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End-to-end Argument

• Ideally, applications should take care of  
data integrity

• In reality, file systems are in charge

–Data is organized by metadata

–Most applications rely on file systems

–Applications share data
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Data Integrity In Reality

• Preserving data integrity is a challenge 

• Imperfect components
– disk media, firmware, controllers, etc.

• Techniques to maintain data integrity
– Checksums [Stein01, Bartlett04], RAID [Patternson88]

• Enough about disk. What about memory?
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Memory Corruption

• Memory corruptions do exist

– Old studies: 200 – 5,000 FIT per Mb *O’Gorman92, Ziegler96, Normand96, Tezzaron04+

• 14 – 359 errors per year per GB

– A recent work: 25,000 – 70,000 FIT per Mb [Schroeder09]

• 1794 – 5023 errors per year per GB

– Reports from various software bug and vulnerability databases

• Isn’t ECC enough?

– Usually correct single-bit error

– Many commodity systems don’t have ECC (for cost)

– Can’t handle software-induced memory corruptions
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The Problem

• File systems cache a large amount of data in 
memory for performance
– Memory capacity is growing

• File systems may cache data for a long time
– Susceptible to memory corruptions

• How robust are modern file systems to 
memory corruptions?
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A ZFS Case Study

• Fault injection experiments on ZFS

– What happens when disk corruption occurs?

– What happens when memory corruption occurs?

– How likely a bit flip would cause problems?

• Why ZFS?

– Many reliability mechanisms

– “provable end-to-end data integrity” [Bonwick07]
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Results

• ZFS is robust to a wide range of disk corruptions

• ZFS fails to maintain data integrity in the presence 
of memory corruptions

– reading/writing corrupt data, system crash

– one bit flip has non-negligible chances of causing failures

• Data integrity at memory level is not preserved
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Outline

• Introduction

• ZFS Background

• Data Integrity Analysis

– On-disk Analysis

– In-mem Analysis

• Conclusion
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BlockBlock

ZFS Reliability Features

• Checksums
– Detect silent data corruption
– Stored in a generic block pointer

• Replication
– Up to three copies (ditto blocks)
– Recover from checksum mismatch

• Copy-On-Write transactions
– Keep disk image always consistent

• Storage pool
– Mirror, RAID-Z Block
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Summary of On-disk Analysis

• ZFS detects all corruptions by using checksums

• Redundant on-disk copies and in-mem caching
help ZFS recover from disk corruptions

• Data integrity at this level is well preserved

(See our paper for more details)
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Random Test
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• Goal
– What happens when random bits get flipped?
– How often do those failures happen?

• Fault injection
– A trial: each run of a workload

• Run a workload -> inject bit flips -> observe failures

• Probability calculation
– For each type of failure

• P (failure) = # of trials with such failure / total # of trials



Workload
Reading

Corrupt Data
Writing 

Corrupt Data
Crash Page Cache

varmail 0.6% 0.0% 0.3% 31 MB

oltp 1.9% 0.1% 1.1% 129 MB

webserver 0.7% 1.4% 1.3% 441 MB

fileserver 7.1% 3.6% 1.6% 915 MB

Result of Random Test

• The probability of failures is non-negligible

• The more page cache is consumed, the more 
likely a failure would occur
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Controlled Test

• Goal

– Why do those failures happen in ZFS?

– How does ZFS react to memory corruptions?

• Fault injection

– Metadata: field by field

– Data: a random bit in a data block

• Workload

– For global metadata: the “zfs” command

– For file system level metadata and data: POSIX API
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Result Overview

• General observations

– Life cycle of a block

• Why does bad data get read or written to disk?

• Specific cases

– Bad data is returned

– System crashes

– Operation fails
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Lifecycle of a Block: READ

PAGE
CACHE

DISK

READ CORRUPT BLOCKREAD

• Blocks on the disk are protected

• Blocks in memory are not protected

• The window of vulnerability is unbounded

unbounded time

EVICTION

unbounded time
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Lifecycle of a Block: WRITE

PAGE
CACHE

DISK

WRITE FLUSH CORRUPT BLOCK

• Corrupt blocks are written to disk permanently

• Corrupt blocks are “protected” by the new checksum

<= 30s

EVICTION

unbounded time
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Result Overview

• General observations

– Life cycle of a block

• Why does bad data get read or written to disk?

• Specific cases

– Bad data is returned

– System crashes

– Operation fails
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Case 1: Bad Data

dnode

indirect block

data block

0 1 2 …

…

• Read (block 0)

dn_nlevels == 3  (011)
 return data block 0 at the leaf level

× dn_nlevels == 1 (001)
 treat an indirect block as data block 0

 return the indirect block

BAD DATA!!! 
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Case 2: System Crash

dnode

indirect block

data block

0 1 2 …

…

• Read (block 0)

dn_nlevels == 3  (011)
 return data block 0 at the leaf level

× dn_nlevels == 7  (111)
 go down to the leaf level

 treat data block 0 as an indirect block

 try to follow an invalid block pointer

 later a NULL-pointer is dereferenced
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Case 2: System Crash (cont.)

uint64_t size = BP_GET_LSIZE(bp);
...
buf->b_data = zio_buf_alloc(size); void *zio_buf_alloc(size_t size)

{
size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
ASSERT(c<  SPA_MAXBLOCKSIZE

>>SPA_MINBLOCKSHIFT);

return (kmem_cache_alloc
(zio_buf_cache[c],KM_PUSHPAGE));

} 

void * kmem_cache_alloc
(kmem_cache_t *cp, int kmflag)
{

…
ccp =  KMEM_CPU_CACHE(cp); 
…
mutex_enter(&ccp->cc_ylock);
...

}

a block pointer, now invalid

could be an arbitrarily large value

ASSERT(c<256)
disabled

NULL

but now c > 256

ccp is also NULL
NULL-pointer dereference

CRASH!!!
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• Open (“file”)

zp_flags is correct
 open() succeeds

× the 41st bit of zp_flags is flipped from 0 to 1 

 EACCES (permission denied)

Case 3: Operation Fail
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Case 3: Operation Fail (cont.)

…
if (((v4_mode & (ACE_READ_DATA|ACE_EXECUTE)) &&

(zp->z_phys->zp_flags & ZFS_AV_QUARANTINED)))
{

*check_privs = B_FALSE;
return (EACCES);

}
…

#define ZFS_AV_QUARANTINED 0x0000020000000000

41st bit
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Summary of Results

• Blocks in memory are not protected
– Checksum is only used at the disk boundary

• Metadata is critical
– Bad data is returned, system crashes, or operations fail

• Data integrity at this level is not preserved
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Conclusion

• A lot of effort has been put into dealing with 
disk failures
– little into handling memory corruptions

• Memory corruptions do cause problems
– reading/writing bad data, system crash, operation fail

• Shouldn't we protect data and metadata from 
memory corruptions?
– to achieve end-to-end data integrity
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Thank you!

Questions?

The ADvanced Systems Laboratory (ADSL) 

http://www.cs.wisc.edu/adsl/
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