complexity because each additional TCP seg-
ment requires an additional TCP header.)

Atoms. Intuitively, the instanceσ is atomic. First, we
cannot shrinkσ any further because it uses a single TCP
segment, does not include benign HTTP requests, and con-
tains only printable characters. Second,σ is the simplest
form of the attack, any byte inσ is required for a successful
attack. Third, with respect to our rules,σ is the building
block of all other instances. Using expanding rules alone,
σ derives anyperl-in-cgi instance that is fragmented into
several (non-overlapping) TCP segments, contains benign
HTTP commands, and its URLs use either printable char-
acters or their hexadecimal ASCII values.

A uniform derivation . In a uniform derivation all
shrinking transformations precede all expanding ones. As
we discuss in the next section, to prove that our proposed
mutation algorithm isΦ3-complete, we need to show that if
σ derivesτ , then there is also a uniform derivation fromσ
to τ . For example, it is easy to see that if we first expand
an instance by fragmenting it (i.e., usingfrag+) and then re-
placing an hexadecimal ASCII value with a printable char-
acter (i.e., usingurl-), then it is possible to first replace the
character and then to fragment the instance.

Summary of observations. Shrinking and expanding
transformations correspond to our intuition that we can sim-
plify or complicate attack instances. Atoms correspond to
our intuition that some attack instances cannot be simplified
any further and these instances are the building blocks for
other attack instances. Uniformity corresponds to our intu-
ition that it is possible to derive all instances from a given
instance by first simplifying the instance as much as pos-
sible, using shrinking rules, and then only use expanding
rules to generate all instances.

4. AchievingΦ-Completeness

Our goal in this section is to develop aΦ-complete at-
tack mutation algorithm. To do so, we first formally define
transformation rules, a mutation algorithm, and the notion

of Φ-completeness (Section 4.1). We also discuss why, for
a general set of rules, an algorithm that recursively applies
the rules is unlikely to beΦ-complete. Next, we discuss the
reversibility and uniformity of transformations (Section4.2)
and prove that our proposed algorithm isΦ-completeif Φ is
reversible and uniform (Section 4.3). Last, we develop the
union propertythat states the necessary conditions under
which a union of two sets of rules is uniform and reversible.

Notice that the discussion in this sectiondoes notimply
that every set of transformations is uniform and reversible.
Our goal is just to reveal the properties necessary for prov-
ing Φ-completeness. While an arbitrary definition of trans-
formations is unlikely to have these properties, we show that
common TCP transformations (Section 5) and HTTP trans-
formations (Section 6) can be defined such that they are in-
deed uniform and reversible.

4.1. An Attack Mutation Algorithm

In this section we model attack instances as strings over
the alphabetΣ.

Let Σ be an alphabet set,Σ⋆ be the set of strings over
Σ, andΣk ⊆ Σ⋆ be the set of strings of length≤ k. A
transformation ruler has the following form:

σ, pre(σ)

σ′, post(σ, σ′)

whereσ andσ′ are strings overΣ, andpre andpost are
predicates. The rule is interpreted as follows: if a stringσ

satisfies the predicatepre, thenσ′ is derivable fromσ pro-
vided thatpost(σ, σ′) is true. If a stringσ′ can be derived
from σ using a ruler, we write it asσ

r
→ σ′.

Let Φ be a set of transformation rules. We say that a

stringσ′ is derivable fromσ with respect toΦ, denotedσ
Φ
⇒

σ′, if and only if there exists a sequence of rules〈r1, . . . , rk〉

in Φ, called aderivation, such thatσ
r1→ σ1

r2→ . . . σk−1
rk→

σk =σ′. Given a stringσ and a set of rulesΦ, theclosureof
σ with respect toΦ, denotedClΦ(σ), is the set of strings that

are derivable fromσ. Formally,ClΦ(σ) = {σ′ | σ
Φ
⇒ σ′}.

Given a finite set of stringsS ⊆ Σ⋆, its closureClΦ(S) is
given by

⋃
σ∈S ClΦ(σ).

A mutation algorithm, denotedMA, takes a finite set of
stringsS ⊆ Σ⋆ and returns another set of stringsMA(S)
such thatS ⊆ MA(S). Intuitively, a mutation algorithm
takes a set of attack instances and returns a larger set of
instances that are mutations of the original ones.

Definition 1 (A sound and complete mutation algorithm).
Let MA be a mutation algorithm,Φ a set of transformation
rules, andS ⊆ Σ⋆ a set of strings.

• MA is calledsound with respect toΦ, denotedΦ-sound,
if an only if for all S ⊆ Σ⋆, MA(S) ⊆ ClΦ(S). In-
tuitively, MA isΦ-sound if its mutation algorithm only



generates attack instances that are derivable fromS with
respect toΦ.

• MA is calledcomplete with respect toΦ, denotedΦ-
complete, if and only if for allS ⊆ Σ⋆, MA(S) ⊇
ClΦ(S). Intuitively, MA isΦ-complete if its mutation
algorithm covers all possible strings that are derivable
fromS with respect toΦ.

• MA is calledk-complete with respect toΦ, denotedΦk-
complete, if and only if for allS ⊆ Σ⋆, MA(S) ∩ Σk ⊇
ClΦ(S)∩Σk. Intuitively, MA isΦk-complete if its muta-
tion algorithm covers all possible strings of length≤ k

that are derivable fromS with respect toΦ.

For practical applications, we would like to bound the
number of instances that a mutation algorithm derives.
Hence, our focus in the rest of this paper is onΦk-complete
algorithms. Furthermore, since a sound mutation algorithm
is trivial to construct, we take soundness for granted and do
not mention this property unless required.

To better understand the difficulty in constructing aΦk-
complete mutation algorithm, consider a standard work-list
algorithm that builds a closure by recursively deriving the
successors of the initial instanceσ. It is difficult to deter-
mine when to terminate such a derivation process. Suppose
we derive an instanceσ′ such thatlength(σ′) > k. Intu-
itively, sinceσ′ is too long to be included inClΦ(σ) ∩ Σk,
we would be inclined to believe thatσ′ cannot derive any
instance that is part ofClΦ(σ) ∩ Σk. However, in a general
mutation system, each rule might have an arbitrary effect.
So, even thoughσ′ is too long, it might derive a shorter in-
stance that is part of the closure.

4.2. Uniformity and Reversibility

The difficulty in constructing aΦk-complete algorithm
suggests that such a system requires ordering of attack in-
stances. The goal of uniformity and reversibility is to for-
malize the concepts of simplifying and complicating an at-
tack instance.

4.2.1 Uniformity and Reversibility

Let� be a partial order on the setΣ⋆. We say thatσ ≺ β if
and only ifσ � β andσ 6= β.

Given a set of transformationsΦ and a partial order�,
a ruler is called ashrinking ruleif for all σ andσ′ such
that σ

r
→ σ′ we have thatσ ≻ σ′. A rule r is called an

expanding ruleif for all σ andσ′ such thatσ
r
→ σ′ we

have thatσ ≺ σ′. Φ− andΦ+ denote subsets ofΦ con-
sisting of shrinking and expanding rules inΦ, respectively.
Intuitively, shrinking rules are used to simplify an attackin-
stance while expanding rules are used to complicate it.

A derivation〈r1, . . . , rk〉 is calleduniform if there does
not exist ani < j such thatri is an expanding rule andrj

is a shrinking rule. Alternatively, in a uniform derivation,
shrinking rules are applied before expanding rules.

Definition 2 (Uniformity of Φ). LetΦ be a set of transfor-
mation rules.Φ is calleduniform if there exists a partial
order� on Σ⋆ such that the following conditions hold: (i)
with respect to� each rule inΦ is either shrinking or ex-

panding, and (ii) for allσ andσ′ such thatσ
Φ
⇒ σ′, there

exists a uniform derivation fromσ to σ′. In other words,
any derivation inΦ has a corresponding uniform one.

Definition 3 (Reversibility ofΦ). LetΦ be a set of transfor-
mation rules.Φ is calledreversible if every rule inΦ has
an inverse. Inverse of a ruler, denotedr−1, is a rule such

that for all σ andσ′ holds:σ
r
→ σ′ if and only ifσ′ r−1

→ σ.

Two important observations should be noted. First, in a
uniform and reversible set of transformations each shrink-
ing rule is the inverse of an expanding rule, and vice-versa.
We use this observation when we construct aΦ-complete
algorithm (Section 4.3).

Second, as already mentioned in the beginning of this
section, not every set of transformations is uniform and re-
versible. However, in Sections 5 and 6 we show that it is
possible to define common transformations used by existing
mutation systems such that they are uniform and reversible.

In the rest of the paper, we assume that for a partial or-
der used by our mutation system any descending chain is
finite. A chain of attack instances〈σ0, σ1, . . . 〉 is called de-
scending if and only ifσi ≻ σi+1. This assumption states
that shrinking rules cannot be applied infinitely, which cor-
responds to the fact that we cannot simplify an attack in-
stance beyond a certain point. For example, the instanceσ

in Section 3 is the simplest form of theperl-in-cgi attack
with respect to the rules we considered.

4.2.2 Computing Atoms

An atom is the simplest instance of an attack. We formalize
this intuition using shrinking and expanding rules.

Given a partial order� and a set of transformationsΦ
in which each rule is either expanding or shrinking with re-
spect to�, a stringσ is called aΦ-atom if there does not
exist a shrinking ruler in Φ such thatσ

r
→ σ′: no shrink-

ing rule fromΦ can be applied to aΦ-atom. Given a string
σ, the setatomsΦ(σ) is the set ofΦ-atoms that are derived
from σ. For a finite set of stringsS, the setatomsΦ(S) is
defined as∪σ∈S{atomΦ(σ)}.

Theorem 1. Let Φ be a set of transformations. IfΦ is
uniform and reversible, then for every stringσ, the set
atomsΦ(σ) is a singleton set.

Proof of Theorem 1: Suppose there are two sequences
σA and σB in the setatomsΦ(σ). By definition, there
are derivations〈r1, r2, . . . , ri〉 and〈r′1, r

′
2, . . . , r

′
j〉 from σ

to σA and from σ to σB, respectively. SinceΦ is re-
versible, 〈r−1

i , . . . , r−1
1 〉 is derivation fromσA to σ and

the following sequence of rules is a derivation fromσA to



input : A stringσ and
a set of uniform and reversible rulesΦ.

output: atomsΦ(σ) (a singleton set).

currentString = σ;1

while true do2

if a shrinking rule cannot be applied to3

currentStringthen break;
else Pick a ruler from Φ− that can be applied to4

currentString, then perform
currentString = r(currentString);

end5

return currentString;6

Algorithm 1 : ComputingatomsΦ(σ) for a uniform
and reversibleΦ. r(currentString) is the string ob-
tained by applying the ruler to currentString.

σB: 〈r−1
i , . . . , r−1

1 , r′1, r
′
2, . . . , r

′
j〉. Hence,σB is derivable

from σA. SinceΦ is uniform, there is a uniform derivation
〈r′′1 , r′′2 , · · · , r′′l 〉 from σA to σB. There can be two cases:

1. r′′1 is a shrinking rule. Then, a shrinking rule can be ap-
plied toσA, violating the fact thatσA is an atom.

2. r′′1 is an expanding rule. Since〈r′′1 , r′′2 , · · · , r′′l 〉 is a uni-
form derivation that starts with an expanding rule, by
definition all rulesr′′i for 1 ≤ i ≤ l must be expand-
ing rules. Hence,(r′′l )−1 is a shrinking rule that can be
applied toσB , violating the fact thatσB is an atom.�

Algorithm 1 shows how to computeatomsΦ(σ). Initially,
the algorithm setscurrentStringtoσ. Each time in the while
loop, a shrinking ruler is applied tocurrentString. If a
shrinking rule cannot be applied tocurrentString, the algo-
rithm terminates.

Claim 1. LetΦ be a set of transformations andσ be a string.
If Φ is uniform and reversible then Algorithm 1 computes
atomsΦ(σ).

Proof of Claim 1: Algorithm 1 computes only descending
chains. Since we assume that any descending chain is finite
(Section 4.2.1), the algorithm must terminate. It is clear that
the algorithm computes an atom. Theorem 1 proves that
for a uniform and reversible set of transformations, the set
atomsΦ(σ) is a singleton set. Hence, the algorithm com-
putes the setatomsΦ(σ). �

4.3. AΦk-Complete Mutation Algorithm

We show thatif Φ is uniform and reversiblethen there
exists aΦ-complete mutation algorithm.

Algorithm 2 presents aΦ-complete mutation algorithm
when Φ is uniform and reversible. First, we compute
atomsΦ(S) using Algorithm 1 (Lines3-6). Then, we apply
expanding rules fromΦ+ to all sequences inatomsΦ(S) to
generate additional sequences. Notice that when a sequence

input : A set of stringsS, and a set of transformations
rulesΦ.

output: A set of test strings.

worklist = ∅;1

// compute atomsΦ(S).2

forall σ ∈ S do3

ComputeatomsΦ(σ) using Algorithm 1;4

worklist = worklist∪ atomsΦ(σ)5

end6

// Compute the closure.7

tests = worklist;8

while worklist 6= ∅ do9

Pickα ∈ worklist;10

worklist = worklist− {α};11

ComputeM = Φ+({α}) ∩ Σk;12

forall elementsβ of M do13

if β 6∈ teststhen14

worklist = worklist∪ {β}15

end16

end17

tests = tests∪ M ;18

end19

return tests;20

Algorithm 2 : A mutation algorithm. Theorem 2 proves
that, whenΦ is uniform and reversible, this algorithm
is Φk-complete andΦ-sound.

α is picked from theworklist, only its successor sequences
that are of length≤ k denotedΦ+({α})∩Σk, are generated.

For instance-generation purposes, we assume that� is
length preserving: if α � β then length(α) ≤ length(β).
As we show in Sections 5 and 6, this assumption holds for
common attack transformations.

Claim 2. Algorithm 2 terminates.

Proof of Claim 2: We need to show that after a finite num-
ber of stepsworklist is empty. First, notice that any new
instance generated in Line 12, is added only once intowork-
list. This is because we add every newly generated instance
to tests(Line 18) and we add an instance toworklist only if
the instance is not found intests(Line 14). Second, notice
that the total number of different instances that are added
into tests(Line 18) is bounded, becauseΣk is finite. There-
fore, the number of instances that are added toworklist is
bounded. Third, notice that in each iteration of the while
loop an instance is removed fromworklist (Line 11). Also
note that each instance that is removed must exist intests,
so it cannot be added again. We conclude that the size of
worklist is bounded and each iteration removes an instance,
thereforeworklist must be emptied after a finite number of
iterations.�



Theorem 2. Let Φ be a set of transformations andMA the
mutation algorithm from Algorithm 2. IfΦ is uniform and
reversible according to a length preserving partial order,
thenMA is Φk-complete andΦ-sound.

Proof of Theorem 2: Soundness of Algorithm 2 follows
from the fact that we only apply rules fromΦ to generate
test cases. To proveΦk-completeness we need to show that

for everyσ ∈ S if σ
Φ
⇒ σ′ andlength(σ′) ≤ k then Algo-

rithm 2 generatesσ′. More formally, we have to show that
every sequenceσ′ in the setClΦ(S) ∩ Σk is generated by
Algorithm 2.

Assumeσ ∈ S and consider an arbitraryσ′ ∈ ClΦ(σ) ∩
Σk. Since we assume thatΦ is uniform and reversible, there
is a uniform derivation fromσ to σ′. Let the uniform deriva-
tion be of the following form:

σ = σ0
r
−

1→ σ1 · · ·
r
−

j

→ σj

r+
1→ σj+1 · · ·

r+
m→ σj+m = σ′

Considerσj , the last sequence obtained after applying
shrinking rules. There are two cases:

1. σj is an atom ofσ, that isσj ∈ atomsΦ(σ). σ′ will be
generated by Algorithm 2 because (i) we start derivation
from atomsΦ(σ) (Line 5), and (ii) sincelength(σ′) ≤
k and� is length preserving, thenσj , . . . , σj+m have
length≤ k. The fact that� is length preserving is impor-
tant because it ensures that the length ofσj . . . σj+m is
less than or equal tok and therefore the algorithm would
generate all those instances, includingσ′.

2. σj is not an atom ofσ. DenoteσA as the atom ofσ. We
construct a new uniform derivation that derivesσ′ from
σ and “passes through”σA. Note that showing such a
derivation implies that Algorithm 2 generatesσ′.

Sinceσ
Φ
⇒ σj and Φ is uniform and reversible, then

atomsΦ(σ) = atomsΦ(σj) = σA ∈ atomsΦ(σ) (see

Claim 3 below). Hence, there exists a derivationσj
Φ−
⇒

σA and sinceΦ is reversible there exists a derivation

σj
Φ−
⇒ σA

Φ+

⇒ σj . Note that since� is length preserv-
ing the length of every instance in this derivation is≤ k.
Now, insert this derivation afterσj in the original deriva-
tion fromσ to σ′. We obtained a uniform derivation that
passes through a sequence inatomsΦ(σ). �

Claim 3. Let Φ be a set of transformations. IfΦ is uni-

form and reversible andσ
Φ
⇒ σ′, then atomsΦ(σ) =

atomsΦ(σ′).

Proof of Claim 3: According to Theorem 1,atomsΦ(σ)
andatomsΦ(σ′) are singletons. Assume by contradiction
thatσA = atomsΦ(σ) 6= atomsΦ(σ′) = σB . First, note

thatσ
Φ−
⇒ σA and therefore by reversibility we getσA

Φ+

⇒

σ. So, we got a derivation fromσA to σB : σA
Φ+

⇒ σ
Φ
⇒

σ′ Φ−
⇒ σB . Second, sinceΦ is uniform, we conclude that

there exists a uniform derivation fromσA to σB . Last, we
follow the proof of Theorem 1 and show that such a uniform
derivation does not exist unless eitherσA or σB is not an
atom.�

4.4. Combining Mutation Systems

For the purpose of attack mutation, it is usually conve-
nient to have separate sets of rules for different network
protocols. For example, a set for TCP transformations and
a set for HTTP transformations. Such separation facilitates
a modular testing process in which we test our NIDS first
against TCP transformations, then against HTTP transfor-
mations, and last against attack instances that are derived
using both TCP and HTTP transformations.

Theorem 2 proved that forΦ1 and Φ2 that are uni-
form and reversible, Algorithm 2 isΦk

1-complete andΦk
2-

complete, respectively. However, this does not mean that
Algorithm 2 isΦk

3-complete whereΦ3 = Φ1 ∪ Φ2.
One way to prove that Algorithm 2 isΦk

3-complete is to
prove, from scratch, the reversibility and uniformity of the
transformations inΦ3. However, we show that this is not
necessary whenΦ1 andΦ2 are uniform and reversible with
respect to the same partial orderand arepositively commu-
tative. This result simplifies the completeness proof of com-
plex mutation systems because it is usually easier to prove
commutativity of two sets of rules rather than the uniformity
of their union.

Definition 4 (Positively Commutative Transformations).
Let r+ be an expanding rule ands− a shrinking rule with
respect to some partial order�. We say thatr+ and s−

are positively commutative if for all σ and τ such that

σ
r+

→ ρ
s−

→ τ , thenσ
s−

→ ρ̂
r+

→ τ .
LetR andS be sets of transformations. Let� be a par-

tial order such that for allr ∈ R ands ∈ S, r ands are
either expanding or shirking rules with respect to�. We say
thatR andS are set-wise positively commutative if:

1. For all r+ ∈ R+ ands− ∈ S−, r+ ands− are positively
commutative; and

2. for all s+ ∈ S+ andr− ∈ R−, s+ andr− are positively
commutative.

Note that positive commutativity is a weaker condition
than full commutativity. Positive commutativity does not

require that ifσ
r+

→ ρ
s+

→ τ then alsoσ
s+

→ ρ̂
r+

→ τ or if

σ
r−

→ ρ
s+

→ τ then alsoσ
s+

→ ρ̂
r−

→ τ .

Claim 4. Let R andS be transformation sets that are set-

wise positively commutative. Then, ifσ
R+

⇒ ρ
S−

⇒ τ then also

σ
S−

⇒ ρ̂
R+

⇒ τ and ifσ
S+

⇒ ρ
R−

⇒ τ then alsoσ
R−

⇒ ρ̂
S+

⇒ τ .



Proof of claim 4: Intuitively, the claim expands the no-
tion of positive commutativity to a derivation that is longer
than two rules. Let〈r+

1 , . . . , r+
k , s−1 , . . . , s−j 〉 be a deriva-

tion. SinceS and R are set-wise positively commuta-
tive, we can “shift left”s−1 k times and get the derivation
〈s−1 , r+

1 , . . . , r+
k , s−2 , . . . , s−j 〉. We can repeat this shifting

process and get the derivation〈s−1 , . . . , s−j , r+
1 , . . . , r+

k 〉.

Analogously, we prove that ifσ
S+

⇒ ρ
R−

⇒ τ , then also

σ
R−

⇒ ρ̂
S+

⇒ τ . �

Notice that positive commutativity does not imply that
R ∪ S is a uniform set of rules. Consider, for example, the

derivationσ
R+

⇒ ρ1
S−

⇒ ρ2
R−

⇒ τ . Positive commutativity

implies thatσ
S−

⇒ ρ′1
R+

⇒ ρ2
R−

⇒ τ and this derivation is not
uniform. Only if R is uniform, then the last derivation can

be converted intoσ
S−

⇒ ρ′1
R−

⇒ ρ′2
R+

⇒ τ which is uniform.
The next theorem generalizes this observation.

Theorem 3. Let R and S be two sets of transformations
rules such that (i)R andS are reversible and uniform with
respect to a partial order�, and (ii) R andS are set-wise
positively commutative. Then,Φ = R ∪ S is reversible and
uniform with respect to�.

Proof of Theorem 3: It is clear that a union of transforma-
tion sets preserves reversibility. It is left to show thatΦ is

uniform: given a derivationσ
Φ
⇒ τ there exists a derivation

σ
Φ−
⇒ ρ

Φ+

⇒ τ .

Let σ
Φ
⇒ τ be a derivation fromσ to τ . The proof is

similar to the proof of Claim 4: we use the uniformity and
commutativity ofR andS to “shift” the shrinking rules to
the beginning of the derivation fromσ to τ .

First, we expressσ
Φ
⇒ τ in terms of subderivations that

only use rules from eitherR or S (without lose of generality
we assume the derivation starts with rules fromR):

σ
R1⇒ ·

S1⇒ · · · · ·
Rn⇒ ·

Sn⇒ τ (1)

Second, since bothR and S are uniform we express
Derivation 1 using uniform subderivations:

σ
R−

1⇒ ·
R+

1⇒ ·
S−

1⇒ ·
S+

1⇒ · · · · ·
R−n⇒ ·

R+
n⇒ ·

S−n⇒ ·
S+

n⇒ τ (2)

Last, we prove by induction that Derivation 2 can be con-
verted into the uniform derivation of the form:

σ
R
−

1⇒ ·
Ŝ
−

1⇒ · · ·
R̂−n⇒ ·

Ŝ−n⇒ ·
R̂

+

1⇒ ·
Ŝ

+

1⇒, . . . ,
R̂+

n⇒ ·
S+

n⇒ τ (3)

We use theŜ instead ofS, to indicate that the deriva-
tion might have been changed during the “shifting” process.
Our induction is on the number ofuniformity violationsin
Derivation 2. A uniformity violation is an occurrence of
one of the following derivations:r+ followed bys− or s+

followed byr−. The induction is given in appendix B.

input : Two stringsσ andσ′, and
Φ a set of transformations

output: true/false
ComputeσA = atomsΦ(σ) using Algorithm 1;1

ComputeσB = atomsΦ(σ′) using Algorithm 1;2

if (σA = σB) return true;3

else return false;4

Algorithm 3 : Given a uniform and reversibleΦ, the
algorithm solves the forensics problem.

4.5. Summary of Theoretical Results

We formulated attack transformations and their unifor-
mity and reversibility. We proved thatif Φ is a uniform
and reversible set of transformations,then Algorithm 2 is
Φk-complete andΦ-sound (Theorem 2). We developed an
algorithm to compute atoms (Algorithm 1) and showed that
whenΦ is uniform and reversibleatomsΦ(σ) is a single-

ton set. We showed that whenσ
Φ
⇒ σ′ thenatomsΦ(σ) =

atomsΦ(σ′) (Claim 3). This observation immediately leads
to an algorithm that, given a uniform and reversibleΦ,
solves the forensics problem (Algorithm 3). Last, we in-
vestigated the union property that ensures that a union of
two sets of uniform and reversible transformations is also
uniform and reversible.

In the next section, we show that, when carefully defined,
common attack transformations are uniform and reversible.

5. Uniform and Reversible TCP Rules

We present a set of common TCP transformations that
are reversible and uniform. To prove that our transforma-
tions are reversible and uniform, we first formally define the
notion of a TCP sequence and the semantics of our trans-
formations (Section 5.1). Next, we define a partial order
over TCP streams, calledcomplexity(Section 5.2). Last, we
prove that our rules are reversible and uniform with respect
to complexity(Section 5.3).

The reader should be advised that the proof of uniformity
and reversibility is based on the semantics of our rules. In
other words, we do not claim that all previous attack mu-
tation systems that include these types of transformations
define the transformations so they are reversible and uni-
form. The reader is encouraged to check that our seman-
tics closely represents the nature of these transformations.
Therefore, we believe that our rule definitions can be easily
adopted by mutation systems with which we are familiar.

5.1. Semantics of TCP Transformations

A TCP sequence represents the communication between
an attacker and a victim. A sequence is a list of segments,
〈s1, . . . , sn〉, where each segment represents a single mes-
sage that the attacker and victim exchange. Each segment



Name Description Example

frag+ Fragments a payload of a TCP segment into two segments. Can create overlapping
segments of the payload.

〈(0, abcd)〉
frag+

−→ 〈(0, abc), (1, bcd)〉

frag− Defragments two TCP segments into a single one. Removes overlapping segments of
the payload.

〈(0, abc), (1, bcd)〉
frag-

−→ 〈(0, abcd)〉

swap+ Swaps two TCP segments such that they are sent out-of-order.a 〈(0, abc), (1, bcd)〉
swap+
−→ 〈(1, bcd), (0, abc)〉

swap− Swaps two TCP segments such that they are sent in-order. 〈(1, bcd), (0, abc)〉
swap-
−→ 〈(0, abc), (1, bcd)〉

ret+ Retransmits a TCP segment. Can retransmit only part of the payload. Note that appli-
cation of this rule can produce an identical result tofrag+ application.

〈(0, abcd)〉
ret+
−→ 〈(0, abcd), (1, bc)〉

ret- Remove retransmitted segments from a TCP stream. Note that application of this rule
may produce an identical result to afrag- application.

〈(0, abcd), (1, bc)〉
ret-
−→ 〈(0, abcd)〉

Table 1. Φtcp: a uniform and reversible set of TCP transformations.

aIn TCP jargon, out-of-order means not in the order of their sequence numbers.

is formulated as a pair,(seq, payload), wheresi.seqrepre-
sents the sequence-number ofsi andsi.payloadrepresents
the message (in bytes) thatsi contains.

The position of a segment in a sequence determines the
time this segment is sent by the attacker:si is sent only after
sj have been sent for allj < i, and beforesk for all k > i.
For brevity, our TCP sequence definition only includes the
segments sent by the attacker.

Table 1 presentsΦtcp, a set of transformations in our TCP
mutation system. The superscript+ denotes expanding rules
and the superscript− denotes shrinking rules. Formally,
each rule has the form ofσ,pre(σ)

τ,post(σ,τ) (Section 4.1). Several
observations should be noted:

1. Our system includes TCP rules that fragment a TCP
stream, deliver segments out-of-order, and add retrans-
mitted segments. Table 1 informally describes each rule
and provides an example of its effects. The formal se-
mantics of the rules are presented in Appendix A.

2. Our TCP fragmentation rule can create overlapping TCP
segments. This definition is broader than previous ones
that define fragmentation as splitting (e.g., [21]). It turns
out that splitting alone is not enough for uniformity. The
existence of retransmission with merging, or unsplitting,
can create overlapping segments and the only way to
simplify such segments is by defining de-fragmentation
(i.e., frag−) with overlapping.

3. There are cases in which fragmentation and re-
transmission have the same effect. For example,

〈(0,abc)〉
ret+
→ 〈(0,abc), (1,bc)〉 and〈(0,abc)〉

frag+

→
〈(0,abc), (1,bc)〉. However, each of the rules also has
a unique effect. The retransmission rule always retrans-
mits a substring of a segment, while the fragmentation
rule can split a segment into two.

4. Our TCP retransmission rule retransmits the same data.
This means that if two segments overlap, they transmit

the same payload in their overlapping parts. This defi-
nition of retransmission facilitates the uniformity proof.
Section 8 discusses retransmission of different data.

5.2. A Partial Order for TCP Sequences

To show thatΦtcp (Table 1) is uniform, we must show
that the rules inΦtcp are either shrinking or expanding with
respect to a partial order.

We order TCP sequences according to theircomplexity.
We say thatσ is more complex thanτ if it delivers a longer
payload, delivers the same payload but uses more segments,
or delivers the same payload with the same number of seg-
ments but the segments inσ are more disordered (as we
define below) than the segments inτ .

Definition 5 (Length of a TCP sequence). Let σ =
〈s1, . . . sn〉 be a TCP sequence. Definelength(σ) to be the
pair (n,

∑n

i=1 size of(si.payload)).
Let length(σ)=(n, k) and length(τ)=(m, j) then:

1. We say thatlength(σ)= length(τ) if and only if n = m

andk=j.

2. We say thatlength(σ)<length(τ) if and only if (n < m)
or (n=m ∧ k < j).

The next component ofcomplexityis thedisorder levelof
a TCP sequence. The disorder level ofσ counts the number
of segment pairs that are sent out-of-order. For example,
the disorder level of a sequence that sends segments ordered
according to their sequence numbers is zero. Similarly, the
disorder level of a sequence that sends the segments in their
reverse order isn(n−1)

2 .

Definition 6 (TCP sequence disorder level). Let σ =
〈s1,. . . ,si,. . . ,sj ,. . . ,sn〉 be a TCP sequence. Define:

1. not in order(σ, si, sj) = 1 if and only if i < j and
si.seq> sj .seq.

2. disorder(σ) ≡
∑

1≤k<l≤n not in order(σ, sk , sl).



Definition 7 (Complexity of a TCP sequence). Let σ be a
TCP sequence.
Definecomplexity(σ) ≡ (length(σ), disorder(σ)).

1. We say thatcomplexity(σ) = complexity(τ) if and only
if σ = τ .

2. We say thatcomplexity(σ) < complexity(τ) if and only
if (length(σ) < length(τ)) or (length(σ) = length(τ) ∧
(disorder(σ)<disorder(τ)).

We say thatσ is less complex thanτ , denotedσ ≺ τ , if
complexity(σ) < complexity(τ).

Note thatcomplexityis a partial order; it ranks sequence
using length as the primary index anddisorder as a sec-
ondary one. As required in Section 4.2.1, any descending
chain of complexity is finite: we cannot simplify an attack
instance infinitely simply because length is bounded by zero
segments. Furthermore,complexityis length preserving as
required by Theorem 2.

Claim 5. With respect tocomplexity, each rule inΦtcp is
either shrinking or expanding.

The proof of Claim 5 is presented in Appendix B.

5.3. Uniformity Proof of Φtcp

To prove thatΦtcp is uniform we prove that all the condi-
tions of the following claim hold.

Claim 6. Let Φ be a set of transformations. If (i)Φ is re-
versible, and (ii) each rule inΦ is either shrinking or ex-
panding with respect to a partial order�, and (iii) for all σ

andτ such thatσ
Φ
⇒ τ , atomsΦ(σ) = atomsΦ(τ), and (iv)

for all σ, atomsΦ(σ) is a singleton set, and (v) ifσA is an
atom ofσ, there exists a derivation fromσ to σA that only
uses shrinking rules, thenΦ is uniform with respect to�.

Proof of claim 6: We show that ifσ
Φ
⇒ τ , then there

exists a uniform derivation fromσ to τ . According to con-
ditions (iii) and (iv), we know that there existsσA such that
σA = atomsΦ(σ) = atomsΦ(τ). According to condition

(v), we know that the following derivations exist:σ
Φ−
⇒ σA

andτ
Φ−
⇒ σA. SinceΦ is reversible (condition (i)), we get

σA
Φ+

⇒ τ . So, we have a uniform derivation fromσ to τ :

σ
Φ−
⇒ σA

Φ+

⇒ τ . �

Notice that forΦtcp condition (i) holds because the rules
in Φtcp are based on string operations that are reversible
(e.g., concatenation, permutation). Furthermore, condition
(ii) holds because the rules inΦtcp are either shrinking or
expanding with respect tocomplexity(Claim 5).

Let σ be a TCP sequence. The reader is encouraged to
check that for any overlapping betweenσ segments, and for
any order ofσ segments, if we repeatedly apply shrinking

rules, we get a TCP sequence in which (i) all segments are
ordered according to their sequence numbers (otherwise we
could applyswap−), (ii) each byte is transmitted exactly
once (otherwise we could apply eitherfrag− or ret−), and
(iii) we use the least number of TCP segments as possible
(otherwise we could applyfrag−). Therefore, by repeatedly
applying shrinking rules, we get an atom ofσ, that is, con-
dition (v) holds.

Considerσ and itsσA. σA is the single atom ofσ be-
cause our rules do not change the payload of the TCP se-
quence and according to the TCP specifications [19], there
is only a single way in which one can transmit a payload
such that each byte is transmitted exactly once, in order,
with the least number of segments. So,atomsΦtcp(σ) is a
singleton set and condition (iv) holds.

Last, considerσ andτ such thatσ
Φtcp
⇒ τ . Since according

to the TCP specifications the rules inΦtcp do not alter the

payload of a TCP sequence, ifσ
Φtcp
⇒ τ it means that bothσ

andτ transmits the same payload. Since both have a single
atom and both atoms transmit the same payload, according
to the TCP specification, the two atoms must be identical.
So, condition (iii) holds.

We showed that forΦtcp all the conditions in Claim 6
hold, soΦtcp is uniform and reversible with respect tocom-
plexity.

6. Uniform and Reversible HTTP Rules
We illustrate a uniform and reversible set of transfor-

mations for the HTTP protocol. We illustrate two rep-
resentative transformations:HTTP paddingthat pads an
HTTP request with spaces (either before or after a URL)
andHTTP encodingthat encodes a URL using hexadeci-
mal values. We chose these transformations because they
have been successfully used to evade NIDS [24, 29]. Fur-
thermore, these transformations represent other application-
level transformations that modify the attack payload. We
further discuss other application-level transformationsin
Section 8.

We abstract an HTTP attack as a single string, for ex-
ample, “GET /cgi-bin/perl.exe HTTP/1.1”. To
define an HTTP attack, we use a regular language that con-
forms to the HTTP specifications [8], denotedLhttp:

Lhttp = m · (SP)+ · Lurl · (SP)+ · (HTTP)

where:

• Lurl defines a URL as a string over ASCII charac-
ters or their hexadecimal encodings. Formally,Lurl ⊆
{(ASCII ∪ h(ASCII))∗} where ASCII is the standard
ASCII character set andh(ASCII) is a regular substitu-
tion [12] that maps an ASCII character to a string repre-
senting the character’s hexadecimal encoding, for exam-
pleh(‘a’)=“ %61”.



Name Pre Condition Post Condition
pad+

1 (m)(SP)i(url)(SP )j(HTTP) ∧ (i ≥ 1, j ≥ 1) (m)(SP)i+1(url)(SP )j(HTTP)
pad-

1 (m)(SP)i(url)(SP )j(HTTP) ∧ (i > 1, j ≥ 1) (m)(SP)i−1(url)(SP )j(HTTP)
pad+

2 (m)(SP)i(url)(SP )j(HTTP) ∧ (i ≥ 1, j ≥ 1) (m)(SP)i(url)(SP )j+1(HTTP)
pad-

2 (m)(SP)i(url)(SP )j(HTTP) ∧ (i ≥ 1, j > 1) (m)(SP)i(url)(SP )j−1(HTTP)
url+ (m)(SP)i(αxβ)(SP )j (HTTP) ∧ x ∈ ASCII (m)(SP)i(αγβ)(SP )j (HTTP) ∧ (γ = h(x))
url- (m)(SP)i(αγβ)(SP )j (HTTP) ∧ γ ∈ h(ASCII) (m)(SP)i(αxβ)(SP )j (HTTP) ∧ (h−1(γ) = x)

Table 2. Φhttp:A uniform and reversible set of transformations for HTTP-b ased attacks. h is a regular
substitution from ASCII characters to their hexadecimal en codings.

• SPstands for white-space characters.

• m ∈ {GET,POST}, these are the most common HTTP
methods used in HTTP attacks.

Table 2 presents our set of HTTP transformations, de-
notedΦhttp. The rulespad1 andpad2 change the number
of spaces between the attack components. Theurl rule, en-
codes a single ASCII character in the attack’s URL into its
hexadecimal encoding.

To proof the uniformityΦhttp we show that all the con-
ditions in Claim 6 hold:

1. FromΦhttp definition (Table 2) it is clear that each rule
is reversible.

2. {pad-
1, pad-

2, url-} are shrinking rules with respect to
complexity(Definition 7). Since each of these rules
reduces the number of bytes of an instance, it re-
duces the instance’slength(Definition 5). Analogously,
{pad+

1 , pad+
2 , url+} are expanding rules.

3. The proofs thatatomsΦhttp(σ) is a singleton set and that
atomsΦhttp(σ) = atomsΦhttp(τ) are similar to the proofs
presented forΦtcp (Section 5.3). In this case, however,
the proofs are based on the HTTP specification [8] which
states that there is only a single most-concise way to de-
liver an HTTP attack.

7. Combining Φhttp with Φtcp

We show thatΦhttp ∪ Φtcp is uniform and reversible. We
can do that by showing that the conditions of Claim 6 hold.
However, this becomes more difficult as we add transforma-
tions to our system. For example, in the uniformity proof of
Φtcp (Section 5.3) we assumed that the rules do not change
the attack payload, an assumption that is no longer true for
the case ofΦhttp.

We illustrate a different method for proving uniformity.
We use Theorem 3 and show thatΦhttp ∪ Φtcp is uniform
becauseΦhttp andΦtcp are positively commutative.

Using Theorem 3 is particulary suitable for proving uni-
formity of sets of transformations in protocols that belong
to different levels of the protocol stack. For example, since
TCP is a transformation-level protocol while HTTP is an
application-level protocol, TCP specification is indifferent
to changes in the HTTP payload and HTTP specification is

indifferent to changes in the way TCP transfers the payload.
This independency is the basis of the commutativity proof.

The rules inΦhttp represent an HTTP attack as a single
string while the rules inΦtcp represent an attack as a TCP se-
quence (Section 5.1). When we unifyΦhttp andΦtcp we must
use a single representation for attacks. Hence, we should
adjust the definitions of the rules inΦhttp to work with mul-
tiple TCP segments. Due to space constraints, we discuss
this adjustment in Appendix C.

Claim 7. Φtcp ∪ Φhttp is uniform and reversible.

Proof of Claim 7. Notice that all the rules inΦtcp ∪ Φhttp

are either shrinking or expanding with respect to the partial
ordercomplexity(Definition 7). To show thatΦtcp∪Φhttp is
uniform, we need to show that these sets are set-wise posi-
tively commutative (Definition 4). Then, the uniformity of
Φtcp ∪ Φhttp follows from Theorem 3.

To show thatΦtcp andΦhttp are positively commutative,

we show that for every derivation of the formσ
r∈Φ+

http
−→

σ′
s∈Φ−tcp
−→ τ there exists an equivalent derivation of the form

σ
s∈Φ−tcp
−→ σ′′

r∈Φ+

http
−→ τ and that for every derivation of the

form σ
r∈Φ+

tcp
−→ σ′

s∈Φ−http
−→ τ there exists an equivalent deriva-

tion of the formσ
r∈Φ−http
−→ σ′′

s∈Φ+
tcp

−→ τ . Table 3 presents the
major cases of all these derivations; other cases are similar
and we omit them for brevity.

8. Modeling Other Transformations
We discuss the uniformity and reversibility of transfor-

mations that are not part of ourΦtcp andΦhttp.
Modeling other TCP transformations. Header change

TCP transformations operate on the header of a TCP seg-
ment; for example, they modify the TCP flags [8, 21].
While we do not prove it, we believe that these transforma-
tions are uniform because they only involve syntactic ma-
nipulation at the TCP level. To prove their uniformity one
should first extend the representation of a TCP sequence
(Section 5.1) to include a representation for a TCP header.
Then, one should extend the definition ofcomplexity, so it
will enforce the notion of expanding and shrinking rules.



Original Change to

r
1
∈

Φ
+ h

t
t
p

r
2
∈

Φ
− t
c
p 〈(0, a), (0, b)〉

pad+
1→ 〈(0, a ), (1, b)〉

frag−
→ 〈(0, a b)〉 〈(0, a), (0, b)〉

frag−
→ 〈(0, ab)〉

pad+
1→ 〈(0, a b)〉

〈(0, a), (1, b)〉
url+
→ 〈(0, %61), (1, b)〉

frag−
→ 〈(0, %61b)〉 〈(0, a), (1, b)〉

frag−
→ 〈(0, ab)〉

url+
→ 〈(0, %61b)〉

〈(0, ab), (1, b)〉
url+
→ 〈(0, a%62), (1, %62)〉

ret−
→ 〈(0, a%62)〉 〈(0, ab), (1, b)〉

ret−
→ 〈(0, ab)〉

url+
→ 〈(0, a%62)〉

r
1
∈

Φ
+ t
c
p

r
2
∈

Φ
− h

t
t
p 〈(0, a%62)〉

ret+
→ 〈(0, a%62), (2, 6)〉

url−
→ 〈(0, ab), (1, ǫ)〉 〈(0, a%62)〉

url−
→ 〈(0, ab)〉

ret+
→ 〈(0, ab), (1, ǫ)〉

〈(0, a%62)〉
frag+
→ 〈(0, a), (1, %62)〉

url−
→ 〈(0, a), (1, b)〉 〈(0, a%62)〉

url−
→ 〈(0, ab)〉

frag+
→ 〈(0, a), (1, b)〉

〈(0, a b)〉
ret+
→ 〈(0, a b), (0, a b)〉

pad−
1→ 〈(0, ab), (0, ab)〉 〈(0, a b)〉

pad−
1→ 〈(0, ab)〉

ret+
→ 〈(0, ab), (0, ab)〉

Table 3. Positive commutativity of Φhttp and Φtcp.

The biggest challenge is to prove the uniformity and re-
versibility of TCP transformations that contain TCP retrans-
mission of a different payload. The problem is that the con-
tent of the bytes is different across different TCP segments.
This ambiguity creates a difficulty to defineret- because we
must choose only one of the values.

Notice that there is no ambiguity in practice because the
end host resolves the ambiguity. For example, most Linux
kernels prefer the first byte they receive. In comparison,
other operating systems (e.g., openBSD) prefer the last byte
they got. This suggests that it is possible the define TCP re-
transmission in a way that preserves uniformity, according
to the policy defined by a particular operating system. We
leave this investigation for future work.

Modeling application-level transformations.
Application-level transformations operate on the at-
tack payload. For example,FTP padding[13, 24] adds
benign commands before the malicious commands of an
FTP attack. Since such transformations are similar to the
transformations inΦhttp, we believe that their uniformity
can be proved in a similar way.

Modeling network-level transformation. Network-
level transformations (e.g., IP, UDP) change the way the
attack is delivered; for example, IP transformations [21]
might split IP packets. Such transformations are similar
in nature to our TCP transformations and their uniformity
proofs should be similar to the proofs forΦtcp.

9 Conclusion

NIDS testing is a challenging problem in intrusion de-
tection. Experience has shown that many NIDS are evaded
easily and frequently. We believe that aΦ-complete muta-
tion algorithm can serve as the basis for a rigorous testing
process, even when it is infeasible to test all possible mu-
tations. To the best of our knowledge, we are the first to
present such an algorithm.
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A Formal Definition of Φtcp

The formal definition ofΦtcp is given in Table 4. The
predicates used in this table are given below.

Definition 8 (Fragmentation and defragmentation of a TCP
segment). Lets = {seq, payload} be a TCP segment,pf be
a (possibly empty) prefix ofs.payload, andsf be a (possibly
empty) suffix ofs.payloadsuch thatsize of(pf)+sizeof(sf)
≥ size of(s.payload). Then, definesegfrag(s) = (s1, s2)
such that:

1. s1.payload= pf ands2.payload= sf.

2. s1.seq = s.seqand s2.seq= s.seq+sizeof(s.payload)-
size of(sf).

TCP defragmentation is defined as the inverse operation
of TCP fragmentation. That is, we say that a segmentr is a
defragmentation ofs1 ands2 if segfrag(r) = (s1, s2).

Definition 9 (Retransmission of a TCP segment). Let s =
{seq, payload} be a TCP segment andsubstrbe a (possibly
empty) substring ofs.payload. retrans(s) = r such that
r.payload= substrand r.seq= s.seq+ (the index of the first
character ofsubstrin s.payload).

B Proofs Mentioned in the Paper
Induction proof for Claim 3: A derivation with a single

uniformity violation is of the formσ
R
−

1⇒ ·
R

+

1⇒ ·
S
−

1⇒ ·
S

+

1⇒ τ .

We use Claim 4 and convert this derivation intoσ
R
−

1⇒ ·
Ŝ
−

1⇒

·
R̂

+

1⇒ ·
S

+

1⇒ τ .

Induction step: Consider Derivation 2 withn uniformity
violations. First, we use the induction base and convert this
derivation into:

σ
R
−

1⇒ ·
Ŝ
−

1⇒ ·
R̂

+

1⇒ ·
S

+

1⇒ σ2
R
−

2⇒ σ3
R

+

2⇒ · · ·
R−n⇒ ·

R+
n⇒ ·

S−n⇒ ·
S+

n⇒ τ

The derivation above fromσ2 to τ has onlyn−1 unifor-
mity violations. We use the induction hypothesis to get:

σ
R
−

1⇒ ·
Ŝ
−

1⇒ ·
R̂

+

1⇒ ·
S

+

1⇒ σ2
R
−

2⇒ σ3
Ŝ
−

2⇒ σ4

· · ·
R̂−n⇒ ·

Ŝ−n⇒ ·
R̂

+

2⇒ ·
Ŝ

+

2⇒ · · ·
R̂+

n⇒ ·
S+

n⇒ τ (4)

We use a series of changes to “shift”
S

+

1⇒ into the right side
of Derivation 4. Due to positive commutativity we change

·
S

+

1⇒ σ2
R
−

2⇒ σ3 into ·
R̂
−

2⇒ σ′
2

Ŝ
+

1⇒ σ3. We use uniformity of

S and changeσ′
2

S
+

1⇒ σ3
Ŝ
−

2⇒ σ4 into σ′
2

Ŝ
−

2⇒ σ′
3

Ŝ
+

1⇒ σ4. We
continue this process until we get the derivation:

σ
R
−

1⇒ ·
S
−

1⇒ ·
R

+

1⇒ ·
R̂
−

2⇒ ·
Ŝ
−

2⇒ · . . .

R̂−n⇒ ·
Ŝ−n⇒ ·

Ŝ
+

1⇒ ·
R̂

+

2⇒ ·
Ŝ

+

2⇒ · · ·
R̂+

n⇒ ·
Ŝ+

n⇒ τ (5)

Finally, we use the same technique to shift
R

+

1⇒ into the
right side of Derivation 5.�
Proof of Claim 5:

frag+, ret+. Based on ourlengthdefinition (Definition 5),
fragmenting (or retransmitting) a TCP segment increases
the sequencelength, therefore increases the sequence com-
plexity.

swap+. This rule swaps two segments such that they
are delivered out of order. This operation increases the
disorder of the sequence and therefore increases the se-
quencecomplexity. Formally, Letσ=〈s1 . . . p . . . q . . . sn〉.



Name pre-conditions post-conditions
frag+ σ=〈s1 . . . si . . . sn〉 τ = 〈s1 . . . si−1, r1, r2, si+1 . . . sn〉

frag seg(si) = (r1, r2)

frag− σ=〈s1 . . . si, si+1 . . . sn〉
τ = 〈s1 . . . si−1, r1, si+2 . . . sn〉
frag seg(r1) = (si, si+1)

swap+ σ = 〈s1 . . . si . . . sj . . . sn〉
si.seq < sj .seq

τ = 〈s1, . . . sj . . . si . . . sn〉

swap− σ = 〈s1, . . . si . . . sj . . . sn〉
si.seq > sj .seq

τ = 〈s1 . . . sj . . . si . . . sn〉

ret+ σ = 〈s1, . . . , si, . . . sn〉 τ = 〈s1, . . . , si, r, . . . , sn〉
r = retrans(si)

ret− σ = 〈s1, . . . , si, r, . . . , sn〉
r = retrans(si)

τ = 〈s1, . . . , si, . . . sn〉

Table 4. Formal definitions of transformation rules. Each ru le has the form σ,pre(σ)
τ,post(σ,τ) .

Assumeσ
swap+

−→ τ andτ = 〈s1 . . . q . . . p . . . sn〉 such that
σ[j]=τ [k]=p andσ[k]=τ [j]=q . From the definition ofswap+

we know thatp.seq< q.seq(Table 1). Note the following:

1. For all i such thati>k, not in order(σ, q, si) = 1 if and
only if not in order(τ, q, si)=1.

2. For alli such thati>k, not in order(σ, p, si) = 1 if and
only if not in order(τ, p, si)=1.

3. For alli such thati< j, not in order(σ, si, p) = 1 if and
only if not in order(τ, si, p)=1.

4. For alli such thati< j, not in order(σ, si, q) = 1 if and
only if not in order(τ, si, q) = 1.

5. For alli such thatj < i < k:

(a) Assume p.seq < si.seq < q.seq. Then
not in order(σ, p, si) = 0 and not in order(σ, si, q)
= 0. However, not in order(τ, si, p) = 1 and
not in order(τ, q, si) = 1. This means that the swap
operation contributes to the value ofdisorder(τ).

(b) Assume p.seq < q.seq < si.seq. Then
not in order(σ, p, si) = 0 and not in order(σ, si, q)
= 1, but not in order(τ, si, p) = 1 and
not in order(τ, q, si) = 0. This means that
disorder(τ) is at least asdisorder(σ).

(c) Assume si.seq < p.seq < q.seq. Then
not in order(σ, p, si) = 1 and not in order(σ, si, q)
= 0, but not in order(τ, si, p) = 0 and
not in order(τ, q, si) = 1. This means that
disorder(τ) is at least asdisorder(σ).

(d) Note that other orderings ofp, q andsi are impossible
becausep.seq< q.seq.

6. Since we usedswap+, not in order(σ, p, q) = 0 but
not in order(τ, q, p) = 1.

Proofs that shrinking transformations reducecomplexity
are analogous to the proofs above. Hence, ourcomplex-
ity order is suitable for a uniform and reversible attack
mutation system.�

From properties (a) to (f), we conclude that
disorder(τ) ≥ disorder(σ) + 1. Since the swap+

transformation does not change the length of a stream,
complexity(σ) < complexity(τ) andσ ≺ τ .

C Adjusting Φhttp

The rules inΦhttp represent an HTTP attack as a single
string while the rules inΦtcp represent an attack as a TCP
sequence (Section 5.1). When we unifyΦhttp andΦtcp we
must use a single representation. Since our TCP representa-
tion contains the payload, it is natural to express the HTTP
transformations in terms of TCP sequences. However, we
need to preserve the properties of our HTTP and TCP rules:

1. We need to express how HTTP rules change the sequence
numbers of a TCP sequence. Since our HTTP rules in-
sert (or remove) bytes, they need to “shift” the bytes that
follow the inserted bytes. For example,url+ should up-
date sequence numbers of TCP segments that are differ-
ent than the segment in whichurl+ encoded the byte:

〈(0,ab), (2,cd), (4,ef)〉
url+
→

〈(0,a%62), (4,cd), (6,ef)〉

2. Recall thatΦtcp does not support retransmission of dif-
ferent payload (Section 5.1). This means that when an
HTTP rule insert, remove, or change a byte in the TCP
stream it must do so for every copy of the byte in the
stream. For example:

〈(0,abc), (1,bcd), (4,ef)〉
url+
→

〈(0,a%62c), (1,%62cd), (6,ef)〉

These two changes of our HTTP rules can be formally
expressed as a simple procedure that traverses the segments
of a TCP sequence and modify them as necessary.


