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Abstract. Recent work on weighted-pushdown systems shows how to generalize
interprocedural-dataflow analysis to answer “stack-qualified queries”, which answer the
question “what dataflow values hold at a program node for a particular set of calling con-
texts?” The generalization, however, does not account for precise handling of local vari-
ables. Extended-weighted-pushdown systems address this issue, and provide answers to
stack-qualified queries in the presence of local variables as well.

1 Introduction
An important static-analysis technique is dataflow analysis, which concerns itself with
calculating, for each program point, information about theset of states that can occur at
that point. For a given abstract domain, the ideal value to compute is the meet-over-all-
paths (MOP) value. Kam and Ullman [10] gave a coincidence theorem that provides
a sufficient condition for when this value can be calculated for single-procedure pro-
grams. Later, Sharir and Pnueli [23] generalized the theorem for multiple-procedure
programs, but did not consider local variables. Knoop and Steffen [12] then further ex-
tended the theorem to include local variables by modeling the run-time stack of a pro-
gram. Alternative techniques for handling local variableshave been proposed in [17,
19], but these lose certain relationships between local andglobal variables.

The MOP value over-approximates the set of all possible states that occur at a
program point (for all possible calling contexts). Recent work on weighted-pushdown
systems (WPDSs) [18] shows how to generalize interprocedural-dataflow analysis to
answer “stack-qualified queries” that calculate an over-approximation to the states that
can occur at a program point for a given regular set of callingcontexts. However, as
with Sharir and Pnueli’s coincidence theorem, it is not clear if WPDSs can handle
local variables accurately. In this paper, we extend the WPDS model to the Extended-
WPDS (EWPDS) model, which can accurately encode interprocedural-dataflow anal-
ysis on programs with local variables and answer stack-qualified queries on them. The
EWPDS model can be seen as generalizing WPDSs in much the sameway that Knoop
and Steffen generalized Sharir and Pnueli’s coincidence theorem.1

The contributions of this paper can be summarized as follows:

– We give a way of handling local variables in an extension of the WPDS model.
The advantage of using (E)WPDSs is that they give a way of calculating dataflow
values that hold at a program node for a particular calling context (or set of calling
contexts). They can also provide a set of “witness” program execution paths that
justify a reported dataflow value.

– We show that the EWPDS model is powerful enough to capture Knoop and
Steffen’s coincidence theorem. In particular, this means that we can calculate

1 Recently, with S. Schwoon, we have shown that the computational power of WPDSs is the
same as that of EWPDSs. We do not present this result in this paper due to space constraints,
but it involves simulating the program run-time stack as a dataflow value.



the MOP value (referred to as the interprocedural-meet-over-all-valid-paths, or
IMOVP value, for multiple-procedure programs with local variables) for any dis-
tributive dataflow-analysis problem for which the domain oftransfer functions has
no infinite descending chains. For monotonic problems that are not distributive, we
can safely approximate the IMOVP value. In addition to this,EWPDSs support
stack-qualified IMOVP queries.

– We have extended the WPDS++ library [11] to support EWPDSs and used it to
calculate affine relationships that hold between registersin x86 code [2].

A further result was too lengthy to be included in this paper,but illustrates the value
of our approach: we have shown that the IMOVP result of [13] for single-level pointer
analysis is an instance of our framework.2 This immediately gives us something new: a
way of answering stack-qualified aliasing problems.

The rest of the paper is organized as follows:§2 provides background on WPDSs
and explains the EWPDS model;§3 presents algorithms to solve reachability queries
in EWPDSs. In§4, we show how to compute the IMOVP value using an EWPDS;§5
presents experimental results; and§6 describes related work.

2 The EXTENDED-WPDSModel
2.1 Pushdown Systems

Definition 1. A pushdown systemis a triple P = (P, Γ, ∆) whereP is the set of
states or control locations,Γ is the set of stack symbols and∆ ⊆ P × Γ × P × Γ ∗

is the set of pushdown rules. Aconfiguration of P is a pair 〈p, u〉 wherep ∈ P and
u ∈ Γ ∗. A rule r ∈ ∆ is written as〈p, γ〉 →֒P 〈p′, u〉 wherep, p′ ∈ P , γ ∈ Γ and
u ∈ Γ ∗. These rules define a transition relation⇒P on configurations ofP as follows:
If r = 〈p, γ〉 →֒P 〈p′, u〉 then〈p, γu′〉 ⇒P 〈p′, uu′〉 for all u′ ∈ Γ ∗. The subscript
P on the transition relation is omitted when it is clear from the context. The reflexive
transitive closure of⇒ is denoted by⇒∗. For a set of configurationsC, we define
pre∗(C) = {c′ | ∃c ∈ C : c′ ⇒∗ c} andpost∗(C) = {c′ | ∃c ∈ C : c ⇒∗ c′}, which
are just backward and forward reachability under the transition relation⇒.

We restrict the pushdown rules to have at most two stack symbols on the right-hand
side. This means that for every ruler ∈ ∆ of the form〈p, γ〉 →֒P 〈p′, u〉, we have
|u| ≤ 2. This restriction does not decrease the power of pushdown systems because
by increasing the number of stack symbols by a constant factor, an arbitrary pushdown
system can be converted into one that satisfies this restriction [20]. Moreover, pushdown
systems with at most two stack symbols on the right-hand sideof each rule are sufficient
for modeling control flow in programs. We use∆i ⊆ ∆ to denote the set of all rules
with i stack symbols on the right-hand side.

It is instructive to see how a program’s control flow can be modeled because even
though the EWPDS model can work with any pushdown system, it is geared towards
performing dataflow analysis in programs. The constructionwe present here is also
followed in [18]. Let(N , E) be an interprocedural control flow graph where eachcall
node is split into two nodes: one is the source of an interprocedural edge to the callee’s

2 Multi-level pointer analysis problems (the kind that occurin C, C++, and Java programs) can
be safely approximated as single-level pointer-analysis problems [14].
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entry node and the second is the target of an edge from the callee’s exit node.N is
the set of nodes in this graph andE is the set of control-flow edges. Fig. 1(a) shows
an example of an interprocedural control-flow graph; Fig. 1(b) shows the pushdown
system that models it. The PDS has a single statep, one stack symbol for each node in
N , and one rule for each edge inE . We use∆1 rules to model intraprocedural edges,
∆2 rules (also calledpushrules) forcall edges, and∆0 rules (also calledpoprules) for
return edges. It is easy to see that a valid path in the program corresponds to a path in
the pushdown system’s transition system and vice versa.

emain

n1: x = 5

n3: call p

n7: ret from p

exitmain

ep

n5: y = 2

exitp

n4: if (. . .)

n2: y = 1
n6: y = 3

λλλλe.e[x aaaa ⊥⊥⊥⊥, y aaaa ⊥⊥⊥⊥]

λλλλe.e[x aaaa 5]

λλλλe.e[y aaaa 1]

λλλλe.e[x aaaa ⊥⊥⊥⊥]
λλλλe.e[y aaaa 2] λλλλe.e[y aaaa 3]

(1) 〈p, emain〉 →֒ 〈p, n1〉
(2) 〈p, n1〉 →֒ 〈p, n2〉
(3) 〈p, n2〉 →֒ 〈p, n3〉
(4) 〈p, n3〉 →֒ 〈p, ep n7〉
(5) 〈p, n7〉 →֒ 〈p, exitmain〉
(6) 〈p, exitmain〉 →֒ 〈p, ε〉
(7) 〈p, ep〉 →֒ 〈p, n4〉
(8) 〈p, n4〉 →֒ 〈p, n5〉
(9) 〈p, n4〉 →֒ 〈p, n6〉
(10) 〈p, n5〉 →֒ 〈p, exitp〉
(11) 〈p, n6〉 →֒ 〈p, exitp〉
(12) 〈p, exitp〉 →֒ 〈p, ε〉

(a) (b)

Fig. 1. (a) An interprocedural control flow graph. Thee andexit nodes represent entry and exit
points of procedures, respectively.x is a local variable ofmain andy is a global variable. Dashed
edges represent interprocedural control flow. Edge labels correspond to dataflow facts and are
explained in§2.3. (b) A pushdown system that models the control flow of the graph shown in (a).

The number of configurations of a pushdown system is unbounded, so we use a
finite automaton to describe a set of configurations.

Definition 2. Let P = (P, Γ, ∆) be a pushdown system. AP-automaton is a finite
automaton(Q, Γ,→, P, F ), whereQ ⊇ P is a finite set of states,→⊆ Q × Γ × Q is
the transition relation,P is the set of initial states, andF is the set of final states of
the automaton. We say that a configuration〈p, u〉 is accepted by aP-automaton if the
automaton can acceptu when it is started in statep (written asp u−→∗ q, whereq ∈ F ).
A set of configurations is calledregular if someP-automaton accepts it.

An important result is that for a regular set of configurations C, bothpost∗(C) and
pre∗(C) are also regular sets of configurations [20, 3, 8].

2.2 Weighted Pushdown Systems

A weighted pushdown system is obtained by supplementing a pushdown system with a
weight domain that is a bounded idempotent semiring [18, 4].

Definition 3. A bounded idempotent semiringis a quintuple(D,⊕,⊗, 0, 1), where
D is a set whose elements are calledweights, 0 and1 are elements ofD, and⊕ (the
combine operation) and⊗ (the extend operation) are binary operators onD such that
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1. (D,⊕) is a commutative monoid with0 as its neutral element, and where⊕ is
idempotent (i.e., for alla ∈ D, a ⊕ a = a).

2. (D,⊗) is a monoid with the neutral element1.
3. ⊗ distributes over⊕, i.e., for alla, b, c ∈ D we have

a ⊗ (b ⊕ c) = (a ⊗ b) ⊕ (a ⊗ c) and(a ⊕ b) ⊗ c = (a ⊗ c) ⊕ (b ⊗ c) .

4. 0 is an annihilator with respect to⊗, i.e., for alla ∈ D, a ⊗ 0 = 0 = 0 ⊗ a.
5. In the partial order⊑ defined by:∀a, b ∈ D, a ⊑ b iff a ⊕ b = a, there are no

infinite descending chains.

Definition 4. A weighted pushdown systemis a triple W = (P ,S, f) whereP =
(P, Γ, ∆) is a pushdown system,S = (D,⊕,⊗, 0, 1) is a bounded idempotent semiring
andf : ∆ → D is a map that assigns a weight to each pushdown rule.

Let σ ∈ ∆∗ be a sequence of rules. Usingf , we can associate a value toσ, i.e.,
if σ = [r1, . . . , rk], then we definev(σ)

def
= f(r1) ⊗ . . . ⊗ f(rk). Moreover, for any

two configurationsc andc′ of P , we letpath(c, c′) denote the set of all rule sequences
[r1, . . . , rk] that transformc into c′. Weighted pushdown systems are geared towards
solving the following two reachability problems.

Definition 5. LetW = (P ,S, f) be a weighted pushdown system, whereP = (P, Γ, ∆),
and letC ⊆ P × Γ ∗ be a regular set of configurations. Thegeneralized pushdown
predecessor (GPP) problem is to find for eachc ∈ P × Γ ∗:

δ(c)
def
=

⊕

{ v(σ) | σ ∈ path(c, c′), c′ ∈ C }.
Thegeneralized pushdown successor (GPS) problem is to find for eachc ∈ P × Γ ∗:

δ(c)
def
=

⊕

{ v(σ) | σ ∈ path(c′, c), c′ ∈ C }.

2.3 Extended Weighted Pushdown Systems

The reachability problems defined in the previous section compute the value of a rule
sequence by taking an extend of the weights of each of the rules in the sequence. How-
ever, when weighted pushdown systems are used for dataflow analysis of programs
[18] then the rule sequences, in general, represent interprocedural paths in a program.
To summarize the weight of such paths, we would have to maintain information about
local variables of all unfinished procedures that appear on the path.

We lift weighted pushdown systems to handle local variablesin much the same way
that Knoop and Steffen [12] lifted conventional dataflow analysis to handle local vari-
ables. We allow for local variables to be stored at call sitesand then use special merging
functions to appropriately combine them with the value returned by a procedure. For a
semiringS on domainD, define amerging functionas follows:

Definition 6. A functiong : D × D → D is a merging function with respect to a
bounded idempotent semiringS = (D,⊕,⊗, 0, 1) if it satisfies the following properties.

1. Strictness.For all a ∈ D, g(0, a) = g(a, 0) = 0.
2. Distributivity. The function distributes over⊕. For all a, b, c ∈ D,

g(a ⊕ b, c) = g(a, c) ⊕ g(b, c) andg(a, b ⊕ c) = g(a, b) ⊕ g(a, c)
3. Path Extension.3 For all a, b, c ∈ D, g(a ⊗ b, c) = a ⊗ g(b, c).

3 This property can be too restrictive in some cases; App. A discusses how this property may be
dispensed with.
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Definition 7. An extended weighted pushdown systemis a quadrupleWe =
(P ,S, f, g) where(P ,S, f) is a weighted pushdown system andg : ∆2 → G as-
signs a merging function to each rule in∆2, whereG is the set of all merging functions
on the semiringS. We will writegr as a shorthand forg(r).

Note that a push rule has both a weight and a merging function associated with it.
The merging functions are used to combine the effects of a called procedure with those
made by the calling procedure just before the call. As an example, Figure 1 shows an
interprocedural control flow graph and the pushdown system that can be used to rep-
resent it. We can perform constant propagation (with uninterpreted expressions) on the
graph by assigning a weight to each pushdown rule. LetV be the set of all variables in
a program and(Z⊥,⊑,⊓) with Z⊥ = Z ∪ {⊥} be the standard constant-propagation
semilattice:⊥ ⊑ c for all c ∈ Z and⊓ is the greatest-lower-bound operation in this par-
tial order.⊥ stands for “not-a-constant”. The weight semiring isS = (D,⊕,⊗, 0, 1)
whereD = (Env → Env) is the set of all environment transformers with an envi-
ronment being a mapping for all variables:Env = (V → Z⊥) ∪ {⊤}. We use⊤ to
denote an infeasible environment. Furthermore, we restrict the setD to contain only
⊤-strict transformers, i.e., for alld ∈ D, d(⊤) = ⊤. We can extend the meet operation
to environments by taking meet componentwise.

env1 ⊓ env2 =







env1 if env2 = ⊤
env2 if env1 = ⊤
λv.(env1(v) ⊓ env2(v)) otherwise

The semiring operations and constants are defined as follows:
0 = λe.⊤
1 = λe.e

w1 ⊕ w2 = λe.(w1(e) ⊓ w2(e))
w1 ⊗ w2 = w2 ◦ w1

The weights for the PDS that models the program in Fig. 1 are shown as edge
labels. A weight of the formλe.e[x 7→ 5] returns an environment that agrees with the
argument, except thatx is bound to5. The environment⊤ cannot be updated, and thus
(λe.e[x 7→ 5])⊤ = ⊤.

The merging function for call siten3 will receive two environment transformers:
one that summarizes the effect of the caller from its entry point to the call site (emain to
n3) and one that summarizes the effect of the called procedure (ep to exitp). It then has
produce the transformer that summarizes the effect of the caller from its entry point to
the return site (emain to n7). We define it as follows:

g(w1, w2) = if (w1 = 0 or w2 = 0) then 0
else λe.e[x 7→ w1(e)(x), y 7→ (w1 ⊗ w2)(e)(y)]

It copies over the value of the local variablex from the call site, and gets the value ofy

from the called procedure. Because the merging function hasaccess to the environment
transformer just before the call, we do not have to pass the value of local variablex into
procedurep. Hence the call stops tracking the value ofx using the weightλe.e[x 7→ ⊥].

To formalize this, we redefine the generalized pushdown predecessor and successor
problem by changing the definition of the value of a rule sequence. If σ ∈ ∆∗ with
σ = [r1, r2, · · · , rk] then let(r σ) denote the sequence[r, r1, · · · , rk]. Also, let [ ]
denote the empty sequence. Consider the context-free grammar shown in Fig. 2.

σs is simply R∗
1. σb represents abalancedsequence of rules that have matched

calls (R2) and returns (R0) with any number of rules from∆1 inbetween.σi is just
(R2 | σb)

+ in regular-language terminology, and represents sequences that increase
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R0 → r (r ∈ ∆0)
R1 → r (r ∈ ∆1)
R2 → r (r ∈ ∆2)

σs → [ ] | R1 | σs σs

σb → σs | σb σb

| R2 σb R0

σi → R2 | σb | σi σi

σd → R0 | σb | σd σd

σa → σd σi

Fig. 2. Grammar used for parsing rule sequences. The start symbol ofthe grammar isσa.

stack height.σd is (R0 | σb)
+ and represents sequences that decrease stack height.

σa can derive any rule sequence. We use this grammar to define thevalue of a rule
sequence.

Definition 8. Given anEWPDSWe = (P ,S, f, g), we define thevalueof a sequence
of rulesσ ∈ ∆∗ by first parsing the sequence according to the above grammar and then
giving a meaning to each production rule.

1. v(r) = f(r)
2. v([ ]) = 1
3. v(σs σs) = v(σs) ⊗ v(σs)
4. v(σb σb) = v(σb) ⊗ v(σb)

5. v(R2 σb R0) = gR2
(1, v(σb) ⊗ v(R0))

6. v(σd σd) = v(σd) ⊗ v(σd)
7. v(σi σi) = v(σi) ⊗ v(σi)
8. v(σd σi) = v(σd) ⊗ v(σi)

Here we have usedgR2
as a shorthand forgr wherer is the terminal derived byR2.

The main thing to note in the above definition is the application of merging functions
on balanced sequences. Because the grammar presented in Fig. 2 is ambiguous, there
might be many parsings of the same rule sequence, but all of them would produce the
same value because the extend operation is associative and there is a unique way to
balanceR2s withR0s.

The generalized pushdown problems GPP and GPS for EWPDS are the same as
those for WPDS except for the changed definition of the value of a rule sequence. If we
let each merging function begr(w1, w2) = w1 ⊗ f(r)⊗w2, then the EWPDS reduces
to a WPDS. This justifies calling our model anextendedweighted pushdown system.

3 Solving Reachability Problems inEWPDSs
In this section, we present algorithms to solve the generalized reachability problems
for EWPDSs. Throughout this section, letWe = (P ,S, f, g) be an EWPDS where
P = (P, Γ, ∆) is a pushdown system andS = (D,⊕,⊗, 0, 1) is the weight domain.
Let C be a fixed regular set of configurations that is recognized by aP-automaton
A = (Q, Γ,→0, P, F ) such thatA has no transition leading to an initial state. Note
that any automaton can be converted to an equivalent one thathas no transition into an
initial state by duplicating the initial states. We also assume thatA has noε-transitions.

As in the case of weighted pushdown systems, we construct an annotated automaton
from whichδ(c) can be read off efficiently. This automaton is the same as the automaton
constructed for simple pushdown reachability [20], exceptfor the annotations. We will
not show the calculation of witness annotations because they are obtained in exactly the
same way as for weighted pushdown systems [18]. This is because witnesses record the
paths that justify a weight and not how the values of those paths were calculated.

3.1 SolvingGPP

To solve GPP, we take as input theP-automatonA that describes the set of configura-
tions on which we want to query the EWPDS. As output, we createan automatonApre∗

with weights as annotations on transitions, and then read off the values ofδ(c) from the
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automaton. The algorithm is based on the saturation rule shown below. Starting with
the automatonA, we keep applying this rule until it can no longer be applied.Termina-
tion is guaranteed because there are a finite number of transitions and the height of the
weight domain is bounded as well. For each transition in the automaton being created,
we store the weight on it using functionl. The saturation rule is the same as that for
predecessor reachability in ordinary pushdown systems, except for the weights, and is
different from the one for weighted pushdown systems only inthe last case, where a
merging function is applied.

– If r = 〈p, γ〉 →֒ 〈p′, ε〉, then update the annotation ont = (p, γ, p′) to l(t) :=
l(t) ⊕ f(r). We assumel(t) = 0 if the transitiont did not exist before.

– If r = 〈p, γ〉 →֒ 〈p′, γ′〉 and there is a transitiont = (p′, γ′, q), then update the
annotation ont′ = (p, γ, q) to l(t′) := l(t′) ⊕ (f(r) ⊗ l(t)).

– If r = 〈p, γ〉 →֒ 〈p′, γ′γ′′〉 and there are transitionst = (p′, γ′, q1) andt′ =
(q1, γ

′′, q2), then update the annotation ont′′ = (p, γ, q2) to

l(t′′) := l(t′′) ⊕

{

f(r) ⊗ l(t) ⊗ l(t′) if q1 6∈ P

gr(1, l(t)) ⊗ l(t′) otherwise

For convenience, we will write a transitiont = (p, γ, q) in Apre∗ with l(t) = w as
p

γ
−→
w

q. Define the value of a pathq1
γ1−−→
w1

q2 · · ·
γn−−→
wn

qn+1 to bew1 ⊗ w2 · · · ⊗ wn.
The following theorem shows howδ(c) is calculated.

Theorem 1. For a configurationc = 〈p, γ1γ2 · · · γn〉, δ(c) is the combine of the values
of all accepting pathsp

γ1−−→ q1
γ2−−→ · · ·

γn−−→ qn, qn ∈ F in Apre∗ .

We can calculateδ(c) efficiently using an algorithm similar to the simulation algo-
rithm for NFAs (cf. [1, Algorithm 3.4]).

3.2 SolvingGPS

For this section, we shall assume that we can have at most one rule of the form〈p, γ〉 →֒
〈p′, γ′γ′′〉 for each combination ofp′,γ′, andγ′′. This involves no loss of generality be-
cause we can replace a ruler = 〈p, γ〉 →֒ 〈p′, γ′γ′′〉 with two rules:(a) r′ = 〈p, γ〉 →֒
〈pr, γ

′γ′′〉 with weightf(r) and merging functiongr, and(b) r′′ = 〈pr, γ
′〉 →֒ 〈p′, γ′〉

with weight1, wherepr is a new state. This replacement does not change the reachabil-
ity problem’s answers. Letlookup(p′, γ′, γ′′) be a function that returns the unique push
rule associated with a triple(p′, γ′, γ′′) if there is one.

Before presenting the algorithm, let us consider an operational definition of the
value of a rule sequence. The importance of this alternativedefinition is that it shows
the correspondence with the call semantics of a program. Foreach interprocedural path
in a program, we define a stack of weights that contains a weight for each unfinished
call in the path. Elements of the stack are from the setD×D×∆2 (recall that∆2 was
defined as the set of all push rules in∆), where(w1, w2, r) signifies that (i) a call was
made using ruler, (ii) the weight at the time of the call wasw1, and (iii) w2 was the
weight on the call rule.

Let STACK = D.(D × D × ∆2)
∗ be the set of all nonempty stacks where the

topmost element is fromD and the rest are from(D × D × ∆2). We will write an
element(w1, w2, r) ∈ D × D × ∆2 as(w1, w2)r. For each ruler ∈ ∆ of the form
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〈p, γ〉 →֒ 〈p′, u〉, u ∈ Γ ∗, we will associate a function[[r]] : STACK→ STACK. Let
S ∈ (D × D × ∆2)

∗.

– If r has one symbol on the right-hand side (|u| = 1), then accumulate its weight on
the top of the stack:[[r]] (w1 S) = ((w1 ⊗ f(r)) S)

– If r has two symbols on the right-hand side (|u| = 2), then save the weight of the
push rule as well as the push rule itself on the stack and starta fresh entry on the
top of the stack:[[r]] (w1 S) = (1 (w1, f(r))r S)

– If r has no symbols on the right-hand side (|u| = 0), then apply the appropriate
merging function if there is something pushed on the stack. Otherwise,r represents
an unbalanced pop rule and simply accumulate its weight on the stack. Note that we
drop the weight of the push rule when we apply the merging function in accordance
with case5 of Defn. 8.

[[r]] (w1 (w2, w3)r1
S) = ((gr1

(w2, w1 ⊗ f(r)) S) (1)
[[r]] (w1) = (w1 ⊗ f(r))

For a sequence of rulesσ = [r1, r2, · · · , rn], define[[σ]] = [[[r2, · · · , rn]]] ◦ [[r1]].
Let flatten : STACK→ D be an operation that computes a weight from a stack as
follows:

flatten(w1 S) = flatten′(S) ⊗ w1
flatten′(( )) = 1
flatten′((w1, w2)r S) = flatten′(S) ⊗ (w1 ⊗ w2)

Example 1.Consider the rule sequenceσ that takes the program in Fig. 1 fromemain to
exitp via noden5. If we apply[[σ]] to a stack containing just1, we get a stack of height
2 as follows:[[σ]](1) = ((λe.e[y 7→ 2]) (λe.e[x 7→ 5, y 7→ 1], λe.e[x 7→ ⊥])r), where
r is the push rule that calls procedurep (Rule4 in Fig. 1(b)). The top of the stack is
the weight computed insidep (Rules7, 8, 10), and the bottom of the stack contains a
pair of weights: the first component is the weight computed inmain just before the call
(Rules1, 2, 3); the second component is just the weight on the call ruler. If we apply
the flattenoperation on this stack, we get the weightλe.e[x 7→ ⊥, y 7→ 2] which is
exactly the valuev(σ). When we apply the pop ruler′ (Rule12) to this stack, we get:

[[σ r′]](1) = [[r′]] ◦ [[σ]](1)
= (gr(λe.e[x 7→ 5, y 7→ 1], λe.e[y 7→ 2]))
= (λe.e[x 7→ 5, y 7→ 2])

Again, applyingflattenon this stack gives usv(σ r′). The following lemma formalizes
the equivalence between[[σ]] andv(σ).

Lemma 1. For any valid sequence of rulesσ (σ ∈ path(c, c′) for some configurations
c andc′), [[σ]] (1) = S such that flatten(S) = v(σ).

Corollary 1. For a configurationc, let δS(c) ⊆ STACK be defined as follows:
δS(c) = {[[σ]](1) | σ ∈ paths(c′, c), c′ ∈ C}.

LetC be the set of configurations described by theP-automatonA. Then
δ(c) = ⊕{flatten(S) | S ∈ δS(c)}.

The above corollary shows thatδS(c) has enough information to computeδ(c) di-
rectly. To solve the pushdown successor problem, we take theinputP-automatonA that
describes a set of configurations and create an annotatedP-automatonApost∗ (one that
has weights as annotations on transitions) from which we canread off the value ofδ(c)
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for any configurationc. The algorithm is again based on a saturation rule. For each tran-
sition in the automaton being created, we have a functionl that stores the weight on the
transition. Based on the above operational definition of thevalue of a path, we would
createApost∗ on pairs of weights, that is, over the semiring(D×D,⊕,⊗, (0, 0), (1, 1))
where⊕ and⊗ are defined component wise. Also, we introduce a new state foreach
push rule. So the states ofApost∗ areQ ∪ {qp′,γ′ | 〈p, γ〉 →֒ 〈p′, γ′γ′′〉 ∈ ∆}. Let Q′

be the set of new states added. The saturation rule is shown inFig. 3. To see what the
saturation rule is doing, consider a path inApost∗ : τ = q1

γ1−−→ q2
γ2−−→ · · ·

γn−−→ qn+1.
As an invariant of our algorithm, we would haveq1 ∈ (P ∪ Q′); q2, · · · , qk ∈ Q′; and
qk+1, · · · , qn+1 ∈ (Q − P ) for some0 ≤ k ≤ n + 1. This is because of the fact that
we never create transitions from a state inP to a state inP , or from a state inQ′ to a
state inP , or from a state inQ − P to a state inP ∪ Q′. Now define a new transition
labell′(t) as follows:l′(p, γ, q) = lookup(p′, γ′, γ) if p ≡ qp′,γ′ .
Then the pathτ describes theSTACK vpath(τ) = (l1(t1) l(t2)l′(t2) · · · l(tk)l′(tk))
whereti = (qi, γi, qi+1) andl1(t) is the first component projected out of the weight-
pair l(t). This means that each path inApost∗ represents aSTACKand all the saturation
algorithm does is to make the automaton rich enough to encodeall STACKs inδS(c) for
all configurationsc. The first and third cases of the saturation rule can be seen asapply-
ing [[r]] for rules with one and two stack symbols on the right-hand side, respectively.
Applying the fourth case immediately after the second case can be seen as applying[[r]]
for pop rules.

– If r = 〈p, γ〉 →֒ 〈p′, γ′〉 and there is a transitiont = (p, γ, q) with annotationl(t), then
update the annotation on transitiont′ = (p′, γ′, q) to l(t′) := l(t′)⊕ (l(t)⊗ (f(r),1)).
We assumel(t′) = (0, 0) if the transition did not exist before.

– If r = 〈p, γ〉 →֒ 〈p′, ε〉 and there is a transitiont = (p, γ, q) with annotationl(t), then
update the annotation on transitiont′ = (p′, ε, q) to l(t′) := l(t′)⊕ (l(t)⊗ (f(r), 1)).

– If r = 〈p, γ〉 →֒ 〈p′, γ′γ′′〉 and there is a transitiont = (p, γ, q) with annotationl(t)
then lett′ = (p′, γ′, qp′,γ′), t′′ = (qp′,γ′ , γ′′, q) and update annotations on them.

l(t′) := l(t′) ⊕ (1, 1)
l(t′′) := l(t′′) ⊕ (l(t) ⊗ (1, f(r)))

– If there are transitionst = (p, ε, q) and t′ = (q, γ′, q′) with annotationsl(t) =
(w1, w2) and l(t′) = (w3, w4) then update the annotation on the transitiont′′ =
(p, γ′, q′) to l(t′′) := l(t′′) ⊕ w wherew is defined as follows:

w =



(glookup(p′,γ′ ,γ′′)(w3, w1), 1) if q ≡ qp′,γ′

l(t′) ⊗ l(t) otherwise

Fig. 3. Saturation rule for constructingApost∗ from A.

Theorem 2. For a configurationc = 〈p, u〉, we have,
δ(c) = ⊕{flatten(vpath(σt)) | σt ∈ paths(p, u, qf), qf ∈ F}

wherepaths(p, u, qf) denotes the set of all paths of transitions inApost∗ that go from
p to qf on inputu, i.e.,p u−→∗ qf .

An easy way of computing the combine in the above theorem is toreplace annota-
tion l(t) on each transitiont with l1(t)⊗l2(t), the extend of the two weight components
of l(t), and then use standard NFA simulation algorithms (cf. [1, Algorithm 3.4]) as we
would use forApre∗ .
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4 Interprocedural Meet Over All Paths
In this section, we show how extended weighted pushdown systems can be used to com-
pute the interprocedural-meet-over-all-paths (IMOVP) solution for a given dataflow
analysis problem. We will first define the IMOVP strategy as described in [12] and
then show how to solve it using an EWPDS.

We are given a meet semilattice(C,⊓) describing dataflow facts and the
interprocedural-control-flow graph of a program(N , E) whereNC ,NR ⊆ N are the
call and return nodes, respectively. We are also given a semantic transformer for each
node in the program:[[ ]] : N → (C → C), which represents (i.e., over-approximates)
the effect of executing a statement in the program. LetSTK = C+ be the set of all
nonempty stacks with elements fromC. STKis used as an abstract representation of the
run-time stack of a program. Define the following operationson stacks.

newstack: C → STK creates a new stack with a single element
push: STK× C → STKpushes a new element on top of the stack
pop : STK→ STK removes the top most element of the stack
top : STK→ C returns the top most element of the stack

We can now describe the interprocedural semantic transformer for each program
node:[[ ]]∗ : N → (STK→ STK). Forstk ∈ STK,

[[n]]∗(stk) =







push(pop(stk), [[n]](top(stk))) if n ∈ N − (NC ∪ NR)
push(stk, [[n]](top(stk))) if n ∈ NC

push(pop(pop(stk)),Rn(top(pop(stk)), [[n]](top(stk)))) if n ∈ Nr

whereRn : C ×C → C is a merging function like we have in EWPDSs. It is applied on
dataflow value computed by the called procedure ([[n]](top(stk))) and the value com-
puted by the caller at the time of the call (top(pop(stk))). This definition assumes that
a dataflow fact inC contains all information that is required by a procedure so that
each transformer has to look at only the top of the stack passed to it – except for return
nodes, where we look at the top two elements of the stack. Now,define a path trans-
former as follows. Ifp = [n1 n2 · · ·nk] is a valid interprocedural path in the program
then[[p]]∗ = [[[n2 · · ·nk]]]∗ ◦ [[n1]]

∗. This leads to the following definition.

Definition 9. [12] If s ∈ N is the starting node of a program, then forc0 ∈ C and
n ∈ N , the interprocedural-meet-over-all-paths value is defined as follows:

IMOVPc0
(n) = ⊓{[[p]]∗(newstack(c0)) | p ∈ IP(s, n)}

whereIP(s, n) represents the set of all valid interprocedural paths froms to n and meet
of stacks is just the meet of their topmost values:stk1 ⊓ stk2 = top(stk1) ⊓ top(stk2).

We now construct an EWPDSWe = (P ,S, f, g) to compute this value whenC
has no infinite descending chains, all semantic transformers [[n]] are distributive, and
all merging relationsRn are distributive in each of their arguments. Define a semiring
S = (D,⊕,⊗, 0, 1) asD = [C → C] ∪ {0}, which consists of the set of all distributive
functions onC and a special function0. Fora, b ∈ D,

a ⊕ b =







a if b = 0
b if a = 0
(a ⊓ b) otherwise

a ⊗ b =

{

0 if a = 0 or b = 0
(b ◦ a) otherwise

1 = λc.c

The pushdown systemP is ({q},N , ∆) where∆ is constructed by including a rule for
each edge inE . First, letEintra ⊆ E be the intraprocedural edges andEinter ⊆ E be the
interprocedural (call and return) edges. Then include the following rules in∆.
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1. For(n, m) ∈ Eintra, include the ruler = 〈q, n〉 →֒ 〈q, m〉 with f(r) = [[n]].
2. Forn ∈ NC , (n, m) ∈ Einter with nR ∈ NR being the return site for the call atn,

include the ruler = 〈q, n〉 →֒ 〈q, m nR〉 with f(r) = [[n]] and
gr(a, b) = λc.Rn(a(c), (a ⊗ [[n]] ⊗ b ⊗ [[nR]])(c)).

3. Forn ∈ N , if it is an exit node of a procedure, include the ruler = 〈q, n〉 →֒ 〈q, ε〉
with f(r) = [[n]].

A small technical detail here is that the merging functions defined above need not
satisfy the path-extension property given in Defn. 6. In App. A, we give an alternative
definition of how to assign a weight to a rule sequence such that the path-extension
property is no longer a limitation. This leads us to the following theorem.

Theorem 3. LetA be aP-automaton that accepts just the configuration〈q, s〉, where
s is the starting point of the program and letApost∗ be the automaton obtained by using
the saturation rule shown in Fig. 3 onA. Then ifc0 ∈ C, n ∈ N , δ(c) is read offApost∗

in accordance with Thm. 2, we have,
IMOVPc0

(n) = [⊕{δ(〈q, n u〉 | u ∈ Γ ∗}](c0).
If L ⊆ Γ ∗ is a regular language of stack configurations thenIMOVPc0

(n, L), which
is theIMOVP value restricted to only those paths that end in configurations described
byL, can be calculated as follows:

IMOVPc0
(n, L) = [⊕{δ(〈q, n u〉 | u ∈ L}](c0).

In case the semantic transformers[[.]] and Rn are not distributive but only
monotonic, then the two combines in Thm. 3 safely approximate IMOVPc0

(n) and
IMOVPc0

(n, L), respectively. We do not present the proof in this paper, butthe essen-
tial idea carries over from solving monotonic dataflow problems in WPDSs [18].

5 Experimental Results
In [2], Balakrishnan and Reps present an algorithm to analyze memory accesses in
x86 code. Its goal is to determine an over-approximation of the set of values/memory-
addresses that each register and memory location holds at each program point. The core
dataflow-analysis algorithm used, called value-set analysis (VSA), is not relational, i.e.,
it does not keep track of the relationships that hold among registers and memory loca-
tions. However, when interpreting conditional branches, specifically those that imple-
ment loops, it is important to know such relationships. Hence, a separate affine-relation
analysis (ARA) is performed to recover affine relations thathold among the registers at
conditional branch points; those affine relations are then used to interpret conditional
branches during VSA. ARA recovers affine relations involving registers only, because
recovering affine relations involving memory locations would require points-to infor-
mation, which is not available until the end of VSA. ARA is implemented using the
affine-relation domain from [16] as a weight domain. It is based on machine arithmetic,
i.e., arithmetic module232, and is able to take care of overflow.

Before each call instruction, a subset of the registers is saved on the stack, either by
the caller or the callee, and restored at the return. Such registers are called thecaller-
saveandcallee-saveregisters. Because ARA only keeps track of information involv-
ing registers, when ARA is implemented using a WPDS, all affine relations involving
caller-save and callee-save registers are lost at a call. Weused an EWPDS to preserve
them across calls by treating caller-save and callee-save registers as local variables at a
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call; i.e., the values of caller-save and callee-save registers after the call are set to the
values before the call and the values of other registers are set to the values at the exit
node of the callee.

The results are shown in Tab. 1. The column labeled ‘Brancheswith useful informa-
tion’ refers to the number of branch points at which ARA recovered at least one affine
relation. The last column shows the number of branch points at which ARA imple-
mented via an EWPDS recovered more affine relations when compared to ARA imple-
mented via a WPDS. Tab. 1 shows that the information recovered by EWPDS is better
in 30% to 63% of the branch points that had useful information. The EWPDS version
is somewhat slower, but uses less space; this is probably dueto the fact that the dataflow
transformer from [16] for ‘spoiling’ the affine relations that involve a given register uses
twice the space of a transformer that preserves such relations.

Branches with
Memory (MB) Time (s) useful information

Prog InstsProcsBranches Calls WPDSEWPDSWPDSEWPDSWPDS EWPDSImprovement
mplayer2 58452 608 4608 2481 27 6 8 9 137 192 57 (42%)
print 96096 955 8028 4013 61 19 20 23 601 889 313 (52%)
attrib 96375 956 8076 4000 40 8 12 13 306 380 93 (30%)
tracert 101149 1008 8501 4271 70 22 24 27 659 1021 387 (59%)
finger 101814 1032 8505 4324 70 23 24 30 627 999 397 (63%)
lpr 131721 1347 10641 5636 102 36 36 46 1076 1692 655 (61%)
rsh 132355 1369 10658 5743 104 36 37 45 1073 1661 616 (57%)
javac 135978 1397 10899 5854 118 43 44 58 1376 2001 666 (48%)
ftp 150264 1588 12099 6833 121 42 43 61 1364 2008 675 (49%)
winhlp32 179488 1911 15296 7845 156 58 62 98 2105 2990 918 (44%)
regsvr32 297648 3416 2303513265 279 117 145 193 3418 52261879 (55%)
notepad 421044 4922 3260820018 328 124 147 390 3882 57931988 (51%)
cmd 482919 5595 3798924008 369 144 175 444 4656 68562337 (50%)

Table 1.Comparison of ARA results implemented using EWPDS versus WPDS.

6 Related Work

Some libraries/tools based on model-checking pushdown systems for dataflow analy-
sis are MOPED [7, 21], WPDS [18], and WPDS++ [11]. Weighted pushdown systems
have been used for finding uninitialized variables, live variables, linear constant propa-
gation, and the detection of affine relationships. In each ofthese cases, local variables
are handled by introducing special paths in the transition system of the PDS that models
the program. These paths skip call sites to avoid passing local variables to the callee.
This leads to imprecision by breaking existing relationships between local and global
variables. Besides dataflow analysis, WPDSs have also been used for generalized au-
thorization problems [22].

MOPED has been used for performing relational dataflow analysis, but only for
finite abstract domains. Its basic approach is to embed the abstract transformer of each
program statement into the rules of the pushdown system thatmodels the program. This
contrasts with WPDSs, where the abstract transformer is a separate weight associated
with a pushdown rule. MOPED associates global variables with states of the PDS and
local variables with its stack symbols. Then the stack of thePDS simulates the run-
time stack of the program and maintains a different copy of the local variables for each
procedure invocation. A simple pushdown reachability query can be used to compute
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the required dataflow facts. The disadvantage of that approach is that it cannot handle
infinite-size abstract domains because then associating anabstract transformer with a
pushdown rule would create an infinite number of pushdown rules. An EWPDS is
capable of performing an analysis on infinite-size abstractdomains as well. The domain
used for copy-constant propagation in§2.3 is one such example.

Besides dataflow analysis, model-checking of pushdown systems has also been used
for verifying security properties in programs [6, 9, 5]. Like WPDSs, we can use EW-
PDS for this purpose, but with added precision that comes dueto the presence of merg-
ing functions.

A result we have not presented in this paper is that EWPDSs canbe used for single-
level pointer analysis, which enables us to answer stack-qualified aliasing queries. Stack-
qualified aliasing has been studied before by Whaley and Lam [24]. However, for recur-
sive programs, they collapse the strongly connected components in the call graph. We
do not make any such approximation, and can also answer aliasing queries with respect
to a language of stack configurations instead of just a singlestack configuration.

The idea behind the transition from a WPDS to an EWPDS is that we attach extra
meaning to each run of the pushdown system. We look at a run as atreeof matching
calls and returns that push and pop values on the run-time stack of the program. This
treatment of a program run has also been explored by Müller-Olm and Seidl [15] in
an interprocedural dataflow-analysis algorithm to identify the set of all affine relation-
ships. They explicitly match calls and returns to avoid passing relations involving local
variables to different procedures. This allowed us to to directly translate their work into
an EWPDS, which we have used for the experiments in§5.
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A Relaxing Merging Function Requirements
This appendix discusses what happens when merging functions do not satisfy the third
property in Defn. 6. Thepre∗ algorithm of§3.1 (used for creatingApre∗ ) would still
compute the correct values forδ(c) because it parses rule sequences using the grammar
from Defn. 8, but thepost∗ algorithm of §3.2 (used for creatingApost∗ ) would not
work because it utilizes a different grammar and relies on the path-extension property
to compute the correct value. Instead of trying to modify thepost∗ algorithm, we will
introduce an alternative definition of the value of a rule sequence that is suited for the
cases when merging functions do not satisfy the path-extension property. The definition
involves changing the productions and valuations of balanced sequences as follows:

σb′ → [ ]
| σb R2 σb R0

σb → σb′ σs

v(σb′ σb′ ) = v(σb′ ) ⊗ v(σb′)
v(σb R2 σb R0) = gR2

(v(σb), v(σb) ⊗ v(R0)) (2)
v(σb′ σs) = v(σb′ ) ⊗ v(σs)

The value of a rule sequence as defined above is the same as the value defined by
Defn. 8 when merging functions satisfy the path-extension property. In the absence of
the property, we need to make sure that merging functions areapplied to the weight
computed in the caller just before the call and the weight computed by the callee. We
enforce this using Eqn.(2). TheSTACKvalues that are calculated for rule sequences
in §3.2 also does the same in Eqn.(1)[Pg. 8]. This means that Lem. 1 still holds and
thepost∗ algorithm correctly solves this more general version of GPS. However, the
pre∗ algorithm is closely based on Defn. 8 and does not solve the generalized version
of GPP based on the above alternative definition.
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