Extended Weighted Pushdown Systems

Akash Lal, Thomas Reps, and Gogul Balakrishnan

University of Wisconsin, Madison, Wisconsin 53706
{akash, reps, bgogul }@s.wi sc. edu

Abstract. Recent work on weighted-pushdown systems shows how to ajereer
interprocedural-dataflow analysis to answer “stack-djedliqueries”, which answer the
question “what dataflow values hold at a program node for iqoderr set of calling con-
texts?” The generalization, however, does not account ifecipe handling of local vari-
ables. Extended-weighted-pushdown systems addresssthis,iand provide answers to
stack-qualified queries in the presence of local variatdesel.

1 Introduction

An important static-analysis technique is dataflow analyshich concerns itself with
calculating, for each program point, information aboutgbeof states that can occur at
that point. For a given abstract domain, the ideal value toputte is the meet-over-all-
paths (MOP) value. Kam and Ullman [10] gave a coincidencertéra that provides
a sufficient condition for when this value can be calculatadsingle-procedure pro-
grams. Later, Sharir and Pnueli [23] generalized the thmdgg multiple-procedure
programs, but did not consider local variables. Knoop aeff&t [12] then further ex-
tended the theorem to include local variables by modeliegtim-time stack of a pro-
gram. Alternative techniques for handling local varialikese been proposed in [17,
19], but these lose certain relationships between locabsotzhl variables.

The MOP value over-approximates the set of all possibleestttat occur at a
program point (for all possible calling contexts). Recentkvwon weighted-pushdown
systems (WPDSs) [18] shows how to generalize interproeddiataflow analysis to
answer “stack-qualified queries” that calculate an ovgraximation to the states that
can occur at a program point for a given regular set of caltiogtexts. However, as
with Sharir and Pnueli’s coincidence theorem, it is not ciéaVPDSs can handle
local variables accurately. In this paper, we extend the \@mibdel to the Extended-
WPDS (EWPDS) model, which can accurately encode interphoed-dataflow anal-
ysis on programs with local variables and answer stackiipthjueries on them. The
EWPDS model can be seen as generalizing WPDSs in much thersaynibat Knoop
and Steffen generalized Sharir and Pnueli’'s coincidensertém?®

The contributions of this paper can be summarized as follows

— We give a way of handling local variables in an extension ef WiPDS model.
The advantage of using (E)WPDSs is that they give a way ofitatiog dataflow
values that hold at a program node for a particular callingext (or set of calling
contexts). They can also provide a set of “witness” prograatetion paths that
justify a reported dataflow value.

— We show that the EWPDS model is powerful enough to captureoinand
Steffen’s coincidence theorem. In particular, this medrat tve can calculate

! Recently, with S. Schwoon, we have shown that the compu@itipower of WPDSs is the
same as that of EWPDSs. We do not present this result in thierphie to space constraints,
but it involves simulating the program run-time stack astaftfaw value.

the MOP value (referred to as the interprocedural-meet-altevalid-paths, or
IMOVP value, for multiple-procedure programs with localiebles) for any dis-
tributive dataflow-analysis problem for which the domainrafsfer functions has
no infinite descending chains. For monotonic problems tfeahat distributive, we
can safely approximate the IMOVP value. In addition to tE8YPDSs support
stack-qualified IMOVP queries.
— We have extended the WPDS++ library [11] to support EWPD Skumed it to

calculate affine relationships that hold between registex86 code [2].

A further result was too lengthy to be included in this papbet, illustrates the value
of our approach: we have shown that the IMOVP result of [18kfagle-level pointer
analysis is an instance of our framewdrkhis immediately gives us something new: a
way of answering stack-qualified aliasing problems.

The rest of the paper is organized as follog&:provides background on WPDSs
and explains the EWPDS mod§B presents algorithms to solve reachability queries
in EWPDSs. Irg4, we show how to compute the IMOVP value using an EWP§LS;
presents experimental results; ditddescribes related work.

2 The EXTENDED-WPDS Model
2.1 Pushdown Systems

Definition 1. A pushdown systemis a triple P = (P, I, A) where P is the set of
states or control locationd]" is the set of stack symbols altdC P x I' x P x I'*
is the set of pushdown rules.cdnfiguration of P is a pair (p, u) wherep € P and
u € I'™. Aruler € Ais written as{p,v) —p (p’,u) wherep,p’ € P,y € I" and
u € I'*. These rules define a transition relatiesp on configurations oP as follows:
If r = (p,7) —p @, u) then(p,yu') =p (p',uu’) forall v’ € I'*. The subscript
P on the transition relation is omitted when it is clear fronetbontext. The reflexive
transitive closure of= is denoted by=*. For a set of configurations’, we define
pre*(C) ={c | e € C: ¢ =* ¢} andpost*(C) = {¢' | Je € C : ¢ =* ¢}, which
are just backward and forward reachability under the trditsi relation=-.

We restrict the pushdown rules to have at most two stack sigwmathe right-hand
side. This means that for every rutee A of the form (p,~v) —» (p’,u), we have
|lu| < 2. This restriction does not decrease the power of pushdostersys because
by increasing the number of stack symbols by a constantrfaartcarbitrary pushdown
system can be converted into one that satisfies this réstri@0]. Moreover, pushdown
systems with at most two stack symbols on the right-handafidach rule are sufficient
for modeling control flow in programs. We ugk, C A to denote the set of all rules
with ¢ stack symbols on the right-hand side.

It is instructive to see how a program’s control flow can be gied because even
though the EWPDS model can work with any pushdown systera,geared towards
performing dataflow analysis in programs. The constructignpresent here is also
followed in [18]. Let(N, £) be an interprocedural control flow graph where eealh
node is split into two nodes: one is the source of an integatacal edge to the callee’s

2 Multi-level pointer analysis problems (the kind that ocau€C, C++, and Java programs) can
be safely approximated as single-level pointer-analysiblpms [14].

entry node and the second is the target of an edge from theetaxit nodeN is
the set of nodes in this graph aéds the set of control-flow edges. Fig. 1(a) shows
an example of an interprocedural control-flow graph; Fidn) Khows the pushdown
system that models it. The PDS has a single statae stack symbol for each node in
N, and one rule for each edge §n We useA; rules to model intraprocedural edges,
As rules (also callegrushrules) forcall edges, and\, rules (also calleghoprules) for
return edges. It is easy to see that a valid path in the program gmels to a path in
the pushdown system’s transition system and vice versa.

JUOSEE
Aee[x > L,y 1] /’
7/

E1§ §p7 em;in> ‘—<> (p, 7;1)
2 ,N1) — (P, N2
lll (3) <§7 n2> s <g7 n3>
! (4) (p,n3) = (p,epn7)
(5) (p,n7) — (p, EXitnain)
(6) (p,eXitnain) — (p, &)
§ paen
8 pPsNna) — (P,Ns5
(9) (p,na) = (p,ne)
[z et from ple (10) (prs) — (p.exit)
= 02 (o< ey
12 D, eXip) — (p,e
eXitm.a\in
(a) (b)

Fig. 1. (a) An interprocedural control flow graph. Theand exit nodes represent entry and exit
points of procedures, respectivelyis a local variable ofnain andy is a global variable. Dashed
edges represent interprocedural control flow. Edge lalmi®spond to dataflow facts and are
explained i§2.3. (b) A pushdown system that models the control flow of tizgly shown in (a).

The number of configurations of a pushdown system is unbaijratewe use a
finite automaton to describe a set of configurations.

Definition 2. LetP = (P, I, A) be a pushdown system.2-automaton s a finite
automaton @, I', —, P, F'), where@ D P is a finite set of statespC Q x I' x Q is
the transition relation,P is the set of initial states, andl' is the set of final states of
the automaton. We say that a configuratignu) is accepted by &-automaton if the
automaton can acceptwhen it is started in statg (written asp ——* ¢, whereg € F).

A set of configurations is callaggular if someP-automaton accepts it.

An important result is that for a regular set of configurasiéh both post*(C) and
pre*(C) are also regular sets of configurations [20, 3, 8].

2.2 Weighted Pushdown Systems

A weighted pushdown system is obtained by supplementinghdown system with a
weight domain that is a bounded idempotent semiring [18, 4].

Definition 3. A bounded idempotent semiringis a quintuple(D, ®, ®,0, 1), where
D is a set whose elements are calledights 0 and 1 are elements oD, and & (the
combine operation) ang@ (the extend operation) are binary operators brsuch that

1. (D,®) is a commutative monoid with as its neutral element, and whege is
idempotent (i.e., foralk € D, a @® a = a).

2. (D, ®) is a monoid with the neutral elemeht

3. ® distributes overp, i.e., for alla, b, c € D we have
a®@bdc)=(axb)®(axc)and(adb)@c=(a®c) B (b®c).

0 is an annihilator with respectt®, i.e., foralla € D,a ® 0=0=0® a.

In the partial orderC defined by¥a,b € D, a C b iff a ® b = a, there are no

infinite descending chains.

S

Definition 4. A weighted pushdown systenis a triple W = (P, S, f) whereP =
(P, I, A) is a pushdown systel§,= (D, ®, ®, 0, 1) is a bounded idempotent semiring
andf : A — D is a map that assigns a weight to each pushdown rule.

Let o € A* be a sequence of rules. Usirfg we can associate a valuedoi.e.,
def

if o = [r1,...,7%], then we define(o) = f(r1) ® ... ® f(rr). Moreover, for any
two configurationg andc’ of P, we letpath(c, ¢') denote the set of all rule sequences
[r1,...,7] that transforn into ¢/. Weighted pushdown systems are geared towards

solving the following two reachability problems.

Definition 5. LetW = (P, S, f) be aweighted pushdown system, wifere (P, I, A),
and letC C P x I'* be a regular set of configurations. Tigeneralized pushdown
predecessor GPB problem is to find for eache € P x I'™*:
5(c) £ @{v(o) | o € path(c,d),d € C}.
Thegeneralized pushdown successof3P 9 problem is to find for eacle € P x I'*:
5(c) £ P{v(o) | o € path(c,c),d € C}.

2.3 Extended Weighted Pushdown Systems

The reachability problems defined in the previous sectionmgde the value of a rule
sequence by taking an extend of the weights of each of the iuklhe sequence. How-
ever, when weighted pushdown systems are used for dataflaelys of programs
[18] then the rule sequences, in general, represent imteedural paths in a program.
To summarize the weight of such paths, we would have to maiitBormation about
local variables of all unfinished procedures that appeahemath.

We lift weighted pushdown systems to handle local variaiol@such the same way
that Knoop and Steffen [12] lifted conventional dataflowlgsis to handle local vari-
ables. We allow for local variables to be stored at call sitethen use special merging
functions to appropriately combine them with the valuemedd by a procedure. For a
semiringS on domainD, define anerging functioras follows:

Definition 6. A functiong : D x D — D is a merging function with respect to a
bounded idempotent semirisg= (D, ®, ®, 0, 1) if it satisfies the following properties.
1. Strictness.Forall a € D, g(0,a) = g(a,0) = 0.
2. Distributivity. The function distributes oves. For all a, b, c € D,
gla® b, c) = g(a,c)® g(b,c)andg(a,b® c) = g(a,b) ® g(a,c)
3. Path Extension® For all a,b,c € D, g(a®b,c) = a ® g(b, c).

% This property can be too restrictive in some cases; App. Augises how this property may be
dispensed with.

Definition 7. An extended weighted pushdown systems a quadrupleWV, =
(P,S, f,g9) where (P,S, f) is a weighted pushdown system apd A, — G as-
signs a merging function to each rule ik, whereg is the set of all merging functions
on the semiringS. We will write g, as a shorthand fog(r).

Note that a push rule has both a weight and a merging functisociated with it.
The merging functions are used to combine the effects oflaccptocedure with those
made by the calling procedure just before the call. As an @kanfigure 1 shows an
interprocedural control flow graph and the pushdown systeahdan be used to rep-
resent it. We can perform constant propagation (with uniméted expressions) on the
graph by assigning a weight to each pushdown ruleJLeEt the set of all variables in
a program andZ, ,C, M) with Z, = Z U {1} be the standard constant-propagation
semilattice.L C cfor all ¢ € Z andr is the greatest-lower-bound operation in this par-
tial order. L stands for “not-a-constant”. The weight semiringSis= (D, ®,®,0,1)
whereD = (Env — Enwv) is the set of all environment transformers with an envi-
ronment being a mapping for all variabledsnv = (V — Z,) U {T}. We useT to
denote an infeasible environment. Furthermore, we rédstreesetD to contain only
T-strict transformers, i.e., for al € D, d(T) = T. We can extend the meet operation
to environments by taking meet componentwise.

envy if envg =T
envy Menvy = { envy if envy =T
Av.(envq (v) Menve(v)) otherwise
The semiring operations and constants are defined as follows
0=2Xe.T wy B wz = Ae.(wi(e) Mwa(e))
1=)ee w1 ® Wa = Wg 0 Wy

The weights for the PDS that models the program in Fig. 1 aosvshas edge
labels. A weight of the form\e.e[z — 5] returns an environment that agrees with the
argument, except thatis bound to5. The environment cannot be updated, and thus
(Xe.elz — BT =T.

The merging function for call sites will receive two environment transformers:
one that summarizes the effect of the caller from its entipfto the call site ¢main to
n3) and one that summarizes the effect of the called procedpite ¢zitp). It then has
produce the transformer that summarizes the effect of therdeom its entry point to
the return sitedmain to 7). We define it as follows:

g(wy,wy) = if (w3 =00rws =0) then0
else Ae.e[x — wi(e)(x),y — (w1 @ wa)(e)(y)]
It copies over the value of the local variablérom the call site, and gets the valueof
from the called procedure. Because the merging functiombesss to the environment
transformer just before the call, we do not have to pass thuewd local variable: into
procedure. Hence the call stops tracking the valuerafsing the weighbe.e[z — L].

To formalize this, we redefine the generalized pushdowngmessor and successor
problem by changing the definition of the value of a rule segeelfo € A* with
o = [r1,72,--,rg] then let(r o) denote the sequende rq,--- ,rg]. Also, let]]
denote the empty sequence. Consider the context-free gaasirown in Fig. 2.

os is simply R}. o, represents &alancedsequence of rules that have matched
calls (R2) and returns By) with any number of rules from\; inbetweeno; is just
(Rs | o) in regular-language terminology, and represents seqsetheg increase

Ro —r (re Ao) os = []|Ri|os0s gi — Ra | oy |05 0
Ry —r (red) oy — 0s | op o 04 — Ro | oy | 0404
Ry — 1 (r € A) | R20b Ro Oa — 04 0

Fig. 2. Grammar used for parsing rule sequences. The start symbw girammar is .

stack heightoy is (Ro | 0p)™ and represents sequences that decrease stack height.
o, can derive any rule sequence. We use this grammar to defineathe of a rule
sequence.

Definition 8. Given anEWPDSW, = (P, S, f, g), we define thgalue of a sequence
of ruleso € A* by first parsing the sequence according to the above grammdttzen
giving a meaning to each production rule.

Lo(r) = f(r) 5.v(R2 v Ro) = gr,(1,v(0) ® v(Ro))
2.0(]) =1 6. v(oq 0q) =v(0oq) ® v(oq)
3. v(0s 05) = v(0s) @ v(0oy) 7. v(0; 0;) =v(0y) @ v(0y)
4. v(op op) = v(op) @ v(op) 8. v(oq ;) =v(oq) ® v(o;)

Here we have usegr, as a shorthand foy,. wherer is the terminal derived byRs.

The main thing to note in the above definition is the applaratif merging functions
on balanced sequences. Because the grammar presented his-mmbiguous, there
might be many parsings of the same rule sequence, but aleaf thould produce the
same value because the extend operation is associativdharedis a unique way to
balanceRss with Rgs.

The generalized pushdown problems GPP and GPS for EWPD $asame as
those for WPDS except for the changed definition of the vaf@erale sequence. If we
let each merging function bg (w1, w2) = w1 ® f(r) ® wa, then the EWPDS reduces
to a WPDS. This justifies calling our model artendedveighted pushdown system.

3 Solving Reachability Problems inEWPDS

In this section, we present algorithms to solve the germzdlreachability problems
for EWPDSs. Throughout this section, t. = (P, S, f,g) be an EWPDS where
P = (P, I,A) is a pushdown system aitl= (D, &, ®,0, 1) is the weight domain.
Let C be a fixed regular set of configurations that is recognized Brautomaton
A = (Q,I',—g, P, F) such that4 has no transition leading to an initial state. Note
that any automaton can be converted to an equivalent onéakato transition into an
initial state by duplicating the initial states. We alsoame that4 has ncs-transitions.

As in the case of weighted pushdown systems, we constructrastaed automaton
from whichd(c) can be read off efficiently. This automaton is the same asutosraton
constructed for simple pushdown reachability [20], exdepthe annotations. We will
not show the calculation of witness annotations becausgestfeeobtained in exactly the
same way as for weighted pushdown systems [18]. This is Isecaitnesses record the
paths that justify a weight and not how the values of thosbgpatre calculated.

3.1 SolvingGPP

To solve GPP, we take as input tfleautomatonA that describes the set of configura-
tions on which we want to query the EWPDS. As output, we craatutomatom -
with weights as annotations on transitions, and then refati®¥alues ob(c) from the

automaton. The algorithm is based on the saturation rule/shelow. Starting with
the automatond, we keep applying this rule until it can no longer be appliegtmina-
tion is guaranteed because there are a finite number oftirsand the height of the
weight domain is bounded as well. For each transition in theraaton being created,
we store the weight on it using functidnThe saturation rule is the same as that for
predecessor reachability in ordinary pushdown systentgxor the weights, and is
different from the one for weighted pushdown systems onlthanlast case, where a
merging function is applied.

— If r = {p,v) — (p’, &), then update the annotation oe= (p,~,p’) tol(t) :=
I(t) ® f(r). We assumé(t) = 0 if the transitiont did not exist before.

— Ifr={(p,y) — (p’,~') and there is a transitian= (p’, ', ¢), then update the
annotation ort’ = (p,~,q) tol(t') :=1(¢') ® (f(r) @ I(t)).

—Ifr = (p,7) — ’,~4'+"”) and there are transitioris= (p’,~’,¢1) andt’ =
(g1,7", g2), then update the annotation th= (p, v, ¢2) to

I e (4 fry@lt)@l(t') if ¢ & P
(") =1 o {gr(l,l(t)) ®I(t") otherwise

For convenience, we will write a transitidn: (p,7,q) IN Aprer With I(¢) =was
p — ¢. Define the value of a paify —> g2+ 2 gni1 to bew; @ wy - @ wh,.
The following theorem shows hati{c) i is calculate&

Theorem 1. Fora configuratiorb (P, 71v2 - - Yn), 6(c) is the combine of the values
of all accepting pathg — ¢ % -+ " g, g, € Fin Ayper.

We can calculaté(c) efficiently using an algorithm similar to the simulation alg
rithm for NFAs (cf. [1, Algorithm 3.4]).

3.2 SolvingGPS

For this section, we shall assume that we can have at mostinefithe form(p, y) —
(p',+'~"") for each combination q¥ 7/, and~"”. This involves no loss ofgenerallty be-
cause we can replace a rule= (p,v) — (p’,+'y") with two rules:(a) ' = (p,y) —
{pr,'v"") with weight f (r) and merging functiow,., and(b) v’ = (p,.,7') — {p’,7")
with weight1, wherep,. is a new state. This replacement does not change the rekchabi
ity problem’s answers. Léookufp’, v/, v") be a function that returns the unique push
rule associated with a tripl@’, v',v") if there is one.

Before presenting the algorithm, let us consider an opmratidefinition of the
value of a rule sequence. The importance of this alternafmition is that it shows
the correspondence with the call semantics of a progranme&ar interprocedural path
in a program, we define a stack of weights that contains a wéigteach unfinished
call in the path. Elements of the stack are from thel3et D x A, (recall thatd, was
defined as the set of all push rules4y), where(w, ws, r) signifies that (i) a call was
made using rule, (ii) the weight at the time of the call was,;, and (jii) w; was the
weight on the call rule.

Let STACK= D.(D x D x As)* be the set of all nonempty stacks where the
topmost element is fronD and the rest are froriD x D x As). We will write an
element(wy, wa,r) € D x D x Ay as(wy,ws),. For each rule- € A of the form

p,y) — ',u), w € I'*, we will associate a functiofr] : STACK— STACK Let
S e (D xDx Ag)*.

— If r has one symbol on the right-hand sidie| & 1), then accumulate its weight on
the top of the stackfr] (w1 S) = (w1 @ f(r)) S)

— If » has two symbols on the right-hand side|(= 2), then save the weight of the
push rule as well as the push rule itself on the stack andataeish entry on the
top of the stackfr] (w1 S) = (1 (w1, f(r)), S)

— If r has no symbols on the right-hand side| (= 0), then apply the appropriate
merging function if there is something pushed on the statke@vise; represents
an unbalanced pop rule and simply accumulate its weight@stdtk. Note that we
drop the weight of the push rule when we apply the mergingtfanén accordance
with caseb of Defn. 8.

[r] (w1 (w2, ws3)r, S) = ((gr, (w2, w1 ® f(r)) S) (1)
[r] (w1) = (w1 ® f(r))
For a sequence of rules= [ry,72,- - ,ry), definefo] = [[ro, - ,rn]] o [r].

Let flatten : STACK — D be an operation that computes a weight from a stack as
follows:

flatten(w; S) = flatterd(S) ® w; flatterf(()) =1

flatter ((wy, ws), S) = flatter(S) @ (w1 ® wy)

Example 1.Consider the rule sequenedhat takes the program in Fig. 1 froepain to
exity via nodens. If we apply[o] to a stack containing judt, we get a stack of height
2 as follows:[o] (1) = ((Ae.ely — 2]) (Ae.e[x — 5,y — 1], Ae.e[x — L]),), where
r is the push rule that calls procedy€Rule 4 in Fig. 1(b)). The top of the stack is
the weight computed inside (Rules?7, 8, 10), and the bottom of the stack contains a
pair of weights: the first component is the weight computeah&injust before the call
(Rulesl, 2, 3); the second component is just the weight on the call ruléwe apply
the flattenoperation on this stack, we get the weighte[z — L,y — 2] which is
exactly the value (o). When we apply the pop ruké (Rule12) to this stack, we get:
[0 7)(1) = ["] © [o] (1)

= (gr(Ne.e[x — 5,y — 1], Ae.ely — 2]))

= (Ae.e[z — 5,y +— 2])
Again, applyingflattenon this stack gives us(c r’). The following lemma formalizes
the equivalence betwedn] andv(o).

Lemma 1. For any valid sequence of rules(c € path(c, ¢') for some configurations
candc’), [o] (1) = S such that flatte(S) = v(o).

Corollary 1. For a configuratior, letds(c) C STACK be defined as follows:
ds(c) = {[o](1) | o € pathgc’,c), ¢ € C}.
LetC be the set of configurations described by fh@utomatonA. Then
0(c) = p{flatten(S) | S € ds(c)}.

The above corollary shows thé&g(c) has enough information to comput&) di-
rectly. To solve the pushdown successor problem, we takiapig?-automaton4 that
describes a set of configurations and create an anndtasedomatonA,,, .- (one that
has weights as annotations on transitions) from which weead off the value of(c)

for any configuratiom. The algorithm is again based on a saturation rule. For @anh t
sition in the automaton being created, we have a funétibat stores the weight on the
transition. Based on the above operational definition ofvélae of a path, we would
created,, ;- on pairs of weights, that is, over the semiri@@x D, &, ®, (0, 0), (1,1))
where® and® are defined component wise. Also, we introduce a new statedfcin
push rule. So the states @« areQ U {qp + | (p,7) — ¥',¥'v") € A}. LetQ’
be the set of new states added. The saturation rule is shotig.i3. To see what the

saturation rule is doing, consider a pathdp,s;«: 7 = g1 = g2 2 -+ % g1
As an invariant of our algorithm, we would haye € (P U Q'); ¢2,--- ,qx € Q’; and
Qk+1s " ,qnt1 € (Q — P) for some0 < k < n + 1. This is because of the fact that

we never create transitions from a statéfrio a state inP, or from a state i’ to a
state inP, or from a state i) — P to a state inP U Q’. Now define a new transition
labell’(t) as follows:l’(p, v, q) = lookup(p’, v,) if p = qpr .

Then the pathr describes thesTACK vpattr) = (I1(t1) 1(t2)p () - Htr)r)
wheret; = (g;,7vi, ¢i+1) andiy(t) is the first component projected out of the weight-
pairi(t). This means that each path.it),.s.- represents 8TACKand all the saturation
algorithm does is to make the automaton rich enough to erelb8&ACIKs in §s(c) for
all configurationg:. The first and third cases of the saturation rule can be sespypdg-
ing [r] for rules with one and two stack symbols on the right-hané,sidspectively.
Applying the fourth case immediately after the second casebe seen as applyirig]
for pop rules.

— Ifr = (p,v) — (p’,+') and there is a transition= (p, y, ¢) with annotatiori(t), then
update the annotation on transititn= (p’, v, q) tol(¥') := I(t") & (I(t) ® (f(r),1)).
We assumé(t') = (0, 0) if the transition did not exist before.

— If r = {(p,vy) — (p',€) and there is a transition= (p, 7, q) with annotatiori(¢), then
update the annotation on transititn= (p’, e, q) tol(t") := (") @ (I(t) ® (f(r), 1)).

i

- Ifr = {(p,7) — {p',¥'v") and there is a transition= (p, ~, ¢) with annotation/(¢)
thenlett’ = (p',7', qpr 4/), t" = (g ,,7", ¢) and update annotations on them.

() =1t") @ (1,1)
1) = 10") & (1) © (1, £(r)))
— If there are transitions = (p,e,q) andt’ = (q,',q’) with annotationsi(t) =
(w1,w2) and(t') = (ws,ws) then update the annotation on the transiti6n=
(p,v' ¢’) 0l(t") :=I(t") ® w wherew is defined as follows:

w = (g|00ku[:(p’,’y’,’y”)(w37 ’LUl)7 1) |f q= qp/,,yl
() ®I(t) otherwise

Fig. 3. Saturation rule for constructing .= from A.

Theorem 2. For a configuratiore = (p, u), we have,

d(c) = e{flatten(vpath(o})) | o, € paths(p,u,qy),qr € F}
wherepaths(p, u, g5) denotes the set of all paths of transitionsAy,- that go from
pto gy oninputu, i.e.,p —=* g.

An easy way of computing the combine in the above theoremiisfitace annota-
tioni(¢) on each transitionwith [, (¢t) ® I2(t), the extend of the two weight components
of [(t), and then use standard NFA simulation algorithms (cf. [fohithm 3.4]) as we
would use ford,, ..

4 Interprocedural Meet Over All Paths

In this section, we show how extended weighted pushdowesystan be used to com-
pute the interprocedural-meet-over-all-paths (IMOVPuson for a given dataflow
analysis problem. We will first define the IMOVP strategy asalied in [12] and
then show how to solve it using an EWPDS.

We are given a meet semilattic&, M) describing dataflow facts and the
interprocedural-control-flow graph of a progrd’, £) whereNe, Nr C A are the
call and return nodes, respectively. We are also given amsiarteansformer for each
node in the progrant:] : N' — (C — C), which represents (i.e., over-approximates)
the effect of executing a statement in the program. €K = C* be the set of all
nonempty stacks with elements frainSTKis used as an abstract representation of the
run-time stack of a program. Define the following operationstacks.

newstack C — STK creates a new stack with a single element
push: STKx C — STKpushes a new element on top of the stack
pop: STK— STK removes the top most element of the stack
top: STK— C returns the top most element of the stack

We can now describe the interprocedural semantic trangfofan each program
node:[J* : N — (STK— STK). Forstk € STK

pushpop(stk), [n](top(stk))) if n € N'— (Nc UNR)

[n]*(stk) = { push(stk, [n](top(stk))) if n € N¢

pushpop(pop(stk)), R, (top(pop(stk)), [n](top(stk)))) if n € N,
whereR,, : C xC — C is a merging function like we have in EWPDSs. Itis applied on
dataflow value computed by the called procedyrd (top(stk))) and the value com-
puted by the caller at the time of the cath(pop(stk))). This definition assumes that
a dataflow fact inC contains all information that is required by a proceduretsd t
each transformer has to look at only the top of the stack passi&— except for return
nodes, where we look at the top two elements of the stack. Nefine a path trans-
former as follows. Ifp = [n; na - - - ny| is a valid interprocedural path in the program
then[p]* = [[nz - - - nk]]* o [n1]*. This leads to the following definition.

Definition 9. [12] If s € N is the starting node of a program, then fay € C and

n € N, the interprocedural-meet-over-all-paths value is defias follows:
IMOVP,,(n) = N{[p]*(newstacke)) | p € IP(s,n)}

wherelP (s, n) represents the set of all valid interprocedural paths frota n and meet

of stacks is just the meet of their topmost valuek; M stk = top(stky) Mtop(stks).

We now construct an EWPD®/. = (P, S, f,g) to compute this value whef
has no infinite descending chains, all semantic transfastpdrare distributive, and
all merging relation$k,, are distributive in each of their arguments. Define a semirin
S§=(D,®,®,0,1)asD = [C — C] U {0}, which consists of the set of all distributive
functions onC and a special functiof. Fora,b € D,

a ifb=0 0 ifa=00rb=0
a®b=1{1b ifa=0 a®b_{(boa)otherwise
(aMb) otherwise 1 = Ae.c
The pushdown systefR is ({q}, N, A) whereA is constructed by including a rule for
each edge if. First, let&inra C £ be the intraprocedural edges afiger C £ be the
interprocedural (call and return) edges. Then includedhleviing rules inA.

10

1. For(n,m) € &nwa, include the rule: = (g,n) — (g, m) with f(r) = [n].
2. Forn € N¢, (n,m) € Ener With ng € N being the return site for the call at
include the rule: = (¢, n) — (g, m ng) with f(r) = [n] and
gr(a,b) = Ac.Rn(a(c), (a @ [n] @ b @ [nr])(c)).
3. Forn € NV, ifitis an exit node of a procedure, include the rule: (g, n) — (g, ¢)

with f(r) = [n].

A small technical detail here is that the merging functioefiried above need not
satisfy the path-extension property given in Defn. 6. In Afpwe give an alternative
definition of how to assign a weight to a rule sequence suchtltgapath-extension
property is no longer a limitation. This leads us to the failog theorem.

Theorem 3. Let.A be aP-automaton that accepts just the configuratigns), where
s is the starting point of the program and let,,.;~ be the automaton obtained by using
the saturation rule shown in Fig. 3 @A. Thenifey € C,n € N, §(c) is read offA ;-
in accordance with Thm. 2, we have,
IMOVP,,(n) = [®&{6({(g,nu) | u € I'*}](co).
If L C I'* is a regular language of stack configurations tH&mOVP., (n, L), which
is theIMOVP value restricted to only those paths that end in configuregidescribed
by L, can be calculated as follows:
IMOVP,,(n, L) = [®{6({g,n u) | u € L}](co)-

In case the semantic transformef§ and R,, are not distributive but only
monotonic, then the two combines in Thm. 3 safely approxnmstOVP,,(n) and
IMOVP,,(n, L), respectively. We do not present the proof in this papertmiessen-
tial idea carries over from solving monotonic dataflow pewbs in WPDSs [18].

5 Experimental Results

In [2], Balakrishnan and Reps present an algorithm to amatpemory accesses in
x86 code. Its goal is to determine an over-approximatiomefdet of values/memory-
addresses that each register and memory location holdstapeagram point. The core
dataflow-analysis algorithm used, called value-set aisa{y’SA), is not relational, i.e.,
it does not keep track of the relationships that hold amoggsters and memory loca-
tions. However, when interpreting conditional branchegctfically those that imple-
ment loops, it is important to know such relationships. Hg@cseparate affine-relation
analysis (ARA) is performed to recover affine relations tiatl among the registers at
conditional branch points; those affine relations are thesduo interpret conditional
branches during VSA. ARA recovers affine relations involyiegisters only, because
recovering affine relations involving memory locations \Webrequire points-to infor-
mation, which is not available until the end of VSA. ARA is ilemented using the
affine-relation domain from [16] as a weight domain. It isden machine arithmetic,
i.e., arithmetic module3?, and is able to take care of overflow.

Before each call instruction, a subset of the registersvisdsan the stack, either by
the caller or the callee, and restored at the return. Sudkteeg are called thealler-
saveandcallee-savaegisters. Because ARA only keeps track of information imvo
ing registers, when ARA is implemented using a WPDS, all effilations involving
caller-save and callee-save registers are lost at a calusé an EWPDS to preserve
them across calls by treating caller-save and callee-gmisters as local variables at a

11

call; i.e., the values of caller-save and callee-save tegigfter the call are set to the
values before the call and the values of other registersedr® she values at the exit
node of the callee.

The results are shown in Tab. 1. The column labeled ‘Braneftesiseful informa-
tion’ refers to the number of branch points at which ARA rem@d at least one affine
relation. The last column shows the number of branch pointshéch ARA imple-
mented via an EWPDS recovered more affine relations whenamdpo ARA imple-
mented viaa WPDS. Tab. 1 shows that the information recoMeydeWPDS is better
in 30% to 63% of the branch points that had useful informatidre EWPDS version
is somewhat slower, but uses less space; this is probablpdhe fact that the dataflow
transformer from [16] for ‘spoiling’ the affine relationsatinvolve a given register uses
twice the space of a transformer that preserves such neatio

Branches with
Memory (MB) Time (s) useful information
Prog InstgProcsBranches Call§WPDSEWPDSWPDSEWPD WPDS EWPDSYImprovement
mplayer2 58452 608 4608 2481 27| 6 8 9 137 192 57 (42%)
print 96096 955 8028 4013 61 19 20, 23 601 889 313 (52%)
attrib 96375 956 8076 4000 40 8 12 13| 306 380 93 (30%)
tracert |101149 1008 8501 4271 70 22 24 27| 659 1021‘ 387 (59%)
finger 101814 1032 8505 4324 70 23] 24 30 627 999 397 (63%)
Ipr 1317211347 10641 5639 102 36 36 46| 1076 1692 655 (61%)
rsh 1323591369 10658 5743 104 36 37 45/ 1073 1661 616 (57%)
javac 135978 13971 10899 5854 118 43 44 58 1376 2001 666 (48%)
ftp 150264 1589 12099 6833 121 42 43 61 1364 2008 675 (49%)
winhlp32179488 1911 15296 7845 156 58| 62| 98 2105 2990 918 (44%)
regsvr32(297648 341§ 2303513263 279 117 145 193 3418 52261879 (55%)
notepad 421044 4922 3260820018 328 124 147 390 3882 57931988 (51%)
cmd 482919 5595 3798924008 369 144 175 444 4656 68562337 (50%)

Table 1. Comparison of ARA results implemented using EWPDS versuD\S P

6 Related Work

Some libraries/tools based on model-checking pushdowemsgsfor dataflow analy-
sis are MOPED][7,21], WPDS [18], and WPDS++ [11]. Weighted pushdown gyste
have been used for finding uninitialized variables, livdalales, linear constant propa-
gation, and the detection of affine relationships. In eacthe$e cases, local variables
are handled by introducing special paths in the transitystesn of the PDS that models
the program. These paths skip call sites to avoid passirad l@riables to the callee.
This leads to imprecision by breaking existing relatiopshietween local and global
variables. Besides dataflow analysis, WPDSs have also tssehfar generalized au-
thorization problems [22].

MopPED has been used for performing relational dataflow analysis,obly for
finite abstract domains. Its basic approach is to embed tteaah transformer of each
program statement into the rules of the pushdown systenmtbdels the program. This
contrasts with WPDSs, where the abstract transformer iparage weight associated
with a pushdown rule. MPED associates global variables with states of the PDS and
local variables with its stack symbols. Then the stack ofREES simulates the run-
time stack of the program and maintains a different copy efitisal variables for each
procedure invocation. A simple pushdown reachability guem be used to compute

12

the required dataflow facts. The disadvantage of that apprizathat it cannot handle
infinite-size abstract domains because then associatiipstnact transformer with a
pushdown rule would create an infinite number of pushdowastuhn EWPDS is
capable of performing an analysis on infinite-size absttantains as well. The domain
used for copy-constant propagatiorh3 is one such example.

Besides dataflow analysis, model-checking of pushdowesyshas also been used
for verifying security properties in programs [6, 9, 5]. eikWPDSs, we can use EW-
PDS for this purpose, but with added precision that comesalthe presence of merg-
ing functions.

A result we have not presented in this paper is that EWPD Sbeased for single-
level pointer analysis, which enables us to answer staeltifipd aliasing queries. Stack-
qualified aliasing has been studied before by Whaley and P4 However, for recur-
sive programs, they collapse the strongly connected coemsrin the call graph. We
do not make any such approximation, and can also answeingjiaseries with respect
to a language of stack configurations instead of just a sstglek configuration.

The idea behind the transition from a WPDS to an EWPDS is tlesaittach extra
meaning to each run of the pushdown system. We look at a rurtras @f matching
calls and returns that push and pop values on the run-tinck sfathe program. This
treatment of a program run has also been explored by M@ller-and Seidl [15] in
an interprocedural dataflow-analysis algorithm to ideritife set of all affine relation-
ships. They explicitly match calls and returns to avoid paseelations involving local
variables to different procedures. This allowed us to tedly translate their work into
an EWPDS, which we have used for the experimensin

References

1. AV. Aho, R. Sethi, and J.D. Ullma@ompilers: Principles, Techniques and Tadsldison-
Wesley, 1985.

2. G. Balakrishnan and T. Reps. Analyzing memory access&firxecutables. Imt. Conf.
on Comp. Construct2004.

3. A. Bouajjani, J. Esparza, and O. Maler. Reachability gsialof pushdown automata: Appli-
cation to model checking. IBONCUR pages 135-150. Springer-Verlag, 1997.

4. A.Bouajjani, J. Esparza, and T. Touili. A generic applo@che static analysis of concurrent
programs with procedures. Bymp. on Princ. of Prog. Langrages 62—73, 2003.

5. H. Chen and D. Wagner. MOPS: An infrastructure for exangnéecurity properties of
software. InConf. on Comp. and Commun. Sé¢ovember 2002.

6. J. Esparza, A. Kucera, and S. Schwoon. Model-checkirgwith regular valuations for
pushdown systems. IFACAS pages 306—339, 2001.

7. J. Esparza and S. Schwoon. A BDD-based model checkerdorsige programs. IRroc.
CAV'01, LNCS 2102, pages 324—-336. Springer-Verlag, 2001.

8. A. Finkel, B. Willems, and P. Wolper. A direct symbolic apach to model checking push-
down systemsElectronic Notes in Theoretical Computer Scierzegl997.

9. T.Jensen, D. Le Métayer, and T. Thorn. Verification oftoalrflow based security properties.
In IEEE Symposium on Security and Privapgges 89-103, 1999.

10. J.B. Kam and J.D. Ullman. Monotone data flow analysis &aorks. Acta Inf, 7(3):305—
318, 1977.
11. N. Kidd, T. Reps, D. Melski, and A. Lal. WPDS++: A C++ liloyafor weighted pushdown

systems, 2004.

13

12. J. Knoop and B. Steffen. The interprocedural coincidgheorem. Irint. Conf. on Comp.
Construct, pages 125-140, 1992.

13. W. Landi and B. Ryder. Pointer-induced aliasing: A peoblclassification. [rBymp. on
Princ. of Prog. Lang.pages 93-103, 1991.

14. W. Landi and B. Ryder. A safe approximate algorithm faeiprocedural pointer aliasing.
In Conf. on Prog. Lang. Design and Imphages 235-248, 1992.

15. M. Miller-Olm and H. Seidl. Precise interproceduraalgsis through linear algebra. In
Symp. on Princ. of Prog. Lang2004.

16. M. Miller-Olm and H. Seidl. Analysis of modular arithtite In European Symp. on Pro-
gramming 2005.

17. T. Reps, S. Horwitz, and M. Sagiv. Precise interprocaddataflow analysis via graph
reachability. InNSymp. on Princ. of Prog. Langages 49-61, 1995.

18. T. Reps, S. Schwoon, and S. Jha. Weighted pushdown systedhtheir application to
interprocedural dataflow analysis. $tatic Analysis Symppages 189-213, 2003.

19. M. Sagiv, T. Reps, and S. Horwitz. Precise interprocadiataflow analysis with applica-
tions to constant propagatioitheor. Comp. S¢il67:131-170, 1996.

20. S. SchwoonModel-Checking Pushdown Syster®hD thesis, Technical Univ. of Munich,
Munich, Germany, July 2002.

21. S. Schwoon. Moped, 2002. http://www.fmi.uni-stuttgie/szs/tools/moped!.

22. S. Schwoon, S. Jha, T. Reps, and S. Stubblebine. On {izedrauthorization problems. In
Comp. Sec. Found. Workshadfyash., DC, 2003. IEEE Comp. Soc.

23. M. Sharir and A. Pnueli. Two approaches to interprocagidimta flow analysis. IProgram
Flow Analysis: Theory and ApplicationBrentice-Hall, Englewood Cliffs, NJ, 1981.

24. J. Whaley and M. Lam. Cloning-based context-sensitbiatpr alias analysis using binary
decision diagrams. I@onf. on Prog. Lang. Design and Impbages 131-144, 2004.

A Relaxing Merging Function Requirements

This appendix discusses what happens when merging fusaimnot satisfy the third
property in Defn. 6. There* algorithm of§3.1 (used for creating!,,.-) would still
compute the correct values fdfc) because it parses rule sequences using the grammar
from Defn. 8, but thepost™ algorithm of§3.2 (used for creatingl,,s:~) would not
work because it utilizes a different grammar and relies enpiith-extension property

to compute the correct value. Instead of trying to modify gthet* algorithm, we will
introduce an alternative definition of the value of a ruleusatre that is suited for the
cases when merging functions do not satisfy the path-extepsoperty. The definition
involves changing the productions and valuations of badrsequences as follows:

or — [] v(oy ow) = v(ow) @ v(ow)
| ou Ra oy Ry v(op R 05 Ro) = gr,(v(0), v(0os) ® v(Ro)) (2)
op — Oy Oy v(op 0s) =v(op) ®v(oy)

The value of a rule sequence as defined above is the same asubkalefined by
Defn. 8 when merging functions satisfy the path-extensimperty. In the absence of
the property, we need to make sure that merging functiongppéed to the weight
computed in the caller just before the call and the weightpated by the callee. We
enforce this using Eqr(2). The STACKvalues that are calculated for rule sequences
in §3.2 also does the same in Edn)[Pg. 8]. This means that Lem. 1 still holds and
the post* algorithm correctly solves this more general version of GR&wever, the
pre* algorithm is closely based on Defn. 8 and does not solve thergéized version
of GPP based on the above alternative definition.

14

