Strengthening Self-Checksumming via Self-Modifying Code

Jonathon T. Giffin, Mihai Christodorescu, Louis Kruger

Computer Sciences Department University of Wisconsin

{giffin,mihai,lpkruger}@cs.wisc.edu

Problem 1

Detect malicious modifications to code

Microsoft Office XP Setup Microsoft Office XP Professional with FrontPage User information			Tu Tu
User name:			
Organization:	s number on	×e	
fft SETI@Home D Eile Settings Help	ient 'he Search for	Press F1 for info Version 1.0	.xbox.com
Help Chirping data Doppler drift rate: 1 Frequency resoluti Strongest Peak: po (12200 Hr at 87:24 s Strongest Gaussia (0.6 Hr at 87:24 s Overall: 10,588%, d	Extraterrestrial Intelligence at HOME Data Analysis 100% 3051 Hz/sec in: 0.074506 Hz ver 747265416912437250.00 seconds, drift rate 1.301 Hz/sec) power 5.00, fit 348,430 cconds, drift rate 1.301 Hz/sec) poe CPU time: 3 hr 59 min 01 6 sec	http://setiathome.ssl.berkeley.edu Data Info From: 8 hr 41 min 9 sec RA, + 20 deg 12 min 35 sec Dec Recorded or. Fri Jan 08 06:16:09 1999 GMT Source: Arecibo Radio Observatory Base Frequency: 1.420644529 GHz User Info Name: Ash Data units completed: 8 Total computer time: 280 hr 29 min 58:9 sec	

6 December 2005

Problem 1

Detect malicious modifications to code

6 December 2005

Solution: Self-Checksumming

Program contains code to checksum parts of its own code.

Solution: Self-Checksumming

• Network of guards

[Chang & Atallah 2001]

- Many overlapping checksumming components
- Integrity Verification Kernels

[Aucsmith 1996]

- Multithreaded, self-modifying checksumming components
- Testers and correctors

[Horne *et al.* 2001]

Problem 2

Is the checksummed & validated code actually the code executed?

6 December 2005

Page-Replication Attack

Page-Replication Attack

Observation:

Writes to code affect program differently when a page-replication attack is underway

Use self-modifying code to detect page-replication attack

- 1. Overwrite instruction I_1 at address *v* with new instruction I_2 that alters control-flow
- 2. Read back the value at *v*
- 3. Execute the instruction at *v*

- 1. Overwrite instruction I_1 at address *v* with new instruction I_2 that alters control-flow
- 2. Read back the value at *v*
- 3. Execute the instruction at *v*

Self-Checksumming and Reality

Jonathon T. Giffin, Mihai Christodorescu, Louis Kruger

Computer Sciences Department University of Wisconsin

{giffin,mihai,lpkruger}@cs.wisc.edu

Taking Stock

... So self-checksumming works again, right?

No.

Self-checksumming will always fail in current, realistic threat models.

Problem 3

Attackers first remove checksum code, then maliciously modify program

6 December 2005

Solution: Redefine the Threat

The attacker cannot identify all relevant checksum code within the protected program.

"cannot identify" → "cannot reverse engineer"
→ Obfuscate

Solution: Redefine the Threat

- Network of guards [Chang & Atallah 2001]
 - Many overlapping checksumming components
- Integrity Verification Kernels

[Aucsmith 1996]

- Multithreaded, self-modifying checksumming components
- Testers and correctors

[Horne *et al.* 2001]

Solution: Redefine the Threat

The attacker cannot identify all relevant checksum code within the protected program.

The attacker can reverse engineer & modify any non-checksumming code...

...but the attacker cannot reverse engineer & remove the checksum computation code.

Realistic Threats

The attacker can understand and arbitrarily alter any code in the program.

[Madou et al. DRM 2005]

6 December 2005

6 December 2005

Root Problem

No trust base.

Self-checksumming will inherently and always fail in such an environment.

Root Problem

No trust base.

"Software alone never gets you assurance."

"Need independent processor & address space."

-- Brian Snow, 9:29 AM today

Trusted computing; remote verification

6 December 2005

Trusted computing; rem te

Trusted hardware alone is insufficient:

rifi

ation

Malicious OS or malicious process can alter or remove local verification routines

Remote verification alone is insufficient:

Malicious OS can again mount page-replication attacks

Conclusions

- Strengthening self-checksumming via selfmodifying code
 - Detects page-replication attack
- Fundamental attacks against selfchecksumming remain valid
- Trusted hardware + remote verification needed for secure checksum validation

Questions?

Contact the authors:

Jonathon T. Giffin Mihai Christodorescu Louis Kruger

giffin@cs.wisc.edu
mihai@cs.wisc.edu
lpkruger@cs.wisc.edu

Computer Sciences Department University of Wisconsin