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Time-of-Flight (ToF)
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Time-of-Flight in Nature

Echolocation Using Sound-Wave Time-of-Flight



Time-of-Flight 3D Cameras

St
stopwatch  source .,4 /'ghtpu/;eed

@ scene
yeO

W
sensor j\’ E\Z;\i pu\se
depth >
Time-of-flight 3D Camera
2 X depth = ¢ X 1
t t

speed time-of-flight
of light (round trip)




Time-of-Flight 3D Cameras

Commercial Devices
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Applications
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Direct ToF Camera: Requirements
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Direct ToF Example: Intel RealSense




Direct ToF Example: Airborne LiDAR
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Conventional Direct ToF Camera (LiDAR)

intensity

source

| " Laser Cycle

Transmitted
Waveform

/ tir;e

.
sensor‘




Conventional LiDAR
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Conventional LiDAR
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Conventional LiDAR
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Conventional Light Sensor
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Single-Photon Avalanche Diode (SPAD) Sensor
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Single-Photon Avalanche Diode (SPAD) Sensor
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Can we build a 3D time-of-flight camera with
single-photon sensors?



Single-Photon 3D Camera
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Single-Photon 3D Camera
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single-photon
sensor

3D imaging in dark

Single-Photon 3D Camera
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Single-Photon 3D Camera: Sunlight

Extreme darkness Bright daylight High dynamic range

Need to operate under a wide range of illumination conditions




Single-Photon 3D Camera: Sunlight
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Single-Photon 3D Camera: Sunlight
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Single-Photon 3D Camera: Simulated Result
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Single-Photon 3D Camera: Sunlight
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Dealing with Sunlight: Current Wisdom

absorption
filter

Peak difficult to locate
due to low SNR

Photon
Detections

Measured

Histogram

Source photons also blocked

15t pulse ® ® :

d oul o sunlight
2%pulse @ @ L o . photons
3dpulse @ o o o
nhpulseg @ ®

time

Sunlight photons blocked

Low SNR

photon counts

e el

time




Histogram Distortion: Key Observation
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Histogram Distortion: Key Observation
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Histogram Distortion: Key Observation
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Main Idea: Asynchronous Operation
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Asynchronous Operation [proposed]
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Asynchronous Operation [proposed]
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Asynchronous Operation [proposed]
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Asynchronous Operation [proposed]

# photons

l 100 shifts N

time

1
Expected

Histogram

single-photon

sensor




Asynchronous Operation [proposed]
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Asynchronous Operation [proposed]
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Anant Gupta*, Atul Ingle*, Mohit Gupta, “Asynchronous Single-Photon 3D Imaging,” ICCV 2019.




Achieving Asynchrony in Practice
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Achieving Asynchrony in Practice
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Easy to implement. Does not require major hardware changes.
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Hardware Prototype

Laser

Mirror

Single-photon Focusing
sensor lens

Beamsplitter

To scene

=

From scene




Experiment Result 1
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Experimental Result 1
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(high exposure) (low exposure)

/

-

e

RMSE=4.5 cm 4.7 cm

Photon-driven acquisition: Both dark and bright points recovered accurately




Experimental Result 2
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Experimental Result 2
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Towards Long-Range High-Resolution 3D Cameras
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Towards Long-Range High-Resolution 3D Cameras
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Single-Photon Cameras
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Latest iPhone 12/iPad Pro
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Latest iPhone 12/iPad Pro

\/ .
" FEONSIO)N |

f ¥ ' ] l'"~ h!
i sa b Juss B o8B,




Latest iPhone 12/iPad Pro
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Single-Photon Cameras

Long range Low power

Single-Photon
Cameras

- High dynamic High depth
range resolution

Extreme sensitivity

www.SinglePhoton3DImaging.com




