
Analysis of SPKI/SDSI Certificates Using Model Checking∗

S. Jha and T. Reps
Computer Sciences Department

University of Wisconsin
1210 W. Dayton Street
Madison, WI 53706.

E-mail: {jha,reps}@cs.wisc.edu

Abstract

SPKI/SDSI is a framework for expressing naming and
authorization issues that arise in a distributed-computing
environment. In this paper, we establish a connection be-
tween SPKI/SDSI and a formalism known as pushdown sys-
tems (PDSs). We show that the SPKI/SDSI-to-PDS con-
nection provides a framework for formalizing a variety of
certificate-analysis problems. Moreover, the connection has
computational significance: Many analysis problems can
be solved efficiently (i.e., in time polynomial in the size
of the certificate set) using existing algorithms for model
checking pushdown systems.

Keywords: SPKI/SDSI, model checking, pushdown sys-
tem, naming, authorization, certificate-chain discovery,
certificate-set analysis.

1 Introduction

Systems with shared resources use access-control mech-
anisms for protection. There are two fundamental prob-
lems in access control: authorization and enforcement. Au-
thorization addresses the following problem: should a re-
quest r by a specific principal A be allowed? Enforcement
addresses the problem of enforcing the authorization dur-
ing an execution. In a centralized system, authorization is
based on the closed-world assumption, i.e., all of the par-
ties are known and trusted. In a distributed system, the

∗This work was supported in part by the National Science Foundation
under grant CCR-9619219, by the Office of Naval Research under con-
tracts N00014-01-1-0796 and N00014-01-1-0708, and by the Alexander
von Humboldt Foundation. The U.S. Government is authorized to repro-
duce and distribute reprints for Governmental purposes, notwithstanding
any copyright notices affixed thereon. The views and conclusions con-
tained herein are those of the authors, and should not be interpreted as nec-
essarily representing the official policies or endorsements, either expressed
or implied, of the above government agencies or the U.S. Government.

closed-world assumption is not valid. Trust management
systems [6] solve the authorization problem in distributed
systems by defining a formal language for expressing au-
thorization and access-control policies, and rely on an al-
gorithm to determine when a specific request is allowable.
A survey of trust management systems, along with a for-
mal framework for understanding them, is presented in [20].
Two prominent trust management systems are Keynote [5]
and SPKI/SDSI [13].

SPKI/SDSI is a framework for expressing naming and
authorization issues of the kind that arise in a distributed-
computing environment. SPKI/SDSI name certificates de-
fine the names available in an issuer’s local name space;
SPKI/SDSI authorization certificates grant authorizations,
or delegate the ability to grant authorizations. Clarke et
al. [10] considered the problem of discovering a certifi-
cate chain for an authorization with respect to a set of
SPKI/SDSI certificates; a certificate chain provides a proof
that a client’s public key is one of the keys that has been au-
thorized to access a given resource—either directly or tran-
sitively, via one or more name-definition or authorization-
delegation steps.

This paper studies the problem of certificate analysis
in the context of SPKI/SDSI. In particular, we establish a
connection between SPKI/SDSI and a formalism known as
pushdown systems (PDSs) [7, 14]. Our work stems from a
simple observation:

A set of SPKI/SDSI name and authorization cer-
tificates defines a PDS.

The significance of this connection, and the contributions
made by the paper, can be summarized as follows:

• The SPKI/SDSI-to-PDS connection provides a frame-
work for formalizing a variety of certificate-set analy-
sis problems: Certificate-set analysis becomes a prob-
lem of model checking pushdown systems.1 Analysis

1There are many flavors of model checking. Henceforth, unless other-

problems can be stated precisely in any of the standard
formalisms for posing model-checking queries. Such
problems include the authorization problem addressed
by Clarke et al., i.e.,

Authorized access 1: Given resource R and principal
K, is K authorized to access R?

However, there are many other questions that one may
be interested in with respect to a certificate set C, such
as

Authorized access 2: Given resource R and name N

(not necessarily a principal), is N authorized to
access R?

Authorized access 3: Given resource R, what names
(not necessarily principals) are authorized to ac-
cess R?2

Shared access 1: For two given resources R1 and R2,
what principals can access both R1 and R2?

Shared access 2: For two given principals K1 and
K2, what resources can be accessed by both K1

and K2?

Compromisation assessment 1: What resources
could principal K have gained access to (solely)
due to the presence of maliciously or accidentally
issued certificate set C ′ ⊆ C?

Compromisation assessment 2: What principals
could have gained access to resource R (solely)
due to the presence of maliciously or accidentally
issued certificate set C ′ ⊆ C?

Expiration vulnerability 1: What resources will
principal K be prevented from accessing if
certificate set C′ ⊆ C expires?

Expiration vulnerability 2: What principals will be
excluded from accessing resource R if certificate
set C′ ⊆ C expires?

Universally guarded access 1: Is it the case that all
authorizations that can be issued for a given re-
source R must involve a certificate signed by
principal K?

Universally guarded access 2: Is it the case that all
authorizations that grant a given principal K ′ ac-
cess to some resource must involve a certificate
signed by K?

wise noted, the term “model checking” refers to model checking of push-
down systems [7, 14]. Background on this problem is given in Section 3.

2In general, this can be an infinite set; as will be shown, the answer can
be given in the form of a finite-state automaton that accepts the names that
are authorized to access R.

• Analysis problems such as the ones listed above can
be solved efficiently (i.e., in time polynomial in the
size of certificate set C) using existing model-checking
algorithms for PDSs.

• In the case of certificate-chain discovery, we show
that an operation that is used as a subroutine in algo-
rithms for model checking PDSs provides a new algo-
rithm for the problem. A special-purpose algorithm for
certificate-chain discovery was developed by Clarke
et al. [10]. Although the worst-case asymptotic run-
ning time for the new algorithm is the same as that of
Clarke et al., the improved handling of tabulated data
does lead to an asymptotic improvement for the fam-
ily of examples given by Clarke et al. to illustrate that
their worst-case upper bound is tight to within a con-
stant factor. This family of examples does not cause
our algorithm to exhibit worst-case behavior (see Sec-
tion 4.3). In addition, annotating our data-structures
with labels from a lattice enables us to answer addi-
tional questions (see Section 4.4), such as “When does
a specific authorization expire?” Moreover, in Sec-
tion 4.5 we show how our algorithm can be adapted to
answer certain authorization questions in a distributed
manner. Such a distributed algorithm is not possible in
the framework provided by Clarke et al.

The remainder of the paper is organized as follows: Sec-
tion 2 provides an introduction to SPKI/SDSI, and describes
the algorithm for certificate-chain discovery from [10]. Sec-
tion 3 and Appendix A provide background on model
checking pushdown systems. Section 4 discusses appli-
cations of the formal machinery to certificate-set analysis
problems. Section 5 discusses related work. Appendix B
provides details about certificate-chain reconstruction. Ap-
pendix C presents some definitions pertaining to lattices that
are used in Section 4.4.

The paper is structured so as to be self-contained. It deals
with several problem domains, and uses several kinds of ar-
rows to denote relationships among different kinds of ob-
jects; these are summarized in Table 1. Readers familiar
with [9] and [7, 14] may wish to skip Sections 2 and 3,
respectively (although there are some minor notational dif-
ferences with those papers; see footnotes 3 and 4).

2 Background on SPKI/SDSI

In SPKI/SDSI, all principals are represented by their
public keys. A principal can be an individual, process, host,
or any other active entity. SPKI/SDSI does not make any
distinction between the principal and its public key, i.e., the
principal is its public key.

K denotes the set of public keys. Specific keys are de-
noted by K, KA, KB, K ′, . . . , etc. Data-structure issues re-

K A −→ S An SPKI/SDSI name cert (K, A, S, V)
KT

�
−→ S

�
An SPKI/SDSI auth cert (K, S, D, T, V), with delegation bit D on

KT

�
−→ S � An SPKI/SDSI auth cert (K, S, D, T, V), with delegation bit D off

〈p, γ〉 ↪→ 〈q, w〉 Transition rule of a PDS
〈p, w〉 ⇒ 〈q, w′〉 Immediate-successor relation of a PDS
〈p, w〉 ⇒+ 〈q, w′〉 Transitive closure of immediate-successor relation of a PDS
〈p, w〉 ⇒? 〈q, w′〉 Reflexive transitive closure of immediate-successor relation of a PDS
p

w
→ q Reachability relation on states of a configuration automaton

p
γ
; q The relation p (

ε
→)? γ

→ (
ε
→)? q in a configuration automaton

Table 1. Kinds of arrows used in the paper.

lated to representation of keys can be found in [13].
An identifier is a word over some alphabet Σ. The set of

identifiers is denoted by A. Identifiers are usually written in
typewriter font, e.g., A and Bob.

A term is a key followed by 0 or more identifiers. Terms
are either keys, locals names, or extended names. A local
name is of the form K A, where K ∈ K and A ∈ A is
an identifier. For example, K Bob is a local name. Local
names are important in SPKI/SDSI because they create a
decentralized name space. The set of all local names is de-
noted by NL, and the local name space of K (local names
of the form K A) is denoted by NL(K).

An extended name is of the form K σ, where K ∈ K
and σ is a sequence of identifiers of length greater than one.
For example, K UW CS faculty is an extended name. Let
NE be the set of extended names and NE(K) denote the set
of extended names beginning with key K. The set of names
N is NL ∪ NE , and the name space N (K) of the key K is
NL(K) ∪ NE(K). The set of terms T is thus K ∪N .

2.1 Certificates

SPKI/SDSI has two types of certificates, or “certs”. The
first type of certificate, called name certs, provides defini-
tions of local names. Authorizations are specified using au-
thorization certs (or auth certs, for short).
Name Certificates. A name cert provides a definition of
a local name in the issuer’s local name space. Only key
K may issue or sign a cert that defines a name in the local
name space NL(K). A name cert C is a signed four-tuple
(K, A, S, V):

• The issuer K is a public key and the certificate is
signed by K.

• A is an identifier.

• The subject S is a term in T . Intuitively, S gives addi-
tional meaning for the local name K A.

• The validity specification V provides information re-
garding the validity of the certificate. Usually, the

validity specification V takes the form of an interval
(t1, t2), i.e., the cert is valid from time t1 to t2 inclu-
sive. A validity specification can also take the form
of an on-line check to be performed. For a complete
explanation of validity specifications, see [13]. In the
context of the authorization problem, we will generally
ignore the validity specification, and assume that we
are working exclusively with valid certificates. (Exten-
sions to handle certain types of validity specifications
are discussed in Section 4.4.)

Authorization Certificates. An auth cert grants or dele-
gates a specific authorization from an issuer to a subject.
Specifically, an auth cert C is a five-tuple (K, S, D, T, V),
where

• The issuer K is a public key, which is also used to
sign the cert. The issuer is the one granting a specific
authorization.

• The subject S is a term.

• If the delegation bit D is turned on, then the key receiv-
ing this authorization can delegate this authorization to
other keys.

• The authorization specification T specifies the permis-
sion being granted. For example, it may specify a per-
mission to read a specific file, or a permission to login
to a particular host.

• The validity specification V for an auth cert is same as
in the case of name cert.

We will treat certs as rewrite rules:

• A name cert (K, A, S, V) will be written as K A −→
S.

• An auth cert (K, S, D, T, V) will be written as
KT

�
−→ S

�
if the delegation bit D is turned on;

otherwise, it will be written as KT

�
−→ S � .

RH
�

−→ K0 UW CS faculty
�

(1)
K0 UW −→ K1 (2)
K1 CS −→ K2 (3)
K2 faculty −→ K3 Bob (4)
K3 Bob −→ KB (5)
KB

�
−→ K4 Alice � (6)

K4 Alice −→ KA (7)

Figure 1. Complete set of certs C.

The pair K, T of an auth cert refers to some resource.
Because we are primarily interested in questions about
resources, rather than questions about either K or T

individually, we will generally write an auth cert as
R

�
−→ S

�
or R

�
−→ S � . (In general, resources

will be denoted by R, RA, RB , R′, . . . , etc.)

2.2 An Authorization Example

In this section, we describe an authorization example that
will be used for illustrative purposes later in the paper.

In traditional discretionary access control, each protected
resource has an associated access-control list, or ACL, de-
scribing which principals have various permissions to ac-
cess the resource. An auth cert (K, S, D, T, V) can be
viewed as an ACL entry, where keys or principals repre-
sented by the subject S are given permission to access re-
source K, T . For instance, suppose that Alice (i.e, KA)
wants to login to host H (i.e., use resource RH). Initially,
the reference monitor associated with H denies access to
her, but reports the following ACL entry (written as an auth
cert) to Alice:

RH

�
−→ K0 UW CS faculty

�

Given the set of certs C shown in Figure 1, Alice has to
“prove” that she is authorized to access RH .

2.3 Name-Reduction Closure

We now describe the algorithm given in [10, 12]. The
reader is referred to [12] for additional details.

First, we define the concept of a closure of a set of cer-
tificates C. A term S appearing in the rules can be viewed
as a string, over the alphabet K ∪ A, in which elements of
K appear only in the beginning. For uniformity, we also re-
fer to strings of the form S

�
and S � as terms. Assume

that we are given a rewrite rule L −→ R corresponding to
cert. Consider a term S = LX . In this case, the rewrite rule
L −→ R applied to the term S (denoted by (L −→ R)(S))
yields the term RX . Therefore, a rule can be viewed as a

function from terms to terms. For example,

(KA Bob −→ KB)(KA Bob myFriends)
= KB myFriends

A term S and a rule L → R are called compatible if S is of
the form LX . Give a set of certificates C and a term S, we
define C(S) as the following set:

{C(S) | C is compatible with S and C ∈ C}

Next, we define the composition of two rewrite rules.
Consider two rules C1 = (L1 −→ R1) and C2 = (L2 −→
R2). Moreover, assume that L2 is a prefix of R1, i.e., there
exists an X such that R1 = L2X . Then the composition
C2◦C1 of the two rules C1 and C2 is the rule L1 −→ R2X .
For example, consider the following two rules:

KA friends −→ KA Bob myFriends

KA Bob −→ KB

The composition of the previous two rules is the following
rule:

KA friends −→ KB myFriends

Two rules C1 and C2 are called compatible if their com-
position C1 ◦ C2 is well defined. Given a set of certifi-
cates C, its closure (denoted by C?) is the smallest set of
certificates that includes C and is closed under composi-
tion.3 In general, C? is infinite and hence cannot be com-
puted directly. For example, consider the set of certificates
C = {(K A −→ K A A)}. The closure C? of C is the
following set:

{(K A −→ K Ai) : i ≥ 2}

Given a name N and a set of certificates C, VC(N) is defined
as

VC(N) = C?(N) ∩ K .

In other words, VC(N) is the set of keys that can be ob-
tained from N by using the rewrite rules corresponding
to the set of certs C. In applications, if N is granted
a certain authorization, every key in VC(N) is also indi-
rectly granted that authorization. For instance, in the au-
thorization example from Section 2.2, it can be shown that
KA ∈ VC(K0 UW CS faculty), and thus Alice will be
authorized to login to host H .

Because the closure C+ of a set of certs C can be infinite,
the concept of a name-reduction closure was introduced

3 For rule application, we write (L → R)(S) instead of S ◦ (L → R)
used in [10]. For the composition of C1 = (L1 → L2X) and C2 =
L2 → R2, we write C2 ◦C1 instead of C1◦C2 (so that (C2 ◦C)(L1) =
(C2(C1(L1))) R2X). Finally, we use C? instead of C+.

K2 faculty −→ KB (8) = (5) ◦ (4)
KB

�
−→ KA � (9) = (7) ◦ (6)

RH

�
−→ K1 CS faculty

�
(10) = (2) ◦ (1)

RH

�
−→ K2 faculty

�
(11) = (3) ◦ (10)

RH

�
−→ KB

�
(12) = (8) ◦ (11)

Figure 2. Additional rules added by name-
reduction closure.

in [10, 12]. A reducing cert is of the form K A −→ K ′. A
name reduction is a composition of two compatible rules C1

and C2, where C2 is a reducing cert. The name-reduction
closure C] of a set of certificates C is defined as the smallest
set of certificates that contains C and is closed under name
reduction. Given a name N and a set of certs C, the follow-
ing equality is proved in [10]:

C?(N) ∩ K = C](N) ∩ K

In other words, it is safe to inspect the name-reduction clo-
sure in order to find out the set of keys that correspond to a
name N .

We now return to our authorization example and describe
the four-step procedure from [10] for determining whether
a principal KP is authorized to access a given resource R,
given a set of certificates C.

1. Remove useless certificates
All name and auth certificates that are are removed
from the set C. All auth certs whose authorization tag
does not refer to resource R are also removed from C.

2. Name reduction
Compute the name-reduction closure C] for the set C.
The name-reduction closure of the set C shown in Fig-
ure 1 yields the additional certs shown in Figure 2.

3. Depth-First Search
First, remove all the rules not of the form K1

�
−→

K2
�

or K1
�

−→ K2 � . In our example, the only
rules that remain after this step are

KB

�
−→ KA � ,

RH

�
−→ KB

�
.

Second, remove all rules of the form Ki
�

−→ Kj � ,
where Kj 6= KP . Third, construct a graph with a ver-
tex for each key. There is an edge from Ki to Kj

if there is a rule of the form Ki

�
−→ Kj � or

Ki

�
−→ Kj

�
. In our example, the edges are

RH → KB and KB → KA. Fourth, perform depth-
first search to determine whether there is a path from
RH to KP . In our example, there is a path from RH

to Alice’s key KA, so Alice is granted permission to
login to host H .

4. Reconstruct the certificate chain
Information from the previous steps can be used to cre-
ate a certificate chain that “proves” that principal KP

is authorized to access the desired resource. In our ex-
ample, the certificate chain

(1), (2), (3), (4), (5), (6), (7)

proves that Alice is authorized to login to the host H ,
because

((7) ◦ (6) ◦ (5) ◦ (4) ◦ (3) ◦ (2) ◦ (1)) (RH

�
)

= KA � .

Certificate-chain reconstruction requires that addi-
tional information be stored during the algorithm used
to perform name-reduction closure. Because the small-
est size of a certificate chain can be exponential in the
number of certs, it may be desirable to report certifi-
cate chains in a factored form [12, Chapter 3].

Next, we discuss the time and space complexity of name-
reduction closure. Let C be the set of certificates and nK

be the number of keys occurring in C. Consider a typical
certificate of the form

L → KA1A2 · · ·Am .

After one name reduction, we obtain a rule of the following
form:

L → K1A2 · · ·Am .

After i < m name reductions, we obtain rules of the fol-
lowing form:

L → KiAi+1 · · ·Am

After m reductions, we obtain a rule of the form L → Km.
There are nK possibilities for the keys K1, · · · , Km, so
there are nKm possibilities for the rules that are generated.
Let |C| be the sum of the lengths of the right-hand sides
of all rules that occur in C. The maximum number of new
rules that can be produced is nK |C|. A rule can be compat-
ible with at most nK reducing certs. Therefore, each rule
can result in O(nK) work, and thus the time complexity of
name-reduction closure is O(n2

K |C|).
The number of nodes and edges in the graph constructed

in the depth-first-search step is bounded by nK and n2
K ,

respectively. Therefore, the time complexity of the depth-
first search in the authorization procedure is O(nK + n2

K).
Hence, the time complexity of the name-reduction closure
step dominates the running time of the procedure. Because
the number of new rules produced is bounded by nK |C|,
the space complexity of the procedure is O(nK |C| + n2

K),
where the second term appears because of the depth-first
search. Data structures for representing certs are discussed
in detail in Elien’s thesis [12].

3 Background on Model Checking Push-
down Systems

This section provides the necessary background on
model checking of pushdown systems (PDSs). The mate-
rial in this paper is largely based on a paper by Esparza et
al. [14]. A detailed treatment of model checking PDSs, in-
cluding the computational complexity of various problems,
can be found in [7].

A pushdown system is a triple P = (P, Γ, ∆), where
P is a finite set of control locations, Γ is a finite stack al-
phabet, and ∆ ⊆ (P × Γ) × (P × Γ?) is a finite set of
transition rules. If ((q, γ), (q′, w)) ∈ ∆, then we write it as
〈q, γ〉 ↪→ 〈q′, w〉. Pushdown systems are similar to push-
down automata; however, unlike pushdown automata they
do not have an input alphabet. Therefore, PDSs should not
be viewed as language recognizers, but as mechanisms that
specify possibly infinite-state transition systems.

A configuration of P is a pair 〈q, w〉, where q ∈ P is
a control location and w ∈ Γ? represents the stack con-
tents. The set of all configurations is denoted by C. A
surface configuration is a pair 〈q, γ〉, where q ∈ P and
γ ∈ Γ. If 〈q, γ〉 ↪→ 〈q′, w〉, then for all v ∈ Γ? the con-
figuration 〈q, γv〉 is an immediate predecessor of 〈q′, wv〉,
and 〈q′, wv〉 is an immediate successor of 〈q, γv〉 (denoted
by 〈q, γv〉 ⇒ 〈q′, wv〉). The reflexive transitive closure
(known as the reachability relation) and the transitive clo-
sure of the immediate-successor relation are denoted by ⇒?

and ⇒+, respectively.4 A run of P is a sequence of config-
urations c0, c1, · · · , cn such that ci is an immediate prede-
cessor of ci+1.

Given a set of configurations C ⊆ C, the set of predeces-
sors of C (denoted by pre [P](C)) is

{c | ∃c′ ∈ C.c ⇒ c′}

The reflexive transitive closure of pre[P] is denoted by
pre?; thus, pre?[P](C) is

{c | ∃c′ ∈ C.c ⇒? c′}

The set of immediate successors post [P](C) of a set of con-
figurations C is defined similarly. The reflexive transitive
closure of post [P] is denoted by post?[P]. When P is un-
derstood, we will merely write pre , pre?, post , and post?.

3.1 Computing pre?

Assume that we are given a pushdown system P =
(P, Γ, ∆). A regular set of configurations ofP can be repre-
sented with a finite-state automaton, called a configuration
automaton ofP , whose input alphabet is P’s stack alphabet.

4 In [14], the symbol ⇒ denotes the reflexive transitive closure of the
immediate predecessor relation. We use ⇒ for the immediate predecessor
relation, and ⇒? for its reflexive transitive closure.

��
��

��
��
��
��
��
��
��
��
��
��

- - -

p1

p2 s1 s2 s3
γ1 γ2 γ3

Figure 3. Automaton that accepts C =
{〈p2, γ1γ2γ3〉}.

Formally, a configuration automaton of P is an automa-
ton A = (Γ, Q, δ, P, F), where Q is a finite set of states and
the set of locations P of P is a subset of Q; δ ⊆ Q×Γ×Q

is the set of transitions; P is the set of initial states; and
F ⊆ Q is the set of final states. The configuration automa-
ton’s reachability relation, denoted by

w
→⊆ Q× Γ? ×Q, is

defined as the smallest relation satisfying:

• q
ε
→ q for every q ∈ Q,

• if (q, γ, q′) ∈ δ, then q
γ
→ q′, and

• if q
w
→ q′′ and q′′

γ
→ q′, then q

wγ
→ q′.

Henceforth, we will refer to a configuration automaton sim-
ply as an automaton. An automaton accepts or recognizes
a configuration 〈p, w〉 of P if p

w
→ q for some p ∈ P and

q ∈ F . The set of configurations recognized by an automa-
ton A is denoted by Conf (A).

Example 1 Consider a PDS P = (P, Γ, ∆), where P =
{p1, p2}, Γ = {γ1, · · · , γ6}, and ∆ consists of the follow-
ing transition rules:

(p2, γ4) ↪→ (p2, γ1γ2)
(p1, γ5) ↪→ (p2, γ4γ3)
(p1, γ6) ↪→ (p1, ε)

The automaton shown in Figure 3 recognizes the set of con-
figurations C = {〈p2, γ1γ2γ3〉}.

Assume that we are given a regular set of configurations
C accepted by an automaton A. It has been shown that the
set of configurations pre?(C) is regular [7]. The automaton
recognizing pre?(C) can be constructed from A by adding
transitions to A using the following saturation rule; i.e., we
add transitions to the automaton until no more can be added:

If 〈p, γ〉 ↪→ 〈p′, w〉 and p′
w
→ q in the current automaton,

add a transition (p, γ, q)

& %6

�����
��
��

��
��
��
��
��
��
��
��
��
��

- - -

PPPPPPPPPPPPPPPPq

p1

p2 s1 s2 s3
γ1 γ2 γ3

γ4

γ5

γ6

Figure 4. Automaton that accepts pre?(C) =
{〈p1, γ

i
6γ5〉} ∪ {〈p2, γ1γ2γ3〉, 〈p2, γ4γ3〉}.

Theorem 1 [14] Let P = (P, Γ, ∆) be a PDS and A =
(Γ, Q, δ, P, F) be a configuration automaton of P . There
exists an automatonApre? that recognizes pre?(Conf (A)).
Moreover, Apre? can be constructed in O(n2

Qn∆) time and
O(nQn∆ + nδ) space, where nQ = |Q|, nδ = |δ|, and n∆

is the sum of the lengths of the right-hand sides of transition
rules in ∆. The length of the right-hand side of transition
rule 〈p, γ〉 ↪→ 〈p, w〉 is max{1, |w|}.

Example 2 Consider the PDS from Example 1. Recall that
the automaton in Figure 3 recognizes the set of configura-
tions C = {〈p2, γ1γ2γ3〉}. The automaton A that recog-
nizes pre?(C) is shown in Figure 4. The transition rule
(p1, γ6) ↪→ (p1, ε) from P causes a self-loop (p1, γ6, p1) to
be added to A. The transition rule (p2, γ4) ↪→ (p2, γ1γ2)

from P and the fact that p2
γ1γ2

→ s2 holds in A causes the
transition (p2, γ4, s2) to be added to A. The transition rule
(p1, γ5) ↪→ (p2, γ4γ3) in P and the fact that p2

γ2γ3

→ s3

holds in A causes the transition (p1, γ5, s3) to be added to
A. The automaton shown in Figure 4 accepts the following
set of configurations:

{〈p1, γ
i
6γ5〉} ∪ {〈p2, γ1γ2γ3〉, 〈p2, γ4γ3〉}

3.2 Computing post?

Consider a PDS P = (P, Γ, ∆) and a regular set of con-
figurations C that is represented as a automaton A. We will
assume that each transition rule 〈p, γ〉 ↪→ 〈p′, w〉 of ∆ satis-
fies |w| ≤ 2. This assumption involves no loss of generality
because a PDS that does not satisfy this constraint can be
converted into one that does. Suppose that we are given a
general PDS P ′ = (P ′, γ, ∆′). Consider a transition rule
〈p, γ〉 ↪→ 〈p′, γ1, · · · , γk〉, where k ≥ 3. We add k− 2 new
control locations p1, · · · , pk−2 and replace the original rule

with the following k − 1 transition rules:

〈p, γ〉 ↪→ 〈p1, γk−1γk〉

〈p1, γk−1〉 ↪→ 〈p2, γk−2γk−1〉

...

〈pi, γk−i〉 ↪→ 〈pi+1γk−i−1γk−i〉

...

〈pk−2, γ2〉 ↪→ 〈p′, γ1γ2〉

Assume that we are given a regular set of configurations
C as an automaton A. We will construct an automaton
Apost? that accepts post?(C). The automaton Apost? is ob-
tained from A in the following two phases:

• Phase I
For each transition rule r ∈ ∆ of the form 〈p, γ〉 ↪→
〈p′, γ′γ′′〉, add to A
(i) a new state r, and
(ii) a transition (p′, γ′, r).

• Phase II (saturation phase)
In this phase, new transitions are added to the automa-
ton until no more rules can be added. (The symbol

γ
;

denotes the relation (
ε
→)? γ

→ (
ε
→)?.) The rules for

adding new transitions are as follows:

– If 〈p, γ〉 ↪→ 〈p′, ε〉 ∈ ∆ and p
γ
; q in the current

automaton, add a transition (p′, ε, q).

– If 〈p, γ〉 ↪→ 〈p′, γ′〉 ∈ ∆ and p
γ
; q in the current

automaton, add a transition (p′, γ′, q).

– If r = 〈p, γ〉 ↪→ 〈p′, γ′γ′′〉 ∈ ∆ and p
γ
; q in

the current automaton, add a transition (r, γ ′′, q).

Theorem 2 [14] Let P = (P, Γ, ∆) be a pushdown sys-
tem, and A = (Γ, Q, δ, P, F) be a configuration automa-
ton of P . There exists an automaton Apost? recognizing
post?(Conf (A)). Moreover, Apost? can be constructed
in O(nP nQ(nQ + n∆) + nP nδ) time and space, where
nP = |P |, n∆ = |∆|, nQ = |Q|, and nδ = |δ|.

Note: The complexities mentioned in Theorems 1 and 2
refer to the improved versions of the algorithms, which are
presented in [14].

Example 3 Consider again the PDS P = (P, Γ, ∆), where
P = {p1, p2}, Γ = {γ1, · · · , γ6}, and ∆ contains the fol-
lowing transition rules:

m0 : 〈p2, γ4〉 ↪→ 〈p2, γ1γ2〉
m1 : 〈p1, γ5〉 ↪→ 〈p2, γ4γ3〉
m2 : 〈p1, γ6〉 ↪→ 〈p1, ε〉

��
��

��
��

��
��
����

Z
Z

Z
Z

Z
Z

Z~

p1

p2 s

γ5

Figure 5. Automaton that accepts C =
{〈p1, γ5〉}

��
��

��
��

��
��
������

��

��
��

Z
Z

Z
Z

Z
Z

Z~
-

?
Z

Z
ZZ~ �

�
�7

p1

p2 s

γ5

γ1

γ2

γ3

m0

m1

γ4

Figure 6. Automaton that accepts post?(C) =
{〈p1, γ5〉, 〈p2, γ4γ3〉, 〈p2, γ1γ2γ3〉}.

Consider the automaton shown in Figure 5, which accepts
the set of configurations C = {〈p1, γ5〉}. The automaton
corresponding to post?(C) is shown in Figure 6. The states
labeled m0, m1, and m2 correspond to the transition rules
with the same label. The automaton shown in Figure 6 ac-
cepts the following set of configurations:

{〈p1, γ5〉, 〈p2, γ4γ3〉, 〈p2, γ1γ2γ3〉}

3.3 Model Checking for Linear-Time Logics

Let AP be a finite set of atomic propositions, and let
Σ = 2AP . Let φ be an LTL formula over the atomic
propositions AP . (The reader should consult [11, Chap-
ter 3] and [7] for the syntax and semantics of LTL.) Let
P = (P, Γ, ∆) be a PDS, and let Ω : (P × Γ) → Σ be a la-
beling function that associates a set of atomic propositions
with each surface configuration 〈p, γ〉. By extension, the set
of atomic propositions that hold at a configuration 〈q, γw〉
is given by Ω(〈q, γ〉).

We are interested in the following model-checking prob-
lem:

Given a configuration c of P and an LTL formula
φ, determine whether c satisfies φ (i.e., c |= φ).

A summary of the LTL model-checking procedure
from [14] can be found in Appendix A.

4 From SPKI/SDSI to PDSs

This section explores the connection between
SPKI/SDSI and PDSs, and demonstrates how the autho-
rization problem, as well as a variety of other certificate-set
analysis problems, can be viewed as model-checking
problems on PDSs.

Assume that we are given a set of certs C. Let the set of
keys, identifiers, and resources that appear in C be denoted
by KC , AC , and RC , respectively.

We construct a PDS PC = (P, Γ, ∆) as follows:

• The set of locations is P = KC ∪ RC , i.e., each key
and resource represents a control location of PC.

• The stack alphabet is Γ = AC ∪ {
�

, � }, i.e., the stack
alphabet is the set of identifiers, along with filled and
unfilled squares (which encode delegation bits).

• The set of transition rules ∆ contains a rule 〈K, γ〉 ↪→
〈K ′, w〉 iff (K γ → K ′ w) ∈ C, i.e. the certs in C
correspond to the transition rules.

Assume that we are given a set of certs C. Consider a
term N ∈ K∪N . The term N = KA1 · · ·Am corresponds
to the configuration c(N) = 〈K, A1 · · ·Am〉 in the PDS
PC . If N = K, then c(N) = 〈K, ε〉. The lemma given
below establishes a correspondence between the closure C?

of the set of certs C and the reachability relation ⇒? in the
PDS PC .

Lemma 3 Assume that we are given a set of certs C. Let
PC be the PDS corresponding to C, and let N be a term. For
all terms N ′, N ′ ∈ C?(N) if and only if c(N) ⇒? c(N ′) in
PC . In other words, we have the following equality:

C+(N) = post?(c(N))

Given a set of certificates C, suppose that we are inter-
ested in determining whether a principal KP is authorized
to access resource R. There are two options to solve this
authorization problem: one uses pre?; the other uses post?.
A “proof” of the authorization is a run of the PDS PC that
starts at the configuration 〈R,

�
〉 and ends at one of the con-

figurations from the following set:

{〈KP ,
�
〉, 〈KP , � 〉

In terms of pre? and post?, the condition described above
can be formalized by either of the following:

〈R,
�
〉 ∈ pre?({〈KP ,

�
〉, 〈KP , � 〉}) (1)

post?({〈R,
�
〉}) ∩ {〈KP ,

�
〉, 〈KP , � 〉} 6= ∅ (2)

Algorithms based on conditions (1) and (2) will be re-
ferred to as Apre and Apost , respectively. The SPKI/SDSI
algorithm described in Section 2.3 will be referred to as
ASPKI/SDSI . Based on Lemma 3, the following theorem is
easy to prove:

Theorem 4

1. A principal KP is granted authorization to access re-
source R by algorithm ASPKI/SDSI iff algorithm Apre

grants authorization to KP to access R.

2. A principal KP is granted authorization to access re-
source R by algorithm ASPKI/SDSI iff algorithm Apost

grants authorization to KP to access R.

The algorithm Apre works as follows:

1. Construct the PDS PC corresponding to the set of certs
C as described before.

2. Let Y be the following set of configurations:

{〈KP ,
�
〉, 〈KP , � 〉}

Construct the automaton AY = (Γ, Q, δ, P, F), where
Q = P ∪{s}, δ = {(KP ,

�
, s), (KP , � , s)}, and F =

{s}. (Conf (AY) is Y .) Using the algorithm described
in Section 3.1, create the automaton corresponding to
pre?(Y).

3. Grant authorization to KP iff 〈R,
�
〉 is accepted by the

automaton for pre?(Y).

The complexity of algorithm Apre can be analyzed as
follows: In case of a single resource, the number of states
nQ in the automaton AY is nK + 2. There is a one-to-one
correspondence between the transition rules and the certs in
the set C; therefore, n∆ is equal to |C|. Moreover, the num-
ber of transitions nδ in the automaton AY is 2. Invoking
Theorem 1, we obtain that the time and space complexity of
Apre are O(n2

K |C|) and O(nK |C|), respectively. Notice that
this is exactly the same asymptotic complexity that Clarke
et al. obtain for algorithm ASPKI/SDSI .

Example 4 Consider the example described in Section 2.2.
Let C be the set of configurations shown in Figure 1. Let
PC = (P, Γ, ∆) be the PDS corresponding to C. In this
case the control locations P and the stack alphabet Γ are
given by the following sets:

{RH , K0, K1, K2, K3, KB , K4, KA}
{UW, CS, faculty, Bob, Alice,

�
, � }

〈RH ,
�
〉 ↪→ 〈K0, UW CS faculty

�
〉 (1)

〈K0, UW〉 ↪→ 〈K1, ε〉 (2)
〈K1, CS〉 ↪→ 〈K2, ε〉 (3)
〈K2, faculty〉 ↪→ 〈K3, Bob〉 (4)
〈K3, Bob〉 ↪→ 〈KB , ε〉 (5)
〈KB ,

�
〉 ↪→ 〈K4, Alice � 〉 (6)

〈K4, Alice〉 ↪→ 〈KA, ε〉 (7)

Figure 7. The set of transition rules ∆ in PC .

The transition rules ∆ are shown in Figure 7.
We are interested in an authorization for Alice, whose

key is KA. Consider the following set of configurations X :

{〈KA,
�
〉, 〈KA, � 〉}

A configuration automaton AX = (Γ, Q, δ, P, F) that ac-
cepts X can be defined as follows: Q = P ∪ {s}, δ =
{(KA,

�
, s), (KA, � , s)}, and F = {s}. The automaton

that would be constructed for pre?(X) is shown in Figure 8.
Note that the configuration 〈RH ,

�
〉 is accepted by the au-

tomaton, and thus principal KA (Alice) is authorized to lo-
gin to host H .

Next, we describe in detail the algorithm Apost that uses
the construction post?. Again, suppose that we are inter-
ested in determining whether a principal KP is authorized
to access resource R, given a set of certificates C. The algo-
rithm for solving the authorization problem is as follows:

1. Construct the PDS PC corresponding to the set of certs
C.

2. Let S be the following set of configurations:

{〈R,
�
〉}

Construct the automaton AS = (Γ, Q, δ, P, F), where
Q = P ∪ {s}, δ = {(R,

�
, s)}, and F = {s}.

(Conf (AY) is S.) Before computing post?(S), we
need to transform the PDS PC so that all transition
rules 〈p, γ〉 ↪→ 〈p′, w〉 satisfy |w| ≤ 2. Then add
a new state r for each transition rule of the form
〈p, γ〉 ↪→ 〈p′, γ′γ′′〉 and add a transition (p′, γ′, r) to
the automaton AS . Finally, complete the construction
of the automaton for post?(S) by repeatedly applying
the saturation rule.

3. Grant authorization to KP iff 〈KP ,
�
〉 or 〈KP , � 〉 is

accepted by the automaton corresponding to post?(S).

We analyze the complexity of this algorithm as follows:
In the case of a single resource, the number of states nQ in
the automaton AS is nK + 2. Using Theorem 2, we ob-
tain that the time and space complexity of Apost are both
O(n2

K(nK + |C|)).

?

��
?

��
?

��
?

$'
?

��

"!

"!

"!

"!

"!

"!

"!

"!

"!

PPPPPPPPPPPPPPPPq

�
�

�
�

�	

����������������)s

K0 K1 K2 K3 KB K4 KA

�

UW CS
faculty

Alice
Bob

{
�

, � }

�

RH

Figure 8. Automaton that accepts the set of configurations pre?({〈KA,
�
〉, 〈KA, � 〉}).

Example 5 Consider the set of certs C shown in Figure 1.
The PDS PC = (P, Γ, ∆) corresponding to the set of certs
C was explicitly constructed in Example 4. Recall that the
post? algorithm assumes that every transition rule 〈p, γ〉 ↪→
〈p′, w〉 satisfies |w| ≤ 2. The following rule in PC does not
satisfy that constraint:

〈RH ,
�
〉 ↪→ 〈K0, UW CS faculty

�
〉

We transform the PDS by (i) adding two new locations K1
0

and K2
0 , (ii) adding the following three rules, and (iii) delet-

ing the rule given above.

m0 : 〈RH ,
�
〉 ↪→ 〈K1

0 , faculty
�
〉

m1 : 〈K1
0 , faculty〉 ↪→ 〈K2

0 , CS faculty〉
m2 : 〈K2

0 , CS〉 ↪→ 〈K0, UW CS〉

One of the original transition rules of the PDS has two
stack symbols on the right-hand side: m3 : 〈KB

�
〉 ↪→

〈K4, Alice � 〉.
A configuration automaton AS = (Γ, Q, δ, P, F) that

accepts the set S = {〈RH ,
�
〉} can be defined as fol-

lows: Q = P ∪ {s}, F = {s}, and δ = {(RH ,
�

, s)}.
After phase I of the construction from Section 3.2, the
automaton has the following components Q = P ∪
{K1

0 , K2
0 , m0, m1, m2, m3, s}, F = {s}, and δ is the set

shown in Figure 9. The automaton that would be con-
structed for post?(S) is as shown in Figure 10. Note that
the configuration 〈KA, � 〉 is accepted by this automaton,
and thus principal KA (Alice) is authorized to login to host
H .

4.1 Certificate-Chain Reconstruction and
Threshold Subjects

We now describe how we can augment the automaton
constructed by algorithm Apre with extra information for
the purpose of certificate-chain reconstruction. (Apost can
be augmented similarly.)

(RH ,
�

, s)
(K1

0 , faculty, m0)
(K2

0 , CS, m1)
(K0, UW, m2)
(K4, Alice, m3)

Figure 9. The set of transitions δ.

The automaton for pre?(X) is created by adding
transitions to AX according to the saturation rule, until no
more transitions can be added:

If 〈p, γ〉 ↪→ 〈p′, w〉 and p′
w
→ q in the current automaton,

add a transition (p, γ, q)

With each transition (p, γ, q) in the automaton, we associate
a set of identifiers for transition rules. Initially, this set is
empty for all of the transitions in the automaton. Intuitively,
this set represents the transition rules that caused this tran-
sition to be added. If the transition rule 〈p, γ〉 ↪→ 〈p′, w〉,
together with the fact that p′

w
→ q holds in the automaton,

causes the transition (p, γ, q) to be added to the automa-
ton, the identifier of the transition rule 〈p, γ〉 ↪→ 〈p′, w〉 is
added to the set of identifiers associated with the transition
(p, γ, q). After the completion of the pre? construction, the
certificate chain can be reconstructed by starting from an
identifier associated with the transition (R,

�
, s) and trac-

ing back. The tracing-back procedure is conceptually sim-
ple, and details are provided in Appendix B.

Threshold subjects can be handled in our framework by
introducing extra keys (see [13, Section 10]).

4.2 Certificate-Set Analysis Problems

This section discusses applications of model checking
to specific certificate-set analysis problems; in particular,

&%
'$

&%
'$

&%
'$
&%
'$
&%
'$
&%
'$
&%
'$
&%
'$
&%
'$
&%
'$
&%
'$

&%
'$
&%
'$

&%
'$

&%
'$

-

?? ?

�
�

��	

�������������9

�
�

��	

��������

����������������9

#
##S

So �
�J

JJ]

?

-

?

RH K1
0 K2

0 K0 K1 K2 K3 KB K4 KA

m0 m1 m2 m3

s
�

ε

faculty CS

εfaculty CS UW ε Bob ε
Alice

�

�

Figure 10. Automaton that accepts the set of configurations post?(S).

we show how model checking furnishes algorithms for the
analysis problems listed in the introduction. (Here, we
use the term “model checking” to mean both (i) the prob-
lem of checking whether a given PDS satisfies a given
LTL formula, and (ii) the problem of answering simple for-
ward and backward reachability queries; the latter can be
stated in terms of set-former expressions that use the ba-
sic automaton-building operations pre∗ and post∗.) Given
a set of certs C and a set of configurations X , we write
pre?[PC](X) as pre?[C](X). Similarly, post?[PC] is writ-
ten as post?[C].

Authorized access 1: Given resource R and principal K,
is K authorized to access R?

〈R, 2〉 ∈ pre∗({〈K, 2〉, 〈K, � 〉}) or, alternatively,
{〈K, 2〉, 〈K, � 〉} ∩ post∗({〈R, 2〉}) = ∅

Authorized access 2: Given resource R and name N , is N

authorized to access R?

〈R, 2〉 ∈ pre∗({c(N)}) or, alternatively,
{c(N)} ∩ post∗({〈R, 2〉}) = ∅

Authorized access 3: Given resource R, what names are
authorized to access R?

post∗({〈R, 2〉})

Shared access 1: For two given resources R1 and R2,
what principals can access both R1 and R2?

{K | 〈K, � 〉 or 〈K, � 〉 are in post?[C]({〈R1, � 〉})}
∩ {K | 〈K, � 〉 or 〈K, � 〉 are in post?[C]({〈R2, � 〉}) }

Shared access 2: For two given principals K1 and K2,
what resources can be accessed by both K1 and K2?

{R | 〈R, 2〉 ∈ pre∗({〈K1, 2〉, 〈K1, � 〉})
∩ pre∗({〈K2, 2〉, 〈K2, � 〉})}

Compromisation assessment 1: What resources could
principal K have gained access to (solely) due to
the presence of maliciously or accidentally issued
certificate set C′ ⊆ C?

{R | 〈R, 2〉 ∈ (pre?[C]({〈K, 2〉, 〈K, � 〉})
− pre?[C − C′]({〈K, 2〉, 〈K, � 〉}))}

Compromisation assessment 2: What principals
could have gained access to resource R (solely)
due to the presence of maliciously or ac-
cidentally issued certificate set C ′ ⊆ C?

{K | 〈K, � 〉 or 〈K, � 〉 are in post?[C]({〈R, � 〉})}
− {K | 〈K, � 〉 or 〈K, � 〉 are in post?[C − C′]({〈R, � 〉}) }

Expiration vulnerability 1: What resources will principal
K be prevented from accessing if certificate set C ′ ⊆ C
expires?

Same as compromisation assessment 1.

Expiration vulnerability 2: What principals will be ex-
cluded from accessing resource R if certificate set
C′ ⊆ C expires?

Same as compromisation assessment 2.

Universally guarded access 1: Is it the case that all autho-
rizations that can be issued for a given resource R must
involve a certificate signed by principal K?

For this, we use LTL model checking, with the labeling
Ω defined as follows:

• All surface configurations that involve location
K are labeled with atomic proposition Q.

• All surface configurations 〈K ′, 2〉 and 〈K ′, � 〉,
such that K ′ ∈ K, are labeled with atomic propo-
sition S.

We then ask whether configuration 〈R,
�
〉 satisfies the

LTL formula

2(¬S U (Q ∨ 2¬S)) (3)

Universally guarded access 2: Is it the case that all autho-
rizations that grant a given principal K ′ access to some
resource must involve a certificate signed by K?

We again use LTL formula (3). In this case, the label-
ing Ω is defined as follows:

• All surface configurations that involve location
K are labeled with atomic proposition Q.

• The surface configurations 〈K ′, 2〉 and 〈K ′, � 〉
are labeled with atomic proposition S.

We then ask whether every surface configuration
〈R, 2〉, such that R ∈ RC , satisfies LTL formula (3).

4.3 Efficiency of the Automaton Representation

Clarke et al [10] give a “worst case” example for their
name-reduction-closure algorithm. We will use their exam-
ple to illustrate the efficiency of the automaton representa-
tion of a set of configurations. Consider the following set of
certificates C:

K C → K0 A
l Bj (for 0 ≤ j < n)

K0 A → Ki (for 0 ≤ i < n)

Ki A → K(i+1) mod n
A (for 0 ≤ i < n)

In the rule given above, Al represents the
string A · · ·A of length l. Name-reduction clo-
sure yields the following n2(l + 1) + n2 rules:

K C → Ki A
k Bj (for 0 ≤ i < n, 0 ≤ j < n, 0 ≤ k ≤ l)

Ki A → Kj (for 0 ≤ i < n and 0 ≤ j < n)

Let PC be the PDS corresponding to the set of certificates
C. It is true that post?({〈K, C〉}) is equal to the following
set of configurations:

{〈Ki, A
kBj〉 | for 0 ≤ i < n, 0 ≤ j < n, and 0 ≤ k ≤ l} ,

and, therefore, the size of the set post?({〈K, C〉}) is
n2(l + 1). However, the automaton representation of

post?({〈K, C〉}) is of size O(nl). The basic idea is the fol-
lowing: given a pair of keys Ki and Kj and a stack config-
uration w, 〈Ki, w〉 is in post?({〈K, C〉}) iff 〈Kj , w〉 is. In
the automaton representation, such commonalities are cap-
tured by means of sharing. In particular, the automaton ac-
cepting the set of configurations post?({〈K, C〉}) has states
that represent the stack configurations AkBj , and various lo-
cations (representing the keys Ki) have ε-edges and A-edges
pointing to those shared states.

4.4 Lattice Labellings

This section describes how annotating the PDS and con-
figuration automaton with labels from a lattice can answer
several useful questions, such as “How long does a specific
authorization last?” and “What is the trust level associated
with an authorization?”. Definitions related to lattices can
be found in Appendix C. Let each cert C in the set C be
annotated with a label l(C) from a lattice L. Let PC be the
PDS corresponding to C. A transition rule r of the PDS PC

has the label of the corresponding cert. Recall that the algo-
rithm Apre constructs an automaton for pre?(X), where X

is the following set of configurations:

{〈KP , � 〉, 〈KP , � 〉}

We start with the automaton AX that accepts the set of con-
figurations X . Each transition (p, γ, q) of the automaton
will also be labeled with an element from the lattice L (de-
noted by l(p, γ, q)). Initially, all transitions in the automa-
ton AX are labeled with >. We add transitions (p, γ, q) to
the automaton AX using the saturation rule given below:

If r = 〈p, γ〉 ↪→ 〈p′, w〉 and p′
w
→ q in the current

automaton, add a transition (p, γ, q)

The label l(p, γ, q) of the transi-
tion (p, γ, q) is computed as follows:

l(r) u l(p′
w
→ q) if (p, γ, q) is a new transition

(l(r) u l(p′
w
→ q)) t l(p, γ, q) otherwise

(The labelings on individual transitions are extended to
labelings on paths by taking the meet of the labels on the
transitions along the path; the labeling for a composite
transitions, such as p′

w
→ q, is obtained from the join of the

labels on all w paths from p′ to q.)
The interval lattice. Consider the lattice of intervals of the
form [0, ir], where ir is a non-negative integers or ∞. The
current time is 0. We will represent the interval [0, ir] as [ir].
The top and bottom elements are the intervals [0] and [∞],
respectively. The meet and join of the two intervals [i] and
[i′] are [min{i, i′}] and [max{i, i′}], respectively. We label
a cert C with the interval representing its validity period.
Let [i] be the label associated with the transition (R, � , s)

in the automaton produced by algorithm Apre . Then the
authorization for R will be valid until time i. (In the case
of Alice being authorized to login to host H , the reference
monitor for H can use this information to log-off Alice after
i time units.)
The lattice of trust levels. Consider the lattice {L, M, H}
ordered as L v M v H , where L and H are the bottom
and top elements of the lattice. Intuitively, the lattice repre-
sents trust levels, where low, medium, and high trust levels
are denoted by L, M , and H , respectively. The meet and
join of elements e1 and e2, where e1 v e2, are e1 and e2,
respectively. Assume that each cert C is labeled with an
element from the lattice. For example, if K A → K ′ σ

is assigned a label H , the principal K assigns a high level
of trust to that cert. In this case, the label of the transition
(RH ,

�
, s) in the automaton constructed by the algorithm

Apre represents the “trust level” of Alice’s authorization.
For example, if the label of (RH ,

�
, s) is H , then there ex-

ists a certificate chain, all of whose labels have the label H ,
that justifies granting authorization to Alice. The trust level
can then be used by the reference monitor for H in making
authorization decisions.

4.5 Distributed Authorization

The Computer Sciences Department (CS) at the UW-
Madison is in the College of Letters and Sciences (L&S).
There are many other departments, such as Biology, in
L&S. Assume that there is a resource R that should only
be accessible to the faculty in a department that belongs to
L&S. A system administrator in L&S might issue the fol-
lowing set of certs CLS .

R
�
→ KLS faculty

�

KLS faculty→ KCS faculty

KLS faculty→ KBio faculty

· · · (certs for other departments in L&S)

A system administrator for CS might issue the following
set of certs CCS:

KCS faculty→ KB

· · · (certs for other faculty members in CS)

KCS students→ KA

· · · (certs for other students in CS)

We want to determine whether principal KB is authorized
to access the resource R. In the Clarke et al. setting, we
would first compute the name-reduction closure of the set
of certs CLS ∪CCS and then proceed as before. In a realistic
setting, the sizes of the sets CCS and CLS could be quite
large, and thus computing the closure of the union could

require significant time and space. Using the algorithms
that we presented before, the authorization question for KB

can be determined in a distributed manner, i.e., the work can
be partitioned. We compute the following two sets:

P1 = post?[CLS]({〈R,
�
〉})

P2 = pre?[CCS]({〈KB,
�
〉, 〈KB , � 〉})

If the intersection of P1 and P2 is non-empty (a standard op-
eration on automata), KB is granted authorization.5 A sim-
ilar operation can be used to answer authorization questions
about other departments, such as Bio, in L&S. Notice that
the name-reduction closure of CLS and CCS does not yield
any new certificates; therefore, the procedure proposed by
Clarke et al. does not provide the basis for a distributed
authorization-resolution procedure.

5 Related Work

Clarke et al. considered the problem of discovering cer-
tificate chains for SPKI/SDSI [10]. Their algorithm was
based on the idea of computing the name-reduction closure
of the certificate set. The problem of model checking push-
down systems was addressed in [7, 14]. In the present pa-
per, we have shown the techniques from the latter papers
solve not only the problem of discovering certificate chains,
but also provide answers to a broad array of questions that
one might wish to pose about a set of SPKI/SDSI certifi-
cates. The PDS-based authorization algorithms compute
the actual closure of the certificate set, not just the name-
reduction closure.

A fair amount of research exists on the formal seman-
tics of SPKI/SDSI [1, 16, 17, 19]. Most of this research
is geared towards giving a formal semantics to the local
name spaces and tuple-reduction rules of SPKI/SDSI. The
SPKI/SDSI-to-PDS connection presented in this paper pro-
vides an alternative semantics for SPKI/SDSI: The names
of an SPKI/SDSI name space are identified with the config-
urations of the transition system defined by a PDS. Com-
pared to existing work, the SPKI/SDSI-to-PDS connection
has the following advantages:

• It is not necessary to invent a new logic.

• It provides a semantic account of a number of aspects
of SPKI/SDSI.

• It leverages off the substantial body of research that
exists on the subject of model-checking PDSs; in par-

5In general, certain technical conditions must hold for this approach to
be correct. For example, a principal in CS must not refer to a local name
in the L&S domain; i.e., the certs must be organized hierarchically.

ticular, one immediately obtains polynomial-time al-
gorithms for a number of certificate-set analysis prob-
lems.

In [4], Benedikt et al. showed that pushdown systems
were equivalent to an “unrestricted” version of the Hier-
archical State Machines (HSMs) introduced (in their re-
stricted form) by Alur and Yannakakis [3]. (“Hierarchi-
cal” means that a system consists of several state machines
that can call each other; “unrestricted HSMs” allow recur-
sive calls between machines.) When [4] was submitted to
ICALP, one of the reviews contained the following remark:

[Among the submission’s contributions,] one is
conceptual: it identifies that the “Unrestricted”
Hierarchical State Machines . . . are the same as
pushdown systems. This is valuable because so
far, pushdown systems had “no right of existence”
(other than the fact that they were a class of
infinite-state systems for which model checking
is decidable; i.e., nobody knew about a potential
practical value).

The present paper demonstrates that pushdown systems do
have a clear practical value: a set of SPKI/SDSI certificates
is a pushdown system. Note that the construction given in
Section 4 is merely a transliteration of SPKI/SDSI termi-
nology into PDS terminology (i.e., “keys” and “resources”
are “locations”; “identifiers” are “stack symbols”; “certifi-
cates” are “transition rules”). Thus, while [4] gave corre-
spondence theorems that demonstrated that PDSs have an
indirect “right to exist”, the present paper shows that PDSs
have a direct “right to exist”.

The model-checking problem for “context-free pro-
cesses” has been addressed in [8, 18]; context-free pro-
cesses can be viewed as pushdown systems that have a sin-
gle control location.

Benedikt et al. addressed the problem of LTL and CTL∗

model checking for unrestricted HSMs [4]. Similar algo-
rithms for LTL model checking were developed indepen-
dently and contemporaneously by Alur et al. [2].

References

[1] M. Abadi. On SDSI’s linked local name spaces. Journal of
Computer Security, 6(1-2):3–21, 1998.

[2] R. Alur, K. Etessami, and M. Yannakakis. Analysis of re-
cursive state machines. In Proc. Computer-Aided Verif., July
2001.

[3] R. Alur and M. Yannakakis. Model checking of hierarchical
state machines. volume 23, 6 of Softw. Eng. Notes, pages
175–188, New York, Nov. 3–5 1998. ACM Press.

[4] M. Benedikt, P. Godefroid, and T. Reps. Model checking
of unrestricted hierarchical state machines. In ICALP ’01,
2001.

[5] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D. Keromytis.
The KeyNote trust-management system version 2. RFC
2704, Sept. 1999.

[6] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D. Keromytis.
The role of trust management in distributed systems security.
In Vitek and Jensen, editors, Secure Internet Programming:
Security Issues for Mobile and Distributed Objects, pages
185–210, 1999. LNCS 1603.

[7] A. Bouajjani, J. Esparza, and O. Maler. Reachability analy-
sis of pushdown automata: Application to model checking.
In Proc. CONCUR, volume 1243 of Lec. Notes in Comp.
Sci., pages 135–150. Springer-Verlag, 1997.

[8] O. Burkart and B. Steffen. Model checking for context-free
processes. In Proc. CONCUR, volume 630 of Lec. Notes in
Comp. Sci., pages 123–137, 1992.

[9] D. Clarke, J.-E. Elien, C. Ellison, M. Fredette, A. Morcos,
and R. L. Rivest. Certificate chain discovery in SPKI/SDSI.
JCS, 2001. To appear.

[10] D. Clarke, J.-E. Elien, C. M. Ellison, M. Fre-
dette, A. Morcos, and R. L. Rivest. Certfi-
cate chain discovery in SPKI/SDSI. Available at
http//theory.lcs.mit.edu/˜rivest/, Nov.
1999.

[11] E. M. Clarke, O. Grumberg, and D. Peled. Model Checking.
MIT Press, 2000.

[12] J.-E. Elien. Certificate discovery using SPKI/SDSI 2.0 cer-
tificates. Master’s thesis, Massachusetts Institute of Tech-
nology, May 1998.

[13] C. M. Ellison, B. Frantz, B. Lampson, R. L. Rivest, B. M.
Thomas, and T. Ylonen. SPKI certificate theory. RFC 2693,
Sept. 1999.

[14] J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Effi-
cient algorithms for model checking pushdown systems. In
Proc. Computer-Aided Verif., volume 1855 of Lec. Notes in
Comp. Sci., pages 232–247, July 2000.

[15] R. Gerth, D. Peled, M. Vardi, and P. Wolper. Simple on-
the-fly automatic verification of linear temporal logic. In
Protocol Specification Testing and Verification, pages 3–18,
Warsaw, Poland, 1995. Chapman & Hall.

[16] J. Halpern and R. Meyden. A logical reconstruction of SPKI.
In Proceedings of the 14th IEEE Computer Security Foun-
dations Workshop, pages 59–70. IEEE Computer Society
Press, 2001.

[17] J. Howell and D. Kotz. A formal semantics for SPKI. Tech-
nical Report 2000-363, Department of Computer Science,
Dartmouth College, Hanover, NH, Mar. 2000.

[18] J. Knoop. Demand-driven model checking for context-free
processes. In P. Thiagarajan and R. Yap, editors, Proc. Asian
Comp. Sci. Conf., volume 1742 of Lec. Notes in Comp. Sci.,
pages 201–213, Dec. 1999.

[19] N. Li. Local names in SPKI/SDSI 2.0. In Proceedings of the
13th IEEE Computer Security Foundations Workshop, July
2000.

[20] S. Weeks. Understanding trust management systems. In
Proceedings of the IEEE Symposium on Research in Secu-
rity and Privacy, Research in Security and Privacy, Oakland,
CA, May 2001. IEEE Computer Society,Technical Commit-
tee on Security and Privacy, IEEE Computer Society Press.

A Details on Model Checking PDSs

The head of a transition rule 〈p, γ〉 ↪→ 〈p′, w〉 is the sur-
face configuration 〈p, γ〉. Suppose that 〈p, γ〉 is in the set
pre?({〈p, γv〉}), or equivalently, 〈p, γ〉 ⇒? 〈p, γv〉. In this
case, we have the following path in the transition system
defined by the PDS along which the head 〈p, γ〉 keeps re-
peating:

〈p, γ〉 ⇒? 〈p, γv〉 ⇒? 〈p, γv2〉 ⇒? · · ·
⇒? 〈p, γvi〉 ⇒? · · ·

Identifying such repeating heads is crucial in LTL model
checking of PDSs. First, we generalize slightly the concept
illustrated above.

Definition 1 Assume that we are given a PDS P =
(P, Γ, ∆) and a set of locations G ⊆ P . Given two con-
figurations c and c′, we say that c ⇒r(G) c′ if and only if
c ⇒? 〈g, u〉 ⇒+ c′ such that g ∈ G, i.e., there is path from
c to c′ that passes through a configuration whose location is
in the set G.

A transition rule’s head 〈p, γ〉 is called G-repeating if
there exists a v ∈ Γ? such that 〈p, γ〉 ⇒r(G) 〈p, γv〉.
The set of heads and G-repeating heads corresponding to
a PDS P and set of locations G are denoted by H(P) and
R(P , G), respectively.

Theorem 5 [14] Assume that we are given a PDS P =
(P, Γ, ∆) and a set of locations G ⊆ P . The set of repeat-
ing heads R(P , G) can be computed in O(n2

P n∆) time and
O(nP n∆) space, where nP = |P | and n∆ = |∆|.

A Büchi automata B = (Σ, Q, δ, q0, F) is a 5-tuple,
where Σ is the alphabet, Q is the set of states, δ ⊆ Q×Σ×Q

is the transition relation, q0 ∈ Q is the initial state, and
F ⊆ Q is the set of final states. The set of infinite words
over the alphabet Σ is denoted by Σω. Let σ = α1α2 · · · be
an infinite word over the alphabet Σ. We say that σ is ac-
cepted by B if there exists a sequence of states s0s1s2 · · · ,
such that (si−1, αi, si) ∈ δ and some state from F appears
infinitely often in the sequence. The sequence of states
s0s1s2 · · · is called an accepting run. Let L(B) be the lan-
guage accepted by the Büchi automata B.

Assume that we are given a configuration c and an LTL
formula φ. It is well known that, given an LTL formula over
the atomic propositions in AP , there exists a Büchi automa-
ton over the alphabet Σ = 2AP that accepts the same ω-
regular language. Moreover, there are efficient algorithms
to translate an LTL formula into a Büchi automaton [15].
Let B = (Σ, Q, δ, q0, F) be the Büchi automaton corre-
sponding to the LTL formula ¬φ. The product of a PDS
P = (P, Γ, ∆) and B produces a Büchi pushdown system
BP = ((P × Q), Γ, ∆′, G), where

• 〈(p, q), γ〉 ↪→ 〈(p′, q′,), w〉 ∈ ∆′ if 〈p, γ〉 ↪→ 〈p′, w〉,
q

σ
→ q′, and σ ⊆ Ω(〈p, γ〉).

• (p, q) ∈ G if q ∈ F .

The LTL model-checking problem reduces to the
accepting-run problem:

Configuration c = 〈p, γ〉 satisfies φ iff there does
not exist an accepting run in BP starting from the
configuration 〈(p, q0), γ〉—i.e.,a run that visits in-
finitely often the configurations with control loca-
tions in G.

Let R be the G-repeating heads in BP. It is proved
in [14] that, given a configuration c = 〈p, γ〉, there is an
accepting run starting from 〈(p, q0), γ〉 if the following set
is non-empty:

post?({〈(p, q0), γ〉}) ∩ pre?(RΓ?)

The set of configurations that are reachable from 〈(p, q0), γ〉
is given by post?({〈(p, q0), γ〉}). The set pre?(RΓ?) de-
notes the set of configurations that have a run leading to a
configuration 〈(p, q), γv〉, where 〈(p, q), γ〉 is a repeating
head in BP.

B Details on Certificate-Chain Reconstruc-
tion

With each transition (p, γ, q) of the configuration au-
tomaton, we associate a structure with two components: an
integer identifier and a list of transitions. Suppose that a
transition (p, γ, q) is added due to the PDS transition rule
〈p, γ〉 ↪→ 〈p′, w〉 and the fact that the composite transi-
tion p′

w
→ q holds in the automaton. Let the composite

transition p′
w
→ q be comprised of the sequence of transi-

tions t1t2 · · · tn. The structure associated with the transition
(p, γ, q) is

(id(〈p, γ〉 ↪→ 〈p′, w〉), [t1t2 · · · tn]),

where the identifier of the PDS transition rule r is de-
noted by id(r). We explain the construction using Exam-
ple 2.2. The structures associated with the transitions are
shown in Figure 11. An empty structure and an empty
list are represented by ε and NULL, respectively. By trac-
ing back from the structure associated with the transition
t8 = (RH ,

�
, s), we obtain the following certificate chain,

which proves the authorization for Alice:

(1), (2), (3), (4), (5), (6), (7)

idempotent: a u a = a a t a = a

commutative: a u b = b u a a t b = b t a

associative: (a u b) u c = a u (b u c) (a t b) t c = a t (b t c)

absorption: a u (a t b) = a a t (a u b) = a

Figure 12. Properties of the operators u and t

transition structure
t0 (KA,

�
, s) ε

t1 (KA, � , s) ε

t2 (K4, Alice, KA) (7,NULL)
t3 (K3, Bob, KB) (5,NULL)
t4 (K1, CS, K2) (3,NULL)
t5 (K0, UW, K1) (2,NULL)
t6 (KB ,

�
, s) (6, [t2t1])

t7 (K2, faculty, KB) (4, [t3])
t8 (RH ,

�
, s) (1, [t5t4t7t6])

Figure 11. Structures associated the transi-
tions of the automaton shown in Figure 8.

C Background on Lattices

A lattice L is a set L with binary meet (u) and join oper-
ators (t), both of which are idempotent, commutative, and
associative (see Figure 12). The elements of L form a par-
tially ordered set, ordered by v, which may be defined in
either of two ways:

a v b iff a u b = a or a v b iff a t b = b.

We write a � b when a v b and a 6= b.
We will assume that our lattices have a bottom element

(⊥) and a top element (>) such that, for all a ∈ L,

⊥ u a = ⊥ ⊥ t a = a

> u a = a > t a = >

A chain is a sequence of elements a1, . . . , an such that
for 1 ≤ i ≤ n− 1, ai � ai+1. The height of L is the length
of the longest chain in L.

