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ABSTRACT
We present a technique for automatic placement of authorization
hooks, and apply it to the Linux security modules (LSM) frame-
work. LSM is a generic framework which allows diverse autho-
rization policies to be enforced by the Linux kernel. It consists of
a kernel module which encapsulates an authorization policy, and
hooksinto the kernel module placed at appropriate locations in the
Linux kernel. The kernel enforces the authorization policy using
hook calls. In current practice, hooks are placed manually in the
kernel. This approach is tedious, and as prior work has shown, is
prone to security holes.

Our technique uses static analysis of the Linux kernel and the
kernel module to automate hook placement. Given a non-hook-
placed version of the Linux kernel, and a kernel module that imple-
ments an authorization policy, our technique infers the set of opera-
tions authorized by each hook, and the set of operations performed
by each function in the kernel. It uses this information to infer the
set of hooks that must guard each kernel function. We describe the
design and implementation of a prototype tool called TAHOE (Tool
for Authorization Hook Placement) that uses this technique. We
demonstrate the effectiveness of TAHOE by using it with the LSM
implementation of security-enhanced Linux (SELinux). While our
exposition in this paper focuses on hook placement for LSM, our
technique can be used to place hooks in other LSM-like architec-
tures as well.

Categories and Subject Descriptors:D.4.6 [Operating Systems]:
Security and Protection—Access Controls

General Terms:Algorithms, Security

Keywords: Hook placement, static analysis, LSM, SELinux

1. INTRODUCTION
The Linux security modules (LSM) framework [22] is a generic

framework which allows diverse authorization policies to be en-
forced by the Linux kernel. Its goal is to ensure that security-
sensitive operations are only performed by users who are autho-
rized to do so. It consists of a reference monitor [1], which encap-
sulates an authorization policy to be enforced, andhooks, which
define the interface that the reference monitor presents. Calls to
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these hooks are placed at several locations within the Linux kernel,
so that they mediate security-sensitive operations performed by the
kernel. Each hook call results in an authorization query to the refer-
ence monitor. The kernel performs the security-sensitive operation
only if the authorization query succeeds.

Figure 1shows a hook placed in the Linux kernel in the LSM
implementation of security-enhanced Linux (SELinux) [15], a pop-
ular mandatory access control (MAC) based [16] authorization pol-
icy. The security-sensitive operation, directory removal, is accom-
plished by the function calldir->i op->rmdir on line (V5). The
hook placed on line (V3),selinux inode rmdir , checks that the
process that requests the directory removal is authorized to do so
by the SELinux policy; directory removal succeeds only if the hook
call succeeds, in this case, by returning0. Observe that it is crucial
that the hook be placed at line (V3); in the absence of this hook,
directory removal will succeed even for processes that are not au-
thorized to do so by the SELinux policy.1

(V1)int vfs rmdir(struct inode *dir,
struct dentry *dentry) {

(V2) ...
(V3) err=selinux inode rmdir(dir,dentry);
(V4) if (!err) { ...
(V5) dir->i op->rmdir(dir,dentry);
(V6) }... }

Figure 1: A hook placed in the Linux kernel in the LSM imple-
mentation of SELinux.

The architecture of LSM ensures a clean separation between the
kernel and the policy-specific reference monitor code, which is im-
plemented as a loadable kernel module. It also offers the advantage
of being modular and extensible: to enforce a new security pol-
icy, a developer writes a new reference monitor and ensures that
hooks are placed properly within the kernel. Finally, it allows ref-
erence monitors implementing different policies to co-exist within
the kernel: the kernel enforces a security policy by loading the ker-
nel module that implements the corresponding reference monitor.
These features have lead LSM to become the vehicle-of-choice for
the implementation of several popular MAC-based authorization
policies, such as SELinux and Domain and Type enforcement [2].
It has also been incorporated into the mainstream Linux kernel (ver-
sion2.6 onwards).

There is emerging interest to enable LSM-like reference mon-
itoring in user-level applications as well. The reason is that sev-
eral applications, such as X Windows, web-servers and database-
servers, support multiple users at the same time. For example,

1While the code fragment shown inFigure 1itself is not atomic, the code that invokes
vfs rmdir obtains a semaphore that prevents other processes from modifying the
resources pointed to bydir anddentry . This ensures that the security-sensitive
operationdir->i op->rmdir is performed on the same resources which were au-
thorized byselinux inode rmdir .
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an X server allows multiple users, possibly with different security-
levels, to display clients simultaneously. Hooks placed in the oper-
ating system are often insufficient to enforce authorization policies
at the application-level. For example, the policy that “a cut-and-
paste operation from a high-security client to a low-security client
is disallowed” is better enforced by the X server than the operating
system, because the operating system is unaware of the cut-and-
paste operation, which is specific to X Windows. In fact, efforts are
underway [12] to secure X Windows by placing hooks to an LSM-
like reference monitor within the X server. The recent release of
a policy management infrastructure for user-level processes [21] is
intended to enable the development of reference monitors for any
application that would benefit. We also note that Java’s security
architecture is akin to LSM, where calls are placed to check access
permissions to security-sensitive objects [7]. Thus, enforcement of
authorization policies by placing reference monitor hooks in user-
level applications is becoming common practice.

In current practice, the decision on where to place hooks is of-
ten made informally, and hooks are placed manually at locations
deemed appropriate in the Linux kernel or user-level application.
This process suffers from several drawbacks:

1. Inadvertent bugs, leading to security holes.Prior research has
shown security holes due to improper hook placement in the
Linux kernel. In particular, Zhanget al. [23] demonstrate that
inadequate placement of hooks results in security-sensitive op-
erations being performed without the appropriate authorization
query being posed to the reference monitor. Jaegeret al. [10]
also demonstrate similar bugs by comparing the consistency of
hook placements along different paths in the kernel. These bugs
lead to potentially exploitable security holes.

2. Inextensibility to new security policies.Manual reasoning is
needed to place hooks for each new security policy developed.
The Linux-2.6 kernel somewhat ameliorates the effort needed
by placing hooks to a dummy reference monitor at pre-defined
locations in the kernel. The idea is that developers can tailor the
code for hooks to suit specific security policies. However, this
approach is still problematic. First, care is required to ensure
that each hook call indeed authorizes the security-sensitive op-
erations that its pre-defined placement intends to. Second, it is
fairly common practice to add new hooks to implement security
policies for which pre-defined hook placement does not suffice.
Manual reasoning is required to determine placement points for
each new hook.

3. Inextensibility to emerging applications.As mentioned earlier,
recent proposals [12, 21] for developing MAC authorization poli-
cies for user-level applications are also based upon LSM-like ar-
chitectures. As with LSM, these proposals require manual effort
to determine hook placement.

While static and runtime verification techniques [10, 23] have
been proposed to solve the first problem mentioned above, they do
not solve the second and third problems.

In this paper, we demonstratea technique for automatic place-
ment of authorization hooks(i.e., hooks to a reference monitor that
encapsulates an authorization policy). While our exposition and
evaluation in this paper is restricted to placement of LSM autho-
rization hooks in the kernel, the concepts we present extend nat-
urally to any system/reference monitor pair that conforms to an
LSM-like architecture. Our technique requires two inputs: the
Linux kernel, and the reference monitor (i.e., the kernel module
that implements it) which contains the source code for authoriza-
tion hooks. It analyzes them and identifies locations in the kernel
where hooks must be placed so that security-sensitive operations
are authorized correctly.

The key idea behind our technique is to leverage semantic infor-
mation embedded in the source code of the hooks and the Linux
kernel. It uses static analysis to determine the set of operations au-
thorized by each hook. A similar analysis on the kernel-side deter-
mines the set of operations performed by each kernel function. The
results of hook analysis and kernel analysis are then merged to con-
struct anauthorization graph. An authorization graph relates each
kernel function to the set of hooks that must protect it. With the
authorization graph in hand, hook placement is straightforward: at
each location in the kernel where a kernel function is called, insert
hooks (as determined by the authorization graph) that must protect
the function. This technique addresses all the problems discussed
above. First, because we use the set of operations performed by a
kernel function to obtain the set of hooks that must guard it, we en-
sure correctness by construction. Second, because our analysis is
general-purpose and analyzes both hook and kernel code, it extends
easily to new security policies and emerging applications alike.
Contributions: In summary, the main contribution of this paper
is a technique for automatic placement of authorization hooks in
the Linux kernel. We present the design and implementation of a
prototype tool called TAHOE that uses this technique. We demon-
strate the efficacy of our technique by using TAHOE with the im-
plementation of hooks from the LSM implementation of SELinux.
In particular, we show how TAHOE precisely recovers the set of op-
erations authorized by each hook from the above implementation,
and the set of operations authorized by the Linux kernel. It uses this
information to place hooks in the Linux kernel by constructing the
authorization graph. We evaluate the hook placement that TAHOE

generates by comparing it against the existing hook placement in
the LSM implementation of SELinux.
Paper Organization: In the following section, we introduce some
concepts used throughout the paper. We then present the algo-
rithms used by TAHOE in Section 3, and discuss our experience
with TAHOE in Section 4. We review related research inSection 5
and conclude inSection 6.

2. CONCEPTUAL OPERATIONS
The goal of the LSM framework is to ensure that security-sensitive

operations on resources are only performed by entities who are au-
thorized to do so. It achieves this by placing hooks, which pose
authorization queries to a reference monitor, before kernel func-
tions that perform such security-sensitive operations. For instance,
in Figure 1, the security sensitive operation being authorized is di-
rectory removal, and the resources affected by this operation are
the inodes of the directory being removed, and the directory from
which it is being removed.

Because TAHOE seeks to place hooks, it works with the source
code of a kernel module containing the source code of authorization
hooks, such as the kernel module implementing SELinux hooks,
and a non-hook-placed version of the kernel. As discussed earlier,
TAHOE analyzes each of these inputs independently, and correlates
the results to determine hook placement. Observe that security-
sensitive operations are a unifying theme of both inputs—a hook
authorizes security-sensitive operations, and the kernel performs
them. Thus, to combine the results of hook analysis and kernel
analysis, it suffices to determine the security-sensitive operations
authorized by each hook, and the security-sensitive operations per-
formed by each kernel function. We use the termconceptual oper-
ationsto refer to such security-sensitive operations.

The analyses described in the rest of this paper assume that the
set of conceptual operations is known. For the analyses described
here, we used the set of conceptual operations used by the LSM
implementations of popular MAC policies, including SELinux and
Domain and Type Enforcement [2]. This set (of size504) is fairly
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comprehensive, and includes generic operations on resources, such
as reading from, writing to, or executing a file. We expect that
this set will find use in the analysis of other LSM-like architectures
as well. Conceptual operations are depicted in the rest of this pa-
per using suggestive names, such asFILE WRITE, FILE READ and
FILE EXECUTE, corresponding, respectively to writing to, reading
from and executing a file. We note that the analyses used by TAHOE

are parameterized by the set of conceptual operations, and more
conceptual operations can be added as the need arises. Changes to
the set of conceptual operations does not change any of the algo-
rithms that we present in the paper.

3. AUTHORIZATION HOOK PLACEMENT
USING STATIC ANALYSIS

Figure 2shows the architecture of TAHOE. It analyzes the source
code of the Linux kernel (with no hooks placed), and the kernel
module containing source code of hooks, and outputs a hook-placed
kernel. To do so, it combines the results of hook analysis and ker-
nel analysis to produce the authorization graph, which relates each
kernel function to the set of hooks that must guard it—each ker-
nel function must be guarded by a set of hooks that authorize the
conceptual operations it performs.

Ops authorized
by each hook

Ops performed by
each kernel function

Hook
Analysis

Join
Algorithm

Hook Placer

Authorization graph

Hook−Placed
Kernel

Source code of
authorization hooks

Kernel
Analysis

Linux kernel
(no hooks placed)

TAHOE

Figure 2: Overall architecture of TAHOE .
An example best demonstrates TAHOE’s analysis.Figure 3(A)

shows a snippet of kernel code:vfs rmdir , the virtual file sys-
tem function to remove a directory. This function accepts two ar-
guments, corresponding to data structures of the directory to be
deleted (dentry ), and the parent of this directory (dir ). It tran-
sitively callspermission , which performs a discretionary access
control (DAC) [16] check on line (P3) to determine whether the
current process has “write” and “execute” permissions on the par-
ent directory. If so, control reaches line (V5), which resolves to
the appropriate physical file system call (such asext2 rmdir ) to
remove the directory.

Figure 3(B) shows a portion of the output forvfs rmdir when
TAHOE is used with the kernel module from the LSM implementa-
tion of SELinux (henceforth abbreviated to LSM-SELinux). It de-
termines that the call todir->i op->rmdir (on line (V5)) must be
protected with two LSM-SELinux hooks:selinux inode rmdir
andselinux inode permission , called withMAY WRITE, while
the DAC check on line (P3) must be supplemented with the hook
selinux inode permission , which checks for the correspond-
ing MAC permissions. We now provide a high-level description of
the analysis that TAHOE employs.

TAHOE’s kernel analysis (Section 3.2) analyzes the file system
code and infers that directory removal (dir->i op->rmdir , line
(V5)) involves performing the conceptual operationsDIR RMDIR,
DIR WRITE andDIR SEARCH. Intuitively, this is because a typ-
ical file system, such asext2 does the following to remove a di-
rectorybar from a directoryfoo : (i) it finds the entry ofbar in an
appropriate kernel data structure offoo (DIR SEARCH), and (ii)
removes the entry ofbar from this data structure (DIR RMDIR),

which involves writing to the data structure (DIR WRITE). Note
that directory removal is a specialized write: removal ofbar from
foo requires removal of the entry ofbar from foo , as opposed
to other directory manipulations, such as directory creation, which
adds a new entry. Thus,DIR RMDIR denotes a special kind of di-
rectory write, as opposed toDIR WRITE, which denotes thegeneric
write operation.

(P1)int permission(struct inode *inode,
int mask) {

(P2) ...
(P3) inode->i_op->permission(inode,mask);
(P4) ...}

(M1)int may_delete(struct inode *dir,
struct dentry *vic, int isdir) {

(M2) ...
(M3) // DAC check for WRITE and EXEC
(M4) permission(dir,MAY_WRITE|MAY_EXEC);
(M5) ...}

(V1)int vfs_rmdir(struct inode *dir,
struct dentry *dentry) {

(V2) may_delete(dir, dentry, 1);
(V3) ...
(V4) // Remove the directory
(V5) dir->i_op->rmdir(dir, dentry);
(V6) ...}

(A) VFS code fromlinux-2.4.21/fs/namei.c for directory
removal. Error checking code has been omitted for brevity.

Hooks forinode->i op->permission on Line (P3):
(H1) selinux inode permission(dir,mask)

Hooks fordir->i op->rmdir on Line (V5):
(H2) selinux inode rmdir(dir,dentry)
(H3) selinux inode permission(dir, MAY WRITE)

(B) Analysis results of TAHOE (with SELinux hooks) for code
fragment shown in (A).

Figure 3: Example to illustrate analysis performed by TAHOE .

TAHOE’s hook analysis (Section 3.1) analyzes the source code
of SELinux hooks (not shown inFigure 3) and infers that the hook
selinux inode permission , when invoked withMAY EXECand
MAY WRITE, checks that the conceptual operationsDIR SEARCH

and DIR WRITE, respectively, are authorized. It also infers that
selinux inode rmdir checks that both the conceptual operations
DIR SEARCHandDIR RMDIR are authorized.

When TAHOE combines the results of these analyses (Section 3.3)
it produces an authorization graph, a portion of which is shown in
Figure 3(B). Becausedir->i op->rmdir performsDIR SEARCH

andDIR RMDIR, it is protected byselinux inode rmdir , which
authorizes these operations. In addition,dir->i op->rmdir per-
forms DIR WRITE, which selinux inode permission autho-
rizes when invoked withMAY WRITE. TAHOE also supplements
existing DAC checks, such as the one on line (P3), with hooks that
perform the corresponding MAC checks, as shown in line (H1) of
the output. It is important to note that TAHOE doesnot use exist-
ing DAC checks to determine hook placement. Its analysis is based
upon conceptual operations performed by each kernel function.

Indeed, hooks are also placed in LSM-SELinux as shown inFig-
ure 3(B), though in the case of LSM-SELinux this placement was
determined manually. This validates the results of TAHOE’s anal-
ysis because the hook placement in LSM-SELinux has been tested
thoroughly, and the errors found by verification tools [10, 23] have
been fixed. However, in the case ofvfs rmdir , LSM-SELinux
optimizes hook placement: A closer look at the source code of
vfs rmdir reveals that all code paths to line (V5) pass through
line (M4) and line (P3) (formally, line (M4) and line (P3)dominate
line (V5) [17]). Because the hook call on line (H3) is subsumed
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by the hook call on line (H1), LSM-SELinux only places the hooks
shown in line (H1) and line (H2). While TAHOE infers the autho-
rization graph which relates hooks and kernel functions correctly, it
currently does not optimize hook placement; we leave optimization
for future work. We also note that the security of the LSM frame-
work is determined by the correctness of the authorization graph.
The rest of this section describes each of TAHOE’s components in
greater detail.

3.1 Analysis of Authorization Hooks
To determine the conceptual operations authorized by each hook,

TAHOE analyzes the kernel module that contains source code of
hooks. In addition to determining the conceptual operations autho-
rized, it also determines the conditions under which these opera-
tions are authorized. ConsiderFigure 4(A), which shows a snippet
of the implementation of the hookselinux inode permission
in the LSM-SELinux kernel module. This snippet authorizes search-
ing, writing to, or reading from an inode representing a directory,
based upon the value ofmask. The authorization is performed by
the call to inode has perm , which authorizes a conceptual op-
eration on an inode based upon theaccess vector2 it is invoked
with. In Figure 4(A), the access vector is obtained by a call to
file mask to av .

(S1)int selinux_inode_permission(struct *inode, int mask)
(S2){ if (mask == 0) return 0;
(S3) return inode_has_perm

(file_mask_to_av(inode->i_mode,mask),...);
(S4)}

(F1)access_vector_t file_mask_to_av(int mode, int mask)
(F2){ access_vector_t av = 0;
(F3) if ((mode & S_IFMT) != S_IFDIR) {
(F4) /* File-related conceptual operations */
(F5) } else {
(F6) if (mask & MAY_EXEC) av |= DIR__SEARCH;
(F7) if (mask & MAY_WRITE) av |= DIR__WRITE;
(F8) if (mask & MAY_READ) av |= DIR__READ;
(F9) }
(F10) return av; }

(A) Code for the hookselinux inode permission .

Analysis output (from Algorithm1) for selinux inode permission :
• 〈(mask 6= 0) ∧ inode isdir ∧ (mask & MAY EXEC) ‖ DIR SEARCH〉
• 〈(mask 6= 0) ∧ inode isdir ∧ (mask & MAY WRITE) ‖ DIR WRITE〉
• 〈(mask 6= 0) ∧ inode isdir ∧ (mask & MAY READ) ‖ DIR READ〉
where “inode isdir” denotes(inode-> i mode & S IFMT == S IFDIR).

(B) Portion of the output of TAHOE’s hook analysis for
selinux inode permission .

Figure 4: Example to illustrate TAHOE ’s hook analysis.

Figure 4(B) shows a fragment of the output of TAHOE’s anal-
ysis for this hook. Each line of the output is a tuple of the form
〈predicate ‖ OPERATION〉, where the predicate only contains for-
mal parameters of the hook. This tuple is interpreted as follows:
if the hook is invoked in a context such thatpredicate holds, then
it checks that the conceptual operationOPERATION is authorized.
In this case, TAHOE infers that for inodes that represent directories
(i.e., the inodes with(inode-> i mode & S IFMT == S IFDIR)) the
hookselinux inode permission checks that the conceptual op-
erationsDIR SEARCH, DIR WRITE or DIR READ are authorized,
based upon the value ofmask. We now describe the hook analysis
algorithm used by TAHOE.

2Conceptual operations in LSM-SELinux are represented using bit-vectors, called ac-
cess vectors. Because we derived the set of conceptual operations used by TAHOE by
examining LSM implementations of popular MAC policies, including LSM-SELinux,
there is a one-to-one mapping between the conceptual operations used by TAHOE and
the access vectors in LSM-SELinux.

3.1.1 The Hook Analysis Algorithm
The algorithm to analyze the kernel module containing source

code of hooks is shown in Algorithm1. For ease of explanation,
assume that there is no recursion; we explain how we deal with
recursion later in the section. The analysis proceeds by first con-
structing thecall-graph [17] of the kernel module. A call-graph
captures caller-callee relationships. Each node of the call-graph is
a function in the kernel module; an edgef → g is drawn if func-
tion f calls functiong. The call-graph is processed bottom-up,
starting at the leaves, and proceeding upwards. For each node in
the call-graph, it produces asummary[19], and outputs summaries
of hooks.

Algorithm : ANALYZE MODULE(M , H)
Input : (i) M : Module containing source code of hooks, (ii)H: A set

containing the names of hooks.
Output : For eachh ∈ H, a set{〈predicate ‖ CONCEPTUAL-OP〉},

denoting the conceptual operations authorized by each hook,
and the conditions under which they are authorized.

Construct the call-graphG of the moduleM1

L := List of vertices ofG, reverse topologically sorted2

foreach (f ∈ L) do3

Summary(f ) := ANALYZE FUNCTION(f , Entrypoint(f ), true)4

foreach (h ∈ H) do5

OutputSummary(h)6

Algorithm 1 : TAHOE ’s algorithm for hook analysis.

Summary construction is described in Algorithm2. The sum-
mary of a functionf is a set of pairs〈pred ‖ OP〉, denoting the
condition (pred) under which a conceptual operation (OP) is au-
thorized byf . The analysis in Algorithm2 is flow- andcontext-
sensitive. That is, it respects the control-flow of each function, and
precisely models call-return semantics. Intuitively, summary con-
struction for a functionf proceeds by propagating a predicatep
though the statements off . At any statement, the predicate denotes
the condition under which control-flow reaches the statement. The
analysis begins at the first statement of the functionf (denoted by
Entrypoint(f )), with the predicate set totrue.

At an if-( q)-then-else statement, thetrue branch is ana-
lyzed with the predicatep ∧ q, and thefalse branch is analyzed
with the predicatep ∧ ¬q. For instance, the value ofp at line (F3)
in Figure 4(A) is true. Thus, lines (F6)-(F8) are analyzed with
true ∧ (mode & S IFMT) == S IFDIR. At Call g( a1, a2, . . . , an) ,
a call to the functiong, the summary ofg is “specialized” to the
calling-context. Note that because of the order in which functions
are processed in Algorithm1, the summary ofg is computed be-
foref is processed. The summary ofg is a set of tuples〈qi ‖ OPi〉.
Because of the way summaries are computed, formal parameters
of g appear in the predicateqi. To specialize the summary ofg,
actual parametersa1, a2, . . ., an are substituted in place of formal
parameters inqi. The resulting predicateri is then combined with
p, and the entry〈p ∧ ri ‖ OPi〉 is included in the summary off . In-
tuitively, g authorizes operationOPi if the predicateqi is satisfied.
By substituting actual parameters in place of formal parameters,
we determine whetherthis call to g authorizes operationOPi; i.e.,
whether the predicateqi, specialized to the calling context, is satis-
fiable. Because the call tog is reached inf under the conditionp,
an operation is authorized byg only if p ∧ ri is satisfiable.

For other statements, the analysis determines whether the state-
ment potentially authorizes an operationOP. Determining whether
a statement authorizes an operationOP is specific to the way con-
ceptual operations are represented in the kernel module. For in-
stance, in LSM-SELinux, conceptual operations are denoted by
bit-vectors, called access vectors (of typeaccess vector t ), and
there is a one-to-one mapping between access vectors and concep-
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Algorithm : ANALYZE FUNCTION(f , s, p)
Input : (i) f : Function name, (ii)s: Statement inf from which to start

the analysis, (iii)p: A Boolean predicate.
Output : A set{〈predicate ‖ CONCEPTUAL-OP〉}.
R := φ1

switch TYPE-OF(s) do2

caseif (q) then Btrue else Bfalse3

R := ANALYZE FUNCTION(f , Entrypoint(Btrue), p ∧ q)4

∪ ANALYZE FUNCTION(f , Entrypoint(Bfalse), p ∧ ¬q)5

caseCall g(a1, a2, . . ., an)6

G := Summary(g)7

foreach (〈qi ‖ OPi〉 ∈ G) do8

ri := qi specialized witha1, a2, . . ., an9

R := R ∪ {〈(p ∧ ri) ‖ OPi〉}10

R := R ∪ ANALYZE FUNCTION(f , ControlFlowSucc(f , s), p)11

otherwise12

if (s authorizes conceptual operationOP) then R := {〈p ‖ OP〉}13

Updatep appropriately14

R := R ∪ ANALYZE FUNCTION(f , ControlFlowSucc(f , s), p)15

foreach (〈p ‖ OP〉 ∈ R) do16

Existentially quantify-out any local variables off appearing inp17

return R18

Algorithm 2 : Producing the summary of a function.

tual operations. Thus, for LSM-SELinux we use the occurrence of
an access vector (e.g., reading its value) in a statement to determine
if the statement authorizes a conceptual operation.

Where possible, the predicatep is also updated appropriately
based upon the action of statements. For instance, if the statement
in question isj := i , and predicatep propagated to this statement
is (i == 3), then the predicatep is updated to(j == i) ∧ (i == 3). In
cases where the effect ofs on p cannot be determined, the new
value ofp is set toUnknown, a special value denoting that the value
of p cannot be determined precisely.

For functions with a formal parameter of typeaccess vector t ,
but do not refer to any particular access vector (such asDIR READ,
DIR WRITE, or DIR SEARCH), the analysis returns{〈true ‖ λx.x〉}
(not shown in Algorithm2 for brevity), which says that the function
potentially authorizes any conceptual operation, based upon the ac-
cess vector it is invoked with (the variablex in λx.x denotes the
access vector).

After processing a statements in f , the analysis continues by
processing the control-flow-successors ofs. The analysis termi-
nates when all the statements reachable fromEntrypoint(f ) have
been analyzed. To keep the analysis tractable, Algorithm2 ana-
lyzes loop bodies exactly once. That is, it ignores back-edges of
loops. As a result, loops are treated conceptually equivalent to
if-then-else statements.

Finally, any local variables off appearing in predicatesp (for
each〈p ‖ OP〉 in the summary off ) are quantified-out. As a re-
sult, predicates appearing in the summary off only contain formal
parameters off .

We illustrate Algorithm1 using Figure 4(A). For the function
file mask to av , Algorithm 2 returns the output:

〈mode isdir ∧ (mask & MAY EXEC) ‖ DIR SEARCH〉
〈mode isdir ∧ (mask & MAY WRITE) ‖ DIR WRITE〉
〈mode isdir ∧ (mask & MAY READ) ‖ DIR READ〉

where ‘mode isdir’ denotes ‘mode & S IFMT == S IFDIR’.
Observe that the summary only contains formal parameters of

file mask to av . When this summary is specialized to the call on
line (S3), formal parameters are replaced with the actual parameters
(e.g.,mode by inode->i mode), thus specializing the summary to
the call-site, producing:

〈inode isdir ∧ (mask & MAY EXEC) ‖ DIR SEARCH〉
〈inode isdir ∧ (mask & MAY WRITE) ‖ DIR WRITE〉
〈inode isdir ∧ (mask & MAY READ) ‖ DIR READ〉

where ‘inode isdir’ denotes ‘inode-> i mode & S IFMT == S IFDIR’.
For inode has perm , Algorithm2returns{〈true ‖ λx.x〉}, which

intuitively means that the function authorizes a conceptual opera-
tion based upon the access vector (x) passed to it. Thus, when this
call to inode has perm is specialized to the call on line (S3), the
summary obtained is the same shown above. Because line (S3) in
selinux inode permission is reached when (mask 6= 0), this
predicate is combined with predicates in the summary of the func-
tion inode has perm to produce the result shown inFigure 4(B).
Handling Recursion: Recursion in the kernel module introduces
strongly-connected components in its call-graph. Note that Al-
gorithm 1 requires the call-graph to be a directed acyclic graph
(DAG). To handle recursion, we consider the functions in a strongly-
connected component together. That is, we produce a consolidated
summary for each strongly-connected component. Intuitively, this
summary is the set of conceptual operations (and the associated
conditions) that could potentially be authorized ifany function in
the strongly-connected component is called. Observe that handling
recursion also requires a small change to lines (7)-(11) of Algo-
rithm 2. Because of recursion, the summary of a functiong that
is called by a functionf may no longer be available in line (7), in
which case we skip forward to line (11).

3.1.2 Precision of Hook Analysis
Observe that Algorithm2 analyzes all reachable statements of

each function. Thus, if a functionf authorizes operationOP, then
〈q ‖ OP〉 ∈ Summary(f ), for some predicateq. However, because
of the approximations employed by Algorithm1 and Algorithm2
to keep the analysis tractable, the predicateq may not accurately
describe the condition under whichOP is authorized.

If a kernel moduleM is recursion-free, all functions inM are
loop-free, and updates to predicates can be determined precisely
(i.e., predicates are not set toUnknown), then Algorithm2 propa-
gates predicates precisely. That is, the predicate at statements is p
if and only if s is reached under conditionp.

Because Algorithm2 ignores back-edges on loops, loop bod-
ies are analyzed exactly once, and the predicates retrieved will be
imprecise. Similarly, because Algorithm2 employs a heuristic to
handle recursion, the predicates retrieved will be imprecise. These
predicates are used during hook placement to determine the argu-
ments that the hook must be invoked with. Thus, imprecision in the
results of the analysis will mean manual intervention to determine
how hooks must be invoked. Fortunately, the code of hooks, even
in complex kernel modules such as LSM-SELinux is relatively sim-
ple, and we were able to retrieve the conditions precisely in most
cases. For instance, there were no loops in any of the hooks from
LSM-SELinux that we analyzed.

3.2 Analysis of the Linux kernel
TAHOE’s kernel analysis complements its hook analysis by de-

termining the set of conceptual operations performed by each func-
tion in the kernel. For instance, TAHOE’s kernel analysis infers that
vfs rmdir , the virtual file system function for directory removal
(Figure 3(A)), performs the conceptual operationsDIR RMDIR,
DIR SEARCH, and DIR WRITE, corresponding, respectively, to
removing, searching within, and writing to a directory. Observe
that line (V5) ofvfs rmdir is a call through a function pointer.
Its targets are physical file system-specific functions for directory
removal, such asext2 rmdir in theext2 file system.

Figure 5(A) shows a portion of the call-graph ofext2 rmdir .
Note that the functions shown in the call-graph (ext2 unlink ,
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ext2 dec count , etc.) can also be called by other functions in the
kernel; these edges are not shown inFigure 5(A). When a request is
received to remove directorybar from directoryfoo , ext2 rmdir
checks to see thatbar is empty via a call toext2 rmdir empty
(not shown inFigure 5(A)). It then callsext2 unlink , which mod-
ifies ext2 -specific data structures and removes the entry ofbar
from the inode offoo . Finally, it callsext2 dec count to decre-
ment the fieldi nlink on the inodes of bothfoo andbar . Fig-
ure 5(B) shows the relevant snippet of TAHOE’s analysis on the
Linux kernel. It infers thatext2 rmdir performs the conceptual
operationsDIR RMDIR, DIR SEARCHandDIR WRITE. Because
ext2 rmdir is pointed to bydir->i op->rmdir (as determined
by pointer analysis algorithms employed by CIL [18], the tool that
TAHOE is built upon), it is called indirectly fromvfs rmdir , and
TAHOE infers thatvfs rmdir performs these conceptual opera-
tions as well. We now examine the analysis in detail.

mapping = inode−>i_mapping

page−>mapping−>a_ops−>prepare_write()

inode−>i_size = 0

inode−>i_nlink−−

ext2_rmdir(inode,dentry) ext2_unlink(inode,dentry)

ext2_find_entry(inode,dentry,page)

ext2_delete_entry(inode,page)

ext2_get_page(inode)
ext2_dec_count(inode)

(A) Portion of the call-graph of the Linux kernel, showing
ext2 rmdir . Relevant code snippets from each function are shown
in boxes.

ext2 delete entry : DIR WRITE

ext2 get page : DIR SEARCH

ext2 find entry : DIR SEARCH

ext2 dec count : FILE UNLINK

ext2 unlink : FILE UNLINK , DIR WRITE, DIR SEARCH

ext2 rmdir : DIR RMDIR, DIR WRITE, DIR SEARCH

(B) Portion of kernel analysis results relevant to (A).

Figure 5: Example to illustrate TAHOE ’s kernel analysis.

3.2.1 The Kernel Analysis Algorithm
Like hook analysis, TAHOE’s kernel analysis recovers the set of

conceptual operations performed by each kernel function. How-
ever, unlike hook analysis, it does not recover the conditions under
which a conceptual operation is performed. Several hooks, includ-
ing selinux inode permission (Figure 4(A)), authorize differ-
ent conceptual operations based upon the arguments they are in-
voked with. Consequently, the conditions recovered by hook anal-
ysis can be used to infer arguments during hook placement. On the
other hand, for kernel functions, we only need to infer ifthere exist
arguments such that the kernel function performs a conceptual op-
eration. For instance, supposeext2 rmdir is invoked in response
to a request to remove directorybar from directoryfoo . As men-
tioned earlier,ext2 rmdir first checks to see thatbar is empty; if
not, directory removal fails, andbar is not removed. However, it
is important to note that ifbar was empty (and certain other con-
ditions satisfied), then it would have been removed. That is, there
existssomeargument such thatext2 rmdir performs the concep-
tual operations shown inFigure 5(B). Thus, it suffices to recover
the conceptual operations performed by a kernel function irrespec-
tive of the conditions under which they are performed.

The kernel analysis algorithm is shown in Algorithm3. It pro-
cesses the call-graph of the kernel in a bottom-up fashion, analyz-
ing a function after all its callees have been analyzed. Recursion,
which leads to strongly-connected components in the call-graph, is

dealt with by consolidating the results for each strongly-connected
component, as described inSection 3.1.1for hook analysis.

Algorithm : ANALYZE KERNEL

Input : Linux kernel.
Output : For each function in the kernel, a set{OP} of operations that it

may perform.
Construct the call-graphG of the kernel1

L := List of vertices ofG, reverse topologically sorted2

foreachf ∈ L do3

R := ANALYZE KERNEL FUNCTION(f )4

foreachg such thatf callsg do5

R := R ∪ CodePatterns(g)6

CodePatterns(f ) := R7

OPS:= SEARCH IDIOMS(R) /* Described inSection 3.2.2*/8

KernelSummary(f ) := OPS9

Algorithm 3 : TAHOE ’s algorithm for kernel analysis.

Informally, Algorithm 3 searches for combinations ofcode pat-
terns in each kernel function. It then searches through a set ofid-
ioms (on line 8) for these code-patterns to determine if the func-
tion performs a conceptual operation. An idiom is a rule that re-
lates a combination of code-patterns to conceptual operations. In-
tuitively, these code-patterns correspond to manipulations of kernel
data structures that typically happen when a conceptual operation is
performed by the kernel. For instance, removal of a directorybar
from foo (conceptual operationDIR RMDIR) usually involves set-
ting the fieldi size of the inode ofbar to 0, and decrementing the
field i nlinks of the inodes corresponding tobar andfoo . Sim-
ilarly, reading from a directory (conceptual operationDIR READ)
usually involves modifying its access time (fieldi atime of the in-
ode). We describe the expressive power of, and the methodology
used to write idioms inSection 3.2.2.

Algorithm : ANALYZE KERNEL FUNCTION(f )
Input : f : A kernel function.
Output : A set of code patterns that appear inf .
R := φ1

foreachstatements of f do2

if (s matches an entryP in IdiomCodePatterns) then R := R ∪ {P}3

return R4

Algorithm 4 : Searching for code patterns that appear in
idioms.

Algorithm 3 first gathers the set of code patterns that appear in
its body, as well as those that appear in its callees. Code patterns
are gathered as described in Algorithm4, which scans the code
of a kernel function, and searches for code-patterns from the set
IdiomCodePatterns. This set contains code-patterns that appear
in the idioms used by TAHOE. Algorithm 3 then searches through
the set of idioms (line8) to determine the set of operations that are
potentially performed by the kernel function.

For instance, considerFigure 5(A): the lines inode->i size
= 0 andinode->i nlink-- appear in the functionsext2 rmdir
andext2 dec count , respectively. AsFigure 6(B) shows, one of
the idioms TAHOE uses is “DIR RMDIR :- SET inode->i size
TO 0 ∧ DECRinode->i nlink ”. Both these code patterns ap-
pear in the setCodePatterns(ext2 rmdir ) after line (7) on Al-
gorithm 3 when ext2 rmdir is processed. Because these pat-
terns also appear in the idiom above, the operationDIR RMDIR

is added to the setOPS on line (8), and consequently toKernel-
Summary(ext2 rmdir ), which denotes the set of conceptual op-
erations performed byext2 rmdir .

Observe that code patterns that appear in an idiom can be drawn
from several functions. This is because several common tasks in
the kernel are often delegated to helper functions. Consequently
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several idioms used by TAHOE contain code patterns drawn from
different functions. For instance, whileinode->i size = 0 ap-
pears inext2 rmdir , decrementinginode->i nlink is delegated
to ext2 dec count . Thus, it is important to search through the set
of idioms after code patterns are gathered from all the callees of
the function being analyzed.

Algorithm 4 scans the code of a function in aflow-insensitive
fashion, i.e., it does not consider control-flow while scanning the
statements of the function. This suffices for kernel analysis be-
cause, as mentioned earlier, the analysis does not track the condi-
tions under which an operation is performed. Instead, it returns the
set of conceptual operations thatmaybe performed by the kernel.
We use the occurrence of an idiom in the function body to deter-
mine if an operation is performed by the kernel, and this can be
achieved using a simple flow-insensitive scan of the function body.

3.2.2 Idioms
Idioms are rules with conceptual operations on the left-hand-

side, and conjunctions of code-patterns on the right-hand-side. Each
conceptual operationOPcan appear on the left-hand-side of several
rules. Figure 6(A) shows the grammar used to express idioms for
TAHOE; there are currently six kinds of code-patterns, which we
have found sufficient to express idioms for most conceptual opera-
tions. Code-patterns are expressed in terms of the abstract-syntax-
tree (AST) of a variable, rather than variable names.Figure 6(B)
shows a few idioms, relevant toFigure 5.

Idiom := OP :-
Vn

i=1 (CodePati | ¬CodePati)
CodePat := SETAST | SETAST TOvalue

| READAST | CALL AST
| INCR AST | DECRAST

AST := (type-> )∗fieldname

(A) Idiom Grammar.
DIR WRITE :- SET inode->i ctime

V
CALL address space ops->prepare write()

DIR SEARCH :- READ inode->i mapping
FILE UNLINK :- DECR inode->i nlink

V
¬SET inode->i size TO 0

DIR RMDIR :- SET inode->i size TO 0
V

DECR inode->i nlink

(B) Examples of idioms used in the analysis ofext2 rmdir .

Figure 6: Idiom grammar and examples of idioms.
Using Idioms: Idioms are used to determine which conceptual
operations are performed by each kernel function. After the set of
code-patterns that appears in a functionf and its callees is gathered
in CodePatterns(f ) (line (7) of Algorithm 3), SEARCH IDIOMS

searches through the set of idioms. If the code-patterns that ap-
pear on the right-hand-side of an idiom also appear inCodePat-
terns(f ), then SEARCH IDIOMS adds the left-hand-side of the id-
iom to the set of conceptual operations performed byf . For in-
stance, because the value ofCodePatterns(ext2 unlink ) is{DECR
inode->unlink }, and this matches the third idiom inFigure 6(B),
FILE UNLINK is added toKernelSummary(ext2 unlink ). Note
that becauseCodePatterns(ext2 rmdir ) contains the pattern “SET
inode->i size TO 0 ”, it does not match the third idiom, and
FILE UNLINK /∈ KernelSummary(ext2 rmdir ).
Methodology used to write idioms: We explain the methodol-
ogy to write idioms by considering two examples fromFigure 6(B);
More examples of idioms can be found elsewhere [9].

1. DIR WRITE :- SET inode->i ctime ∧
CALL address space ops->prepare write() : Writing to
a directory usually involves a statement that adds new content
to the data structures that store directory content (achieved via
the call to prepare write() ), followed by setting the field
i ctime of the directory’s inode, indicating the change time.

2. DIR RMDIR :- SET inode->i size TO 0 ∧

DECR inode->i nlink : Removing a directorybar from a di-
rectory foo involves decrementing the fieldi nlink , the link
count, of the inodes of bothfoo andbar , followed by setting
i size , the size of the inode ofbar to 0.

Figure 7: Writing idioms.

Currently, writing idioms is an iterative, manual procedure. For
each conceptual operationOP, we used our knowledge of the ker-
nel to reason about the sequence of steps the kernel must take to
performOP. Using this information, we extracted code-patterns, as
shown in the examples above. When we were unfamiliar with the
sequence of steps the kernel would take, we considered examples
of functions in the kernel which perform the conceptual operation,
and used these examples to formulate idioms.

Figure 7illustrates the general methodology we used to write
idioms. The goal is to find code-patterns that exactly cover the
set of functions that performOP (depicted as a box). To do so,
we consider several code-patterns which approximate this set:Fig-
ure 7shows four sets of functions, A, B, C and D, which contain
four distinct code patterns. We first guessed code-patterns using
our knowledge of the kernel, following which we manually refined
these patterns by combining more code patterns using conjunction,
or removing existing code patterns to reducefalse positivesand
false negatives. False positives denote functions which contain the
code-patterns guessed, but do not performOP; we identified these
by first obtaining the set of functions containing the code-patterns
(automatically, using Algorithm4), and manually inspecting the
operations performed by each function in the set. False negatives
denote functions which performOP, but do not contain any of the
code-patterns guessed. These are harder to identify; we used our
knowledge of the kernel to identify missing entries in the set of
functions covered by the code-patterns, and added more patterns,
as required.

TAHOE currently uses about100 idioms, representing rules for
conceptual operations related to file systems and networking—it
took us about a week to write these idioms. While these idioms
work reasonably well (Section 4.1), we believe that it will take a
shorter amount of time for experienced kernel developers to for-
mulate idioms. Moreover, as we argue inSection 3.2.4, idioms are
reusable, and writing them is a one-time activity.
Expressive Power: As mentioned earlier, code-patterns in id-
ioms can be drawn from different functions. Thus, idioms can be
used in aninterproceduralanalysis, such as ANALYZE KERNEL,
to determine if a kernel function performs an operation. How-
ever, they cannot express temporal properties, which can be used to
enforce order between code patterns. For instance, “ext2 rmdir
checks that a directory is empty before removing it” is a tempo-
ral property that cannot be expressed using idioms that follow the
grammar inFigure 6(A). While temporal properties are strictly richer
than what we can express using the grammar inFigure 6(A), we
have been able to express idioms for most conceptual operations us-
ing the above grammar. We also note that an interprocedural anal-
ysis that checks for temporal properties is computationally expen-
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sive, and significant engineering tricks, such as those employed by
MOPS [3] and MC [4], will have to be employed for the analysis to
scale. On the other hand, Algorithm3 works in time O(m+f×n),
wherem is proportional to the size of the Linux kernel,f is the
number of functions in the kernel, andn denotes the number of id-
ioms to be checked, and is thus linear in the number of idioms to
be checked.

3.2.3 Precision of Kernel Analysis
Algorithm 3 and Algorithm4 search each statement in the kernel

for code-patterns. Thus, the analysis is precise in the following
sense: if the code-patterns on the right-hand-side of an idiomI
appear in a functionf , then the conceptual operation on the left-
hand-side ofI is added toKernelSummary(f ). Consequently,
the precision of kernel analysis depends on the quality of idioms
used. As mentioned earlier, idioms can be refined iteratively to
remove false positives and false negatives; each such refinement
also improves the precision of kernel analysis.

3.2.4 Discussion
While at first glance it may seem that TAHOE simply shifts the

burden of placing hooks to that of writing idioms for conceptual
operations, it is not the case, as we argue below:

1. Idiom writing only requires knowledge of the kernel.As we
demonstrated inSection 3.2.2, writing idioms only requires an
understanding of how the kernel performs the conceptual op-
eration. In particular, kernel analysis is independent of hook
analysis, and writing idioms doesnot require understanding any
policy-specific code written in kernel modules such as LSM-
SELinux. This is in stark contrast with current practice, where
manual hook placement requires an understanding of both the
conceptual operations performed by each kernel function, as
well as the operations authorized by each hook.

2. Idiom writing is a one-time activity.Idioms need to be writ-
ten only once for each version of the kernel. In addition, ker-
nel analysis itself is a one-time activity. The results of kernel
analysis can be combined with the results of hook analysis for
different MAC policies. We also conjecture that idioms will not
change much across different versions of the kernel, and hence
will only require incremental updates as the kernel evolves. The
reason for our belief is because the kernel usually performs con-
ceptual operations in a few “standard” ways. For instance, un-
linking an inode typically involves decrementing its link count
(n link ), and this is standard across most versions of the ker-
nel. Unless the kernel is radically restructured, the set of idioms
will remain relatively stable.

3. Idiom refinement can improve analysis quality.Finally, we be-
lieve that iteratively refining idioms by identifying false posi-
tives and false negatives is a formal and systematic way to im-
prove the quality of kernel analysis. We are unaware of any sys-
tematic techniques for refinement in manual hook placement.

3.3 Combining the Results of Hook and Ker-
nel Analysis

With the results of hook analysis and kernel analysis in hand,
TAHOE obtains the set of hooks that must guard each kernel func-
tion. Recall that the output of hook analysis is a set{〈ph

i ‖ OPh
i 〉}

for each hookh, and the output of kernel analysis is a setS = {OPk
i }

for each kernel functionk. Finding the set of hooks to guardk then
reduces to finding a cover for setS using the output of hook anal-
ysis. The predicates in the output of hook analysis help determine
the arguments that must be passed to the hook.

Instead of giving a formal description, we illustrate the algorithm

on our running example. Kernel analysis infers thatKernelSum-
mary(ext2 rmdir ) is{DIR RMDIR, DIR WRITE, DIR SEARCH}.
Analysis of hooks infers thatSummary(selinux inode rmdir )
is {〈true ‖ DIR RMDIR〉, 〈true ‖ DIR SEARCH〉}, and thatSum-
mary(selinux inode permission ) is as shown inFigure 4(B)
(only the relevant portions of the summaries are shown). Because
the operations authorized by these two hooks cover the setKer-
nelSummary(ext2 rmdir ), these hooks are chosen to authorize
ext2 rmdir . The hookselinux inode rmdir unconditionally
checks that the operationsDIR RMDIR andDIR SEARCH are au-
thorized, and can hence be called with the relevant variables in
scope at locations whereext2 rmdir is called, for instance within
vfs rmdir . Because the hookselinux inode permission checks
that the operationDIR WRITE is authorized when it is invoked
such that(mask 6= 0) ∧ (inode-> i mode & S IFMT == S IFDIR) ∧
(mask & MAY WRITE) is true, it is invoked withmask = MAY WRITE.

As shown above, the problem of finding the set of hooks to guard
each kernel function reduces to find a set cover for the set of op-
erations performed by the kernel function. This is a well-known
NP-complete problem [6]. We currently employ a simple greedy
heuristic to find a set cover, based upon the number of operations
in common to each hook and the kernel function. However, the
number of hooks applicable for each kernel function is fortunately
quite small, and if necessary brute-force search can be employed
to find all possible set covers. The example above also demon-
strates how predicates obtained via hook analysis determine how
each hook must be called. Formally, a satisfying assignment to the
predicate determines the arguments that the hook must be called
with. While we manually obtain satisfying assignments in the cur-
rent implementation of TAHOE, this process can easily be auto-
mated by querying a simple theorem-prover, such as Simplify [20],
for satisfying assignments to predicates.

We use the termauthorization graphto refer to the relation-
ship obtained using the analysis discussed above, because it has the
structure of an undirected, bipartite graph. The authorization rela-
tionship discovered forms the edges of this bipartite graph, whose
nodes correspond to hooks and kernel functions.

Algorithm : FIND CONTROLLED KERNEL FUNCTIONS

Input : (i) CG: Call-graph of Linux kernel (ii)AG: Authorization
Graph

Output : The set of controlled kernel functions
foreach (f ∈ CG) do1

foreach (r ∈ roots ofCG) do2

// hooksAG(f ) is set of hooks (inAG) that protectf .3

if there is a path fromr to f in CG, and hooksAG(f ) = hooksAG(r)4

then
if hooksAG(f ) 6= hooksAG(c) for at least one childc of f then5

CKF := CKF ∪ {f};6

return CKF7

Algorithm 5 : Finding controlled kernel functions.

While the authorization graph relateseachkernel function to the
set of hooks that must protect it, in practice, hooks are placed only
to protect a small set of kernel functions, which we callcontrolled
kernel functions. The idea is that protecting these functions protects
all security sensitive operations performed by the kernel. TAHOE

uses the call-graph of the kernel and the authorization graph to find
controlled kernel functions. Algorithm5 describes the heuristic
currently employed to find controlled kernel functions.

The basic intuition behind Algorithm5 is to place hooks as close
as possible to the functions that actually perform security sensitive
operations. For instance, while our analysis infers thatsys rmdir
does directory removal (formally,KernelSummary(sys rmdir )
= {DIR RMDIR, DIR WRITE, DIR SEARCH}), the directory re-
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moval is actually performed byext2 rmdir , which is transitively
called by sys rmdir . Formally, KernelSummary(sys rmdir )
= KernelSummary(ext2 rmdir ), andext2 rmdir is the deep-
est function in the call-graph reachable fromsys rmdir with this
property. Thus, our analysis infers thatext2 rmdir is a controlled
kernel function. Similarly, becauseext2 unlink is the deepest
function in the call graph withKernelSummary(ext2 unlink ) =
KernelSummary(sys unlink ), it is a controlled kernel function.

3.4 Hook Placement
Hook placement using the authorization graph is straightforward.

At each location in the kernel where a controlled kernel function is
called, TAHOE places the hooks determined by the authorization
graph. Currently, TAHOE does not optimize hook placement (as
was shown inSection 3). In the future, we plan to extend our im-
plementation to optimize hook placement.

4. IMPLEMENTATION & EXPERIENCE
TAHOE is implemented as a plugin to the CIL toolkit [18], and

consists of about3000 lines of Objective Caml [14] code. In this
section, we discuss the precision of TAHOE’s analysis, its perfor-
mance, and our experience with TAHOE.

4.1 Precision of Hook Placement
Methodology: To evaluate the effectiveness of TAHOE’s hook
placement, we used it with the Linux-2.4.21 kernel, and the hooks
from LSM-SELinux, which has149 hooks placed at248 locations
in the kernel. This version of the kernel is available both with hooks
placed for LSM-SELinux and without, thus allowing us to objec-
tively evaluate the results of TAHOE.

We have currently written idioms for conceptual operations rep-
resenting file and socket operations (numbering about100 idioms),
and we evaluated the precision of TAHOE in placing these hooks.
For each hook, we manually compare its placement in LSM-SELinux
to the placement suggested by TAHOE. Because the hook place-
ment of LSM-SELinux has been extensively verified, we believe
that it is bug-free, and hence provides a good benchmark to com-
pare the effectiveness of TAHOE. We report two metrics, false neg-
atives and false positives, as discussed below.
False negatives: A hook placed in LSM-SELinux, but not placed
by TAHOE classifies as a false negative. Because a false negative
in the output of TAHOE corresponds to a missing hook, it results in
insufficient authorization, thus leading to a potential security hole.

TAHOE currently analyzes a subset of file hooks (26 hooks) from
the LSM-SELinux kernel module (Section 4.3has details on the
hooks currently not analyzed) which authorize a variety of con-
ceptual operations on files and inodes. LSM-SELinux places these
hooks at40 different locations in the kernel. When we used TAHOE

for obtaining hook placement, the output was missing5 hooks,
which fell into3 categories, as discussed below:

1. The hookselinux file receive , placed in a kernel function
scm detach fds in LSM-SELinux, was missing from the out-
put of TAHOE. We found that the reason was because kernel
analysis was missing an idiom each for conceptual operations
FILE READ, FILE WRITE andFILE APPEND. This false neg-
ative is eliminated by adding idioms for these operations.

2. The hookselinux file set fowner , placed in3 kernel func-
tions, was missing from the output. We found that this hook
was not analyzed properly by TAHOE. In particular, this hook
updates a data structure internal to LSM-SELinux, and does not
contain any access vectors. As a result, the analysis described in
Section 3.1determined that this hook does not analyze any oper-
ations, leading to the false negatives. These false negatives are

Category Num. Locs. False Pos. False Neg.
File hooks(26) 40 13 4
Socket hooks(12) 12 4 0

Figure 8: Comparison of TAHOE ’s output with LSM-SELinux.
False positives count locations where TAHOE places an extra
hook, while false negatives count locations with missing hooks.

easily eliminated by considering the update to the data struc-
ture as a new conceptual operation, and adding corresponding
idioms for kernel analysis.

3. The hookselinux inode revalidate , placed in a kernel func-
tion do revalidate , was missing from the output. However,
upon closer investigation we found that this wasnota false neg-
ative. In particular, in LSM-SELinux, the authorization query
posed by this hook always succeeds. As a result, TAHOE infers
that no operations are authorized by this hook. This example
shows that semantic information contained in hooks is valuable
in determining hook placement.

TAHOE currently analyzes12 socket hooks, which are placed at
12 locations in the kernel in LSM-SELinux. It identified all these
hook placements without any false negatives.
False positives: The output of TAHOE may contain hooks which
are not placed in LSM-SELinux. This may arise because of one
of two reasons: (i) Imprecision in the analysis, for instance, be-
cause the kernel analysis infers that a kernel function performs
more controlled operations than it actually does, or (ii) Unopti-
mized hook placement, for instance, as discussed inSection 3,
whereselinux inode permission was placed redundantly. We
only classify hooks in category (i) as false positives, because they
result in extra authorizations being performed. While false posi-
tives do not lead to security holes, they may result in entities with
requisite permissions being denied authorization. Thus, it is desir-
able to have a low false positive rate.

We found that TAHOE had false positives at13 out of the40
locations in LSM-SELinux where file hooks are placed, and at at
4 out of the12 locations where socket hooks are placed in LSM-
SELinux. In each case, one extra hook was placed in addition to
the required hook. We observed that this imprecision was because
of imprecision in the idioms employed by kernel analysis. In par-
ticular, several functions were wrongly classified as performing the
conceptual operationsFILE READ, DIR READ, FILE EXECUTE

andDIR SEARCH. We expect that further refinement of these id-
ioms will reduce the number of false positives.
Effectiveness at finding controlled kernel functions: In
the discussion so far, we evaluated TAHOE’s hook placement at
the controlled kernel functions as defined by LSM-SELinux hook
placements. However, TAHOE also infers controlled kernel func-
tions, using the heuristic described in Algorithm5. We found that
the controlled kernel functions identified by TAHOE for placing
file and socket hooks were the same as those identified by LSM-
SELinux in all but one case. TAHOE identifiedopen namei as a
controlled kernel function that performed several controlled opera-
tions, includingFILE CREATE andFILE EXECUTE. However, in
LSM-SELinux, hooks to protect these operations were placed in
functions that were called byopen namei , as opposed to locations
whereopen namei was called.

4.2 Performance
We ran timing experiments on a machine with a 1GHz AMD

Athlon processor, and 1GB RAM. Hook analysis took about11
minutes, while kernel analysis took about8 minutes. The smaller
runtime for kernel analysis can be attributed to its simpler nature.
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4.3 Opportunities for Improvement
While we are encouraged by TAHOE’s ability to place hooks,

we have identified some shortcomings, which we plan to address
in future work. First, TAHOE currently does not analyze all hooks
in LSM-SELinux. In particular, LSM-SELinux has several hooks
to allocate and free data structures internal to the kernel module
(which implements hooks). While these do not authorize any con-
ceptual operations, it is crucial that they be placed at appropriate
locations in the kernel; improper placement of these hooks could
lead to runtime exceptions. Second, while TAHOE’s kernel analy-
sis recovers the conceptual operations performed by a kernel func-
tion, it currently does not recover the specificresource instances
on which they are performed—this is currently done manually. For
instance, inFigure 3(B), the resource instancesdir anddentry
were recovered manually. Third, TAHOE can currently only place
hooks at the granularity of function calls, i.e., it places hooks at
each location where controlled kernel functions are called. There
are cases in LSM-SELinux (selinux file set fowner ), where
hooks are placed at a finer granularity, such as before modifications
of kernel data structures. Last, while idiom writing and refinement
can improve the results of kernel analysis, they are manual proce-
dures. We plan to investigate automatic idiom writing and refine-
ment techniques in the future.

5. RELATED WORK
Prior work on the formal analysis of hook placement in the LSM

framework has focused on verifying the correctness of existing hook
placement. Vali [10] is a runtime tool to determine the consistency
of hook placement in LSM. It is based upon the observation that
hook placement in LSM is typically consistent across different code
paths in the kernel, and thus inconsistencies are indicative of bugs.
Analysis is performed on execution traces obtained by running an
instrumented version of the kernel. The authors also demonstrate
a static version of Vali, which is built using the analysis capabili-
ties of JaBA [13], a static analysis tool to automatically identify the
least privileges needed to execute a Java program. Zhanget al.[23]
demonstrate the use of a type-qualifier-based tool, CQUAL [5], to
determine inadequacies in hook placement. In particular, their anal-
ysis determines that a resource has been authorized by a hook be-
fore a conceptual operation is performed on it. However, the anal-
ysis requires as input the set of conceptual operations performed
on a resource in order to verify the adequacy of hook placement,
which is used as the type-qualifier-lattice by CQUAL. They use the
output of Vali to obtain the type-qualifier lattice. The above efforts
however do not use the source code of hooks in their analysis.

While we have focused on the problem of automatic hook place-
ment, we believe that the analysis employed by TAHOE can be used
for verifying existing hook placement as well. For instance, autho-
rization graphs extracted by TAHOE can be compared against the
authorization graph corresponding to the existing hook placement,
and anomalies can be flagged as potential errors.

The analyses employed by various stages of TAHOE are also
related to prior work. Hook analysis employs a flow-sensitive,
context-sensitive program analysis, which has been explored by
several tools in the past, including MOPS [3], MC [4], and JaBA [13].
The use of idioms in kernel analysis is conceptually similar to the
use of compiler-extensions (written in a language called Metal) by
MC. Vali used runtime techniques to extract the authorization graph
from a hook-placed kernel, and used consistency analysis on this
graph to identify anomalies. Authorization graphs are also similar
to access rights invocation graphs used by JaBA.

While TAHOE addresses the problem of enforcing a given au-
thorization policy by placing hooks to a kernel module that encap-

sulates the policy, it does not ensure that the authorization policy
itself meets security goals, such as integrity and confidentiality.
SLAT [8] and Gokyo [11] are tools that can be used for this pur-
pose. Both these tools construct an abstract model of the authoriza-
tion policy (e.g., an SELinux policy), and analyze them to deter-
mine conflicts between the policy and the system security goals.

6. CONCLUSION
The emerging popularity of the LSM framework to implement

MAC authorization policies, coupled with recent interest in LSM-
like frameworks for user-level applications [12, 21] underscores the
need for security of these frameworks. We believe that the tech-
niques presented in this paper are a useful first step towards au-
tomatic enforcement of authorization policies through the use of
formal reasoning and program analysis.
Acknowledgments: Many thanks to Shai Rubin and the CCS
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