CodeSurfer /x86—A Platform for Analyzing x86
Executables *

Gogul Balakrishnan', Radu Gruian?, Thomas Reps!?, and Tim Teitelbaum?

L Comp. Sci. Dept., University of Wisconsin; {bgogul,reps}Q@cs.wisc.edu
2 GrammaTech, Inc.; {radu, tt}@grammatech.com

Abstract. CodeSurfer/x86 is a prototype system for analyzing x86 executables.
It uses a static-analysis algorithm called value-set analysis (VSA) to recover in-
termediate representations that are similar to those that a compiler creates for
a program written in a high-level language. A major challenge in building an
analysis tool for executables is in providing useful information about operations
involving memory. This is difficult when symbol-table and debugging information
is absent or untrusted. CodeSurfer/x86 overcomes these challenges to provide an
analyst with a powerful and flexible platform for investigating the properties and
behaviors of potentially malicious code (such as COTS components, plugins, mo-
bile code, worms, Trojans, and virus-infected code) using (i) CodeSurfer/x86’s
GUI, (ii) CodeSurfer/x86’s scripting language, which provides access to all of
the intermediate representations that CodeSurfer/x86 builds for the executable,
and (iii) GrammaTech’s Path Inspector, which is a tool that uses a sophisticated
pattern-matching engine to answer questions about the flow of execution in a
program.

1 Introduction

In recent years, there has been a growing need for tools that analyze executables.
Computer-security issues provide one motivation: one would like to ensure that
third-party applications do not perform malicious operations, and in this context
it is important for analysts to be able to decipher the behavior of Trojans, worms,
and virus-infected code. Static analysis provides techniques that can help with
such problems; however, there are several obstacles that must be overcome:

— For potentially malicious programs, symbol-table and debugging information
is either entirely absent, or cannot be relied upon if present.

— Instructions that perform memory operations use explicit memory addresses
and indirect addressing, which complicates the task of understanding the
overall behavior of the code.

Several others [3, 2,10, 5, 12] have proposed algorithms for statically analyz-
ing executables. However, existing tools assume the presence of symbol-table
and/or debugging information, or ignore instructions with memory operands
altogether, or assume that an instruction with memory operands can write-
to/read-from any part of memory. None of these solutions are satisfactory in
terms of understanding how an x86 executable works. Recently, Balakrishnan
and Reps developed a static-analysis algorithm, called value-set analysis (VSA),

* Supported by Air Force (AFRL/Rome) SBIR contracts F30602-01-{C-0112, C-
0051}, ONR contracts N00014-{02-C-0188, 03-C-0502, 01-1-0708, 01-1-0796}, and
NSF grant CCR-9986308.



to recover information about the contents of memory locations and how they are
manipulated by an executable [1]. By combining VSA with facilities provided by
the IDAPro and CodeSurfer toolkits, we have created CodeSurfer/x86, a proto-
type tool for browsing, inspecting, and analyzing x86 executables. From an x86
executable, CodeSurfer/x86 recovers an intermediate representation that is sim-
ilar to what would be created by a compiler for a program written in a high-level
language. In this document, we emphasize the facilities of CodeSurfer/x86 that
provide an analyst with a powerful and flexible platform for investigating the
properties and behaviors of an x86 executable.

Because CodeSurfer/x86 works on the actual executable code that is run
on the machine, it automatically takes into account platform-specific aspects of
the code, such as the positions (i.e., offsets) of variables in the run-time stack’s
activation records. This is a key ability, because many security exploits depend
on platform-specific features, such as the structure of activation records. In this
sense, CodeSurfer/x86 is a “higher fidelity” tool than most tools that analyze
source code.

2 CodeSurfer/x86

CodeSurfer /x86 is the outcome of a joint project between the Univ. of Wisconsin
and GrammaTech, Inc. CodeSurfer/x86 makes use of both IDAPro [9], a disas-
sembly toolkit, and GrammaTech’s CodeSurfer system [4], a toolkit for building
program-analysis and inspection tools. Fig. 1 shows the various components of
CodeSurfer/x86. This section sketches how these components are combined in
CodeSurfer/x86.

Value added beyond IDA Pro

Security
Analyzers

Connector

Value-set
Analysis

CodeSurfer

Build SDi
Browse

Decompiler

Bina
Rewr‘i?ér

User Scripts

+ fleshed-out CFGs
+ fleshed-out call graph
+ used, killed, may-killed

Initial estimate of
« code vs. data

* procedures

« call sites

« malloc sites

variables for CFG nodes
* points-to sets
* reports of violations

Fig. 1. Organization of CodeSurfer/x86.

An x86 executable is first disassembled using IDAPro. In addition to the
disassembly listing and control-flow graphs, IDAPro also provides access to the
following information: (1) procedure boundaries, (2) calls to library functions
(identified using an algorithm called the Fast Library Identification and Recog-
nition Technology (FLIRT) [7]), and (3) statically known memory addresses and
offsets.

IDAPro provides access to its internal resources via an API that allows users
to create plug-ins to be executed by IDAPro. We created a plug-in to IDAPro,
called the Connector, that creates data structures to represent the information
obtained from IDAPro. The IDAPro/Connector combination is also able to cre-



ate the same data structures for dynamically linked libraries, and to link them
into the data structures that represent the program itself. This infrastructure
permits whole-program analysis to be carried out—including analysis of the code
for all library functions that are called.

Based on the data structures in the Connector, we implemented a static
analysis algorithm called value-set analysis (VSA) [1]. VSA does not assume the
presence of symbol-table and debugging information.? Hence, as a first step, a
set of data objects called a-locs (for “abstract locations”) is determined based on
the static memory addresses and offsets provided by IDAPro. VSA is a combined
numeric and pointer-analysis algorithm that determines an over-approximation
of the set of numeric values or addresses that each a-loc holds at each program
point. The set of addresses and numeric values is referred to as a value-set. A
key feature of VSA is that it tracks integer-valued and address-valued quantities
simultaneously. This is crucial for analyzing executables because numeric values
and addresses are indistinguishable in an executable.

Note that IDAPro does not identify the targets of all indirect jumps and
indirect calls, and therefore the call graph and control-flow graphs that it con-
structs are not complete. However, the information computed during VSA can
be used to augment the call graph and control-flow graphs on-the-fly to account
for indirect jumps and indirect calls. In fact, the relationship between VSA and
the preliminary IRs created by IDAPro is similar to the relationship between a
points-to-analysis algorithm in a C compiler and the preliminary IRs created by
the C compiler’s front end. In both cases, the preliminary IRs are fleshed out
during the course of analysis.

Once VSA completes, the value-sets for the a-locs at each program point
are used to determine each point’s sets of used, killed, and possibly-killed a-
locs; these are emitted in a format that is suitable for input to CodeSurfer.
CodeSurfer takes in this information and builds a collection of IRs, consisting
of abstract-syntax trees, control-flow graphs (CFGs), a call graph, and a system
dependence graph (SDG). An SDG consists of a set of program dependence
graphs (PDGs), one for each procedure in the program. A vertex in a PDG
corresponds to a construct in the program, such as a statement or instruction,
a call to a procedure, an actual parameter of a call, or a formal parameter of a
procedure. The edges correspond to data and control dependences between the
vertices [6]. The PDGs are connected together with interprocedural edges that
represent control dependences between procedure calls and entries, and data
dependences between actual parameters and formal parameters/return values.

Dependence graphs are invaluable for many applications, because they high-
light chains of dependent instructions that may be widely scattered through
the program. For example, given a instruction, it is often useful to know its
data-dependence predecessors (instructions that write to locations read by that
instruction) and its control-dependence predecessors (control points that may
affect whether a given instruction gets executed). Similarly, it may be useful to

3 Although VSA does not need debugging/symbol-table information, in principle, it
would be possible to extend VSA to use such information.



know for a given instruction its data-dependence successors (instructions that
read locations written by that instruction) and control-dependence successors
(instructions whose execution depends on the decision made at a given control
point).

3 CodeSurfer/x86 Facilities

As described in the Sect. 2, given an executable as input, CodeSurfer /x86 builds
a collection of IRs for it. In addition to building the IRs, CodeSurfer/x86 also
checks whether the executable conforms to a “standard” compilation model—
i.e., a runtime stack is maintained; activation records (ARs) are pushed onto the
stack on procedure entry and popped from the stack on procedure exit; a proce-
dure does not modify the return address on the stack; the program’s instructions
occupy a fixed area of memory, are not self-modifying, and are separate from
the program’s data. If it cannot be confirmed that the executable conforms to
the model, then the IR is possibly incorrect. For example, the call-graph will be
incorrect if a procedure modifies the return address on the stack. Consequently,
CodeSurfer /x86 issues error reports if it finds one or more violations of the “stan-
dard” compilation model. The analyst can go over these reports and determine
whether they are false alarms or real violations.

CodeSurfer’s GUI supports browsing (“surfing”) of an SDG, along with a
variety of operations for making queries about the SDG—such as slicing [8] and
chopping [11].* The GUI allows a user to navigate through the assembly code
using these dependences in a manner analogous to navigating the World Wide
Web. CodeSurfer’s API provides a programmatic interface to these operations,
as well as to lower-level information, such as the individual nodes and edges of
the program’s SDG, call graph, and control-flow graph, and a node’s sets of used,
killed, and possibly-killed a-locs. By writing programs that traverse CodeSurfer’s
IRs to implement additional program analyses, the API can be used to extend
CodeSurfer’s capabilities.

CodeSurfer /x86 can be used in conjunction with GrammaTech’s Path In-
spector, which is a tool that uses a sophisticated pattern-matching engine to
answer questions about the flow of execution in a program. The Path Inspector
checks sequencing properties of events in a program, which—in the context of
security analysis, for example—can be used to answer such questions as “Is it
possible for the program to bypass the authentication routine?” (which indicates
that the program may contain a trapdoor).

With the Path Inspector, such questions are posed as questions about the
existence of problematic event sequences; after checking the query, if a prob-
lematic path exists, it is displayed in the Path Explorer tool. This lists all of
the program points that may occur along the problematic path. These items are

4 A backward slice of a program with respect to a set of program points S is the set
of all program points that might affect the computations performed at S; a forward
slice with respect to S is the set of all program points that might be affected by
the computations performed at members of S [8]. A program chop between a set
of source program points S and a set of target program points 1" shows how S can
affect the points in T [11]. Chopping is a key operation in information-flow analysis.



linked to the disassembly; the analyst can navigate from a point in the path to
the corresponding assembly-code element. In addition, the Path Inspector allows
the analyst to step forward and backward through the path, while simultane-
ously stepping through the assembly code. (The code-stepping operations are
similar to the single-stepping operations in a traditional debugger.)

References

1. G. Balakrishnan and T. Reps. Analyzing memory accesses in x86 executables. In
Comp. Construct., pages 5—23, 2004.

2. C. Cifuentes and A. Fraboulet. Interprocedural data flow recovery of high-level
language code from assembly. Technical Report 421, Univ. Queensland, 1997.

3. C. Cifuentes, D. Simon, and A. Fraboulet. Assembly to high-level language trans-
lation. In Int. Conf. on Softw. Maint., pages 228-237, 1998.

4. CodeSurfer, GrammaTech, Inc., http://www.grammatech.com/products/codesurfer/.

5. S.K. Debray, R. Muth, and M. Weippert. Alias analysis of executable code. In
Princ. of Prog. Lang., pages 12-24, 1998.

6. J. Ferrante, K. Ottenstein, and J. Warren. The program dependence graph and
its use in optimization. Trans. on Prog. Lang. and Syst., 3(9):319-349, 1987.

7. Fast library identification and recognition technology, DataRescue sa/nv, Litge,
Belgium, http://www.datarescue.com/idabase/flirt.htm.

8. S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence
graphs. Trans. on Prog. Lang. and Syst., 12(1):26-60, January 1990.

9. IDAPro disassembler, http://www.datarescue.com/idabase/.

10. A. Mycroft. Type-based decompilation. In European Symp. on Programming, 1999.

11. T. Reps and G. Rosay. Precise interprocedural chopping. In Found. of Softw. Eng.,
1995.

12. X. Rival. Abstract interpretation based certification of assembly code. In Int.
Conf. on Verif., Model Checking, and Abs. Int., 2003.



