
De-indirection for Flash-based Solid State Drives

by

Yiying Zhang

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
in

Computer Sciences

UNIVERSITY OF WISCONSIN-MADISON

2013

Committee in charge:
Prof. Andrea C. Arpaci-Dusseau (Co-chair)
Prof. Remzi H. Arpaci-Dusseau (Co-chair)
Prof. Shan Lu
Prof. Paul Barford
Prof. Jude W. Shavlik

ii

iv

v

To my parents

vi

vii

Acknowledgements

I would first and foremost extend my whole-hearted gratitudeto my advisors, An-
drea Arpaci-Dusseau and Remzi Arpaci-Dusseau. Andrea and Remzi are the reason
that I had the opportunity for this exceptional Ph.D. journey. To this day, I still re-
member the moment when they took me as their student and the joy and hope in
my heart.

Andrea and Remzi have showed me what systems research is likeand how
much fun and challenging it can be. Before this journey with them, I had always
liked and believed in the beauty of mathematics and theory. My initial interest
in systems research happened when I took Remzi’s Advanced Operating Systems
course, one of the best courses I have ever taken in my studentlife. Throughout
my Ph.D. studies, Remzi and Andrea have given me numerous pieces of priceless
advice, ranging from the details of numbers in figures and spaces in text to the broad
vision of how to pick research ideas and how to be successful in a research career.
They showed me how to enjoy systems research and look at it from a scientific
view.

My best moment every week may be the time after my weekly meeting with
them. Even though I often walked in his office with tons of results (one time it
was over 200 figures in one meeting) and a tiny amount of words,Remzi tolerated
it, understood it, and pointed me to the implications of my work, which had never
occured to me before. I was also awed by how much details Remzikeep in his
mind; he can always point me to the important and interestingproblem and the
relevant works in the past. Andrea’s deep and broad thoughtsalso amazed me.
She can always point out the big picture and guide me in the right direction. Most
important, they have the magic of making me feel excited, highly motivated, and
confident about my research.

Next, I would like to thank my other thesis-committee members, Shan Lu, Paul
Barford, and Jude Shavlik, for their insights, questions, and advice for my research.
I would like to thank all my committee members for taking their time to help me
improve this dissertation and adjusting their schedule to attend my final defense.

viii

I would also like to extend my gratitude to several other faculty members, who
have helped me greatly during my research journey, Mike Swift, Miron Livny, and
Jignesh Patel. My special thank goes to Mike Swift, who has patiently given me a
lot of valuable advice both on my research work and on research job hunting (even
in the last few minutes on his last work day before his sabbatical).

I am fortunate to have a great set of colleagues at UWisconsinwho have helped
me in various ways, Yupu Zhang, Vijay Chidambaram, Lanyue Lu, Ao Ma, Leo
Arulraj, Tyler Harter, Chris Dragga, Zev Weiss, Swami Sundararaman, Sriram Sub-
ramanian, Suli Yang, Mohit Saxena, Deepak Ramamurthi, Abhishek Rajimwale,
Joe Meehean, and Laxman Visampalli. I would like to especially thank Yupu Zhang
for being a quiet yet helping officemate; I can always turn around my chair and get
the answers to all kinds of my questions.

I am grateful to have had the opportunity of two great summers: the internship
at Microsoft Research-Silicon Valley and the internship atNetApp Corp. I would
like to thank the companies as well as my mentors and managersthere: Vijayan
Prabakaran at Microsoft Research (now at Datrium), and Gokul Soundararajan,
Mark Storer, Lakshmi Bairavasundaram (now at Datrium), Sethuraman Subbiah,
and Shankar Pasupathy at NetApp. Working with these two groups of people have
been a great fun and a rewarding experience for me.

I am very blessed to have the support my friends have given me.I would first
like to thank my friend Anupam Dikshit for his kind support. Iwould also like to
thank my two great roommates and best friends, Ramya Olinchindra and Lizhu Qi,
for having given me such great accompany in Madison. My othergood friends,
Jiaxiu He, Jie Liu, Wei Zhang, Linhai Song, Guoliang Jin, FeiXu, and Xiao Li,
have all helped me in different ways.

Finally, I would like to thank my parents, without whose unconditional love
and support this Ph.D. would have been meaningless. Even though they have their
own doubts and concerns, they have always had faith in me and supported me in
pursuing my dream. They cheered with me even for my tinest success and encour-
aged me when I felt low. The pride and joy in their eyes when seeing me graduate
made it all worthwhile. No words can express my gratitude andlove to them. I
dedicate this whole dissertation to these two most important people in my life.

ix

Abstract

DE-INDIRECTION FOR FLASH-BASED SSDS
Yiying Zhang

Flash-based solid-state drives (SSDs) have revolutionized storage with their high
performance. Modern flash-based SSDs virtualize their physical resources within-
directionto provide the traditional block interface and hide their internal operations
and structures. When using a file system on top of a flash-basedSSD, the device
indirection layer becomes redundant. Moreover, such indirection comes with a cost
both in memory space and in performance. Given that flash-based devices are likely
to continue to grow in their sizes and in their markets, we arefaced with a terrific
challenge:How can we remove the excess indirection and its cost in flash-based
SSDs?

We propose the technique of de-indirection to remove the indirection in flash-
based SSDs. With de-indirection, the need for device address mappings is removed
and physical addresses are stored directly in file system metadata. By doing so the
need for large and costly indirect tables is removed, while the device still has its
freedom to control block-allocation decisions, enabling it to execute critical tasks
such as garbage collection and wear leveling.

In this dissertation, we first discuss our efforts to build anaccurate SSD emula-
tor. The emulator works as a Linux pseudo block device and canbe used to run real
system workloads. The major challenge we found in building the SSD emulator
is to accurately model SSDs with parallel planes. We leveraged several techniques
to reduce the computational overhead of the emulator. Our evaluation results show
that the emulator can accurately model important metrics for common types of
SSDs, which is sufficient for the evaluation of various designs in this dissertation
and in SSD-related research.

Next, we presentNameless Writes, a new device interface that removes the need
for indirection in flash-based SSDs. Nameless writes allow the device to choose
the location of a write; only then is the client informed of the name(i.e., address)

x

where the block now resides. We demonstrate the effectiveness of nameless writes
by porting the Linux ext3 file system to use an emulated nameless-writing device
and show that doing so both reduces space and time overheads,thus making for
simpler, less costly, and higher-performance SSD-based storage.

We then describe our efforts to implement nameless writes onreal hardware.
Most research on flash-based SSDs including our initial evaluation of nameless
writes rely on simulation or emulation. However, nameless writes require funda-
mental changes in the internal workings of the device, its interface to the host op-
erating system, and the host OS. Without implementation in real devices, it can
be difficult to judge the true benefit of the nameless writes design. Using the
OpenSSD Jasmine board, we develop a prototype of the Nameless Write SSD.
While the flash-translation layer changes were straightforward, we discovered un-
expected complexities in implementing extensions to the storage interface.

Finally, we discuss a new solution to perform de-indirection, the File System
De-Virtualizer (FSDV), which can dynamically remove the cost of indirection in
flash-based SSDs. FSDV is a light-weight tool that de-virtualizes data by changing
file system pointers to use device physical addresses. Our evaluation results show
that FSDV can dynamically reduce indirection mapping tablespace with only small
performance overhead. We also demonstrate that with our design of FSDV, the
changes needed in file system, flash devices, and device interface are small.

Contents

Acknowledgements vii

Abstract ix

1 Introduction 1
1.1 Excess Indirection in Flash-based SSDs3
1.2 De-Indirection: Removing Excess Indirection 5
1.3 De-indirection with Nameless Writes 7
1.4 Hardware Experience with Nameless Writes8
1.5 A File System De-virtualizer . 10
1.6 Overview . 12

2 Background 15
2.1 Flash-based SSD: An Indirection for Flash Memory 15

2.1.1 Flash Memory and Flash-based SSDs 15
2.1.2 Flash Memory Management Software 18

2.2 File System: An Indirection for Data Management 22
2.2.1 The Ext3 File System . 22

2.3 Block Interface and SATA . 24
2.4 Summary . 26

3 A Flash-based SSD Emulator 27
3.1 Implementation . 28

3.1.1 Mechanism . 29
3.1.2 SSD Model . 31

3.2 Evaluation . 34
3.2.1 Emulation Overhead . 34
3.2.2 Emulation Accuracy and Capability 38
3.2.3 Effect of Parallelism . 41

xi

xii

3.2.4 Comparison of Page-level and Hybrid FTLs 43
3.2.5 Study of Hybrid FTL . 44

3.3 Limitations and Discussions . 46
3.4 Summary . 46

4 De-indirection with Nameless Writes 49
4.1 Nameless Writes . 50

4.1.1 Nameless Write Interfaces 50
4.1.2 Segmented Address Space 52
4.1.3 Migration Callback . 53
4.1.4 Associated Metadata . 54
4.1.5 Implementation Issues 54

4.2 Nameless-Writing Device . 55
4.2.1 Nameless-Writing Interface Support 55
4.2.2 In-place Garbage Collection 56

4.3 Nameless Writes on ext3 . 57
4.3.1 Segmented Address Space 58
4.3.2 Associated Metadata . 58
4.3.3 Write . 58
4.3.4 Read . 59
4.3.5 Free . 59
4.3.6 Wear Leveling with Callbacks 59
4.3.7 Reliability Discussion 60

4.4 Evaluation . 61
4.4.1 SSD Memory Consumption 62
4.4.2 Application Performance 63
4.4.3 Basic Write Performance 65
4.4.4 A Closer Look at Random Writes 66
4.4.5 In-place Garbage Collection Overhead 68
4.4.6 Wear-leveling Callback Overhead 70
4.4.7 Reliability . 71

4.5 Summary . 71

5 Hardware Experience of Nameless Writes 73
5.1 Hardware Platform . 74

5.1.1 OpenSSD Research Platform 74
5.2 Challenges . 76

5.2.1 Major Problems . 78
5.3 Implementation Experiences . 79

xiii

5.3.1 Adding New Command Types 79
5.3.2 Adding New Command Return Field 80
5.3.3 Adding Upcalls . 81
5.3.4 Split-FTL Solution . 81
5.3.5 Lessons Learned . 83

5.4 Evaluation . 84
5.5 Summary . 85

6 A File System De-Virtualizer 87
6.1 System Design . 88

6.1.1 New Address Space . 88
6.1.2 FSDV Modes . 90

6.2 Implementation . 90
6.2.1 File System De-virtualizer 90
6.2.2 Device Support . 93
6.2.3 File System Support . 94
6.2.4 Reliability Issues . 97

6.3 Evaluation . 98
6.3.1 Mapping Table Reduction and FSDV Run Time 99
6.3.2 Impact of Increasing Amount of Processed Inodes 101
6.3.3 Comparison of Different Modes of FSDV 103
6.3.4 Overhead on Normal Operations 106
6.3.5 Optimization Results . 106

6.4 Summary and Discussion . 107

7 Related Work 109
7.1 Flash-based Storage . 109

7.1.1 Flash Memory Management Software 109
7.1.2 Hardware Prototypes . 110

7.2 Excess Indirection and De-indirection 111
7.3 New Storage Interface . 112

8 Future Work and Conclusions 115
8.1 Summary . 115

8.1.1 Emulation and Hardware Experience 116
8.1.2 De-indirection with Nameless Writes 116
8.1.3 File System De-Virtualizer 117

8.2 Lessons Learned . 117
8.3 Future Work . 119

xiv

8.3.1 De-indirection with Other File Systems 119
8.3.2 De-indirection of Redundant Arrays 121
8.3.3 De-indirection in Virtualized Environment 121

8.4 Closing Words . 122

1

Chapter 1

Introduction

“All problems in computer science can be solved by another level of indirection”
– often attributed to Butler Lampson, who gives credit to David Wheeler

“All problems in computer science can be solved by another level of indirection,
but that usually will create another problem”

– David Wheeler

Indirection, a core technique in computer systems, provides the ability to ref-
erence an object with another form [82]. Whether in the mapping of file names to
blocks or a virtual address space to an underlying physical one, system designers
have applied indirection to improve system flexibility, performance, reliability, and
capacity for many years. Even within the storage stack, there are many examples
of indirection.

File systems are a classic example of adding indirection on top of storage de-
vices to organize data into easy-to-use forms, as well as to provide consistency and
reliability [10]. File systems use file and directory structures to organize data; a
data block is mapped from file and file offset to a logical blockaddress using the
file systemmetadata.

Another example of indirection happens where modern hard disk drives use
a modest amount of indirection to improve reliability by hiding underlying write
failures [69]. When a write to a particular physical block fails, a hard disk will
remap the block to another location on the drive and record the mapping such that
future reads will receive the correct data. In this manner, adrive transparently
improves reliability without requiring any changes to the client above.

2

Figure 1.1:Excess Indirection and De-indirection. These graphs demonstrates a
system that contains excess indirection (a) and the system after performing de-indirection
(b). The dotted part in (a) represents a level of excess indirection, which is removed with
de-indirection in (b).

Because of the benefits and convenience of indirection, system designers often
incorporate another level of indirection when designing new systems. As software
and hardware systems have become more complex over time (andwill continue
to do so in the future), layers of indirection have been and will be added. The
levels of indirection exist for different reasons, such as providing flexibility and
functionality, improving performance, maintaining modularity and code simplicity,
and maintaining fixed interfaces.

As a result,redundantlevels of indirection can exist in a single system, a prob-
lem we termexcess indirection. Specifically, assume that the original form of an
object isNk and its final form (i.e., the form visible by the user) isLi. If Li is
mapped more than once to transfer into the form ofNk, there are multiple levels
of indirection. For example, for two levels of indirection,Li is first mapped by a
functionF (Li) to a formMj and then mapped by a functionG(Mj) to Nk. All
together, the mapping for the object isG(F (Li)) = Nk. If one of the levels of in-
direction can be removed while the system can still functionas before, we call this
level of indirection redundant and the system has excess indirection. Figure 1.1(a)
gives an example of excess indirection.

Unfortunately, indirection comes at a high price, which manifests as perfor-

3

mance costs, space overheads, or both. First, mapping tables or some form of
metadata are necessary for lookups with indirection. Such metadata requires per-
sistent storage space. Moreover, to improve system performance and reduce the
access time to slower storage for the metadata, metadata areoften cached in part
or in full in fast memory forms like DRAM, creating both monetary and energy
costs. There is also performance overhead to access and maintain the indirection
metadata.

Excess indirection multiplies the performance and space costs of indirection
and is often redundant in a system. It thus presents us a with an important problem
of how to reduce the costs of excess indirection.

1.1 Excess Indirection in Flash-based SSDs

Flash memory is a form of non-volatile memory which offers better random-access
performance and shock resisdence than traditional hard disks, and lower monetary
and energy cost than RAM. Flash memory is often packaged intoflash-basedSolid
State Devices(SSDs). SSDs have been used as caching devices [18, 29, 52, 61, 67,
74, 81] and hard disk replacements [19, 54, 71, 84], and thus have gained a foothold
in both consumer and enterprise markets.

Indirection is particularly important in flash-based SSDs.Unlike traditional
storage devices, flash-based SSDs manage an indirection layer and provide a tradi-
tional block interface. In modern SSDs, an indirection map in theFlash Translation
Layer(FTL) allows the device to map writes from the host system’s logical address
space to the underlying physical address space [24, 34, 40, 48, 59, 60].

FTLs use this indirection for two reasons: first, to transform the erase/program
cycle mandated by flash into the more typical write-based interface via copy-on-
write techniques, and second, to implementwear leveling[47, 51], which is critical
to increasing SSD lifetime. Because a flash block becomes unusable after a certain
number of erase-program cycles (10,000 or 100,000 cycles according to manufac-
turers [13, 37]), such indirection is needed to spread the write load across flash
blocks evenly and thus ensure that no particularly popular block causes the device
to fail prematurely.

The indirection in flash-based SSDs is useful for these purposes. However,
flash-based SSDs can exhibit excess indirection. When a file system is running on
top of a flash-based SSD, the file system first maps data from fileand file offset
to logical block addresses; the SSD then maps logical block addresses to device
physical addresses. The indirection at the file system levelis achieved through
the file system metadata; the indirection at the SSD level is achieved through the

4

mapping table in the FTL.

As we can see from the architecture of file system indirectionover SSD indirec-
tion, there are redundant levels of indirection. Although each level of indirection
exists for its own reason (e.g., SSD indirection hides the erase-before-write require-
ment and the wear-leveling operation), we believe that the indirection in the SSD
is redundant and moreover causes memory space and performance cost.

The indirection in SSDs comes with a cost in both memory spaceand energy. If
the FTL can flexibly map each virtualpagein its address space (assuming a typical
page size of 4 KB), an incredibly large indirection table is required. For example,
a 1-TB SSD would need 1 GB of table space simply to keep one 32-bit pointer per
4-KB page of the device. There is also a performance cost to maintain and access
the mapping tables.

Two trends in flash-based storage make the cost of excess indirection an im-
portant issue. First, flash memory is used widely in mobile devices, where energy
consumption is a significant concern; a large indirection table in RAM imposes a
high energy cost. Second, flash-based storage is gaining popularity in enterprise
and cloud storage environments [29, 54]. As the sizes of these flash-based devices
scale up, the monetary and energy cost of RAM increases super-linearly. Clearly, a
completely flexible mapping is too costly; putting vast quantities of memory (usu-
ally SRAM) into an SSD is prohibitive.

Because of this high cost, most SSDs do not offer a fully flexible per-page
mapping. A simple approach provides only a pointer perblockof the SSD (a block
typically contains 64 or 128 2-KB pages), which reduces overheads by the ratio of
block size to page size. The 1-TB drive would now only need 32 MB of table space,
which is more reasonable. However, as clearly articulated by Guptaet al. [40],
block-level mappings have high performance costs due to excessive garbage col-
lection.

As a result, the majority of FTLs today are built using a hybrid approach,
mapping most data at block level and keeping a small page-mapped area for up-
dates [24, 59, 60]. Hybrid approaches keep space overheads low while avoiding
the high overheads of garbage collection, at the cost of additional device complex-
ity. Unfortunately, garbage collection can still be costly, reducing the performance
of the SSD, sometimes quite noticeably [40]. Regardless of the approach, FTL
indirection incurs a significant cost; as SSDs scale, even hybrid schemes mostly
based on block pointers will become infeasible.

Recently, approaches have been proposed to dynamically cache a small, hot
part of the mapping table in DRAM and the rest of the mapping table in the flash
memory itself [40]. Another approach to reduce the cost of indirection in SSDs is

5

to move the indirection layer to the host OS in a software layer [46].
Even with these proposed optimizations to reduce the SSD indirection cost,

excessindirection still exists when a file system is running on top of a flash-based
SSD; a block is first mapped from a file offset to its logical address and then from
the logical address to its physical address in the device. Both indirection layers
maintain their own address spaces and perform their own address allocation. Space
and performance overheads are incurred at both layers to maintain their own lookup
structure (i.e., file system metadata and SSD FTL). We can clearly see that there is
excess indirection in such a system.

1.2 De-Indirection: Removing Excess Indirection

Because of its high costs, excess indirection presents us with an important prob-
lem. One way to reduce the costs of excess indirection is to remove the redundant
level(s) of indirection, a technique we callde-indirection.

The basic idea of de-indirection is simple. Let us imagine a system with two
levels of (excess) indirection. The first indirectionF maps items in theL space
to items in theM space:F (Li) → Mj. The second indirectionG maps items
in the M space to those in theN space:G(Mj) → Nk. To look up the item
i, one performs the following “excessive” indirection:G(F (i)). De-indirection
removes the second level of indirection by evaluating the second mappingG() for
all values mapped byF (): ∀ i : F (i) ← G(F (i)). Thus, the top-level mapping
simply extracts the needed values from the lower level indirection and installs them
directly.

There are different ways to perform de-indirection. We identify two methods.
The first is to remove the need for one level of indirection completely (i.e., this level
of indirection is never created). The second method is to still allow the creation of
all levels of indirection, but remove (part of) the indirection periodically or when
needed. The former method changes the design of the originalsystem that uses
multiple levels of indirection, and thus can involve substantial changes to all layers
and the interface between different layers in a system. The second method does
not require as much change to the original system, but may notremove as much
indirection as the first method.

Notice that even though we propose to remove the redundant level of indi-
rection, we do not want to remove the layer in the system completely (e.g., by
combining two layers). In fact, it is one of our major goals toretain the function-
ality of each layer within itself and to introduce as little change to existing layered
systems as possible. We believe that different layers existfor their own reasons;

6

Figure 1.2:Excess Indirection and De-indirection of Flash-based SSDs. The
left graph (a) demonstrates the excess indirection in flash-based SSDs when running with a
file system. A block is first mapped from file and file offset to the logical address by the file
system metadata and is then mapped to the physical address bySSD FTL. The right graph
(b) represents the mapping after removing the indirection in the SSD: a block is mapped
directly from file and file offset to the physical address using the file system metadata.

changing them would require significant research and engineering efforts (in each
layer) and is less likely to be adopted in real world. Our aim is merely to remove
the redundancy in indirection and its associated costs.

De-Indirection of Flash-based SSDs

There are two levels of (redundant) indirection with a file system on top of a flash-
based SSD. To remove this excess indirection, we choose to remove the indirection
at the SSD level for two reasons. First, the cost of maintaining SSD-level indirec-
tion is higher than that of the file system level, since the internal RAM in SSDs
incurs a fixed monetary and energy cost and is also restrictedby the device’s phys-
ical size, while main memory is more flexible and is shared by different applica-
tions. Second, the file system indirection is used not only with flash-based SSDs,
but also other storage devices. It is also used to provide easy-to-use structured
data. Thus, removing the file system indirection affects other systems and user ap-
plications. With the SSD-level indirection removed, physical block addresses are

7

stored directly in file system metadata; file systems use these addresses for reads
and overwrites.

We remove the indirection in SSDs without removing or changing their major
functionality, such as physical address allocation and wear leveling. An alternative
way to remove indirection is to remove the SSD FTL and manage raw flash memory
directly with specific file systems [41, 92, 93]. We believe that exposing raw flash
memory to software is dangerous (e.g., a file system can wear out the flash memory
either by intention or by accident). Vendors are also less likely to ship raw flash
without any wear guarantees.

To perform de-indirection of flash-based SSDs, our first technique is to re-
move the need for SSD-level address mapping with a new interface callednameless
writes. This interface removes the need for SSDs to create and maintain its indirec-
tion mappings. Our second technique is to have the SSD and filesystem both create
their indirection and operate (largely) unmodified, and to use a tool called “file sys-
tem de-virtualizer” to occasionally walk through the file system and remove the
SSD-level indirection. We next introduce these techniques.

1.3 De-indirection with Nameless Writes

Our first technique to perform de-indirection for flash-based SSDs is a new inter-
face which we termnameless writes[95]. With nameless writes, the indirection in
flash-based SSDs is directly removed (i.e., the device never creates mappings for
the data written with nameless writes).

Unlike most writes, which specify both thedata to write as well as aname
(usually in the form of a logical address), a nameless write simply passes the data
to the device. The device is free to choose any underlying physical block for the
data; after the devicenamesthe block (i.e., decides where to write it), it informs
the file system of its choice. The file system then records the name in its metadata
for future reads and overwrites.

One challenge that we encounter in designing nameless writes is the need for
flash-based SSDs to move physical blocks for tasks like wear leveling. When the
physical address of a block is changed, its corresponding file system metadata also
needs to be changed so that the proper block can be found by future reads. There-
fore, for physical address changes, we use a new interface called migration call-
backsfrom the device to inform the file system about the address changes.

Another potential problem with nameless writes is the recursive update prob-
lem: if all writes are nameless, then any update to the file system requires a recur-
sive set of updates up the file-system tree. To circumvent this problem, we introduce

8

a segmented address space, which consists of a (large) physical address space for
nameless writes, and a (small) virtual address space for traditional named writes. A
file system running atop a nameless SSD can keep pointer-based structures in the
virtual space; updates to those structures do not necessitate further updates up the
tree, thus breaking the recursion.

Nameless writes offer a great advantage over traditional writes, as they largely
remove the need for indirection. Instead of pretending thatthe device can receive
writes in any frequency to any block, a device that supports nameless writes is free
to assign any physical page to a write when it is written; by returning the true name
(i.e., the physical address) of the page to the client above (e.g., the file system),
indirection is largely avoided, reducing the monetary costof the SSD, improving
its performance, and simplifying its internal structure.

Nameless writes (largely) remove the costs of indirection without giving away
the primary responsibility an SSD manufacturer maintains:wear leveling. If an
SSD simply exports the physical address space to clients, a simplistic file system or
workload could cause the device to fail rather rapidly, simply by over-writing the
same block repeatedly (whether by design or simply through afile-system bug).
With nameless writes, no such failure mode exists. Because the device retains
control of naming, it retains control of block placement, and thus can properly
implement wear leveling to ensure a long device lifetime. Webelieve that any
solution that does not have this property is not viable, as nomanufacturer would
like to be so vulnerable to failure.

We demonstrate the benefits of nameless writes by porting theLinux ext3 file
system to use a nameless SSD. Through extensive analysis on an emulated name-
less SSD and comparison with different FTLs, we show the benefits of the new
interface, in both reducing the space costs of indirection and improving random-
write performance. Overall, we find that compared to an SSD that uses a hybrid
FTL (one that maps most SSD area at a coarse granularity and a small area at a fine
granularity), a nameless SSD uses a much smaller fraction ofmemory for indirec-
tion while improving performance by an order of magnitude for some workloads.

1.4 Hardware Experience with Nameless Writes

To evaluate our nameless writes design, we built and used an SSD emulator. In the
past, most other research on flash-based SSDs also used simulation or emulation
for evaluation [6, 74, 78, 40],

There is little known about real-world implementation trade-offs relevant to
SSD design, such as the cost of changing their command interface. Most such

9

knowledge has remained the intellectual property of SSD manufacturers [43, 30,
32, 73], who release little about the internal workings of their devices. This situ-
ation limits the opportunities for research innovation on new flash interfaces, new
OS and file system designs for flash, and new internal management software for
SSDs.

Simulators and emulators suffer from two major sources of inaccuracy. First,
they are limited by the quality of performance models, whichmay miss important
real-world effects. Second, simulators and emulation often simplify systems and
may leave out important components, such as the software stack used to access an
SSD. For example, our SSD emulator suffers from a few limitations, including a
maximum throughput (lowest latency) of emulated device, aswill be described in
Chapter 3.

Nameless writes require changes to the block interface, flash management al-
gorithms within the device, the OS storage stack, and the filesystem. Thus, evalu-
ating nameless writes with emulation alone may miss important issues of nameless
writes. Meanwhile, the nameless writes design is an ideal candidate for studying
the difference between real hardware and simulation or emulation because of the
changes needed by nameless writes at different storage layer. Therefore, we sought
to validate our nameless writes design by implementing it asa hardware prototype.

We prototype nameless writes with the OpenSSD Jasmine SSD hardware plat-
form [86]. The OpenSSD evaluation board is composed of commodity SSD parts,
including a commercial flash controller, and supports standard storage interfaces
(SATA). It allows the firmware to be completely replaced, andtherefore enables
the introduction of new commands or changes to existing commands in addition to
changes to the FTL algorithms. As a real storage device with performance com-
parable to commercial SSDs, it allows us to test new SSD designs with existing
file-system benchmarks and real application workloads.

During prototyping, we faced several challenges not foreseen by our design and
evaluation of nameless writes with emulation or in published work on new flash
interfaces. First, we found that passing new commands from the file-system layer
through the Linux storage stack and into the device firmware raised substantial
engineering hurdles. For example, the I/O scheduler must know which commands
can be merged and reordered. Second, we found that returningaddresses with a
write command is difficult with the ATA protocol, since the normal ATA I/O return
path does not allow any additional bits for an address. Third, upcalls from the
device to the host file system as required by the migration callbacks turned out to
be challenging, since all ATA commands are sent from the hostto the device.

To solve these problems, we first tried to integrate the nameless writes inter-

10

faces into the SATA interface and implement all nameless writes functionality en-
tirely within the firmware running on the OpenSSD board. However, it turned out
that passing data from the device to the host OS through the ATA interface is ex-
tremely difficult.

This difficulty led us to a split-FTL design. A minimal FTL on the device
exports primitive operations, while an FTL within the host OS uses these primi-
tives to implement higher-level functionality. This splitdesign simplifies the FTL
implementation and provides a convenient mechanism to workaround hardware
limitations, such as limited DRAM or fixed-function hardware.

Our evaluation results demonstrate that the nameless writes hardware proto-
type using the split-FTL design significantly reduces the memory consumption as
compared to a page-level mapping FTL, while matching the performance of the
page-level mapping FTL, the same conclusion we find with our SSD emulation.
Thus, the split-FTL approach may be a useful method of implementing new inter-
face designs relying on upcalls from an SSD to the host.

1.5 A File System De-virtualizer

Nameless writes provide a solution to remove the excess indirection in flash-based
SSDs (and the cost of this indirection) by using a new interface between file systems
and flash-based SSDs. Specifically, with nameless writes, the file system sends
only data and no logical address to the device; the device then allocates a physical
address and returns it to the file system for future reads. We demonstrated with
both emulation and real hardware that nameless writes significantly reduce both the
space and the performance cost of SSD virtualization. However, nameless writes
have their own shortcomings.

First, the nameless writes solution requires fundamental changes to the device
I/O interface. It also requires substantial changes in the device firmware, the file
system, the OS, and the device interface. Our hardware experience with nameless
writes demonstrates that they are difficult to integrate into existing systems (see
Chapter 5) and may need a complete redesign of the storage stack.

Another problem with nameless writes is that all I/Os are de-virtualized at the
same time when they are written. The overhead of nameless writes thus occurs for
all writes. However, such overhead caused by de-indirection can be hidden if de-
indirection is performed at device idle time and not for all the writes. An emerging
type of storage systems maintain the device indirection layer in software [46]. In
such case, the indirection mappings do not need to be removedall the time. Using
techniques like nameless writes to remove indirection mappings for all the data can

11

turn out to be unnecssary and cause more overhead than needed.

To address the problems with nameless writes, we propose theFile System
De-Virtualizer (FSDV), a mechanism to dynamically remove the indirection in
flash-based SSDs with small changes to existing systems. Thebasic technique
is simple; FSDV walks through the file system structures and changes file system
pointers from logical addresses to physical addresses. Doing so does not require
changes in normal I/Os. Unlike nameless writes which requires all I/Os to be de-
virtualized, the FSDV tool can be invoked dynamically (for example, when the de-
vice is idle). We believe that FSDV provides a simple and dynamic way to perform
de-virtualization and can be easily integrated into existing systems.

One major design decision that we made to achieve the goal of dynamic de-
virtualization is the separation of different address spaces and block status within
a file system. Initially, the file system allocates logical addresses on top of a vir-
tualized device in the traditional way; all blocks are in thelogical address space
and the device uses an indirection table to map them to thedevice address space.
FSDV then walks through and de-virtualizes the file system. Afterwards, the de-
virtualized contents are in thephysical address spaceand corresponding mappings
in the device are removed. The file system later allocates andoverwrites data for
user workloads; the device will add new mappings for these data, causing blocks to
be mapped from logical or old physical addresses to current device addresses.

A block thus can be in three states: a mapped logical block, a mapped physical
block, or a direct physical block. The first two require indirection mapping entries.
When the mapping table space for them is large, FSDV can be invoked to move
data from the first two states to the direct state. It can also be invoked periodically
or when the device is idle. FSDV thus offers a dynamic solution to remove excess
virtualization without any fundamental changes to existing file systems, devices, or
I/O interface.

Another design question that we met is related to how we handle the address
mapping changes caused by the device garbage collection andwear leveling oper-
ations. During these operations, the device moves flash pages to new locations and
thus either changes their old mappings or adds new mappings (if they originally
were direct physical blocks). In order for FSDV to process and remove the map-
pings caused by these operations, we choose to associate each block with its inode
number and record the inode number if the device moves this block and creates a
mapping for it. Later, when FSDV is invoked, it processes thefiles correspond-
ing to these inode numbers and removes the mappings created because of garbage
collection or wear leveling.

We change the write interface to let the file system send the inode number

12

associated with a block when writing it. Though this change is made to a normal
I/O interface (something we try to avoid), it only changes the forward direction
(from the file system to the device). As will be described in chapter 5, the direction
from the device to the file system turns out to be the major difficulty when changing
the interface with existing hardware and software stacks. Therefore, we believe that
our change to the write interface for FSDV is a viable one; in the future, we plan to
explore other options to deal with address mapping changes caused by the device.

We implemented FSDV as a user-level tool and modified the ext3file system
and the SSD emulator for it. The FSDV tool can work with both unmounted and
mounted file systems. We evaluate the FSDV prototype with macro-benchmarks
and show through emulation that FSDV significantly reduces the cost of device
virtualization with little performance overhead. We also found that by placing most
of the functionality in FSDV, only small changes are needed in the file system, the
OS, the device, and the I/O interface.

1.6 Overview

The rest of this dissertation is organized as follows.

• Background: Chapter 2 provides a background on flash memory, flash-
based SSDs, file systems, and the ext3 file system.

• Flash-based SSD Emulator:Before delving into our solutions to remove
excess indirection in flash-based SSDs, we first present in Chapter 3 a flash-
based SSD emulator that we built for various flash-related research and the
research work in this dissertation. As far as we know, we are the first to build
and use an SSD emulator for research work; all previous research uses SSD
simulators. We describe the challenges and our solutions tobuild an accurate
and flexible SSD emulator.

• De-indirection with Nameless Writes: Our first solution to remove excess
indirection in flash-based SSDs is the new interface, nameless writes. Chap-
ter 4 discusses the design of the nameless writes interface and the changes
needed in the file system and in the SSD for nameless writes. Nameless
writes largely reduce the indirection memory space cost andperformance
overhead in SSDs.

Chapter 5 describes our efforts to build nameless writes on real hardware, the
challenges that we did not foresee with emulation, and our solutions to them.

13

• De-indirection with a File System De-Virtualizer: Our second solution
for de-indirection in flash-based SSDs is the mechanism of a file system de-
virtualizer (FSDV). Chapter 6 describes our design of the FSDV mechanism.
The FSDV mechanism requires no or few changes to the I/O interface, the OS
and file system, and the SSD, yet is able to dynamically reducethe indirection
in flash-based SSDs.

• Related Work: In Chapter 7, we first discuss systems that exhibit excess
indirection and other efforts to perform de-indirection. We then present re-
search work in flash memory and storage interfaces that are related to this
dissertation.

• Conclusions and Future Work: Chapter 8 concludes this dissertation with
a summary of our work, the lessons we have learned, and a discussion of
future work.

14

15

Chapter 2

Background

This chapter provides a background of various aspects that are integral to this dis-
sertation. First, since we focus on removing the excess indirection in flash-based
SSDs, we provide a background discussion on flash memory and flash-based SSDs,
their internal structures and the softwares that manage them. We then describe the
basics of file systems with a focus on the ext3 file system; we make various changes
to ext3 to achieve the goal of de-indirection. Finally, we discuss the block interface
between host OSes and block devices and the SATA interface technology which
supports the block interface.

2.1 Flash-based SSD: An Indirection for Flash Memory

We now provide some background information on the relevant aspects of NAND
flash technology. Specifically, we discuss their internal structure, NAND-flash-
based SSDs, and the software that manages them.

2.1.1 Flash Memory and Flash-based SSDs

NAND Flash Memory Internals

Figure 2.1 illustrates the internals of a NAND flash memory cell. A NAND flash
memory cell (representing a bit) contains a floating gate (FG) MOSFET [80, 20].
Each gate can store one (SLC) or more (MLC/TLC) bits of information. The FG
is insulated from the substrate by the tunnel oxide. After a charge is forced to
the FG, it cannot move from there without an external force. Excess electrons
can be brought to (program) or removed from (erase) a cell, usually performed
by the Fowler-Nordheim (FN) tunneling. After a page is written (programmed),

16

Figure 2.1:Internals of A Flash Memory Cell. This graph illustrates what a NAND
flash memory cell looks like. There are two transistor gates (control and floating), which
are insulated by thin layers of oxide layer. The number of electrons in the insulated floating
gate determines the bit or bits (SLC or MLC/TLC) of the cell. To change the amount of
electrons in the floating gate, voltages between the controlgate and source or drain are
applied.

it needs to be erased before subsequent writes. Depending onthe amount of the
charges stored in the FG, a cell can be in two or more logical states. A cell encodes
information via voltage levels; thus, being able to distinguish between high and low
voltage is necessary to differentiate a 1 from a 0 (for SLC; more voltage levels are
required for MLC and TLC) [38]. MLC and TLC are thus denser than SLC but
have performance and reliability costs.

NAND flash reads and writes are performed at the granularity of flash page,
which is typically 2 KB, 4 KB, or 8 KB. Before writing to a flash page, a larger
sizeerase block(usually between 64 KB to 4 MB) must be erased, which sets all
the bits in the block to 1. Writes (which change some of the 1s to 0s) can then
be performed to all the flash pages in the newly-erased block.In contrast to this
intricate and expensive procedure, reads are relatively straightforward and can be
readily performed in page-sized units.

Writing is thus a noticeably more expensive process than reading. For example,
Gruppet al. report typical random read latencies of 12µs (microseconds), write
(program) latencies of 200µs, and erase times of roughly 1500µs [37]. Thus, in
the worst case, both an erase and a program are required for a write, and a write will
take more than 100× longer than a read (141× in the example numbers above).

17

Figure 2.2:Internals of Flash-based SSD.We show the internals of a typical flash-
based SSD, which contains a controller, a RAM space, and a setof flash chips.

An additional problem with flash is its endurance [90]. Each P/E operation
causes some damage to the oxide by passing a current through the oxide and plac-
ing a high electric field across the oxide, which in turn results in a degradation
in threshold voltage. Over time it becomes increasingly difficult to differentiate a
1 from a 0 [1, 13]. Thus, each flash erase block has a lifetime, which gives the
number of P/E cycles that the device should be able to performbefore it fails. Typ-
ical values reported by manufacturers are 100,000 cycles for NAND SLC flash and
10,000 for MLC, though some devices begin to fail earlier than expected [37, 70].

18

Flash-based SSDs

A Solid-state drive(SSD) is a storage device that uses (usually non-volatile) mem-
ory for data storage. Most modern SSDs use flash memory as their storage medium;
early SSDs also use RAM or other similar technology. No hard disks or any device
with mechanical moving parts are used in SSDs. Compared to traditional hard disk
drives (HDDs), SSDs have better performance (especially random performance)
and are more shock resistant and quieter. Flash-based SSDs are also cheaper and
consume less energy than RAM. Thus, they have gained an increasing foothold in
both consumer and enterprise market.

Flash-based SSDs usually contain a set of NAND flash memory chips, an in-
ternal processor that runs SSD-management firmware, and a small SRAM and/or
DRAM. The processor runs the flash management firmware. The internal RAM is
used to store the SSD indirection mapping table and sometimes for a read cache or
a write buffer, too. More details about the SSD firmware and mapping tables will
be discussed in the next section.

The flash memory chips are used to store data persistently. Flash memory are
often organized first into flash pages, then into flash erase blocks, then into planes,
dies, and finally into flash chips [6]. An out of band (OOB) area is usually associ-
ated with each flash page, storing error correction code (ECC) and other per-page
information. To improve performance (i.e., bandwidth), the flash memory chips are
often organized in a way so that multiple flash planes can be accessed in parallel [6].
Figure 2.2 gives an illustration of flash-based SSD internalorganization.

Modern NAND flash-based SSDs appear to a host system as a storage device
that can be written to or read from in fixed-size chunks, much like modern HDDs.
SSDs usually provide a traditional block interface throughSATA. In recent years,
high-end SSDs start to use the PCIe bus or RPC-like interfaces for better perfor-
mance and more flexibility [31, 65, 72].

2.1.2 Flash Memory Management Software

For both performance and reliability reasons and to providethe traditional block
I/O interface, most flash devices virtualize their physicalresources using aFlash
Translation Layer(FTL) that manages the underlying flash memory and exports
the desired disk-like block interface. FTLs serve two important roles in flash-based
SSDs; the first role is to improve performance, by reducing the number of erases
required per write. The second role is to increase the lifetime of the device through
wear leveling; by spreading erase load across the blocks of the device, thefailure
of any one block can be postponed (although not indefinitely).

19

Figure 2.3: Illustration of a Hybrid FTL before a Merge Operation In this
example, there are two log blocks and three data blocks in theSSD with a hybrid FTL, each
containing four 4 KB flash pages. The data blocks contain 12 pages in total; the SSD thus
exposes an effective adddress space of 48 KB (12× 4 KB) to the OS. The log blocks are full
and a merge operation is triggered. First, to get a free block, the third data block (LBA 8
to 11) is erased, since all its pages are invalid. The FTL thenmerges logical pages LBA
0 to 3 from their current valid location (two log blocks and one data block) to the erased
free data block. After the merge operation, the old data block (leftmost data block) can be
erased.

Both of these roles are accomplished through the simple technique of indirec-
tion. Specifically, the FTL maps logical addresses (as seen by the host system) to
physical blocks (and hence the name) [42]. Higher-end FTLs never overwrite data
in place [35, 40, 59, 60, 62]; rather, they maintain a set of “active” blocks that have

20

Figure 2.4: Illustration of a Hybrid FTL after a Merge Operation This figure
gives an illustration of a typical hybrid FTL after a merge operation. After the merge
operation, the old data block (leftmost data block) has beenerased and becomes a free
block.

recently been erased and write all incoming data (in page-sized chunks) to these
blocks, in a style reminiscent of log-structured file systems [77]. Some blocks thus
become “dead” over time and can be garbage collected; explicit cleaning can com-
pact scattered live data and thus free blocks for future usage.

The hybrid FTLs use a coarser granularity of address mapping(usually per
64 KB to 4 MB flash erase block) for most of the flash memory region (e.g., 80% of
the total device space) and a finer granularity mapping (usually per 2-KB, 4-KB, or
8-KB flash page) for active data [59, 60]. Therefore, the hybrid approaches reduce
mapping table space for a 1 TB SSD to 435 MB, as apposed to 2 GB mapping table
space if addresses are mapped all at 4-KB page granularity.

The page-mapped area used for active data is usually called the log block area;
the block-mapped area used to store data at their final location is called thedata
block area. The pages in a log block can have any arbitrary logical addresses. Log-

21

structured allocation is often used to write new data to the log blocks. The rest of
the device is a data block area used to store data blocks at their final locations. The
pages in a data block have to belong to the same erase block (e.g., 64 4-KB pages
in a 256 KB consecutive logical block address range). The hybrid mapping FTL
maintains page-level mappings for the log block area and block-level mappings for
the data block area.

When the log block area is full, costly merge operations are invoked. A merge
operation is performed to free a data block bymergingall the valid pages belonging
to this data block to a new free block; afterwards the old datablock can be erased.
Figures 2.3 and 2.4 illustrate the status of a hybrid SSD before and after the merge
operation of a data block (which contains LBAs 0 to 3). After this merge operation,
two pages in two log blocks are invalidated. To free a log block, all the pages
in it need to be merged to data blocks. Thus, such merge operations are costly,
especially for random writes, since the pages in a log block can belong to different
data blocks. Therefore, some hybrid FTLs maintain a sequential log block for
sequential write streams [60]. When the sequential log block is full, it is simply
switched with its corresponding data block.

Hybrid FTLs also perform garbage collection for data blocks, when the total
amount of free data blocks are low. The merge operations needed to free a data
block are the same as described above. To reduce the cost of such merging, a
victim data block is often chosen as the data block that has the least amount of
valid data.

FTLs also performwear leveling, a technique to extend the life of SSDs by
spreading erases evenly across all blocks. If a block contains hot data, it will be
written to and erased more often and approaches its lifetimelimit faster than blocks
with cold data. In such case, a wear leveling operation can simply swap the block
containing hot data with a block containing cold data [6]. After this operation, the
corresponding mapping table is updated to reflect the new physical addresses of the
swapped data–another reason for indirection in flash-basedSSDs. In order for the
FTL to know the erase cycles and temperature of a block, it needs to keep certain
bookkeeping. Most FTLs maintain an erase count with each block. To measure
the temperature of a block, a simple technique is to record the time when any of
the pages in a block is last accessed. A more accurate method is to record the
temperature of all the pages in a block; this method requiresmore space with each
flash page to store the temperature information.

In summary, flash-based SSDs are a type of virtualized storage device, which
uses indirection to hide its internal structures and operations and to provide a tradi-
tional block I/O interface.

22

2.2 File System: An Indirection for Data Management

File systems are software systems that organize data and provide an easy-to-use
abstract form for storage devices [10].

Most file systems view a storage device as a contiguouslogical address space
and often divide it into fix-sized blocks (e.g. 4 KB). Data blocks are first structured
into files; files are then organized into a hierarchy of directories. To manage data
with such structures, file systems keep their own metadata, such as block pointers to
identify blocks belonging to a file, file size, access rights,and other file properties.

File systems serve as an indirection layer and map data from file and file offsets
to logical addresses. A data block is read or written with itsfile offset. File systems
allocate logical block addresses for new data writes. Bitmaps are often used to
track the allocation status of the device; a bit represents alogical block address and
is set when the block is allocated. Accordingly, file systemsperform de-allocation
for deletes and truncates, and unset the bit in the bitmap. File systems also perform
allocation and de-allocation for file system metadata in a similar way as data alloca-
tion and de-allocation. For reads and (in-place) overwrites, file systems look up the
file system metadata and locate their logical block addresses. Certain file system
metadata (e.g., superblock, root directory block) have fixed locations so that they
can always be found without any look-ups.

2.2.1 The Ext3 File System

We now give a brief description of a concrete example of file system, theext3
file system. Ext3 is a classic file system that is commonly usedin many Linux
distributions [10]; thus, we choose to use ext3 in all our works in this dissertation.

A file in ext3 is identified by the structure ofinodewith a uniqueinode number.
Ext3 uses a tree structure of pointers to organize data in a file. The inode can be
viewed as the tree root, it points to a small number (e.g., twelve) of data blocks.
When the file is bigger than this amount of data, the inode alsopoints to anindirect
block, which in turn points to a set of data blocks. If the file is evenbigger,double
or triple indirect blocks are used which points to one or two levels of indirect blocks
and eventually to data blocks.

The address space in ext3 is split into block groups, each containing equal size
of blocks. Each block group contains a block group descriptor, a data block bitmap,
an inode bitmap, an inode table, indirect blocks, and data blocks. Ext3 uses the
bitmaps for data and inode allocation and de-allocation. Directories are also stored
as files. Each directory contains the information (e.g., file/subdirectory name, inode
number) of the files or the subdirectory in the directory. Figure 2.5 illustrates the

23

Figure 2.5:An Illustration of the Ext3 File System. This figure shows a simple
illustration of the ext3 file system data structures and on-disk layouts. In the top part of
the graph, we show the directory and file tree. This example file has one level of indirect
blocks and is pointed to directly by the root directory. The bottom part of the graph shows
the layout of the ext3 block group.

directory, file, and block group structures of ext3.

Ext3 also provides reliability and fast recovery through the technique of jour-
naling. Ext3 has three journaling modes: journal mode whereboth metadata and
data are written to the journal, ordered mode where only metadata is journaled but
data are guaranteed to be written to disk before metadata in the journal are written,
and writeback mode where only metadata is journaled and there is no ordering of
metadata and data writes. We choose the ordered mode in the work in this disser-
tation, since it is a widely used journaling mode.

In summary, file systems such as ext3 organize data into file and directory struc-
tures and provide consistency and reliability through the technique of indirection
(in the form of file system metadata). File system metadata serve as the means of
file system indirection. However, there are certain space and performance cost to

24

maintain this indirection. Combined with the indirection in flash-based SSDs, we
see excess indirection with a file system running on top of an SSD.

2.3 Block Interface and SATA

Most flash-based SSDs work as block devices and connect to theOS hosts using
theblock interface. The block interface is also the most common interface for other
storage devices such as hard disks. Thus, in this section we give a brief background
description of the block interface and a particular hardware interface that supports
the block interface: the SATA interface.

The block interface transfers data in the form of fix-sized blocks between a
block device and the host OS. All reads and writes use the sameblock size. The
block interface exposes a single address space (the logicaladdress space) and sup-
ports sequential and random access to any block addresses. Ablock I/O is sent
from the OS to the device with its block address, a buffer to store the data to be
written or read, and the direction of the I/O (i.e., read or write). The OS expects a
return from the block interface with the status and error of the I/O and the data to
be read.

SATA Interface

The SATA (Serial Advance Technology Attachment) interfaceis a common inter-
face that works with block devices [85]. It is a replacement for the older PATA
(Parallel ATA) interface and uses serial cable for host connection. There are three
generations of SATA: SATA 1.0 whose communication rate is 1.5 Gbit/s, SATA 2.0
(3 Gbit/s), and SATA 3.0 (6 Gbit/s).

The SATA interface technology uses layering and contains several layers on
both the transmit (host OS) and the receive (device) sides asshown in Figure 2.6.
The application and command layers receive commands from the host or the device
and then set up and issue commands to the lower layers. The transport layer is re-
sponsible for the management of Frame Information Structures (FISes). It formats
and passes FISes to the link layer. The link layer converts data into frames and pro-
vides frame flow control. Finally, the physical layer performs the actual physical
transmission.

ATA commands can be classified into I/O commands and non-datacommands.
Within I/O commands, there are both PIO (Programmed IO) and DMA (Direct
Memory Access) read and write commands. Both PIO and DMA I/O commands
have similar forms. The input fields (from host to device) include the command

25

Figure 2.6:Layered Structure of SATA. This graph demonstrates the layers in the
SATA technology. On both the host and the device side, there are five layers: application,
command, transport, link, and physical layers. The physical layer performs the actual
physical communication.

type, the logical block address and the size of the I/O request, and the device. The
return fields (from device to host) include the device, status bits, error bits, and
possibly the error LBA. The status bits represent the statusof the device (e.g., if
busy). For a normal I/O command return, only the status bits are set. The error bits
encode the type of error the command encounters. If there is an error (i.e., error bits
are set), then the first logical block address where the erroroccurs is also returned
to the host.

The non-data commands in ATA are used for various purposes, such as device

26

configurations, device reset, and device cache flush. The input fields of the non-
data commands may include features, LBA, sector count, device, and command.
The output fields may include status, error, LBA, and size.

In summary, the block interface is a simple and convenient interface for reading
and writing in fixed block size to storage devices. The hardware interface that
supports block I/Os is more complex; the SATA interface technology uses multiple
layers on both host and device sides. The SATA interface alsohas a strict set of
command protocols and is thus difficult to change.

2.4 Summary

In this chapter, we give different pieces of background for the rest of the disserta-
tion.

We first discuss the technology of flash memory and flash-basedSSDs, their
internals and the software that controls and manages them. Such software layer uses
indirection to hide the internal structures and operationsof flash-based SSDs. With
this indirection, a block is mapped from its logical addressto its physical address.
In this process, the SSD software performs allocation in thephysical address space.

We then give a brief overview of file systems and a particular example file
system, the Linux ext3 file system. The file system is another level of indirection
to map a block from its file and file offset to its logical address. The file system
performs allocation in the logical address space. Thus, we see redundant levels of
address allocation and indirection mappings.

Finally, we describe the interface between the file system and the typical flash-
based SSDs: the block interface and the SATA technology.

27

Chapter 3

A Flash-based SSD Emulator

Because of the increasing prevalence of flash-based SSDs andmany unsolved prob-
lems of them, a large body of research work has been conductedin the recent years.
Most SSD research relies on simulation [6, 40, 74].

Simulation is a common technique to model the behavior of a system. A storage
device simulator often takes an I/O event and its arrival time as its input, calculates
the time the I/O is supposed to spent with the device, and returns this time as out-
put [15]. A model of a certain device is usually used to calculate the I/O request
time. Simulation provides a convenient way to evaluate new design and is relatively
easy to implement and debug.

Over the past years, a few SSD simulators have been built and published. The
Microsoft Research’s SSD simulator is one of the first publicSSD simulators and
operates as an extension to the DiskSim framework [6]. The PSU FlashSim is
another SSD simulator that operates with DiskSim and include several page-level,
block-level, and hybrid FTLs [53]. Leeet al. built a stand-alone SSD simulator
with a simple FTL [56].

These SSD simulators have been used extensively in many SSD research works [6,
40, 22, 96]. However, simulation has its own limitations. First, simulators cannot
be used directly to evaluate real workloads on real systems.Real workloads and
benchmarks have to be converted specifically for a simulator. In this process of
transitioning, different aspects of the workloads and the system can be lost or al-
tered. Second, with simulation, many real system properties and interfaces are
simplified. For example, it is difficult to model multithreading behavior with a
simulator. Thus, simulation alone is not enough for all evaluation situations and
requirements.

Emulation provides another way to evaluate a storage device. A storage device

28

emulator tries to mimic the behavior of a real device. For example, it returns an I/O
request at the same wall clock time as what the real device would return. A device
emulator also uses a real interface to the host OS. Real workloads and benchmarks
can thus run directly on an emulator. Device emulation is thus especially useful to
evaluate the interaction of host OS and the device.

Accurate emulation is difficult because of different real system effects, con-
straints, and non-deterministic nature [36]. The major challenge in implementing
an SSD emulator is to accurately model the SSD performance, which is much closer
to CPU and RAM than traditional hard disks.

We implemented an SSD emulator and use it throughout different parts of this
dissertation. The overall goal of our emulation effort is tobe able to evaluate new
designs (e.g., SSD de-indirection) using important metrics with common SSD hard-
ware configurations. We leverage several techniques to reduce various computa-
tional overhead of the emulator.

Because of the difficulty in building an always-accurate emulator and the lim-
ited knowledge of the internals of real SSDs, we do not aim to build an always-
accurate emulator that works for all metrics and all SSD configurations. The goal
of our emulator is not to model one particular SSD perfectly but to provide in-
sight into the fundamental properties and problems of different types of SSD FTLs.
For example, our emulator can accurately emulate write performance for common
types of SSDs, but not read performance; writes are the bottleneck to most SSDs
and the focus of this dissertation.

As a result, we built a flexible and generally accurate SSD emulator, which
works as a block device with the Linux operating system. Our evaluation results
show that our SSD emulator has low computational overhead and is accurate for
important metrics and common types of SSDs. As far as we know,we are the first
to implement an SSD emulator and use it to evaluate new designs.

The rest of this chapter is organized as follows. We first discuss our design and
implementation of our SSD emulator in Section 3.1. We then present the evaluation
results of the emulator in Section 3.2. Finally, we discuss the limitations of our SSD
emulator in Section 3.3 and summarize this chapter in Section 3.4.

3.1 Implementation

We built a flash-based SSD emulator below the Linux block layer; it processes
block I/O requests sent from the file system. The SSD emulatorhas the standard
block interface to the host OS and can be used as a traditionalblock device. Inter-
nally, we implemented the emulator as a Linux pseudo block device.

29

Our goal is to have a generally accurate and flexible SSD emulator so that
different SSD and host system designs can be evaluated with real workloads and
benchmarks. Since the latency and throughput of modern flash-based SSDs is much
closer to those of RAM and CPU than hard disks, the main challenge to build an
SSD emulator is to accurately emulate the performance of flash-based SSDs and
minimize the computational and other overhead of the emulator. It is especially
difficult to emulate the parallelism in a multi-plane SSD. For example, if a single
I/O request takes 100µs, then parallel 10 requests to 10 SSD planes will have the
effect of finishing 10 requests in 100µs. In the former case (single request), the
emulator only needs to finish all its computation and other processing of a request
within 100µs, while in the later case, the emulator needs to finish 10 requests in the
same amount of time. Thus, reducing the computational overhead of the emulator
is important.

We now describe the design and implementation of our SSD emulator and our
solution to the challenges discussed above.

3.1.1 Mechanism

We use three main techniques to build an efficient and accurate emulator. First,
we store all data in main memory, including file system metadata and data, FTL
address mapping table, and other data structures used by theemulator. Second, we
separate the data storage and the device modeling operations to two threads. Third,
we avoid CPU time as much as possible at the probable cost of memory overhead.

Our original implementation (Design 1) used a single thread to perform all
tasks, including storing or reading data from memory and calculate request re-
sponse time by modeling the SSD behavior. Doing so made the total time spent
by the emulator for a request higher than the request response time. Therefore, we
separate the emulator into two parts in our next design (Design 2); each part uses
a single thread. The major thread is a thread passed from the kernel with a block
I/O request. It first makes a copy of each request and places the copy on a request
queue. It then performs data storage for the request. We callthis thread the data
storage thread. We use another thread that takes request from the request queue,
models SSD behavior, and calculates the response time of therequest.

The data storage thread is responsible for storing and retrieving data to or from
memory. Initially with Design 2, we implemented the data storage thread in a way
that for each write, it allocates a memory space, copies the data to be written at the
allocated space, and keeps a mapping in a hash table. This implementation turned
out to be too costly in computational time. Instead inDesign 3(our final design),
we pre-allocate all the memory space for the emulated deviceand associate each

30

Figure 3.1:Design of the SSD Emulator. This figure describes the basic architecture
of the SSD emulator, which contains two threads, the data store thread and the SSD model-
ing thread. When an I/O request is received from the file system, the main thread makes a
copy of it and passes both copies to the two threads to performmemory store/retrieval and
SSD simulation. When both threads finish their processing, the request is returned to the
file system.

flash page in the emulated SSD statically with a memory slot (through an array
table). Reading and writing thus simply involve an array look-up and memory
copy. In this way, no memory allocation or hash table look-upis necessary for each
I/O request. Figure 3.1 illustrates the final design of our SSD emulator.

The SSD modeling thread models SSD behavior and maintains a FIFO queue
of I/O requests that are passed from the main thread. For eachI/O request, its logi-
cal block address, its direction, and its arrival time are passed to an SSD simulator.
The SSD simulator simulates SSD behavior with a certain FTL and calculates the
response time of the request. The SSD model is a separate component and can be

31

replaced by other models. We implemented the SSD simulator based on the PSU
objected-oriented SSD simulator codebase [11]. The PSU SSDcodebase contains
the basic data structures and function skeletons but no implementation of FTLs, ad-
dress mapping, garbage collection, wear leveling, or I/O parallelism and queueing;
we implemented these functionalities. We will discuss moredetails about our SSD
model and its FTLs in the next section.

To accurately emulate the response of an I/O request, we usehrtimer, a high-
resolution and high-precision Linux kernel timer, to set the time the SSD is sup-
posed to finish the I/O request. When the SSD model returns theresponse time, if
it is larger than the current time, then we set the hrtimer to use this response time.
Otherwise, the hrtimer uses the current time (i.e., it expires immediately). The lat-
ter case happens when the computation time of the SSD model islarger than the
(modeled) latency of an I/O request; in this case, the emulator will not be able to
accurately emulate the performance of the modeled SSD. Therefore, it is important
to minimize the computation in the SSD model when implementing the SSD FTLs.

An I/O request is considered finished when both the data storage thread and the
modeling thread have finished their processing of the I/O. The data storage thread
is considered finished with its processing when it has storedor read the I/O data
to or from memory. The modeling thread is considered finishedwhen the timer
expires. Both threads can return the I/O request to the host,when the other thread
and itself have both finished their processing. We maintain an identifier with each
I/O to indicate if a thread has finished processing it.

3.1.2 SSD Model

We now discuss our implementation of the SSD simulator and how we model SSD
hardware structures and software FTLs. Figure 3.2 illustrates the architecture of
the modeled SSD.

We model the SSD internal architecture in the following way.The SSD contains
a certain number of packages (flash chips); each package contains a set of dies; each
die has a set of planes. A plane is the unit for I/O parallelism. A plane contains a
set of flash erase blocks, which are the unit of the erase operation. An erase block
contains a set of flash pages, which are the units of reads and writes. There is
also an OOB area with each flash page, which is used to store per-page metadata,
such as the logical block address of the page and the page valid bit. The logical
block address is used to construct the address mapping tableduring SSD start up
and recovery. The valid bit is used during garbage collection and wear leveling. A
real SSD also usually stores EEC bits in the OOB area; we do notmodel the error
correcting behavior of the SSD. We also store certain information with each erase

32

Figure 3.2:Structures of the SSD Model. This figure describes the internal structures
of the SSD model. At different circled numbers, there are different types of delay (example
values in Table 3.1).

block, such as the last update time of the block. The update time is used during
wear leveling to identify the temperature of the data in an erase block.

We model the SSD firmware with two FTLs, a page-level mapping FTL and a
hybrid FTL. Both FTLs make use of multiple planes and parallelize I/O requests to
as many planes as possible. To minimize CPU time, we use arraytable instead of
hash table to store all the FTL mapping tables. To reduce computational time, we
also maintain a free block queue, so that a full scan is not required to find a new
block. We now discuss more details that are specific to each FTL and the garbage
collection and wear-leveling operations of both FTLs.

33

Page-level FTL

The page-level mapping FTL keeps a mapping for each data pagebetween its logi-
cal and physical address. For writes, the page-level mapping FTL performs alloca-
tion in a log-structured fashion. The FTL maintains an active block in each plane
and appends new writes to the next free page in the block. The FTL also paral-
lelizes writes in round-robin order across all the planes. For reads, the page-level
mapping FTL simply looks up its mapping table and finds its physical address; it
then performs the read from this physical address.

Hybrid FTL

We implemented a hybrid mapping FTL similar to FAST [60], which uses alog
block areafor active data and adata block areato store all the data. One sequential
log block is dedicated for sequential write streams. All theother log blocks are
used for random writes. The rest of the device is a data block area used to store
data blocks at their final locations. The pages in a data blockhave to belong to
the same erase block (e.g., 64 4 KB pages in a 256 KB consecutive logical block
address range). The pages in a random-write log block can have any arbitrary
logical addresses. We choose to use log-structured allocation to write random data
to the log blocks. The hybrid mapping FTL maintains page-level mappings for the
log block area and block-level mappings for the data block area.

Garbage Collection and Wear Leveling

We implemented a simple garbage collection algorithm and a simple wear-leveling
algorithm with both the page-level mapping and the hybrid mapping FTLs.

The garbage collection operation is triggered when the number of free blocks
in a plane is low. The garbage collector uses a greedy method and recycles blocks
with the least live data. During garbage collection, blockswith all invalid pages are
first selected for recycling. The garbage collector simply erases them. The block
with the greatest number of invalid pages is then selected. The valid pages in these
blocks are written out into a new block. For the page-level mapping FTL, the valid
pages are simply written into any free space on any plane (we choose to parallelize
these writes to different planes). For the hybrid mapping FTL, to garbage collect a
data block, a merge operation is triggered; the valid pages are either copied from
the old data block or current log blocks into a new free block.

We implemented a wear-leveling algorithm similar to a previous algorithm [3].
The wear-leveling algorithm is triggered when the overall wear of the SSD is high.
The SSD considers both block wear and data temperature during the wear leveling

34

operation. A block whose amount of remaining erase cycles isless than a certain
percentage of the average remaining erase cycles of the blocks in the SSD is consid-
ered for wear leveling. The SSD then selects the block with the coldest data (oldest
update time) and swaps its content with the worm block; the corresponding address
mapping entries are also updated accordingly. Notice that because of the need in
the wear-leveling algorithm, the SSD also keeps track of thedata temperature in
each block and stores it with the block.

3.2 Evaluation

In this section, we present our evaluation results of our SSDemulator. We begin
our evaluation by answering the questions of how accurate the emulator is and
what kind of SSDs the emulator is capable of modeling. Our major goal of the
emulator is to have low computational overhead so that it canaccurately emulate
common types of SSDs with important workloads. After findingout the accuracy
and capability of our emulation, we delve into the study of more detailed aspects
of the SSD and different FTLs. All experiments are performedon a 2.5 GHz Intel
Quad Core CPU with 8 GB memory.

The followings are the specific questions we set to answer.

• What is the computational overhead of the emulator?

• How accurate does the emulator need to be to model an SSD for a partic-
ular metric? Can the emulator model common type of SSDs for important
metrics?

• What is the effect of multiple parallel planes on the performance of an SSD?

• How does the page-level mapping FTL compare to the hybrid mapping one?

• What is the performance bottleneck of the hybrid mapping FTLand why?

Table 3.1 describes the configurations we used in our evaluation. There are dif-
ferent kinds of latency associated with various SSD internal structures as shown in
Figure 3.2. We use two types of flash memory; SSD1 emulates an older generation
of flash memory and SSD2 emulates a newer generation.

3.2.1 Emulation Overhead

We first evaluate the computational overhead of our SSD emulator. The compu-
tational overhead limits the type of SSDs the emulator can model accurately; if

35

Configuration SSD1 SSD2
SSD Size 4 GB 4 GB
Page Size 4 KB 4 KB
Block Size 256 KB 256 KB
Number of Planes∗ 10 10
Hybrid Log Block Area∗ 5% 5%
Page Read Latency 25µs 65µs
Page Write Latency 200µs 85µs
Block Erase Latency 1500µs 1000µs
Bus Control Delay 2µs 2µs
Bus Data Delay 10µs 10µs
RAM Read/Write Delay 1µs 1µs
Plane Register Read/Write Delay 1µs 1µs

Table 3.1: SSD Emulator Configurations. ∗Number of planes and amount of hy-
brid log block area use the values in the table as default value but may vary for certain
experiments.

the I/O request time of an SSD is faster than the computation time taken by the
emulator, then we cannot model this SSD accurately. Thus, our goal is to have an
generally low computational overhead. However, because ofthe non-deterministic
nature of real-time emulation, we allow small amount of outliers.

To evaluate the computational overhead of the emulator, we first study the total
time spent in the emulator for an I/O requestTE without including the SSD mod-
eled request timeTR (i.e., TR = 0). Figure 3.3 plots the cumulative distribution
of the total emulation time of synchronous sequential and random writes with the
page-level mapping and the hybrid mapping FTLs. We use the cumulative dis-
tribution, since our goal of the emulator is to have an overall low computational
overhead but allow occasional outliers with higher overhead; the cumulative distri-
bution serves to measure if we meet this goal.

Overall, we find that the computational overhead of our emulator is low; the
majority of the requests haveTE from 25 to 30µs for both sequential and random
workloads and for both FTLs. Comparing different workloadsand FTLs, we find
that random writes with the hybrid mapping FTL has higher emulation time than all
the others. There is also a long tail, indicating a small number of outliers that have
extremely high computational overhead (e.g., 1000µs). We suspect that the high
computational overhead and outliers are due to the complex operations of random
writes (e.g., merge and garbage collection) with the hybrid mapping FTL.

To further study the emulator overhead and understand wherethe bottleneck is,

36

Emulation Time (usec)
10 100 1000

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
(%

)

0

20

40

60

80

100

Page_seq
Page_rand
Hybrid_seq
Hybrid_rand

25

Figure 3.3:CDF of the Emulation Time. We perform sustained synchronous 4 KB
sequential and random writes with the page-level mapping and the hybrid mapping FTLs
and plot the cumulative distribution of the time spent at theemulator (TE). The SSD model
thread does all its modeling computation but always return azero modeled request time
(TR = 0).

Data Store Time (usec)
0 5 10 15 20 25 30

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
(%

)

0

20

40

60

80

100

Figure 3.4: CDF of Data Store Time. This figure plots the cumulative density of
the time spent at the data store thread using 4 KB sequential writes with the page-level
mapping FTL. The results for the hybrid mapping FTL and for random writes are similar
to this graph.

we separately monitor the computational and memory store time taken by the two
threads in the emulator to process each I/O request (TS andTM). The time taken
by the data storage thread includes the time to store or read data from memory and
other computational time of the thread. The time taken by theSSD modeling thread
includes all the computational time taken by it but not the actual modeled response
time of the I/O request (TR = 0).

Figure?? plots the cumulative distributions of the time taken by the data store
thread. The figure plots the distribution of synchronous sequential writes using the
page-level mapping FTL, but the other workloads and FTL all have similar distri-

37

SSD Model Time (usec)
10 100 1000

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
(%

)

0

20

40

60

80

100

Page_seq
Page_rand
Hybrid_seq
Hybrid_rand

Figure 3.5:CDF of time spent by the SSD modeling thread for each I/O request.
We perform sustained synchronous 4 KB sequential and randomwrites with the page-level
mapping and the hybrid mapping FTLs. This figure presents thecumulative density of the
computational spent at the SSD modeling thread. The solid line represents the SSD model
with the page-level mapping FTL and the dotted line represents the hybrid mapping FTL.

bution; the data store thread is not affected by the SSD modelor type of workloads
(as long as the block size in the workloads is the same). We findthat the memory
store time has a median of 12µs and is lower than the total emulation time. We
also find that the time taken by the data store thread has a small variance, indicating
that memory store is a stable operation that is not affected by workloads or types of
FTLs.

Figure 3.5 plots the cumulative distributions of the time taken by the SSD mod-
eling thread with sequential and random writes and both the page-level mapping
and the hybrid mapping FTLs. We find that the SSD model thread takes a median of
27 to 31µs for the page-level mapping FTL and 29 to 35µs for the hybrid mapping
FTL. The SSD modeling time is similar to the total emulation time and is always
bigger than the data store time; the shape of the distributions of the SSD model time
is also similar to the distributions of the total emulation time (Figure 3.3). These
findings indicate that SSD modeling is the bottleneck of the emulator.

Similar to the total emulation time, we find that random writes with the hybrid
mapping FTL has higher modeling time and a longer tail than other workloads and
FTL. We find that the computational time of the SSD simulator is higher with merge
operation and garbage collection operation; these operations happen more often and
have higher cost with the hybrid mapping FTL than the page-level mapping FTL.
Fortunately, when an I/O request involves merge or garbage collection operations,
its response time is also higher than a request without theseoperations; therefore,
the higher computational overhead is hidden.

38

3.2.2 Emulation Accuracy and Capability

After knowing the computational overhead of the emulator, we further study the
accuracy of the emulator and what types of SSDs it is capable of emulating.

In this set of experiments, we include the simulated SSD request time of a
requestTR in the total emulation timeTM . To study the accuracy of the emulator,
we set all requests in an experiment to use a fixed SSD request time TR (i.e., the
timer in the emulator is always set to return a request at the time of its arrival time
plus TR). The request timeTR ranges from 0 to 40µs. Notice that the request
time does not include the queueing delay, which the SSD emulator performs before
sending a request to the SSD simulator (see Figure 3.1 for theemulator process
flow). Also notice that even though we use a fixed SSD request time, we still let
the SSD simulator perform its calculation as usual.

Figure 3.6 plots the medians of the emulator time for different TR’s with se-
quential writes and the page-level mapping FTL. The target line represents the
fixed request time we set with the SSD model (TR). From the figure, we can see
that when the simulated request time is equal to or less than 17µs, the total time
spent at the emulator is always around 26µs, even when the request time is 0 (i.e.,
the emulator returns a request as soon as it finishes both the data store and SSD
modeling computation). When the request time is more than 17µs, the total time
spent at the emulator is always 9µs longer than the request time. This (fixed) ad-
ditional time is mainly due to the queueing delay, which is spent before a request
goes into the SSD model and thus not included inTR. Thus, the emulator can ac-
curately model these larger request times, but the lowest request time the emulator
can model is 17µs.

Figure 3.7 plots the medians of the emulator time for differentTRs with random
writes and the page-level mapping FTL. We find that the lowestrequest time the
emulator can model is 19µs.

Similarly, we perform sequential and random writes with thehybrid mapping
FTL and plot the medians of the emulator in Figures 3.8 and 3.9. We find that the
lowest request time the emulator can model is 19µs for sequential writes and 21µs
for random writes.

From the above experiments, we see that the emulator has a limit of a minimum
request time that it is capable of emulating accurately because of the computational
overhead observed with the emulator (from 17 to 21µs for different workloads and
FTLs).

Since we model SSDs with parallel planes, we must take into consideration the
implication of such parallelism on emulation. With parallel planes, the emulator
needs to finish processing multiple requests (i.e., one for each plane) in the unit time

39

Model Request Time (usec)
0 10 20 30 40

E
m

ul
at

io
n

T
im

e
(u

se
c)

0

10

20

30

40

50

Target without Queueing

17

Figure 3.6:Medians of Emulation Time with Sequential Writes and the page-
level mapping FTL. The SSD simulator uses a fake fixed modeled request timeTM (0
to 40µs) for all requests in an experiment. For each experiment, we perform sustained
synchronous 4 KB sequential writes and calculate the medianof the emulation timeTE.
The “Target” line represents the target SSD model request timeTM . This model time does
not include any queueing effect. The dotted line representsthe minimal SSD request time
the emulator can emulate accurately.

Model Request Time (usec)
0 10 20 30 40 50

E
m

ul
at

io
n

T
im

e
(u

se
c)

0

10

20

30

40

50

Target without Queueing

19

Figure 3.7: Medians of Emulation Time with Random Writes and the page-
level mapping FTL. The SSD simulator uses a fake fixed modeled request timeTM

(0 to 40µs) for all requests in an experiment. For each experiment, we perform sustained
synchronous 4 KB random writes (within a 2 GB range) and calculate the median of the em-
ulation timeTE. The “Target” line represents the target SSD model request timeTM . This
model time does not include any queueing effect. The dotted line represents the minimal
SSD request time the emulator can emulate accurately.

of a per-plane request. To demonstrate this limitation, we plot the area of the SSD
configuration space where our emulator can accurately modelin Figure 3.10 (with
sequential writes and the page-level mapping FTL). For an SSD with 10 parallel
planes, this emulation limit means that the emulator can only accurately model
per-plane request time of 170µs or higher. The dot in Figure 3.10 represents the

40

Model Request Time (usec)
0 10 20 30 40 50

E
m

ul
at

io
n

T
im

e
(u

se
c)

0

10

20

30

40

50

Target without Queueing

19

Figure 3.8:Medians of Emulation Time with Sequential Writes and the hybrid
mapping FTL. The SSD simulator uses a fake fixed modeled request timeTM (0 to 40µs)
for all requests in an experiment. For each experiment, we perform sustained synchronous
4 KB sequential writes and calculate the median of the emulation timeTE. The “Target”
line represents the target SSD model request timeTM . This model time does not include
any queueing effect. The dotted line represents the minimalSSD request time the emulator
can emulate accurately.

Model Request Time (usec)
0 10 20 30 40

E
m

ul
at

io
n

T
im

e
(u

se
c)

0

10

20

30

40

50

Target without Queueing

21

Figure 3.9:Medians of Emulation Time with Random Writes and the hybrid
mapping FTL. The SSD simulator uses a fake fixed modeled request timeTM (0 to 40µs)
for all requests in an experiment. For each experiment, we perform sustained synchronous
4 KB random writes (within a 2 GB range) and calculate the median of the emulation time
TE . The “Target” line represents the target SSD model request timeTM . This model time
does not include any queueing effect. The dotted line represents the minimal SSD request
time the emulator can emulate accurately.

write configuration we use in later chapters (Chapters 4 and 6). We can see that
the write configuration we choose is within the accurate range of the emulator.
For other workloads and FTLs, the relationship of number of planes and minimal
per-plane request time is similar. For example, the emulator can model per-plane
request time of 210µswith random writes and the hybrid mapping FTL. Notice that

41

Latency (us)
0 50 100 150 200 250 300 350

N
um

be
r

of
 P

la
ne

s

0

5

10

15

20

Figure 3.10:Capability of the Emulator This figure illustrates the relationship of
number of parallel planes and the minimal per-plane requesttime that our emulator can
model accurately. The grey area represents the configuration space that can be accurately
modeled. The black dot represetnts the configuration we choose for evaluation in the rest
of this dissertation.

random writes in real SSDs are also slower than sequential writes with the hybrid
mapping FTL, which means that the 210µs is sufficient for modeling random write
performance, too.

For most kinds of flash memory, the unit flash page read time is less than
100µs. Thus, the emulator is not fit for accurately modeling flash reads with typ-
ical number of parallel planes in the SSD. This dissertation(and most other flash
research) focus on improving write performance, which is the bottleneck of flash-
based SSDs. The emulator can accurately model flash writes (which have larger
access time than reads) and is fit for the evaluation in this dissertation.

3.2.3 Effect of Parallelism

I/O parallelism is an important property of flash-based SSDsthat enables better
performance than a single flash chip. We model the I/O parallelism across multiple
planes in our SSD emulator. We now study the effect of such parallelism.

Figure 3.11 shows the throughput of sustained 4 KB random writes with vary-
ing number of planes for the page-level mapping and hybrid mapping FTLs. We
find that the random write throughput increases linearly with more planes using
the page-level mapping FTL for SSD1. The page-level mappingFTL allocates new
write across planes in a round robin fashion to parallelize I/Os to all the planes; with
more planes, the write throughput is expected to increase. For hybrid mapping FTL,
we find that the random write throughput also increases with more planes. How-
ever, the effect of increasing planes is not as big as for page-level mapping FTL,

42

Number of Planes
0 5 10 15 20

T
hr

ou
gh

pu
t (

K
IO

P
S

)

0

10

20

30

40

50

60

70

Page−level_SSD2
Page−level_SSD1
Hybrid_SSD2
Hybrid_SSD1

Figure 3.11:Random Write Throughput with Different Numbers of Planes.
Throughput of sustained 4 KB random writes with different numbers of planes for Page-
Level and Hybrid FTLs. For each data point, we repeat random writes of a 2 GB file until
the systems go into a steady state.

Number of Planes
0 5 10 15 20

A
vg

 L
at

en
cy

 (
us

)

0

100

200

300

400

500

600

700

800
Hybrid_SSD1
Hybrid_SSD2
Page−level_SSD1
Page−level_SSD2

Figure 3.12:Random Write Avg Latency with Different Numbers of Planes.
Average latency of sustained 4 KB random writes with different numbers of planes for Page-
Level and Hybrid FTLs. For each data point, we repeat random writes of a 2 GB file until
the systems go into a steady state.

since the major reason for poor hybrid mapping random write performance is its
costly merge operation and this operation has a high performance cost even with
multiple planes.

Looking at SSD2 and the data point from 10 to 20 planes for SSD1, we find
that the write throughput of the SSD emulator flattens at around 65 KIOPS. This
result conforms with the SSD emulator performance limitation.

We further look at the average request latencies for different number of planes
and plot them in Figure 3.12. We find a similar conclusion as the throughput results:
the random write average latency decreases with more planes(linearly for the page-
level mapping FTL and sub-linearly for the hybrid mapping FTL).

43

Sequential Random

T
hr

ou
gh

pu
t (

M
B

/s
)

0

50

100

150

200

250

PageSSD1 HybridSSD1 PageSSD2 HybridSSD2

Figure 3.13: Write Performance of the page-level mapping and the hybrid
mapping FTLs. All experiments are performed with a 4 GB SSD with 10 parallel
planes using two types of flash memory, SSD1 and SSD2. All the experiments use 4 KB
block size and are performed in the 4 GB range.

3.2.4 Comparison of Page-level and Hybrid FTLs

The page-level mapping and hybrid mapping FTLs are two majortypes of FTLs
that differ in the granularity of mappings they maintain (flash page granularity for
the page-level mapping FTL and combination of erase block and flash page gran-
ularity for the hybrid mapping FTL). We now present the results of comparing the
page-level mapping and the hybrid mapping FTLs, considering the mapping table
space they use and their write performance.

The mapping table for the 4 GB SSD is 4 MB with the page-level mapping FTL
and is 0.85 MB with the hybrid mapping FTL. The page-level mapping FTL keeps
a 32-bit pointer for each 4 KB flash page, making the mapping table size 4 MB. The
hybrid mapping FTL uses 20% log block area and 80% data block area. For the
log block area, it keeps a mapping for each 4 KB page; for the data block area, it
keeps a mapping for each 256 KB erase block, making the total mapping table size
0.85 MB. Thus, the page-level mapping FTL uses more mapping table space than
the hybrid mapping FTL.

Figure 3.13 presents the write performance results of the page-level mapping
and hybrid mapping FTLs. The sequential write throughput for the page-level map-
ping and hybrid mapping FTLs is similar. But the random writethroughput of the
hybrid mapping FTL is much lower than the page-level mappingFTL. We also find
that as expected, SSD2 has higher write throughput than SSD1for both page-level
mapping and hybrid mapping FTLs, since the flash page write latency is lower for
SSD2.

44

C
os

t o
f O

pe
ra

tio
n

(%
)

0

20

40

60

80

100

Amount of Log Blocks (%)
0 10 20 30 40 50

Idle
MergeIdle
MergeRead
MergeWrite
Erase
NormalWrite

Figure 3.14:Cost of Different Operations with Hybrid FTL. Throughput of sus-
tained 4 KB random writes with different amount of log blocksin Hybrid FTLs. For each
data point, we repeat random writes of a 1 GB file until the systems go into a steady state.

3.2.5 Study of Hybrid FTL

Since random writes are the bottleneck of the hybrid mappingFTL, it is impor-
tant to learn the cause of its poor random write performance.We now study what
factors affect random write performance and the reason for the poor random write
performance.

To closely study random write performance and the operations the FTL uses
during random writes, we break down the FTL utilization intodifferent operations,
including normal writes, block erases, writes and reads during merge operations,
idle time during merge operations, and other idle time. Figure 3.14 plots the per-
centage of all these operations on all the planes during random writes. Figure 3.15
takes a close look at the operations other than the idle time.We find that the merge
operations take the majority of the total SSD time and normalwrites only take up
around 3% to 9% of the total time. As explained in Chapter 2, the merge operation
of the hybrid mapping FTL is costly because of the valid data copying and block
erases. Surprisingly, with multiple planes, there is also ahigh idle time during the
merge operations. While a data page is copied from a plane during the merge op-
eration, other planes can be idle. As a result, the merge operations are the major
reason for poor random writes, even though they are not invoked as often as nor-
mal writes (specifically, it is invoked once per 64 4 KB writesto free a 256 KB log
block).

Since the costly merges are triggered when the log block areais full, the size
of the log block area is likely to affect the random write performance of the hybrid
mapping FTL. To study this effect, we change the amount of logblocks in Figures
3.14 and 3.15. We find that with more log blocks, the amount of normal write

45

C
os

t o
f O

pe
ra

tio
n

(%
)

0

20

40

60

80

100

Amount of Log Blocks (%)
0 10 20 30 40 50

MergeRead
MergeWrite
Erase
NormalWrite

Figure 3.15:Cost of Different Operations with Hybrid FTL. Throughput of sus-
tained 4 KB random writes with different amount of log blocksin Hybrid FTLs. For each
data point, we repeat random writes of a 1 GB file until the systems go into a steady state.

Amount of Log Blocks (%)
0 10 20 30 40 50

T
hr

ou
gh

pu
t (

K
IO

P
S

)

0

2

4

6

8

10

SSD2
SSD1

Figure 3.16:Random Write Throughput with Different Amount of Log Blocks .
Throughput of sustained 4 KB random writes with different amount of log blocks in Hybrid
FTLs. For each data point, we repeat random writes of a 1 GB fileuntil the systems go into
a steady state.

operation time increases and the cost of merge operation is lower. With more log
blocks, there is more space for active data. The merge operation cost is lower, since
more data will be merged from the log block area and less data will be merged from
the data block area; the latter is costlier than the former.

Figure 3.16 plots the random write throughput of the hybrid mapping FTL with
different sizes of log blocks. We can see that the random write throughput increases
with more log blocks, conforming with the results in the operation break-down
analysis. However, more log blocks requires a larger mapping table; for exam-
ple, 50% log blocks require a 2.03 MB mapping table, while 20%log blocks only
require a 0.85 MB mapping table.

46

3.3 Limitations and Discussions

There are certain limitations with our SSD emulator. In thissection we discuss
these limitations.

First, our SSD emulator simplifies certain aspects in a real SSD. For example,
we do not emulate the write buffer and the read cache available in many modern
SSDs. The interface between the SSD emulator and the host OS is also simplified
to using the Linux kernel block I/O request interface. In reality, SSDs usually
use the SATA interface to connect to the host OS and the SATA interface is more
complicated and restricted than the kernel block I/O interface.

Second, we model SSD FTLs based on previous publications andnot on real
SSDs since there is no public information about details of commercial SSD inter-
nals. Reverse engineering commercial SSDs may be a viable solution to learn their
internal FTLs. However, our initial effort to reverse engineer a commercial SSD
turns out to be difficult; we leave it for future work.

Third, even though we use different techniques to reduce thecomputational
overhead of the emulator, such overhead still limits the speed of the emulator and
thus the type of SSDs it can emulate accurately. For example,the emulator cannot
emulate a fast flash-based SSD with many parallel planes. Forthe same reason, it
is difficult to emulate a DRAM-based SSD or other fast deviceswith our emulator.
One possible way to alleviate the computational limitationof the emulator is to
parallelize the SSD simulator computation across multipleCPU cores.

Finally, our SSD emulator is implemented as a Linux pseudo block driver and
does not work with other operating systems.

3.4 Summary

In this chapter, we described the SSD emulator that we built for evaluation of vari-
ous designs in this dissertation and in other research on SSDs. The emulator works
as a pseudo block device with Linux. Workloads and applications can run easily
with the emulator in a real system. The SSD model we use in the emulator sim-
ulates different components and operations of typical modern flash-based SSDs.
We implemented two FTLs for the emulator: the page-level mapping FTL and the
hybrid mapping FTL.

A major challenge we found in the process of building the emulator is the diffi-
culty in making the emulator accurate with SSD models that use internal parallism.
We used several different techniques to reduce the computational overhead of the
emulator so that it can accurately model important types of metrics with common

47

types of SSDs, even those with internal parallism.
Our evaluation results show that the emulator is reasonablyfast and can accu-

rately emulate most SSD devices. We further study the page-level mapping and the
hybrid mapping FTLs and found that the hybrid mapping FTL haspoor random
write performance, mainly because of the costly merge operations it uses to free
new blocks.

48

49

Chapter 4

De-indirection with Nameless
Writes

When running a file system on top of a flash-based SSD, excess indirection exists
in the SSD and creates both memory space and performance overhead. One way to
remove such redundant indirection is to remove the need for the SSD to create and
use indirection. Such a goal can be achieved by changing the I/O interface between
the file system and the SSD.

In this chapter, we introduce nameless writes, a new I/O interface to remove
the costs of the indirection in flash-based SSDs [9, 97]. A nameless write sends
only data and no name (i.e., logical block address) to the device. The device then
performs its allocation and writes the data to a physical block address. The physical
block address is then sent back to the file system by the deviceand the file system
records it in its metadata for future reads.

In designing the nameless writes interface, we encounteredtwo major chal-
lenges. First, flash-based SSDs migrate physical blocks because of garbage col-
lection and wear leveling; the file system needs to be informed about such address
change so that future reads can be directed properly. Second, if we use nameless
writes as the only write interface, then there will be a high performance cost and in-
creased engineering complexity because of the behavior of recursive updates along
the file system tree.

We solve the first problem with amigration callback, which informs physical
address changes to the file system, which then updates its metadata to reflect the
changes. We solve the second problem by treating file system metadata and data
differently and use traditional writes for metadata and nameless writes for data; the
physical addresses of metadata thus do not need to be returned or recorded in the

50

file system, stopping the recursive updates.
We built an emulated nameless-writing SSD and ported the Linux ext3 file sys-

tem to nameless writes. Our evaluation results of nameless writes and its compar-
ison with other FTLs show that a nameless-writing SSD uses much less memory
space for indirection and improves random write performance significantly as com-
pared to the SSD with the hybrid FTL.

The rest of this chapter is organized as follows. In Section 4.1 we present
the design of the nameless write interface.In Section 4.2, we show how to build a
nameless-writing device. In Section 4.3, we describe how toport the Linux ext3
file system to use the nameless-writing interface, and in Section 4.4, we evaluate
nameless writes through experimentation atop an emulated nameless-writing de-
vice. Finally, we summarizes this chapter in Section 4.5.

4.1 Nameless Writes

In this section, we discuss a new device interface that enables flash-based SSDs
to remove a great deal of their infrastructure for indirection. We call a device
that supports this interface aNameless-writing Device. Table 4.1 summarizes the
nameless-writing device interfaces.

The key feature of a nameless-writing device is its ability to perform nameless
writes; however, to facilitate clients (such as file systems) to use a nameless-writing
device, a number of other features are useful as well. In particular, the nameless-
writing device should provide support for a segmented address space, migration
callbacks, and associated metadata. We discuss these features in this section and
how a prototypical file system could use them.

4.1.1 Nameless Write Interfaces

We first present the basic device interfaces ofNameless Writes: nameless (new)
write, nameless overwrite, physical read, and free.

The nameless write interface completely replaces the existing write operation.
A nameless write differs from a traditional write in two important ways. First, a
nameless write does not specify a target address (i.e., a name); this allows the device
to select the physical location without control from the client above. Second, after
the device writes the data, it returns aphysicaladdress (i.e., a name) and status to
the client, which then keeps the name in its own structure forfuture reads.

The nameless overwrites interface is similar to the nameless (new) write inter-
face, except that it also passes the old physical address(es) to the device. The device

51

Virtual Read
down: virtual address, length
up: status, data

Virtual Write
down: virtual address, data, length
up: status

Nameless Write
down: data, length, metadata
up: status, resulting physical address(es)

Nameless Overwrite
down: old physical address(es), data, length, metadata
up: status, resulting physical address(es)

Physical Read
down: physical address, length, metadata
up: status, data

Free
down: virtual/physical addr, length, metadata, flag
up: status

Migration [Callback]
up: old physical addr, new physical addr, metadata
down: old physical addr, new physical addr, metadata

Table 4.1: The Nameless-Writing Device Interfaces. The table presents the
nameless-writing device interfaces.

frees the data at the old physical address(es) and then performs a nameless write.

Read operations are mostly unchanged; as usual, they take asinput the physical
address to be read and return the data at that address and a status indicator. A slight
change of the read interface is the addition of metadata in the input, for reasons that
will be described in Section 4.1.4.

Because a nameless write is an allocating operation, a nameless-writing device
needs to also be informed of de-allocation as well. Most SSDsrefer to this interface
as thefreeor trim command. Once a block has been freed (trimmed), the device is
free to re-use it.

Finally, we consider how the nameless write interface couldbe utilized by a
typical file-system client such as Linux ext3. For illustration, we examine the op-
erations to append a new block to an existing file. First, the file system issues

52

a nameless write of the newly-appended data block to a nameless-writing device.
When the nameless write completes, the file system is informed of its address and
can update the corresponding in-memory inode for this file sothat it refers to the
physical address of this block. Since the inode has been changed, the file system
will eventually flush it to the disk as well; the inode must be written to the device
with another nameless write. Again, the file system waits forthe inode to be writ-
ten and then updates any structures containing a reference to the inode. If nameless
writes are the only interface available for writing to the storage device, then this
recursion will continue until a root structure is reached. For file systems that do
not perform this chain of updates or enforce such ordering, such as Linux ext2,
additional ordering and writes are needed. This problem of recursive update has
been solved in other systems by adding a level of indirection(e.g., the inode map
in LFS [77]).

4.1.2 Segmented Address Space

To solve the recursive update problem without requiring substantial changes to
the existing file system, we introduce a segmented address space with two seg-
ments (see Figure 4.1): thevirtual address space, which uses virtual read, virtual
write and free interfaces, and thephysical address space, which uses physical read,
nameless write and overwrite, and free interfaces.

The virtual segment presents an address space from blocks 0 throughV − 1,
and is a virtual block space of sizeV blocks. The device virtualizes this address
space, and thus keeps a (small) indirection table to map accesses to the virtual space
to the correct underlying physical locations. Reads and writes to the virtual space
are identical to reads and writes on typical devices. The client sends an address and
a length (and, if a write, data) down to the device; the devicereplies with a status
message (success or failure), and if a successful read, the requested data.

The nameless segment presents an address space from blocks 0throughP − 1,
and is a physical block space of sizeP blocks. The bulk of the blocks in the
device are found in this physical space, which allows typical named reads; however,
all writes to physical space are nameless, thus preventing the client from directly
writing to physical locations of its choice.

We use a virtual/physical flag to indicate the segment a blockis in and the
proper interfaces it should go through. The size of the two segments are not fixed.
Allocation in either segment can be performed while there isstill space on the
device. A device space usage counter can be maintained for this purpose.

The reason for the segmented address space is to enable file systems to largely
reduce the levels of recursive updates that would occur withonly nameless writes.

53

V0 V1 V2 V3 P0 P1 P2 P3 P4 P5 P6 P7 P8 P9

Virtual Address Space Physical Address Space

Virtual Reads

Virtual Writes

Physical Reads

Nameless Writes

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9

V0 → P2

V2 → P3

indirection

table

Figure 4.1:The Segmented Address Space.A nameless-writing device provides a
segmented address space to clients. The smaller virtual space allows normal reads and
writes, which the device in turn maps to underlying physicallocations. The larger physical
space allows reads to physical addresses, but only namelesswrites. In the example, only
two blocks of the virtual space are currently mapped, V0 and V2, to physical blocks P2 and
P3, respectively.

File systems such as ext2 and ext3 can be designed such that inodes and other
metadata are placed in the virtual address space. Such file systems can simply
issue a write to an inode and complete the update without needing to modify direc-
tory structures that reference the inode. Thus, the segmented address space allows
updates to complete without propagating throughout the directory hierarchy.

4.1.3 Migration Callback

Several kinds of devices such as flash-based SSDs need to migrate data for reasons
like wear leveling. We propose themigration callbackinterface to support such
needs.

A typical flash-based SSD performs wear leveling via indirection: it simply
moves the physical blocks and updates the map. With namelesswrites, blocks in
the physical segment cannot be moved without informing the file system. To allow
the nameless-writing device to move data for wear leveling,a nameless-writing
device usesmigration callbacksto inform the file system of the physical address
change of a block. The file system then updates any metadata pointing to this
migrated block.

54

4.1.4 Associated Metadata

The final interface of a nameless-writing device is used to enable the client to
quickly locate metadata structures that point to data blocks. The complete spec-
ification for associated metadata supports communicating metadata between the
client and device. Specifically, the nameless write commandis extended to include
a third parameter: a small amount of metadata, which is persistently recorded ad-
jacent to the data in a per-block header. Reads and migrationcallbacks are also
extended to include this metadata. The associated metadatais kept with each block
buffer in the page cache as well.

This metadata enables the client file system to readily identify the metadata
structure(s) that points to a data block. For example, in ext3 we can locate the
metadata structure that points to a data block by the inode number, the inode gener-
ation number, and the offset of the block in the inode. For filesystems that already
explicitly record back references, such as btrfs and NoFS [23], the back references
can simply be reused for our purposes.

Such metadata structure identification can be used in several tasks. First, when
searching for a data block in the page cache, we obtain the metadata information
and compare it against the associated metadata of the data blocks in the page cache.
Second, the migration callback process uses associated metadata to find the meta-
data that needs to be updated when a data block is migrated. Finally, associated
metadata enables recovery in various crash scenarios, which we will discuss in de-
tail in Section 4.3.7.

One last issue worth noticing is the difference between the associated meta-
data and address mapping tables. Unlike address mapping tables, the associated
metadata is not used to locate physical data and is only used by the device dur-
ing migration callbacks and crash recovery. Therefore, it can be stored adjacent to
the data on the device. Only a small amount of the associated metadata is fetched
into device cache for a short period of time during migrationcallbacks or recov-
ery. Therefore, the space cost of associated metadata is much smaller than address
mapping tables.

4.1.5 Implementation Issues

We now discuss various implementation issues that arise in the construction of a
nameless-writing device. We focus on those issues different from a standard SSD,
which are covered in detail elsewhere [40].

A number of issues revolve around the virtual segment. Most importantly, how
big should such a segment be? Unfortunately, its size depends heavily on how the

55

client uses it, as we will see when we port Linux ext3 to use nameless writes in
Section 4.3. Our results in Section 4.4 show that a small virtual segment is usually
sufficient.

The virtual space, by definition, requires an in-memory indirection table. For-
tunately, this table is quite small, likely including simple page-level mappings for
each page in the virtual segment. However, the virtual address space could be made
larger than the size of the table; in this case, the device would have to swap pieces of
the page table to and from the device, slowing down access to the virtual segment.
Thus, while putting many data structures into the virtual space is possible, ideally
the client should be miserly with the virtual segment, in order to avoid exceeding
the supporting physical resources.

Another concern is the extra level of information naturallyexported by expos-
ing physical names to clients. Although the value of physical names has been ex-
tolled by others [27], a device manufacturer may feel that such information reveals
too much of their “secret sauce” and thus be wary of adopting such an interface.
We believe that if such a concern exists, the device could hand out modified forms
of the true physical addresses, thus trying to hide the exactaddresses from clients.
Doing so may exact additional performance and space overheads, perhaps the cost
of hiding information from clients.

4.2 Nameless-Writing Device

In this section, we describe our implementation of an emulated nameless-writing
SSD. With nameless writes, a nameless-writing SSD can have asimpler FTL,
which has the freedom to do its own allocation and wear leveling. We first dis-
cuss how we implement the nameless-writing interfaces and then propose a new
garbage collection method that avoids file-system interaction. We defer the discus-
sion of wear leveling to Section 4.3.6.

4.2.1 Nameless-Writing Interface Support

We implemented an emulated nameless-writing SSD that performs data allocation
in a log-structured fashion by maintaining active blocks that are written in sequen-
tial order. When a nameless write is received, the device allocates the next free
physical address, writes the data, and returns the physicaladdress to the file sys-
tem.

To support the virtual block space, the nameless-writing device maintains a
mapping table between logical and physical addresses in itsdevice cache. When

56

the cache is full, the mapping table is swapped out to the flashstorage of the SSD.
As our results show in Section 4.4.1, the mapping table size of typical file system
images is small; thus, such swapping rarely happens in practice.

The nameless-writing device handles trims in a manner similar to traditional
SSDs; it invalidates the physical address sent by a trim command. During garbage
collection, invalidated pages can be recycled. The device also invalidates the old
physical addresses of overwrites.

A nameless-writing device needs to keep certain associatedmetadata for name-
less writes. We choose to store the associated metadata of a data page in its Out-
Of-Band (OOB) area. The associated metadata is moved together with data pages
when the device performs a migration.

4.2.2 In-place Garbage Collection

In this section, we describe a new garbage collection methodfor nameless-writing
devices. Traditional FTLs perform garbage collection on a flash block by reclaim-
ing its invalid data pages and migrating its live data pages to new locations. Such
garbage collection requires a nameless-writing device to inform the file system of
the new physical addresses of the migrated live data; the filesystem then needs to
update and write out its metadata. To avoid the costs of such callbacks and addi-
tional metadata writes, we proposein-place garbage collection, which writes the
live data back to the same location instead of migrating it. Asimilar hole-plugging
approach was proposed in earlier work [66], where live data is used to plug the
holes of most utilized segments.

To perform in-place garbage collection, the FTL selects a candidate block using
a certain policy. The FTL reads all live pages from the chosenblock together with
their associated metadata, stores them temporarily in a super-capacitor- or battery-
backed cache, and then erases the block. The FTL next writes the live pages to their
original addresses and tries to fill the rest of the block withwrites in the waiting
queue of the device. Since a flash block can only be written in one direction, when
there are no waiting writes to fill the block, the FTL marks thefree space in the
block as unusable. We call such spacewasted space. During in-place garbage
collection, the physical addresses of live data are not changed. Thus, no file system
involvement is needed.

Policy to choose candidate block: A natural question is how to choose blocks
for garbage collection. A simple method is to pick blocks with the fewest live
pages so that the cost of reading and writing them back is minimized. However,
choosing such blocks may result in an excess of wasted space.In order to pick

57

a good candidate block for in-place garbage collection, we aim to minimize the
cost of rewriting live data and to reduce wasted space duringgarbage collection.
We propose an algorithm that tries to maximize the benefit andminimize the cost
of in-place garbage collection. We define the cost of garbagecollecting a block
to be the total cost of erasing the block (Terase), reading (Tpage read) and writing
(Tpage write) live data (Nvalid) in the block.

cost = Terase + (Tpage read + Tpage write) ∗Nvalid

We define benefit as the number of new pages that can potentially be written
in the block. Benefit includes the following items: the current number of waiting
writes in the device queue (Nwait write), which can be filled into empty pages im-
mediately, the number of empty pages at the end of a block (Nlast), which can be
filled at a later time, and an estimated number of future writes based on the speed
of incoming writes (Swrite). While writing valid pages (Nvalid) and waiting writes
(Nwait write), new writes will be accumulated in the device queue. We account for
these new incoming writes byTpage write ∗ (Nvalid +Nwait write) ∗ Swrite. Since
we can never write more than the amount of the recycled space (i.e., number of
invalid pages,Ninvalid) of a block, the benefit function uses the minimum of the
number of invalid pages and the number of all potential new writes.

benefit = min(Ninvalid, Nwait write +Nlast (4.1)

+Tpage write ∗ (Nvalid +Nwait write) ∗ Swrite) (4.2)

The FTL calculates thebenefit
cost

ratio of all blocks that contain invalid pages
and selects the block with the maximal ratio to be the garbagecollection candi-
date. Computationally less expensive algorithms could be used to find reasonable
approximations; such an improvement is left to future work.

4.3 Nameless Writes on ext3

In this section we discuss our implementation of nameless writes on the Linux ext3
file system with its ordered journal mode. The ordered journaling mode of ext3 is
a commonly used mode, which writes metadata to the journal and writes data to
disk before committing metadata of the transaction. It provides ordering that can
be naturally used by nameless writes, since the nameless-writing interface requires
metadata to reflect physical address returned by data writes. When committing
metadata in ordered mode, the physical addresses of data blocks are known to the

58

file system because data blocks are written out first.

4.3.1 Segmented Address Space

We first discuss physical and virtual address space separation and modified file-
system allocation on ext3. We use the physical address spaceto store all data
blocks and the virtual address space to store all metadata structures, including su-
perblocks, inodes, data and inode bitmaps, indirect blocks, directory blocks, and
journal blocks. We use the type of a block to determine whether it is in the virtual
or the physical address space and the type of interfaces it goes through.

The nameless-writing file system does not perform allocation of the physical
address space and only allocates metadata in the virtual address space. Therefore,
we do not fetch or update group bitmaps for nameless block allocation. For these
data blocks, the only bookkeeping task that the file system needs to perform is
tracking overall device space usage. Specifically, the file system checks for total
free space of the device and updates the free space counter when a data block is
allocated or de-allocated. Metadata blocks in the virtual physical address space
are allocated in the same way as the original ext3 file system,thus making use of
existing bitmaps.

4.3.2 Associated Metadata

We include the following items as associated metadata of a data block: 1) the inode
number or the logical address of the indirect block that points to the data block, 2)
the offset within the inode or the indirect block, 3) the inode generation number,
and 4) a timestamp of when the data block is last updated or migrated. Items 1 to
3 are used to identify the metadata structure that points to adata block. Item 4 is
used during the migration callback process to update the metadata structure with
the most up-to-date physical address of a data block.

All the associated metadata is stored in the OOB area of a flashpage. The total
amount of additional status we store in the OOB area is less than 48 bytes, smaller
than the typical 128-byte OOB size of 4-KB flash pages. For reliability reasons, we
require that a data page and its OOB area are always written atomically.

4.3.3 Write

To perform a nameless write, the file system sends the data andthe associated
metadata of the block to the device. When the device finishes anameless write and
sends back its physical address, the file system updates the inode or the indirect

59

block pointing to it with the new physical address. It also updates the block buffer
with the new physical address. In ordered journaling mode, metadata blocks are
always written after data blocks have been committed; thus on-disk metadata is
always consistent with its data. The file system performs overwrites similarly. The
only difference is that overwrites have an existing physical address, which is sent
to the device; the device uses this information to invalidate the old data.

4.3.4 Read

We change two parts of the read operation of data blocks in thephysical address
space: reading from the page cache and reading from the physical device. To search
for a data block in the page cache, we compare the metadata index (e.g., inode
number, inode generation number, and block offset) of the block to be read against
the metadata associated with the blocks in the page cache. Ifthe buffer is not in
the page cache, the file system fetches it from the device using its physical address.
The associated metadata of the data block is also sent with the read operation to
enable the device to search for remapping entries during device wear leveling (see
Section 4.3.6).

4.3.5 Free

The current Linux ext3 file system does not support the SSD trim operation. We
implemented the ext3 trim operation in a manner similar to ext4. Trim entries are
created when the file system deletes a block (named or nameless). A trim entry
contains the logical address of a named block or the physicaladdress of a nameless
block, the length of the block, its associated metadata, andthe address space flag.
The file system then adds the trim entry to the current journaltransaction. At the
end of transaction commit, all trim entries belonging to thetransaction are sent
to the device. The device locates the block to be deleted using the information
contained in the trim operation and invalidates the block.

When a metadata block is deleted, the original ext3 de-allocation process is per-
formed. When a data block is deleted, no de-allocation is performed (i.e., bitmaps
are not updated); only the free space counter is updated.

4.3.6 Wear Leveling with Callbacks

When a nameless-writing device performs wear leveling, it migrates live data to
achieve even wear of the device. When such migration happenswith data blocks in
the physical address space, the file system needs to be informed about the change

60

of their physical addresses. In this section, we describe how the nameless-writing
device handles data block migration and how it interacts with the file system to
performmigration callbacks.

When live nameless data blocks (together with their associated metadata in the
OOB area) are migrated during wear leveling, the nameless-writing device creates
a mapping from the data block’s old physical address to its new physical address
and stores it together with its associated metadata in amigration remapping table
in the device cache. The migration remapping table is used tolocate the migrated
physical address of a data block for reads and overwrites, which may be sent to the
device with the block’s old physical address. After the mapping has been added,
the old physical address is reclaimed and can be used by future writes.

At the end of a wear-leveling operation, the device sends a migration callback
to the file system, which contains all migrated physical addresses and their asso-
ciated metadata. The file system then uses the associated metadata to locate the
metadata pointing to the data block and updates it with the new physical address
in a background process. Next, the file system writes changedmetadata to the de-
vice. When a metadata write finishes, the file system deletes all the callback entries
belonging to this metadata block and sends a response to the device, informing
it that the migration callback has been processed. Finally,the device deletes the
remapping entry when receiving the response of a migration callback.

For migrated metadata blocks, the file system does not need tobe informed of
the physical address change since it is kept in the virtual address space. Thus, the
device does not keep remapping entries or send migration callbacks for metadata
blocks.

During the migration callback process, we allow reads and overwrites to the
migrated data blocks. When receiving a read or an overwrite during the callback
period, the device first looks in the migration remapping table to locate the current
physical address of the data block and then performs the request.

Since all remapping entries are stored in the on-device RAM before the file
system finishes processing the migration callbacks, we may run out of RAM space
if the file system does not respond to callbacks or responds too slowly. In such a
case, we simply prohibit future wear-leveling migrations until file system responds
and prevent block wear-out only through garbage collection.

4.3.7 Reliability Discussion

The changes of the ext3 file system discussed above may cause new reliability
issues. In this section, we discuss several reliability issues and our solutions to
them.

61

There are three main reliability issues related to namelesswrites. First, we
maintain a mapping table in the on-device RAM for the virtualaddress space. This
table needs to be reconstructed each time the device powers on (either after a normal
power-off or a crash). Second, the in-memory metadata can beinconsistent with
the physical addresses of nameless blocks because of a crashafter writing a data
block and before updating its metadata block, or because of acrash during wear-
leveling callbacks. Finally, crashes can happen during in-place garbage collection,
specifically, after reading the live data and before writingit back, which may cause
data loss.

We solve the first two problems by using the metadata information maintained
in the device OOB area. We store logical addresses with data pages in the virtual
address space for reconstructing the logical-to-physicaladdress mapping table. We
store associated metadata, as discussed in Section 4.1.4, with all nameless data. We
also store the validity of all flash pages in their OOB area. Wemaintain an invariant
that metadata in the OOB area is always consistent with the data in the flash page
by writing the OOB area and the flash page atomically.

We solve the in-place garbage collection reliability problem by requiring the
use of a small memory backed by battery or super-capacitor. Notice that the amount
of live data we need to hold during a garbage collection operation is no more than
the size of an SSD block, typically 256 KB, thus only adding a small monetary cost
to the whole device.

The recovery process works as follows. When the device is started, we perform
a whole-device scan and read the OOB area of all valid flash pages to reconstruct
the mapping table of the virtual address space. If a crash is detected, we perform
the following steps. The device sends the associated metadata in the OOB area
and the physical addresses of flash pages in the physical address space to the file
system. The file system then locates the proper metadata structures. If the physical
address in a metadata structure is inconsistent, the file system updates it with the
new physical address and adds the metadata write to a dedicated transaction. After
all metadata is processed, the file system commits the transaction, at which point
the recovery process is finished.

4.4 Evaluation

In this section, we present our evaluation of nameless writes on an emulated nameless-
writing device. Specifically, we focus on studying the following questions:

• What are the memory space costs of nameless-writing devicescompared to
other FTLs?

62

Configuration Value
SSD Size 4 GB
Page Size 4 KB
Block Size 256 KB
Number of Planes 10
Hybrid Log Block Area 5%
Page Read Latency 25µs
Page Write Latency 200µs
Block Erase Latency 1500µs
Bus Control Delay 2µs
Bus Data Delay 10µs
RAM Read/Write Delay 1µs
Plane Register Read/Write Delay 1µs

Table 4.2:SSD Emulator Configuration. This table presents the configuration we
used in our SSD emulator. The components for each configuration can be found in Fig-
ure 3.2

• What is the overall performance benefit of nameless-writingdevices?

• What is the write performance of nameless-writing devices?How and why
is it different from page-level mapping and hybrid mapping FTLs?

• What are the costs of in-place garbage collection and the overheads of wear-
leveling callbacks?

• Is crash recovery correct and what are its overheads?

We implemented the emulated nameless-writing device with our SSD emulator
described in Chapter 3. We compare the nameless-writing FTLto both page-level
mapping and hybrid mapping FTLs. We implemented the emulated nameless-
writing SSD and the nameless-writing ext3 file system on a 64-bit Linux 2.6.33
kernel. The page-level mapping and the hybrid mapping SSD emulators are built
on an unmodified 64-bit Linux 2.6.33 kernel. All experimentsare performed on a
2.5 GHz Intel Quad Core CPU with 8 GB memory.

4.4.1 SSD Memory Consumption

We first study the space cost of mapping tables used by different SSD FTLs: nameless-
writing, page-level mapping, and hybrid mapping. The mapping table size of page-
level and hybrid FTLs is calculated based on the total size ofthe device, its block

63

Image Size Page Hybrid Nameless
328 MB 328 KB 38 KB 2.7 KB

2 GB 2 MB 235 KB 12 KB
10 GB 10 MB 1.1 MB 31 KB

100 GB 100 MB 11 MB 251 KB
400 GB 400 MB 46 MB 1 MB

1 TB 1 GB 118 MB 2.2 MB

Table 4.3:FTL Mapping Table Size. Mapping table size of page-level, hybrid, and
nameless-writing devices with different file system images. The configuration in Table 4.2
is used.

size, and its log block area size (for hybrid mapping). A nameless-writing device
keeps a mapping table for the entire file system’s virtual address space. Since we
map all metadata to the virtual block space in our nameless-writing implementa-
tion, the mapping table size of the nameless-writing deviceis dependent on the
metadata size of the file system image. We use Impressions [4]to create typical file
system images of sizes up to 1 TB and calculate their metadatasizes.

Table 4.3 shows the mapping table sizes of the three FTLs withdifferent file
system images produced by Impressions. Unsurprisingly, the page-level mapping
has the highest mapping table space cost. The hybrid mappinghas a moderate
space cost; however, its mapping table size is still quite large: over 100 MB for a
1-TB device. The nameless mapping table has the lowest spacecost; even for a 1-
TB device, its mapping table uses less than 3 MB of space for typical file systems,
reducing both cost and power usage.

4.4.2 Application Performance

We now present the overall application performance of nameless-writing, page-
level mapping and hybrid mapping FTLs with macro-benchmarks. We use varmail,
fileserver, and webserver from the filebench suite [83].

Figure 4.2 shows the throughput of these benchmarks. We see that both page-
level mapping and nameless-writing FTLs perform better than the hybrid mapping
FTL with varmail and fileserver. These benchmarks contain 90.8% and 70.6%
random writes, respectively. As we will see later in this section, the hybrid mapping
FTL performs well with sequential writes and poorly with random writes. Thus,
its throughput for these two benchmarks is worse than the other two FTLs. For
webserver, all three FTLs deliver similar performance, since it contains only 3.8%
random writes. We see a small overhead of the nameless-writing FTL as compared

64

Varmail FileServer WebServer
T

hr
ou

gh
pu

t (
M

B
/s

)

0

100

200

300

400

500

600

Page Nameless Hybrid

Figure 4.2:Throughput of Filebench. Throughput of varmail, fileserver, and webmail
macro-benchmarks with page-level, nameless-writing, andhybrid FTLs.

Sequential Random

T
hr

ou
gh

pu
t (

K
IO

P
S

)

0

10

20

30

40

50

Page Nameless Hybrid5% Hybrid10% Hybrid20%

Figure 4.3:Sequential and Random Write Throughput. Throughput of sequential
writes and sustained 4-KB random writes. Random writes are performed over a 2-GB
range.

to the page-level mapping FTL with all benchmarks, which we will discuss in detail
in Sections 4.4.5 and 4.4.6.

In summary, we demonstrate that the nameless-writing device achieves excel-
lent performance, roughly on par with the costly page-levelapproach, which serves
as an upper-bound on performance.

65

4.4.3 Basic Write Performance

Write performance of flash-based SSDs is known to be much worse than read per-
formance, with random writes being the performance bottleneck. Nameless writes
aim to improve write performance of such devices by giving the device more data-
placement freedom. We evaluate the basic write performanceof our emulated
nameless-writing device in this section. Figure 4.3 shows the throughput of se-
quential writes and sustained 4-KB random writes with page-level mapping, hybrid
mapping, and nameless-writing FTLs.

First, we find that the emulated hybrid-mapping device has a sequential through-
put of 169 MB/s and a sustained 4-KB random write throughput of 2,830 IOPS. A
widely used real middle-end SSD has sequential throughput of up to 70 MB/s and
random throughput of up to 3,300 IOPS [44].

Second, the random write throughput of page-level mapping and nameless-
writing FTLs is close to their sequential write throughput,because both FTLs allo-
cate data in a log-structured fashion, making random writesbehave like sequential
writes. The overhead of random writes with these two FTLs comes from their
garbage collection process. Since whole blocks can be erased when they are over-
written in sequential order, garbage collection has the lowest cost with sequential
writes. By contrast, garbage collection of random data may incur the cost of live
data migration.

Third, we notice that the random write throughput of the hybrid mapping FTL
is significantly lower than that of the other FTLs and its own sequential write
throughput. The poor random write performance of the hybridmapping FTL re-
sults from the costly full-merge operation and its corresponding garbage collection
process [40]. Full merges are required each time a log block is filled with random
writes, thus a dominating cost for random writes.

One way to improve the random write performance of hybrid-mapped SSDs is
to over-provision more log block space. To explore that, we vary the size of the
log block area with the hybrid mapping FTL from 5% to 20% of thewhole device
and found that random write throughput gets higher as the size of the log block
area increases. However, only the data block area reflects the effective size of the
device, while the log block area is part of device over-provisioning. Therefore,
hybrid-mapped SSDs often sacrifice device space cost for better random write per-
formance. Moreover, the hybrid mapping table size increases with higher log block
space, requiring larger on-device RAM. Nameless writes achieve significantly bet-
ter random write performance with no additional over-provisioning or RAM space.

Finally, Figure 4.3 shows that the nameless-writing FTL haslow overhead as
compared to the page-level mapping FTL with sequential and random writes. We

66

Random Write Working Set (GB)
1 2 3 4

T
hr

ou
gh

pu
t (

K
IO

P
S

)

0

10

20

30

40

50

Page−level
Nameless
Hybrid

Figure 4.4: Random Write Throughput. Throughput of sustained 4-KB random
writes over different working set sizes with page-level, nameless, and hybrid FTLs.

Random Write Working Set (GB)
1 2 3 4

M
ov

ed
 D

at
a

(G
B

)

0

20

40

60

80

100

Page−level
Nameless
Hybrid

Figure 4.5:Migrated Live Data. Amount of migrated live data during garbage collec-
tion of random writes with different working set sizes with page-level, nameless, and hybrid
FTLs.

explain this result in more detail in Section 4.4.5 and 4.4.6.

4.4.4 A Closer Look at Random Writes

A previous study [40] and our study in the last section show that random writes
are the major performance bottleneck of flash-based devices. We now study two
subtle yet fundamental questions: do nameless-writing devices perform well with

67

C
os

t o
f O

pe
ra

tio
n

(%
)

0

20

40

60

80

100

Random Write Working Set (GB)
1 2 3 4

Idle
Merge Read
Merge Write
Erase
Normal Write

C
os

t o
f O

pe
ra

tio
n

(%
)

0

20

40

60

80

100

Random Write Working Set (GB)
1 2 3 4

C
os

t o
f O

pe
ra

tio
n

(%
)

0

20

40

60

80

100

Random Write Working Set (GB)
1 2 3 4

Figure 4.6:Device Utilization. Break down of device utilization with the page-level,
the nameless, and the hybrid FTLs under random writes of different ranges.

different kinds of random-write workloads, and why do they outperform hybrid
devices.

To answer the first question, we study the effect of working set size on random
writes. We create files of different sizes and perform sustained 4-KB random writes
in each file to model different working set sizes. Figure 4.4 shows the throughput of
random writes over different file sizes with all three FTLs. We find that the work-
ing set size has a large effect on random write performance ofnameless-writing and
page-level mapping FTLs. The random write throughput of these FTLs drops as the
working set size increases. When random writes are performed over a small work-
ing set, they will be overwritten in full when the device fillsand garbage collection
is triggered. In such cases, there is a higher chance of finding blocks that are filled
with invalid data and can be erased with no need to rewrite live data, thus lowering
the cost of garbage collection. In contrast, when random writes are performed over
a large working set, garbage collection has a higher cost since blocks contain more
live data, which must be rewritten before erasing a block.

To further understand the increasing cost of random writes as the working set
increases, we plot the total amount of live data migrated during garbage collection
(Figure 4.5) of random writes over different working set sizes with all three FTLs.
This graph shows that as the working set size of random writesincreases, more
live data is migrated during garbage collection for these FTLs, resulting in a higher
garbage collection cost and worse random write performance.

Comparing the page-level mapping FTL and the nameless-writing FTL, we
find that nameless-writing has slightly higher overhead when the working set size
is high. This overhead is due to the cost of in-place garbage collection when there
is wasted space in the recycled block. We will study this overhead in details in the
next section.

We now study the second question to further understand the cost of random

68

Sync Frequency
0 20 40 60 80 100

A
vg

 R
es

po
ns

e
T

im
e

(lo
g(

us
ec

))

0

1

2

3

4

Page−level
Nameless
Hybrid

Figure 4.7: Average Response Time of Synchronous Random Writes.4-KB
random writes in a 2-GB file. Sync frequency represents the number of writes we issue
before calling an fsync.

writes with different FTLs. We break down the device utilization into regular
writes, block erases, writes during merging, reads during merging, and device idle
time. Figure 4.6 shows the stack plot of these costs over all three FTLs. For page-
level mapping and nameless-writing FTLs, we see that the major cost comes from
regular writes when random writes are performed over a smallworking set. When
the working set increases, the cost of merge writes and erases increases and be-
comes the major cost. For the hybrid mapping FTL, the major cost of random
writes comes from migrating live data and idle time during merging for all working
set sizes. When the hybrid mapping FTL performs a full merge,it reads and writes
pages from different planes, thus creating idle time on eachplane.

In summary, we demonstrate that the random write throughputof the nameless-
writing FTL is close to that of the page-level mapping FTL andis significantly
better than the hybrid mapping FTL, mainly because of the costly merges the hybrid
mapping FTL performs for random writes. We also found that both nameless-
writing and page-level mapping FTLs achieve better random write throughput when
the working set is relatively small because of a lower garbage collection cost.

4.4.5 In-place Garbage Collection Overhead

The performance overhead of a nameless-writing device may come from two dif-
ferent device responsibilities: garbage collection and wear leveling. We study the
overhead of in-place garbage collection in this section andwear-leveling overhead

69

Workload1 Workload2

T
hr

ou
gh

pu
t (

K
IO

P
S

)

0

10

20

30

40

Page Nameless

Figure 4.8:Write Throughput with Wear Leveling. Throughput of biased sequen-
tial writes with wear leveling under page-level and nameless FTLs.

Metadata RemapTbl
Workload1 2.02 MB 321 KB
Workload2 5.09 MB 322 KB

Table 4.4:Wear Leveling Callback Overhead.Amount of additional metadata writes
because of migration callbacks and maximal remapping tablesize during wear leveling
with the nameless-writing FTL.

in the next section.

Our implementation of the nameless-writing device uses an in-place merge to
perform garbage collection. As explained in Section 4.2.2,when there are no wait-
ing writes on the device, we may waste the space that has been recently garbage
collected. We use synchronous random writes to study this overhead. We vary the
frequency of callingfsyncto control the amount of waiting writes on the device;
when the sync frequency is high, there are fewer waiting writes on the device queue.
Figure 4.7 shows the average response time of 4-KB random writes with different
sync frequencies under page-level mapping, nameless-writing, and hybrid mapping
FTLs. We find that when sync frequency is high, the nameless-writing device has
a larger overhead compared to page-level mapping. This overhead is due to the
lack of waiting writes on the device to fill garbage-collected space. However, we
see that the average response time of the nameless-writing FTL is still lower than
that of the hybrid mapping FTL, since response time is worse when the hybrid FTL
performs full-merge with synchronous random writes.

70

Workload1 Workload2A
m

ou
nt

 o
f D

at
a

M
ov

ed
 (

G
B

)

0

0.5

1

1.5

2

Page Nameless

Figure 4.9:Migrated Live Data during Wear Leveling. Amount of migrated live
data during wear leveling under page-level and nameless FTLs.

4.4.6 Wear-leveling Callback Overhead

Finally, we study the overhead of wear leveling in a nameless-writing device. To
perform wear-leveling experiments, we reduce the lifetimeof SSD blocks to 50
erase cycles. We set the threshold of triggering wear leveling to be 75% of the
maximal block lifetime, and set blocks that are under 90% of the average block
remaining lifetime to be candidates for wear leveling.

We create two workloads to model different data temperatureand SSD wear:
a workload that first writes 3.5-GB data in sequential order and then overwrites
the first 500-MB area 40 times (Workload 1), and a workload that overwrites the
first 1-GB area 40 times (Workload 2). Workload 2 has more hot data and triggers
more wear leveling. We compare the throughput of these workloads with page-
level mapping and nameless-writing FTLs in Figure 4.8. The throughput of Work-
load 2 is worse than that of Workload 1 because of its more frequent wear-leveling
operation. Nonetheless, the performance of the nameless-writing FTL with both
workloads has less than 9% overhead.

We then plot the amount of migrated live data during wear leveling with both
FTLs in Figure 4.9. As expected, Workload 2 produces more wear-leveling mi-
gration traffic. Comparing page-level mapping to nameless-writing FTLs, we find
that the nameless-writing FTL migrates more live data. Whenthe nameless-writing
FTL performs in-place garbage collection, it generates more migrated live data, as
shown in Figure 4.5. Therefore, more erases are caused by garbage collection with
the nameless-writing FTL, resulting in more wear-levelinginvocation and more

71

wear-leveling migration traffic.
Migrating live nameless data in a nameless-writing device creates callback traf-

fic and additional metadata writes. Wear leveling in a nameless-writing device also
adds a space overhead when it stores the remapping table for migrated data. We
show the amount of additional metadata writes and the maximal size of the remap-
ping table of a nameless-writing device in Figure 4.4. We findboth overheads to
be low with the nameless-writing device: an addition of lessthan 6 MB metadata
writes and a space cost of less than 350 KB.

In summary, we find that both the garbage-collection and wear-leveling over-
heads caused by nameless writes are low. Since wear levelingis not a frequent
operation and is often scheduled in system idle periods, we expect both perfor-
mance and space overheads of a nameless-writing device to beeven lower in real
systems.

4.4.7 Reliability

To determine the correctness of our reliability solution, we inject crashes in the
following points: 1) after writing a data block and its metadata block, 2) after
writing a data block and before updating its metadata block,3) after writing a data
block and updating its metadata block but before committingthe metadata block,
and 4) after the device migrates a data block because of wear leveling and before the
file system processes the migration callback. In all cases, we successfully recover
the system to a consistent state that correctly reflects all written data blocks and
their metadata.

Our results also show that the overhead of our crash recoveryprocess is rel-
atively small: from 0.4 to 6 seconds, depending on the amountof inconsistent
metadata after crash. With more inconsistent metadata, theoverhead of recovery is
higher.

4.5 Summary

In this chapter, we introduced nameless writes, a new write interface built to reduce
the inherent costs of indirection. With nameless writes, the file system does not
perform allocation and sends only data and no logical address to the device. The
device then sends back the physical address, which is storedin the file system
metadata.

In implementing nameless writes, we met a few challanges, such as the recur-
sive update problem and the device block migration problem.We solve these prob-

72

lems by introducing address space separation (logical and physical address space)
and new types of interface (migration callback). Through the implementation of
nameless writes on the Linux ext3 file system and an emulated nameless-writing
device, we demonstrated how to port a file system to use nameless writes.

Through extensive evaluations, we found that nameless writes largely reduce
the mapping table space cost as compare to the page-level mapping and the hybrid
mapping FTLs. We also found that for random writes, namelesswrites largely
outperforms the hybrid mapping FTL and matchs the page-level mapping FTL.
Overall, we show the great advantage of nameless writes fromboth worlds: the
good performance like the page-level mapping FTL and the small mapping table
space that is even less than the hybrid mapping FTL.

73

Chapter 5

Hardware Experience of
Nameless Writes

As with most research work of flash memory, we evaluated our nameless writes
design not with real hardware but with our own SSD emulator. Simulators and
emulators are convenient and flexible to build and use. However, simulation and
emulation have their limitations.

The nameless writes design makes substantial changes to theI/O interface, the
SSD FTL, and the file system. Our SSD emulator lies directly below the file sys-
tem and talks to it using software function calls, and thus simplifies the system
which the nameless writes design is supposed to change. Because of the changes
required by nameless writes at different storage layers, nameless writes are an ideal
choice for studying the differences between real hardware systems and simula-
tion/emulation, as well as the challenges in building a new storage interface for real
storage systems.

Therefore, we decided to build a hardware prototype of nameless writes and use
it to validate our nameless writes design. In this chapter, we discuss our hardware
experience with implementing nameless writes with the OpenSSD Jasmine hard-
ware platform [86], the challenges of building nameless writes with real hardware,
and our solutions to them [79].

Our evaluation results of the nameless writes hardware prototype agrees with
the conclusions we made in Chapter 4: nameless writes largely remove the excess
indirection in SSDs and its space and performance costs.

The rest of this chapter is organized as follows. We first describe the architec-
ture of the hardware board we use in Section 5.1. We then discuss the challenges
of porting nameless writes to hardware in Section 5.2. We present our solutions to

74

Figure 5.1:OpenSSD ArchitectureThe major components of OpenSSD platform are
the Indilinx Barefoot SSD controller; internal SRAM, SDRAM, and NAND flash; special-
ized hardware for buffer management, flash control, and memory utility functions; and
debugging UART/JTAG ports.

these challenges and the implementation of the nameless writes hardware prototype
in Section 5.3. In Section 5.4, we evaluate the nameless writes hardware prototype.
Finally, we summarize this chapter in Section 5.5.

5.1 Hardware Platform

We use the OpenSSD platform [86] (Figure 5.1) as it is the mostup-to-date open
platform available today for prototyping new SSD designs. It uses a commercial
flash controller for managing flash at speeds close to commodity SSDs. We proto-
type a nameless-writing SSD to verify its practicality and validate if it performs as
we projected in emulation earlier.

5.1.1 OpenSSD Research Platform

The OpenSSD board is designed as a platform for implementingand evaluating
SSD firmware and is sponsored primarily by Indilinx, an SSD-controller manufac-
turer [86]. The board is composed of commodity SSD parts: an Indilinx Barefoot
ARM-based SATA controller, introduced in 2009 for second generation SSDs and

75

Controller ARM7TDMI-S Frequency 87.5 MHz
SDRAM 64 MB (4 B ECC/128 B) Frequency 175 MHz
Flash 256 GB Overprovisioning 7%
Type MLC async mode Packages 4
Dies/package 2 Banks/package 4
Channel Width 2 bytes Ways 2
Physical Page 8 KB (448 B spare) Physical Block 2 MB
Virtual Page 32 KB Virtual Block 4 MB

Table 5.1: OpenSSD device configuration. This table summarizes the hardware
configuration in the OpenSSD platform.

still used in many commercial SSDs; 96 KB SRAM; 64 MB DRAM for storing the
flash translation mapping and for SATA buffers; and 8 slots holding up to 256 GB
of MLC NAND flash. The controller runs firmware that can send read/write/erase
and copyback (copy data within a bank) operations to the flashbanks over a 16-bit
I/O channel. The chips use two planes and have 8 KB physical pages. The device
uses large 32 KB virtual pages, which improve performance bystriping data across
physical pages on two planes on two chips within a flash bank. Erase blocks are
4 MB and composed of 128 contiguous virtual pages.

The controller provides hardware support to accelerate command processing in
the form of command queues and a buffer manager. The command queues pro-
vide a FIFO for incoming requests to decouple FTL operationsfrom receiving
SATA requests. The hardware provides separate read and write command queues,
into which arriving commands can be placed. The queue provides afast pathfor
performance-sensitive commands. Less common commands, such asATA flush,
idle andstandbyare executed on aslow paththat waits for all queued commands
to complete. The device transfers data from the host using a separate DMA con-
troller, which copies data between host and device DRAM through a hardware
SATA buffer manager (a circular FIFO buffer space).

The device firmware logically consists of three components as shown in Fig-
ure 5.2: host interface logic, the FTL, and flash interface logic. The host inter-
face logic decodes incoming commands and either enqueues them in the command
queues (for reads and writes), or stalls waiting for queued commands to complete.
The FTL implements the logic for processing requests, and invokes the flash in-
terface to actually read, write, copy, or erase flash data. The OpenSSD platform
comes with open-source firmware libraries for accessing thehardware and three
sample FTLs. We use the page-mapped GreedyFTL as our baseline; it uses log

76

Figure 5.2:OpenSSD Internals. Major components of OpenSSD internal design are
host interface logic, flash interface logic, and flash translation layer.

structured allocation and thus has good random write performance. It is similar to
the page-level mapping FTL we used in our emulation in Chapter 4.

5.2 Challenges

Before delving into the implementation details of the nameless writes design with
the OpenSSD platform and the SATA interface, we first discussthe challenges we
encountered in integrating nameless writes with real hardware and a real hardware
interface.

Nameless writes present unique implementation challengesbecause they change
the interface between the host OS and the storage device by adding new commands,
new command responses, and unrequested up-calls. Table 4.1in Chapter 4 lists the
nameless writes interfaces.

When moving from emulation (Chapter 3) to real hardware, notonly the hard-
ware SSD needs to be ported to nameless writes, but the hardware interface and the
OS stack do as well. Figure 5.2 describes how our SSD emulatorand the real SSD
work with the OS.

The emulator sits at the OS block layer and interacts with theOS through soft-
ware interfaces. I/Os are passed between the file system and the emulator using the
bio structure. Adding new types of interfaces is easy. For example, the nameless

77

Figure 5.3:Architecture of OS Stack with Emulated and Real SSD.This graph
illustrates the OS stack above a real SSD with SATA interface. As opposed to the stack to
the real device, the emulator is implemented directly belowthe file system.

write command is implemented by adding a command type flag in the bio structure;
the physical address returned by a nameless write is implemented by reusing the
logical block address field of the bio structure, which is then interpreted specially
by a file system that works with nameless writes. Adding the migration callback is
also relatively easy: the device emulator calls a kernel function, which then uses a
kernel work queue to process the callback requests.

The interaction between the OS and the real hardware device is much more
involved than with the emulator. I/O requests enter the storage stack from the file
system and go through a scheduler and then the SCSI and ATA layers before the
AHCI driver finally submits them to the device. To implement our hardware pro-
totype, we have to integrate the nameless writes interface into this existing storage
architecture. Implementing a new interface implies the need to change the file
system and the OS stack, the ATA interface, and the hardware SSD. The biggest
challenge in this process is that some part of the storage stack is fixed in the hard-

78

ware and cannot be accessed or changed. For example, most of the ATA interface is
implemented in the hardware ports and cannot be changed (seeChapter 2 for more
details). Certain parts of the OpenSSD platform cannot be changed or accessed
either, such as the OOB area.

5.2.1 Major Problems

We identified four major problems while implementing nameless writes with the
real hardware system: how to get new commands through the OS storage stack into
the device, how to get new responses back from the device, howto have upcalls
from the device into the OS, and how to implement commands within the device
given its hardware limitations.

First, the forward commands from the OS to the device pass through several
layers in the OS, shown in Figure 5.2, which interpret and acton each command
differently. For example, the I/O scheduler can merge requests to adjacent blocks.
If it is not aware that thevirtual-write andnameless-writecommands are different,
it may incorrectly merge them into a single, larger request.Thus, the I/O scheduler
layer must be aware of each distinct command.

Second, the reverse-path responses from the device to the OSare difficult to
change. The nameless writes interface returns the physicaladdress for data fol-
lowing a nameless write. However, the SATA write command normal response has
no fields in which an address can be returned. While, the errorresponse allows
an address to be returned, both the AHCI driver and the ATA layer interpret error
responses as a sign of data loss or corruption. Their error handlers retry the read
operation again with the goal of retrieving the page, and then freeze the device by
resetting the ATA link. Past research demonstrated that storage systems often retry
failed requests automatically [39, 76].

Third, there are no ATA commands that are initiated by the device. Nameless
writes require upcalls from the device to the OS for migration callbacks. Imple-
menting upcalls is challenging, since all ATA commands are initiated by the OS to
the device.

Finally, the OpenSSD platform provides hardware support for the SATA proto-
col (see Figure 5.2) in the form of hardware command queues and a SATA buffer
manager. When using the command queues, the hardware does not store the com-
mand itself and identifies the command type from the queue it is in. While firmware
can choose where and what to enqueue, it can only enqueue two fields: the logical
block address (lba) and request length (numsegments). Furthermore, there are only
two queues (read and write), so only two commands can executeas fast commands.

79

5.3 Implementation Experiences

In this section, we discuss how we solve the challenges of transferring the nameless
writes design from emulation to real hardware and our experience with implement-
ing nameless writes on the OpenSSD hardware with the Linux kernel and the SATA
interface. We focus our discussion on changes in the layers below the file system,
since the file system changes are the same for the emulator andthe real hardware.

5.3.1 Adding New Command Types

To add a new command type, we change the OS stack, the ATA interface, and
the OpenSSD firmware. We now discuss the techniques we used for introducing
new command types. We also discuss the implementation of newnameless writes
commands that do not involve return field changes or upcalls,both of which we
leave for later sections in this chapter.
Forward commands through the OS: At the block-interface layer, we seek to
leave as much code unmodified as possible. Thus, we augment block requests with
an additional command field, effectively adding our new commands as sub-types
of existing commands. The nameless write, the nameless overwrite, and the virtual
write commands are encoded using three special sub-types with the normal write
command. We also use the normal write command to encode the trim command.
The trim command, however, does not send any data but only block addresses to
the device. The virtual and physical read commands are encoded in a similar way
with normal read commands.

We modified the I/O scheduler to only merge requests with the same command
and sub-type. The SCSI and ATA layers then blindly pass the sub-type field down
to the next layer. We also modified the AHCI driver to communicate commands
to the OpenSSD device. As with higher levels, we use the approach of adding a
sub-type to existing commands.
ATA interface: Requests use normal SATA commands and pass the new request
type in thersv1reserved field, which is set to zero by default.
OpenSSD request handling: Within the device, commands arrive from the SATA
bus and are then enqueued by the host-interface firmware. TheFTL asynchronously
pulls requests from the queues to be processed. Thus, the keychange needed for
new requests is to communicate the command type from arriving commands to
the FTL, which executes commands. We borrow two bits from thelength field of
the request (a 32-bit value) to encode the command type. The FTL decodes these
length bits to determine which command to execute, and invokes the function for
the command. This encoding ensures that the OpenSSD hardware uses the fast

80

path for new variations of reads and writes, and allows multiple variations of the
commands.

5.3.2 Adding New Command Return Field

Nameless writes pass data but no address, and expect the device to return a physical
address or an error indicating that the write failed. Passing data without an address
is simple, as the firmware can simply ignore the address. However, a write reply
message only contains 8 status bits; all other fields are reserved and can not be used
to send physical addresses through the ATA interface.

Our first attempt was to alter the error return of an ATA write to return physical
addresses for nameless writes. On an error return, the device can supply the address
of the block in the request that could not be written. This seemed promising as a
way to return the physical address. However, the device, theAHCI driver, and the
ATA layer interpret errors as catastrophic and thus we couldnot use errors to return
the physical address.

Our second attempt was to re-purpose an existing SATA command thatalready
returns a 64-bit address. Only one command in the ATA protocol,
READNATIVEMAX ADDR, returns an address. The OS would first send
READNATIVEMAX ADDR, to which the nameless-writing device returns the next
available physical address. The OS would then record the physical address and send
the nameless write command with that address.

We found that using two commands for a write raised new problems. First, the
READNATIVEMAX ADDR command is an unqueuable command in the SATA
interface, so both the ATA layer and the device will flush queued commands and
hurt performance. Second, the OS may reorder nameless writes differently than the
READNATIVEMAX ADDRcommands, which can hurt performance at the device
by turning sequential writes into random writes. Worse, though, is that the OS may
send multiple independent writes that lie on the same flash virtual page. Because
the granularity of file-system blocks (4 KB) is different from internal flash virtual
pages (32 KB), the device may try to write the virtual page twice without erasing
the bock. The second write silently corrupts the virtual page’s data.

Therefore, neither of these two attempts to integrate a physical address in the
write return path with the ATA interface succeeded. We deferthe discussion of our
final solution to Section 5.3.4.

81

5.3.3 Adding Upcalls

Themigration-callbackcommand raised additional problems. Unlikeall existing
calls in the SATA interface, a nameless-writing device can generate this up-call
asynchronously during background tasks such as wear leveling and garbage collec-
tion. This call notifies the file system that a block has been relocated and it should
update metadata to reflect the new location.

To implement migration callbacks, we first considered piggybacking the upcalls
on responses to other commands, but this raises the same problem of returning
addresses described above. Alternatively, the file system could periodically poll for
moved data, but this method is too costly in performance given the expected rarity
of up-calls. We discuss our final solution in the next section.

5.3.4 Split-FTL Solution

Based on the complexity of implementing the full nameless writes interface within
the device, we opted instead to implement asplit-FTL design, where the responsi-
bilities of the FTL are divided between firmware within the device and an FTL layer
within the host operating system. This approach has been used for PCI-attached
flash devices [33], and we extend it to SATA devices as well. Inthis design, the
device exports a low-level interface and the majority of FTLfunctionality resides
as a layer within the host OS.

We built the nameless-writing FTL at the block layer below the file system and
the I/O scheduler and above the SCSI, ATA, and AHCI layers. Figure 5.4 shows
the design. The FTL in the host OS implements the full set of interfaces listed
in Table 4.1 in Chapter 4; the device implements a basic firmware that provides
flash-page read, flash-page write, andflash-block erase. The host FTL converts a
command in the nameless-write interface into a sequence of low-level flash opera-
tions.

We built the nameless-write FTL below the I/O scheduler, since placing the
FTL above the I/O scheduler creates problems when allocating physical addresses.
If the FTL performs its address allocation before requests go into the I/O scheduler,
the I/O scheduler may re-order or merge requests. If the FTL assigns multiple
physical addresses from one virtual flash page, the scheduler may not coalesce the
writes into a single page-sized write. The device may see multiple writes (with
different physical addresses) to the same virtual flash pagewithout erases and thus
result in data corruption.

The nameless-writing FTL processes I/O request queues before they are sent to
the lower layers. For each write request queue, the FTL finds anew flash virtual

82

Figure 5.4:Nameless Writes Split-FTL Architecture. This figure depicts the archi-
tecture of the split-FTL design of nameless writes. Most of the nameless writes functionality
is implemented as a layer within the host operating system (below the file system and the
block layer). The nameless writes interfaces are implemented between the nameless-writing
FTL and the block layer. The device (OpenSSD) operates as a raw flash device.

page and assigns physical addresses in the virtual page to the I/Os in the request
queue in a sequential order. We change the I/O scheduler to allow a request queue to
be at most the size of the flash virtual page (32 KB with OpenSSD); going beyond
the virtual page size does not improve write performance butcomplicates FTL
implementation. We choose not to use the same flash virtual page across different
write request queues, since doing so will lead to data corruption; lower layers may
reorder request queues, resulting in the device write the same virtual page without
erasing it. The write performance is highly dependent on thesize of the request
queues, since each request queue is assigned a flash virtual page; larger request

83

queues result in more sequential writes at the device level.Therefore, to improve
random write performance, we change the kernel I/O scheduler to merge any writes
(virtual or physical) to the nameless-writing SSD device. We treat virtual writes in
a similar way as physical writes. The only difference is thatwhen we assign a
physical address to a virtual write, we keep the address mapping in the FTL.

For read requests, we disallow merging of physical and virtual reads and do not
change other aspects of the I/O scheduler. For virtual reads, we look up the address
mapping in the FTL.

The FTL in the host OS maintains all metadata that were originally main-
tained by the device firmware, including valid pages, the free block list, block erase
counts, and the bad block list. On aflush, used byfsync(), the FTL writes all the
metadata to the device and records the location of the metadata at a fixed location.

The FTL uses the valid page information to decide which blockto garbage col-
lect. It reads the valid pages into host DRAM, erases the block, and then writes the
data to a new physical block. Once the data has been moved, it sends amigration-
callbackto notify the file system that data has been moved. Because theFTL is in
the host OS, this is a simple function call.

Running the FTL in the kernel provides a hospitable development environment,
as it has full access to kernel services. However, it may be more difficult to opti-
mize the performance of the resulting system, as the kernel-side FTL cannot take
advantage of internal flash operations, such as copy-backs to efficiently move data
within the device. For enterprise class PCI-e devices, kernel-side FTLs following
NVM-express specification can implement the block interface directly [72] or use
new communication channels based on RPC-like mechanisms [65].

5.3.5 Lessons Learned

The implementation of nameless writes with OpenSSD and the ATA interfaces im-
parted several valuable lessons.

• The OS storage stack’s layered design may require each layerto act differ-
ently for the introduction of a new forward command. For example, new
commands must have well-defined semantics for request schedulers, such as
which commands can be combined and how they can be reordered.

• The device response paths in the OS are difficult to change. Therefore, de-
signs that radically extend existing communication from the device should
consider the data that will be communicated.

84

• Upcalls from the device to the OS do not fit the existing communication
channels between the host and the device, and changing the control path for
returning values is significantly more difficult than introducing new forward
commands. Thus, it may be worthwhile to consider new reversecommu-
nication channels based on RPC-like mechanisms [65] to implement block
interface for PCI-e devices following the NVM-express specification [72].

• Building the nameless-writing FTL below the block layer is simpler than at
the device firmware since the block layer has simpler interfaces and interacts
with the file system directly.

• Allowing the host OS to write directly to physical addressesis dangerous,
because it cannot guarantee correctness properties such asensuring the era-
sure of a flash page before it is written. This is particularlydangerous if the
internal write granularity is different than the granularity used by the OS.

• With the knowledge of SSD hardware configuration, the kernelI/O scheduler
can be changed to improve I/O performance with an in-kernel FTL.

5.4 Evaluation

Our overall goal of implementing nameless writes in a hardware prototype is to
validate our design choices. We evaluate the memory space and performance of
nameless writes prototype with the split-FTL design.

We evaluate the nameless writes prototype to validate the performance claims
of the interface and memory consumption as projected earlier in Section 4.4. We
compare the nameless writes prototype against the OpenSSD baseline page-mapped
FTL. We measure performance withfio microbenchmarks and memory consump-
tion with different file system images. We execute the experiments on an OpenSSD
board with two flash chips (8 flash banks with 64 GB total).

Figure 5.5 shows the random (4 KB blocks) and sequential write and read per-
formance with the baseline OpenSSD FTL and nameless writes.For sequential
writes, sequential reads, and random reads, the nameless-writing FTL has similar
IOPS as the baseline page-mapped FTL. It assigns physical addresses in sequential
order, which is the same as the baseline FTL. For random writes, nameless writes
perform better than the baseline but worse than sequential write of either FTL. Even
though we change the I/O scheduler to merge random writes, wefind the random
write request queue size is smaller than the size of the flash virtual page.

Table 5.2 presents the memory usage of the page-mapped FTL and the nameless-
writing FTL with different file system image sizes (from 4 GB to 48 GB), which

85

I/O
 O

pe
ra

tio
ns

 p
er

 s
ec

on
d

0

5000

10000

15000

SW RW SR RR
Baseline NamelessWrites

Figure 5.5: Read and Write Performance. This figure presents the IOPS of the
OpenSSD FTL and the nameless writes split-FTL for fio benchmarks (sequential and ran-
dom reads and writes with a 4 KB request size).

File System Size
FTL 4 GB 8 GB 16 GB 32 GB 48 GB
Page-Map 2.50 MB 9.10 MB 17.8 MB 35.1 MB 52.8 MB
Nameless 94 KB 189 KB 325 KB 568 KB 803 KB

Table 5.2:FTL Memory Consumption. This table presents the memory usage of
the baseline page-level mapping FTL and the nameless-writing FTL. We use Impressions
to generate typical file system images with different sizes.

we created using Impressions [4]. The memory consumption includes the address
mapping tables and all additional FTL metadata. The nameless-writing FTL uses
much less memory than the page-mapped FTL. Unlike the page-mapped FTL, the
nameless-writing FTL does not need to store the address mappings for nameless
writes (data) and only stores address mappings for virtual writes (metadata).

Overall, we find that the core nameless writes design performs similarly to the
page-mapped FTL and provides significant memory savings as projected earlier in
Chapter 4.

5.5 Summary

In this chapter, we described our experience with building nameless writes with the
OpenSSD hardware board, the challenges in moving nameless writes to hardware,
and our solutions to them.

The biggest challenges we met in our hardware experience arechanging the I/O

86

return path and adding upcalls from the device, neither of which we foresaw when
we built nameless writes with emulation.

Because of the restrictions of ATA interface, we change the nameless writes
design to use two split parts, an FTL at the OS block layer thatmanages most of the
responsibilities of a nameless-writing device, and a simple raw FTL that manages
a raw SSD device. We show through evaluation that this designworks well with a
real hardware system, and achieves the same benefits of de-indirection as with our
original nameless writes design using emulation.

Overall, we found our hardware experience to be rewarding; we learned a set of
new lessons in how hardware and real systems can be differentfrom simulation and
emulation. Even because of a single restriction in real hardware, the whole system
may need to be re-designed.

87

Chapter 6

A File System De-Virtualizer

We demonstrated in Chapters 4 and 5 that nameless writes are able to largely re-
move SSD indirection and its space and performance costs. However, the nameless
writes solution has a few drawbacks. First, nameless writesrequire fundamental
changes to the file system, the OS, the device, and the device interface. Second,
the nameless-write approach creates unnecessary overheadbecause it performs de-
indirection for all data writes; instead, de-indirection can be performed at device
idle time to hide its overhead.

To overcome the drawbacks of nameless writes, we propose theFile System De-
Virtualizer (FSDV), a mechanism to dynamically remove the indirection in flash-
based SSDs with small changes to existing systems. FSDV is a user-level tool that
walks through file system structures and changes file system pointers to physical
addresses; when pointers arede-virtualized, the logical to physical address map-
pings in the SSD can be removed. FSDV can be invoked periodically, when the
memory pressure in SSD is high, or when the device is idle.

We implemented a prototype of FSDV and modified the ext3 file system and our
emulated flash-based SSD for it. Our evaluation results of FSDV demonstrate that
FSDV largely reduces device mapping table space in a dynamicway. It achieves
this goal with small performance overhead on foreground I/Os.

The rest of this chapter is organized as follows. We present the basic design of
FSDV in Section 6.1. We then describe our implementation of the FSDV tool, the
changes to the ext3 file system, and our SSD emulator for FSDV in Section 6.2. In
Section 6.3, we present our evaluation results of FSDV. Finally, we summarize this
chapter in Section 6.4.

88

6.1 System Design

In this section, we present the overall design of FSDV, and how it interacts with the
device and the file system that support FSDV. We design FSDV with the following
goals in mind.

1. Indirection mappings can be (largely) removed in a dynamic way. Doing so
allows FSDV to be able to remove the device virtualization maintained either
inside the device hardware or in the host software.

2. The performance overhead of FSDV should be low, so that there will be
negligible impact on normal I/Os.

3. There should only be small changes in file systems, OSes, device firmware,
and device I/O interfaces. Doing so will allow for an easy integration of
FSDV into existing systems.

FSDV is a user-level tool that runs periodically or when needed to remove the
excess virtualization of a virtualized storage device. When FSDV is not running,
a normal file system runs with the storage device in a largely unmodified way.
The file system performs block allocation in thelogical address space. The device
allocatesdevice addressesand maintains an indirection mapping from logical to
device addresses. When the mapping table space pressure is high, FSDV can be
invoked to perform de-virtualization to remove indirection mappings. FSDV can
also be invoked periodically or when the device is idle.

6.1.1 New Address Space

FSDV de-virtualizes a block by changing the file system pointer that points to it
(i.e., the metadata) to use the device address. After FSDV de-virtualizes a block,
it is moved from the logical address space to thephysical addressspace and di-
rectly represents a device address (i.e., no mapping is maintained for the block).
As workloads perform new I/Os, the file system allocates new data in the logical
address space and overwrites existing data in the physical address space. For the
former, the device adds a mapping from the logical address tothe device address.
For the latter, the device adds a mapping from the old physical address to the new
device address.

Figure 6.1 gives an example of FSDV address spaces and indirection mappings.
Since a block can be in different address spaces, we need a method to distinguish
logical addresses from physical ones. We discuss our methodin Section 6.2.

89

Figure 6.1:FSDV Address Spaces.Device address space represents the actual physi-
cal addresses in the device. The file system sees both logicaland physical addresses. In this
example, the logical addresses L1 and L3 are mapped to the device addresses D2 and D0
through the device mapping table; the physical address P2 ismapped to the device address
D1. The physical addresses P3 and P4 are unmapped and directly represent the device ad-
dresses D3 and D4. The logical addresses L0, L2, and L4 (shadowed) represent the logical
addresses that have been freed (either by a file system deleteor a FSDV de-virtualization).

For future reads after FSDV runs, the device checks if there is a mapping entry
for the block. If there is, the device serves the reads after remapping, and if not, the
device reads directly from the device address.

Another cause for address mapping change and addition is thephysical address
migration during different flash device operations. As a flash device is accessed by
different types of data, its flash blocks will be in differentstates and the device per-
forms garbage collection or wear leveling operations. Boththese operations involve
migration of physical blocks. When a directly mapped block is migrated to a new
device address, a new mapping will be added to map from its olddevice address to
its current device address. FSDV also needs to remove these new mappings.

The challenge in handling address mapping addition caused by the device is
that there is no way of knowing what files the migrated blocks (and their mapping)
belong to. A simple way to handle these mappings is to scan andperform de-
virtualization to the whole file system; these mappings willeventually be removed
in the process. However, the performance cost of whole-file scanning can be high,
especially for large file systems. We choose another method to solve the problem,

90

involving associating each block to the file to which it belongs. Specifically, we
change the file system write interface to also include the inode number and let the
device store it with the block. When the device migrates a block and adds a new
mapping, it records the inode number the block belongs to; FSDV will process
these files in its later run.

6.1.2 FSDV Modes

FSDV can run offline (with unmounted file system) or online (with mounted file
system). The offline FSDV works with an unmounted file system.After the file
system has been unmounted (either by user or forcefully by FSDV), FSDV goes
through the file system data structures and processes file system metadata to de-
virtualize file system pointers. The de-virtualized file system is then mounted.

The offline FSDV provides a simple and clean way to perform filesystem
de-virtualization. However, it requires file systems to be unmounted before it can
start processing and is not suitable for most storage systems. Thus, we also design
an online version of FSDV which runs while the file system is mounted and fore-
ground I/Os run in a (largely) unaffected fashion. The majordifference between
the online FSDV and the offline one is that it needs to make surethat it does not
leave any inconsistency in page cache or for ongoing I/Os. FSDV interacts with the
file system through the FSDV-supporting device to isolate the blocks it processes
from the file system.

6.2 Implementation

In this section, we discuss our implementation of the FSDV tool, the offline and the
online version of it. To support FSDV, changes in device firmwares, file systems,
and OSes are needed. We also discuss these changes in this section.

6.2.1 File System De-virtualizer

We now describe our implementation of the offline and the online FSDV and a few
optimizations we make for better FSDV performance.

Offline File System De-Virtualizer

The offline FSDV works with unmounted file systems. As explained in Section 2.2.1,
for most file systems like ext2, ext3, and ext4, a file can be viewed as a tree structure
with the inode of the file at the tree root, indirect blocks (orextent blocks) in the

91

Figure 6.2:FSDV Processing a File Tree.The left part of the graph (a) represents the
status of a file in the file system and the device mapping table before FSDV runs. The right
part (b) represents a status in the middle of a FSDV run. L1 andL2 have been devirtualized
to D1 and D2. The indirect block containing these pointers has also been rewritten. The
mappings from L1 to D1 and L2 to D2 in the device have been removed as well.

middle of the tree, and data blocks at the leaf level. FSDV de-virtualizes a file by
walking through the file tree structure and processing metadata blocks from bottom
up (i.e., from the metadata blocks that directly point to the data blocks to the in-
ode). We choose to use the bottom-up fashion because in this way by the time when
FSDV processes an upper-level metadata block, all its children have already been
processed; FSDV can update this metadata block with the finaldevice addresses of
all its children.

For each pointer in a metadata block, FSDV sends the address that the pointer
uses (either logical or physical address) to the device and queries for its current
device address. If the device returns a device address, thenthe metadata block
will be updated to use this address. After all the pointers inthe metadata block
have been processed, FSDV writes the metadata block back to the device (if it is
changed) and informs the device to remove the correspondingmappings. When a
mapping from a logical address is removed, the file system bitmap is updated to
unset the corresponding bit. Figure 6.2 gives an example of FSDV processing a file
tree.

To de-virtualize inodes, we change the way of locating an inode from using

92

the inode number to using the device address of the inode block and the offset of
the inode within the inode block. After FSDV de-virtualizesall per-file metadata
blocks as described above, FSDV starts to process inodes andthe metadata blocks
pointing to them (i.e., directory blocks). FSDV changes the pointer pointing to an
inode to use the device address of the inode block and the inode’s offset within
it. If the inode is de-virtualized from an inode number (its original form), the
file system inode bitmap will also be updated. Currently, we do not de-virtualize
directory inodes, since processing directory data structures is more complicated
and directories only account for a small part of typical file systems [5]; we leave
de-virtualizing directory inodes for future work.

Finally, we do not need to deal with any metadata in file systemjournals. When
unmounted, a file system’s journal is checkpointed. Thus, there are no outstanding
transactions and the journal is empty. We do not de-virtualize block group bitmap
blocks, group description blocks, or superblocks either, since they only account for
a small space in the file system.

Online De-Virtualizer

The online FSDV runs while the file system is mounted. Most of its mechanisms
are the same as the offline FSDV. However, since we allow foreground I/Os to be
performed while the online FSDV is running, we need to make sure that such a
situation does not leave the file system inconsistent. To achieve this goal, FSDV
informs the file system (through the device) about the blocksit wants to isolate; the
file system then flushes all the page caches corresponding to these blocks. When
FSDV is processing these blocks, the device will prevent ongoing I/Os to them
simply by stalling the I/Os until FSDV finishes its processing. The FSDV process
registers a special process ID with the device, so that I/Os issued by FSDV will
never be blocked.

We have two options in terms of blocking granularity for the online FSDV: at
each file and at each metadata block. If we choose blocking at the file granularity,
the device sends the inode identity to the file system, which then flushes all page
caches belonging to this file. The device keeps track of the inode that FSDV is
processing and stalls all file system I/Os with this inode until FSDV finishes pro-
cessing it. The per-file method is conceptually simple and fits well with the way
FSDV performs de-virtualization: one file at a time. However, it creates a higher
performance overhead, especially for big files, since all blocks belonging to a file
are flushed from the page cache and all I/Os of the file are stalled when FSDV is
processing the file.

If we choose blocking at the metadata block level, FSDV sendsall the block

93

numbers which the metadata block points to and the metadata block number it-
self to the file system (again, through the device). The file system then flushes
the corresponding blocks from the page cache. The device keeps track of these
block addresses and prevent I/Os to them until FSDV finishes its processing of the
metadata block.

Optimization Policies

We introduce a couple of optimizations to reduce the overhead of FSDV. First,
since FSDV runs periodically, it does not need to process thefiles that have not
been changed (overwritten or appended) since the last run ofFSDV. We change the
file system to record the updated files (particularly, inodes) and to send the list of
such inodes to the device during journal commit. Notice thatwe do not need to
worry about the consistency of such updated inode list; evenif they are wrong, the
file system will still be consistent, since FSDV will just process unnecessary (i.e.,
unchanged) files.

To further reduce the run time of FSDV, we can choose not to process hot data
with FSDV, since they will soon be overwritten after FSDV de-virtualizes them.
The file system sends the update time of the inodes together with the changed inode
list to the device. FSDV uses ahot inode thresholdto only process files that are not
accessed recently. For example, if we set the hot inode threshold to be 1/10 of the
time window between two FSDV runs, the latter run will ignorethe inodes that are
updated within 1/10 of such time window.

6.2.2 Device Support

We have changed our SSD emulator (described in Chapter 3) to support FSDV.
Most part of the emulated SSD and its FTL are not changed. The device still
performs device address allocation for writes. We choose touse log-structured
allocation and page-level mapping for better performance.For reads, the device
looks up its mapping table and either read it directly from the device address or
read the device address after mapping. For a write, the device records the inode
number associated with the write in the OOB area adjacent to the data page that the
device assigns the write to. When the device migrates a data page during a garbage
collection or wear leveling operation, it also moves the inode number to the new
OOB area. If a mapping is added because of this migration, thedevice also records
the inode number for FSDV to process in its next round.

FSDV interacts with the FSDV-supporting device using normal I/O operations
and simple ioctl commands. Table 6.1 summarizes the interfaces between FSDV

94

and the device. When FSDV queries the device for the device address of a block,
the device looks up its mapping and returns the mapped address or the no-mapping-
found state to FSDV. After processing and writing new metadata block, FSDV tells
the device to remove corresponding mappings.

For performance optimization of FSDV, the device also records the files (their
inode identities) that have been updated from the last run ofFSDV (from the new
inode list that the file system sends to the device). FSDV reads and processes these
new files. When FSDV finishes all its processing, the device deletes all the recorded
new inodes. We choose to only store the new file record in device RAM and not
permanently on flash memory, since even if the new file record is lost or is wrong,
it will not affect the consistency or correctness of the file system (but FSDV may
perform de-virtualization to unnecessary files).

The device works with the file system and FSDV for I/O flushing and blocking
to support online FSDV. Specifically, when FSDV informs the device about its
intention to process a file or a block, the device sends such information to the file
system. Once the file system finishes the flushing and FSDV starts to process the
file or the block, the device blocks foreground I/Os to the fileor the block until
FSDV finishes its processing.

Finally, the device also works with FSDV for reliability problems, (e.g., it keeps
certain FSDV operation logs and sends the replay information to FSDV during
recovery). We defer the reliability discussion to Section 6.2.4.

6.2.3 File System Support

We ported ext3 to support FSDV. We now describe the changes wemake to ext3
and the design choices that we make.

For I/O operations other than writes, there is no change needed with the file
system and the OS, which is one of our major goals with FSDV. The file system
performs its own allocation and maintains its logical address space. The file system
data structures are mostly unchanged (the only exception being the inode identifi-
cation method as described earlier in Section 6.2.1).

95

Get Device Address
FSDV to device: logical/physical address
device to FSDV device address
description: look device to FSDV device address

Remove Mapping
FSDV to device: logical/physical address
device to FSDV if success
description: remove mapping entry

Get Map Table Size
FSDV to device: null
device to FSDV mapping table size
description: get device mapping table size

Get New Inodes
FSDV to device: null
device to FSDV new inode list
description: get new inode list from device

Log Operation
FSDV to device: logical/physical address
device to FSDV if success
description: log addresses for FSDV reliability

Flush File/Block
FSDV to device: inode/block number
device to FSDV null
description: inform FS to flush the file/block

Check File/Block
FSDV to device: inode/block number
device to FSDV null
description: wait for file/block to be flushed

Block File/Block
FSDV to device: inode/block number
device to FSDV null
description: start blocking I/Os to the file/block

Unblock File/Block
FSDV to device: inode/block number
device to FSDV null
description: unblock I/Os to the file/block

Table 6.1:Interfaces between FSDV and the FSDV-supporting devicesThe table
presents the interface between FSDV and the FSDV-supporting device. All the commands
are initiated by FSDV to the device.

96

Write
down: data, length, inode number
up: status, data
description: write with associated inode number

Trim Block
down: block number
up: null
description: invalidate a block

Add New Inodes
down: new inode list
up: null
description: add new inodes to device

Flush File/Block
down: null
up: inode/block number
description: inform FS to flush the file/block

Done Flush File/Block
down: inode/block number
up: null
description: inform the device that file/block is flushed

Table 6.2:Interface between the File System and the FSDV-supporting Device
The table presents the interface between the file system thatis ported to FSDV and the
FSDV-supporting device. The last three commands are for theonline FSDV only. The
”Add New Inodes” command is for FSDV performance optimization.

We make a few changes of ext3 to support FSDV. First, to distinguish logical
addresses from physical ones, we add to each physical address the value of the
total device size; thus, the logical and the physical address spaces never overlap.
We also change the device size boundary check to accommodatephysical addresses
(the total size is doubled since we have two non-overlappingaddress spaces).

Second, we change the way the file system tracks address spaces and performs
de-allocation to support FSDV. The file system uses the logical address bitmaps
to track allocated logical addresses and uses a free space counter to track the total
amount of actual allocated (device) addresses. When a blockis devirtualized from
its logical address, its corresponding bit in the file systembitmap is unset. Doing so
will create more free logical addresses than the actual freespace in the device. The
file system uses the free block counter to keep track of the amount of free space
and does not change it during FSDV operations. During allocation, the file system
checks this counter to determine the actual free space left on the device. When the

97

file system deletes a block in the physical address space, thefile system updates the
free block counter but does not change any bitmaps. When the file system deletes
a block in the logical address space, it updates both the bitmap and the free block
counter. The file system also sends a trim command to the device to inform it about
the de-allocation.

Third, the file system tracks the inode that a block belongs to(when it is allo-
cated) and sends the inode identity to the device during a write.

Finally, the file system works with the device to support online FSDV. Specifi-
cally, when the device sends the request of flushing a file or a block, the file system
adds such information (inode identity or block number) to a work queue. A work
queue handler then processes these files or blocks. For a file,the file system flushes
all the blocks belonging to this file from the page cache and also clears the inode
cache. For a block, the file system simply flushes it from the page cache. After
the file system finishes the flushing process, it informs the device with the inode
identity or the block numbers. Table 6.2 summarizes the interfaces between the file
system and the device (those that are changed because of FSDV).

6.2.4 Reliability Issues

Finally, several reliability and consistency issues can happen during the de-virtualization
process of FSDV. For example, the FSDV tool can crash before it completes its
de-virtualization operations of a file, leaving the metadata of the file inconsistent.
Another situation can happen with the online FSDV, where theFSDV tool dies and
the device continues blocking file system I/Os.

We solve the reliability-related problems using several techniques. First, we
make sure that the device never deletes the old metadata block until the new version
of it has been committed. When the new metadata block is written, its old version is
invalidated at the same time; this operation is an overwriteand most normal devices
already invalidates old blocks atomically with overwrites. Second, FSDV logs all
the old addresses a metadata block points to before FSDV processes the metadata
block. Doing so makes sure that if FSDV crashes after writingthe new metadata
but before the device removes the old mappings of the pointers in this metadata
block, the device can remove these mappings on recovery. When FSDV finishes
its processing, the log on the device is removed. If a crash happens before FSDV
finishes, the logs will be replayed during recovery. Finally, we set a timeout of
device blocking file system I/Os to prevent dead or unresponsive FSDV tool.

98

6.3 Evaluation

In this section, we present our experimental evaluation of FSDV. Specifically, we
answer the following questions.

1. What are the changes to the file systems, the OS, the device firmware, and
the device I/O interface? Are the changes small and can they be easily im-
plemented with existing systems?

2. How much indirection mapping space can FSDV remove? Can itbe removed
in a dynamic way?

3. How does the amount of inodes processed by FSDV affect the mapping table
space reduction and performance of FSDV?

4. What is the difference between different FSDV modes? How does the offline
mode compare to the online mode of FSDV? How do the online per-file and
per-block modes compare?

5. What is the performance overhead of FSDV? How much does FSDV affect
normal foreground I/Os?

6. How does the optimization techniques affect the performance and mapping
table results?

We implemented the FSDV prototype as a user-level FSDV tool,and changed
our emulated SSD device (described in Chapter 3), the ext3 file system, and the
OS to support FSDV. The FSDV tool is implemented using thefsckcode base. We
change several aspects of our SSD emulator to support FSDV. We also make small
changes to the ext3 file system and the OS (the block layer in particular) to support
FSDV.

The total lines of code in the file system and the OS is 201 and is423 in the de-
vice. Most of these changes are for handling de-allocation and FSDV performance
optimization.
Experimental environment: All experiments were conducted on a 64-bit Linux
2.6.33 server, which uses a 3.3 GHz Intel i5-2500K processorand 16 GB of RAM.
The emulated SSD used in our experiments has 5 GB size, 10 parallel flash planes,
4 KB flash pages, and 256 KB erase blocks. Flash page read and write operations
take 25 and 200 microseconds and erase operation takes 1.5 milliseconds.
Workloads: We use a set of different types of workloads for our evaluation.
To mimic typical file system images, we use the Impressions tool [4]. For more

99

Workloads Total Size Files FileSize
F1 512 MB 1000 512 KB
F2 1 GB 2000 512 KB
F3 2 GB 2000 1 MB
F4 4 GB 2000 2 MB
F5 4 GB 4000 1 MB
I1 3.6 GB 3000 1.2 MB

Table 6.3:Workloads Description This table describes the workloads property: the
number of files and directories in the workloads and the average file size. Workloads F1
to F5 represent different FileServer workloads from the FileBench suite [83] (with varying
number of files and directories). The workload I1 representsthe file system image generated
using Impressions [4].

M
ap

in
g

T
ab

le
 S

iz
e

(M
B

)

0

2

4

6

8

F1 F2 F3 F4 F5 I1

Remaining Space

Inode
Indirect
Data

Figure 6.3:Mapping Table Space Reduction.We invoke the offline FSDV after run-
ning different FileServer and Impressions workloads. The figure shows the mapping table
space (in different types) reduction because of FSDV. The part below the horizontal line
represents the remaining amount of the mapping table space that FSDV does not remove.

controlled workloads, we use the FileServer macro-benchmark in the FileBench
suite [83] with different numbers of directories and different average file sizes.
Table 6.3 summarizes the settings used with these workloads.

6.3.1 Mapping Table Reduction and FSDV Run Time

We first evaluate the mapping table space reduction of FSDV; the major goal of
FSDV is to reduce the mapping table space needed in a virtualized device. Fig-

100

R
un

 T
im

e
(s

ec
)

0

1

2

3

4

5

F1 F2 F3 F4 F5 I1

Inodes
IndirectBlocks
Data
Unmount+Mount
Other

Figure 6.4:FSDV Run Time. This figure plots the run time of the offline FSDV when
de-virtualizing different FileServer and Impressions workloads. We break down the run
time into time spent on de-virtualizing inodes, indirect blocks, and data blocks, time to
unmount and mount the file system, and the rest of the FSDV time.

ure 6.3 presents the amount of removed mapping tables with different FileServer
workloads and the Impressions file system image. Specifically, we show the amount
of removed mapping entries for data blocks, indirect blocks, inode blocks, and the
amount of remaining mappings.

We find that FSDV reduces device mapping table size by 75% to 96% (e.g.,
from 8.4 MB to 0.3 MB for the F5 workload). Most of the mapping table reduction
is with data blocks, which conforms with the fact that typical file system images
consist of data blocks [5]. We also find that larger files result in bigger data block
and indirect block mapping table reduction. Inode block mapping reduction in-
creases with more files but is overall negligible for the FileServer workloads. The
Impressions workload has more inode block mapping reduction and less indirect
block reduction as compared to the FileServer workloads, indicating that it has
smaller file sizes. Finally, there is a small part of mappingsthat FSDV does not
remove; most of these mappings are for global file system metadata such as block
group description blocks, data and inode bitmaps, and for directory blocks. Overall,
we find that indirection mappings can be largely removed.

We also measure the run time of FSDV for these workloads; one of our goals
is to have short FSDV run time so that it has less impact on foreground I/Os (e.g.,
FSDV can be scheduled during device idle time). Figure 6.4 shows the time taken
to run FSDV with the FileServer workloads and the Impressions file system image.
Overall, we find that the run time of FSDV is small (from 2 to 5 seconds). We

101

Percentage of Processed Inodes (%)
0 20 40 60 80 100M

ap
pi

ng
 T

ab
le

 S
iz

e
R

ed
uc

tio
n

(M
B

)

0

2

4

6

8

Figure 6.5:Mapping Table Space Reduction over Different Amount of Inodes.
This figure plots the amount of mapping table space reduced bythe offline FSDV with
different amount of inodes for the Impressions workload (I-3.6G).

further break down the run time into the time spent on processing mappings of data
blocks, indirect blocks, and inode blocks, mount and unmount time, and the rest of
the time (e.g., time spent on reading block group description blocks). We find that
most of the FSDV time is spent on processing data and indirectblocks and such
time increases with larger file size and larger file system size.

6.3.2 Impact of Increasing Amount of Processed Inodes

One of the challenges we met in designing FSDV is the way of handling address
mappings added by the device. Currently, we handle them by changing the write
interface to include the inode number, so that FSDV can process only these changed
files and not the whole file system. An alternative to this problem is to let FSDV
scan the whole file system image. Thus, it is important to study the effect of reduc-
ing the amount of processed files (e.g., by passing the inode number) on mapping
table space reduction and FSDV performance.

To study this effect and the cost of whole file system scanning, we change the
number of inodes (from 0 to 100% of the total number of inodes)that we process
and evaluate the reduced mapping table size and FSDV run timewith the file system
image generated by Impressions (I1). For each percentage value, we randomly
select a set of inodes to process and invoke the offline FSDV after the whole file
system image has been written.

Figure 6.5 plots the amount of reduced mapping table space against the number

102

Percentage of Processed Inodes (%)
0 20 40 60 80 100

R
un

 T
im

e
(s

ec
)

0

1

2

3

4

5

Figure 6.6: Run Time over Different Amount of Inodes. This figure plots the
offline FSDV run time with different amount of inodes for the Impressions workload (I-
3.6G).

of processed inodes. Overall, we find that for most of the times, with more inodes
processed, more mappings are removed. However, such relationship is not linear.
For example, there is a sudden increase from 40% to 60% of the inodes. There
is also a sudden increase and drop in the amount of reduced mapping table space
at 20% of the inodes. The file system generated by Impressionshas a certain file
size distribution (which mimics real file systems); certainfiles can be much bigger
than the rest of the files. Because of the randomness in the waywe select inodes to
process, at 20% FSDV may happen to process one or more of the big files, resulting
in a large reduction of mapping table space.

Figure 6.6 plots the time taken to run FSDV with different amount of processed
inodes. As the number of inodes increase, the FSDV run time also increases. Dif-
ferent from the mapping table size results, we find that the run time increase is more
steady.

Overall, we find that increasing the number of inodes to be processed by FSDV
results in more mapping table space reduction but higher FSDV run time. The
Impressions file system image that we use only has 3.6 GB data;for a large file
system, the time to scan the whole file system can be much higher. Therefore,
frequent whole file-system scans by FSDV are not a viable solution; one needs to
either reduce the number of inodes to process (our current solution) or increase the
frequency of FSDV (our future work).

103

Time (sec)
0 60 120 180

M
ap

pi
ng

 T
ab

le
 S

iz
e

(M
B

)

0

4

8

12

NoFSDV
OnlinePerBlock
OnlinePerFile
Offline

Figure 6.7:Mapping Table Space Over Time. This figure plots the mapping table
space change over time running the FileServer F3 workloads with no FSDV, offline FSDV,
and per-block and per-file online FSDV.

6.3.3 Comparison of Different Modes of FSDV

Offline and online are the two options of invoking FSDV. The online FSDV further
has two options, per-file and per-block processing. We now present our evaluation
results on the difference of these modes.

We first evaluate the mapping table space reduction of different modes of FSDV.
In this set of experiments, we repeat the FileServer F3 workload (each running for
60 seconds) and examine the mapping table space change. For the offline FSDV
we unmount the file system after each run, invoke FSDV, and then mount the file
system. Figure 6.7 plots the mapping table space changes when there is no FSDV
running (i.e., normal kernel), when running the offline FSDV, and when running
the per-block and per-file online FSDV.

We first find that without FSDV, the mapping table size accumulates as the
workloads runs. The initial increase in the mapping table size (time 0 to 5 seconds)
is due to the way FileBench runs; it pre-allocates directories and files before run-
ning I/Os. With FSDV (both offline and online), the mapping table size decreases
and stays low, suggesting that FSDV can dynamically reduce indirection mapping
cost.

Comparing the offline and the online modes, we find that the offline FSDV
decreases the mapping table size periodically (when it is invoked), while the online
FSDV decreases the mapping table size when it first runs and the mapping table size
stays low. The online FSDV is triggered by the threshold of mapping table size;

104

when the mapping table size is above the threshold, the online FSDV is triggered.
Therefore, the mapping table size always stays at or below the threshold. Between
the per-file and per-block online FSDV, we do not see a significant difference.

R
un

 T
im

e
(s

ec
)

0

0.4

0.8

1.2

1.6

2

F2 F3
PerFile PerBlock Offline

Figure 6.8:Run Time of Different Modes of FSDV. This figure plots the run time
of the offline FSDV, per-file online FSDV, and per-block online FSDV with the F2 and F3
workloads. Each run time value is an average of mutiple runs.

We then evaluate the run time of different modes of FSDV. Here, we use both
the FileServer F2 and F3 workloads; F2 has the same number of files as F3 but
contains smaller files. Figure 6.8 plots the average run timeof the offline, per-file
online, and per-block online FSDV with these workloads. We first find that the
per-block online FSDV takes longer time to run than the per-file online FSDV; the
per-block FSDV exchange information with the device and thefile system for each
block (e.g., syncing and blocking the block), creating higher overheadthan the per-
file FSDV, which only does such operations once for each file. Comparing with
the offline FSDV, the online modes have longer run time with larger files and file
systems (F3), suggesting that the overhead of syncing and blocking data is higher.

For the online mode, one important overhead it causes is the blocking of fore-
ground I/Os; we evaluate such blocked time for both the per-file and per-block
online FSDV modes. Figure 6.9 plots the average time that I/Os to a block are
blocked because of the per-file or the per-block FSDV. As expected, the per-file
FSDV blocks I/Os much longer than the per-block mode, since awhole file is
blocked when per-file FSDV is processing a block in it, even though the rest of the
file is not being processed. We also find that when file size is larger, the blocked
time (with both per-file and per-block modes) is longer.

Overall, we find that the online FSDV allows more dynamism in the mapping

105

A
vg

 I/
O

 B
lo

ck
ed

 T
im

e
(m

se
c)

.1
1

10

100

F2 F3
PerFile PerBlock

Figure 6.9:I/O Blocked Time. This figure plots the average time a foreground I/O is
blocked to a block (in log scale) because of the per-file and per-block FSDV when running
the FileServer F2 and F3 workloads.

table space reduction than the offline mode. The online per-block mode takes
longer running time than the per-file mode but requires shorter foreground I/O
blocking time.

T
hr

ou
gh

pu
t (

M
B

/s
)

0

200

400

600

800

1000

Baseline Offline OnlinePerFileOnlinePerBlock

Figure 6.10:Throughput of Foreground I/Os. This figure plots the throughput of
foreground I/Os with no FSDV, with offline FSDV, and with per-block and per-file online
FSDV when running the FileServer F3 workload.

106

Time (sec)
0 60 120 180 240

M
ap

pi
ng

 T
ab

le
 S

iz
e

(M
B

)

0

1

2

3

4

5

6

no_FSDV
FSDV_Th_1/10
FSDV_Th_1/20
FSDV_Th_1/40
FSDV_No_Thresh

Figure 6.11:Mapping table size over time

6.3.4 Overhead on Normal Operations

The impact of FSDV on normal I/Os (i.e., when the FSDV tool is running) is an-
other important metric; one of our goals of FSDV is to have lowimpact on normal
I/Os. We also evaluate the performance overhead of the offline and online (per file
and per block) FSDV on normal I/Os with the FileBench macro-benchmark.

Figure 6.10 presents the throughput of normal I/Os when FSDVis not running,
using the unmodified Linux kernel, the OS ported to the offlineFSDV and the OS
ported to the online FSDV (per file and per block). We find that overall, the over-
head of FSDV on normal I/Os is low. The overhead in normal I/O operations under
the kernel ported to the offline FSDV is mostly due to the FSDV optimization to
only process changed inodes; the file system records and sends the updated inodes
to the device periodically. In addition to this overhead, the online FSDV also re-
quires file system to sync blocks, causing it to have higher overhead than the offline
FSDV.

6.3.5 Optimization Results

Finally, we run one FileServer workload F2 and invoke the FSDV tool periodi-
cally (every one minute) to evaluate the effect of FSDV optimization policies. Fig-
ure 6.11 presents the mapping table size change over time with basic FSDV, with
FSDV using different hot data thresholds, and without FSDV.The hot data thresh-
old is set so that the files that are updated within 1/10, 1/20,and 1/40 of the time
window between two FSDV runs are not processed.

107

N
um

be
r

of
 P

ro
ce

ss
ed

 In
od

es

0

200

400

600

800

1000

0 1/40 1/20 1/10

R
un

 T
im

e
(s

ec
)

0

0.2

0.4

0.6

0.8

1

1.2

Inodes RunTime

Figure 6.12:Effect of different FSDV threshold

We find that the smaller the hot data threshold is, the more mapping table space
is reduced; the basic FSDV reduces most amount of mapping table. When hot data
threshold is small, more file will be processed. Figure 6.12 shows the run time and
number of processed inode with these different hot data thresholds. The run time is
the average of all FSDV runs. We find that a lower threshold (fewer inodes ignored)
results in more inodes to be processed; thus its run time is also lower. However, the
run time of threshold 1/20 and 1/10 is similar because of the fixed run-time cost of
FSDV.

6.4 Summary and Discussion

In this chapter, we presented the File System De-Virtualizer, which dynamically
reduces the virtualization cost in flash-based SSDs. FSDV removes such cost by
changing file system pointers to use device addresses. A major design decision
we made is to use separate address spaces, so that blocks can be identified as in
different status. We designed several modes of FSDV, offline, online per-file, and
online per-block, which have different benefits and costs.

We implemented FSDV as a user-level tool and ported the ext3 file system and
the emulated SSD to support FSDV. Our evaluation results demonstrated that FSDV
can remove SSD indirection costs significantly in a dynamic way. We also found
that there is only a small overhead on foreground I/Os with FSDV.

Comparing with nameless writes, we found that FSDV requiresmuch less
change to the OS than nameless writes. The lines of code for nameless writes

108

in the OS is 4370 and is 201 for FSDV. The I/O interface change because of FSDV
is also much smaller than nameless writes; only the write command needs to be
changed to include the inode number in the path from the OS to the device, while
nameless requires fundamental changes to the I/O interface. The change FSDV
makes to the write interface can easily be integrated into the ATA interface, since
it only changes the forward path from the OS to the device. Finally, FSDV is more
dynamic than nameless writes. FSDV can be invoked at any time(e.g., when the
memory space pressure in the device is high or when the deviceis idle), thus caus-
ing less overhead to foreground I/Os. Nameless writes are aninterface change to
all the I/Os, and thus presents an overhead to all foregroundI/Os.

109

Chapter 7

Related Work

This chapter discusses various research efforts and real systems that are related
to this dissertation. We first discuss literatures on flash memory and flash-based
storage systems. We then discuss other systems that exhibitexcess indirection and
previous efforts to remove excess indirection. We close this chapter with with other
efforts in new storage system interfaces.

7.1 Flash-based Storage

In recent years, flash-based storage have become prevalent in both consumer and
enterprise environment, and various new techniques and systems have been pro-
posed for different problems related to flash-memory storage. In this section, we
discuss related works on various aspects of flash-based storage.

7.1.1 Flash Memory Management Software

Most flash-based SSDs use a flash translation layer (FTL) to virtualize their internal
resources. To reduce the memory size required to store the mapping table for each
flash page (usually 2 KB to 8 KB page size), most modern SSD FTLsuse a hybrid
approach to map most of the data at flash erase block granularity (usually 64 KB
to 1 MB) and a small part of page-level mapping for on-going I/Os. A large body
of work on flash-based SSD FTLs and file systems that manage them has been
proposed in recent years [24, 34, 48, 59, 60].

The poor random write performance of hybrid FTLs has drawn attention from
researchers in recent years. The demand-based Flash Translation Layer (DFTL)
was proposed to address this problem by maintaining a page-level mapping table

110

and writing data in a log-structured fashion [40]. DFTL stores its page-level map-
ping table on the device and keeps a small portion of the mapping table in the
device cache based on workload temporal locality. However,for workloads that
have a bigger working set than the device cache, swapping thecached mapping ta-
ble with the on-device mapping table structure can be costly. There is also a space
overhead to store the entire page-level mapping table on device. The need for a
device-level mapping table is obviated with nameless writes and FSDV. Thus, we
do not pay the space cost of storing the large page-level mapping table in the device
or the performance overhead of swapping mapping table entries.

A different approach to reduce the cost of indirection mapping in SSDs is to
move the SSD virtualization layer and the indirection mapping tables from SSDs
to a software layer in the host. DFS is one such approach, where a software FTL
in the host manages all the address allocations and mappingson top of raw flash
memory [46]. With this approach, the cost of virtualizationwithin the device is
removed, but such cost (though reduced) still exists in the host. Instead of moving
the FTL indirection layer to the host, nameless writes and FSDV remove the excess
device indirection and thus do not incur any additional mapping table space cost at
the host. Moreover, nameless writes and FSDV both work with flash-based SSDs
instead of raw flash memory.

File systems that are designed for flash memory have also beenproposed in
recent years [41, 92, 93]. Most of these file systems use log-structured allocation
and manage garbage collection and flash wears. With such file systems directly
managing flash memory, there is no excess indirection or the associated indirection
mapping table cost. However, these file systems can only workwith raw flash
memory. They require knowledge of the flash memory internalssuch as OOB
area size. Operating directly on flash hardware can also be dangerous as we have
shown in Chapter 5. Instead, nameless writes and FSDV removeexcess indirection
by making small changes to existing file systems and flash-based SSDs and thus
provide a more generalized solution.

7.1.2 Hardware Prototypes

Research platforms for characterizing flash performance and reliability have been
developed in the past [14, 17, 26, 57, 58]. In addition, therehave been efforts
on prototyping phase-change memory based prototypes [7, 21]. However, most
of these works have focused on understanding the architectural tradeoffs internal
to flash SSDs and have used FPGA-based platforms and logic analyzers to mea-
sure individual raw flash chip performance characteristics, efficacy of ECC codes,
and reverse-engineer FTL implementations. In addition, most FPGA-based proto-

111

types built in the past have performed slower than commercial SSDs, and prohibit
analyzing the cost and benefits of new SSD designs. Our nameless writes proto-
typing efforts use OpenSSD with commodity SSD parts and havean internal flash
organization and performance similar to commercial SSD. There are other projects
creating open-source firmware for OpenSSD for research [87,88] and educational
purposes [25]. Furthermore, we investigated changes to theflash-device interface,
while past work looks at internal FTL mechanisms.

7.2 Excess Indirection and De-indirection

Excess indirection exists in many systems that are widely used today, as well as in
research prototypes. In this section, we first discuss a few other systems that exhibit
excess indirection besides flash-based SSDs, the focus of this dissertation. We then
discuss previous efforts in removing excess indirection.

Excess indirection arises in memory management of operating systems run-
ning atop hypervisors [16]. The OS manages virtual-to-physical mappings for each
process that is running; the hypervisor, in turn, manages physical-to-machine map-
pings for each OS. In this manner, the hypervisor has full control over the memory
of the system, whereas the OS above remains unchanged, blissfully unaware that it
is not managing a real physical memory. Excess indirection leads to both space and
time overheads in virtualized systems. The space overhead comes from maintain-
ing OS physical addresses to machine addresses mapping for each page and from
possible additional space overhead [2]. Time overheads exist as well in cases like
the MIPS TLB-miss lookup in Disco [16].

Excess indirection can also exist in modern disks. For example, modern disks
maintain a small amount of extra indirection that maps bad sectors to nearby loca-
tions, in order to improve reliability in the face of write failures. Other examples
include ideas for “smart” disks that remap writes in order toimprove performance
(for example, by writing to the nearest free location), which have been explored
in previous research such as Loge [28] and “intelligent” disks [89]. These smart
disks require large indirection tables inside the drive to map the logical address of
the write to its current physical location. This requirement introduces new relia-
bility challenges, including how to keep the indirection table persistent. Finally,
fragmentation of randomly-updated files is also an issue.

File systems running atop modern RAID storage arrays provide another excel-
lent example of excess indirection. Modern RAIDs often require indirection tables
for fully-flexible control over the on-disk locations of blocks. In AutoRAID, a level
of indirection allows the system to keep active blocks in mirrored storage for per-

112

formance reasons, and move inactive blocks to RAID to increase effective capac-
ity [91] and overcome the RAID small-update problem [75]. When a file system
runs atop a RAID, excess indirection exists because the file system maps logical
offsets to logical block addresses. The RAID, in turn, maps logical block addresses
to physical (disk, offset) pairs. Such systems add memory space overhead to main-
tain these tables and meet the challenges of persisting the tables across power loss.

Because of the costs of excess indirection, system designers have long sought
methods and techniques to reduce the costs of excess indirection in various systems.

The Turtles project [12] is an example of de-indirection in virtualized environ-
ment. In a recursively-virtualized environment (with hypervisors running on hyper-
visors), the Turtles system installs what the authors referto asmulti-dimensional
page tables. Their approach essentially collapses multiple page tables into a single
extra level of indirection, and thus reduces space and time overheads, making the
costs of recursive virtualization more palatable.

Finally, we want to point out another type of redundancy and the removal of it:
the redundancy (duplication) in data and de-duplication [98, 68, 55]. Different from
de-indirection whose purpose is to reduce the space and memory cost of excess
indirection, the main purpose of de-duplication is to remove redundant copies of
data to save storage space. The basic technique of de-duplication is simple, only
one copy of redundant data is stored and multiple pointers tothis copy represent the
(redundant) copies of the data. Maintaining and accessing such structures can cause
overhead, even though the cost has been reduced largely overthe past years [98]. In
contrast, the technique of de-indirection removes the redundant indirection directly
without adding additional metadata (e.g., pointers), and thus does not have the same
overhead as de-duplication. The major cost of de-indirection, however, lies in the
need to change storage system and interface design.

7.3 New Storage Interface

In this section, we discuss several new types of storage interfaces that are related to
this dissertation.

Range writes [8] use an approach similar to nameless writes.Range writes
were proposed to improve hard disk performance by letting the file system spec-
ify a range of addresses and letting the device pick the final physical address of a
write. Instead of a range of addresses, nameless writes are not specified with any
addresses, thus obviating file system allocation and movingallocation responsibil-
ity to the device. Problems such as updating metadata after writes in range writes
also arise in nameless writes. We propose a segmented address space to lessen

113

the overhead and the complexity of such an update process. Another difference is
that nameless writes target devices that need to maintain control of data placement,
such as wear leveling in flash-based devices. Range writes target traditional hard
disks that do not have such responsibilities. Data placement with flash-based de-
vices is also less restricted than traditional hard disks, since flash-based memory
has uniform access latency regardless of its location.

In addition to nameless writes, there have been research andcommercial efforts
on exposing new flash interfaces for file systems [45], caching [30, 43, 67, 78],
key-value stores [32], and object stores [49, 50, 96]. However, there is little known
to the application developers about the customized communication channels used
by the SSD vendors to implement new application-optimized interface. We focus
on these challenges in our hardware prototype and propose solutions to overcome
them.

While we re-use the existing SATA protocol to extend the SSD interface in
our hardware prototype, another possibility is to bypass the storage stack and send
commands directly to the device. For example, Fusion-io andthe recent NVM Ex-
press specification [72] attach SSDs to the PCI express bus, which allows a driver to
implement the block interface directly if wanted. Similarly, the Marvell DragonFly
cache [65] bypasses SATA by using an RPC-like interface directly from a device
driver, which simplifies integration and reduces the latency of communication.

114

115

Chapter 8

Future Work and Conclusions

The advent of flash-memory technology presents both opportunity and challenges.
A major issue of flash-based SSDs is the space and performancecost of its indirec-
tion.

In this dissertation, we proposed the technique of de-indirection to remove the
SSD-level indirection. We started with presenting our efforts in building an accu-
rate SSD emulator in Chapter 3. The emulator was used in laterparts in this disser-
tation and can be used by general SSD-related research. We then presented a new
type of interface, the nameless writes, to remove SSD-levelindirection in Chap-
ter 4. Next, we discussed our experience with prototyping nameless writes with
real hardware in Chapter 5. Finally, in Chapter 6, we presented another method
to perform de-indirection, a file system de-virtualizer, which overcomes the draw-
backs of nameless writes. We focus on flash-based SSDs as a major use case but
the technique of de-indirection is applicable to other types of virtualized storage
devices.

In this chapter, we first summarize our de-indirection techniques and emulation
and hardware experience in Section 8.1. We then list a set of lessons we learned in
Section 8.2. Finally, we outline future directions where our work can possibly be
extended in Section 8.3.

8.1 Summary

In this section, we summarize the contributions of this dissertation. We first review
the experience of building SSD emulator and implementing new design on real
hardware. We then discuss the two methods of performing de-indirection: nameless
writes and FSDV.

116

8.1.1 Emulation and Hardware Experience

We implemented an SSD emulator, which works as a Linux pseudoblock device
and supports three types of FTLs, page-level, hybrid, and nameless-writing FTLs.
To model common types of SSDs with parallel planes, we leverages several tech-
niques to reduce the computational overhead of the emulator. For example, we
separate data storage and SSD modeling into different threads. Our evaluation re-
sults show that the emulator can model writes accurately with common types of
SSDs.

Beyond our efforts in building an accurate SSD emulator, we also built the new
design of nameless writes with real hardware. When buildingthe nameless writes
hardware prototype, we met a set of new challenges that we didnot foresee with
emulation. For example, two major challenges are to integrate data in the I/O return
path and to add upcalls from the device to the host OS. We proposed a split-FTL
approach, which leaves low-level flash operations in the device and runs the bulk
of the FTL in the host OS.

Implementing nameless writes in a hardware prototype was a substantial ef-
fort, yet ultimately proved its value by providing a concrete demonstration of the
performance benefits of the nameless writes design.

Overall, we found that the effort required to implement nameless writes on
hardware is comparable to the effort needed to implement an SSD emulator. While
we faced challenges integrating new commands into the operating system and
firmware, with the SSD emulator we have also struggled to accurately model real-
istic hardware and to ensure that we appropriately handled concurrent operations.
With real hardware, there is no need to validate the accuracyof models, and there-
fore, OpenSSD is a better environment to evaluate new SSD designs.

8.1.2 De-indirection with Nameless Writes

Our first method to perform de-indirection is nameless writes, a new write interface
built to reduce the inherent costs of indirection. With nameless writes, only data
and no name (logical address) is sent by the file system to the device. The device
allocates a physical address and returns it to the file systemfor future reads and
overwrites.

We met several challenges in designing and implementing nameless writes.
First, there is a high performance cost caused by recursive updates to de-virtualize
a block. We solve this problem by introducing the separationof address space into
logical and physical ones. Another challenge we met is the need for flash-based
SSDs to migrate physical blocks requires the physical addresses to be changed in

117

the file system. We used a new interface to upcall from the device to the file system
to inform it about the physical address change.

We ported the Linux ext3 file system to nameless writes and built nameless
writes with both our SSD emulator and with real hardware. Ourevaluation results
with both emulation and real hardware showed that nameless writes greatly reduced
space costs and improved random-write performance.

8.1.3 File System De-Virtualizer

Our second method to perform de-indirection is the File System De-Virtualizer,
which does not require fundamental changes to the OS and I/O interface (a major
drawback of nameless writes). FSDV is a light-weight user-level tool which scans
file system pointers and change them to use device physical addresses. FSDV can
be invoked periodically, when device mapping table is abovea threshold, or when
the device is idle. We implemented an offline version of FSDV,which requires the
file system to be unmounted and mounted before and after the FSDV run. We also
implemented an online version, which does not require such detachment of the file
system.

To achieve the goal of dynamic de-virtualization, we proposed a new design
to separate different address spaces and block status within a file system. A block
can use a logical block address which the device maps to its device address, an old
physical address which the device maps to its current deviceaddress, or a device
address with which no mapping is needed. We change the file system to treat
bitmap as a tracking of block status in the logical address space and to use a free
block counter for allocation.

Our evaluation results of FSDV show that it can remove deviceindirection cost
in a dynamic way with little overhead to foreground I/Os. We also found that FSDV
requires much less change to the OS is more dynamic than nameless writes.

8.2 Lessons Learned

In this section, we present a list of general lessons we learned while working on
this dissertation.

Excess indirection can be removed

Excess indirection exists in flash-based SSDs. From our experience of name-
less writes and FSDV, we find that such excess indirection canbe removed.
Nameless writes remove the SSD indirection by changing the I/O interface.

118

FSDV removes the SSD indirection by dynamically reading andchanging
file system pointers. As a result, both the space and performance overhead of
indirection is largely reduced. We believe that such de-indirection techniques
can be generalized into other systems that exhibit excess indirection.

Accurate emulation of fast devices that have internal parallelism is difficult

From our SSD emulation experience, we find that implementingSSD models
(i.e., different FTLs) is relatively straightforward, while making the emulator
work accurately with real systems requires careful thinking and much more
efforts.

A major challenge we find in implementing the SSD emulator is to support
SSD internal parallelism. To emulate the parallel processing of multiple I/O
requests using a single thread is difficult. Currently, we use two threads to
separately perform data storage and SSD modeling. Our emulator is accurate
enough for the purpose of this dissertation (we focus on writes). However,
to emulate faster operations accurately with more parallelism (e.g., the faster
read operations with 20 parallel planes), our SSD emulator is not accurate
enough; increasing the number of cores used by the emulator can be one
solution.

Hardware is different from simulation and emulation

From our hardware experience with building nameless writeson the OpenSSD
board, we learned a set of lessons and found that real systemswith real hard-
ware is much different from simulation and emulation.

First, we found that the OS stack to a real device (SATA-connected) is more
complex than to an emulator. One needs to be careful when integrating new
commands in this stack (and different schedulers in the stack).

A bigger problem we met when we implemented nameless writes on real
hardware is the difficulty in sending data from the device to the OS both as a
return of a file system write and as a upcall initiated by the device.

These and other problems that we met when building the hardware nameless
writes prototype were not foreseen when we built nameless writes with the
SSD emulator. The lesson we learned in this experience is that one should
always have existing real systems in mind when designing newsystems.

Interface change is hard

Our initial thought when designing de-indirection methodsfor flash-based
SSDs is that through a simple interface change like namelesswrites, de-

119

indirection can be removed easily. However, when we startedto build name-
less writes with real systems and real hardware, we found that interface
change is actually very difficult.

Two major difficulties we met with nameless writes are addingdata to the
return path of normal writes and augmenting the control pathwith device
upcalls. These operations require significant changes to the ATA protocol
and many OS layers, and turned out to be extremely difficult toimplement.

Because of these difficulties, we started to think about new solutions for
de-indirection and designed the file system de-virtualizer. As compared to
nameless writes, FSDV requires only small changes to the OS stack and the
I/O interface, all of which can be implemented with real hardware systems.
Another advantage of FSDV is that it can dynamically remove the cost of
indirection. For example, it can be scheduled at device idletime. Nameless
writes, on the other hand, add an overhead to each write.

Our efforts to build new interface with existing systems demonstrated that the
ability to extend the interface to storage may ultimately belimited by how
easily changes can be made to the OS storage stack. Research that proposes
radical new interfaces to storage should consider how such adevice would
integrate into the existing software ecosystem. Introducing new commands
is possible by tunneling them through native commands.

8.3 Future Work

De-indirection is a general technique to remove excess indirection; we believe it
can be used in systems other than flash-based SSDs as well. In this section, we
outline various types of future work of de-indirection.

8.3.1 De-indirection with Other File Systems

Porting other types of file systems to use nameless writes andFSDV would be
an interesting future direction. Here, we give a brief discussion about these file
systems and the challenges we foresee in changing them to usenameless writes
and FSDV.

Linux ext2: The Linux ext2 file system is similar to the ext3 file system except
that it has no journaling. While we rely on the ordered journal mode to provide
a natural ordering for the metadata update process of nameless writes in ext3, we

120

need to introduce an ordering on the ext2 file system. Portingext2 to FSDV on the
other hand is straightforward, since FSDV does not require any ordering and does
not change the journaling part of ext3.

Copy-On-Write File Systems and Snapshots: As an alternative to journaling,
copy-on-write(COW) file systems always write out updates to new free space;
when all of those updates have reached the disk, a root structure is updated to
point at the new structures, and thus include them in the state of the file system.
COW file systems thus map naturally to nameless writes. All writes to free space
are mapped into the physical segment and issued namelessly;the root structure is
mapped into the virtual segment. The write ordering is not affected, as COW file
systems all must wait for the COW writes to complete before issuing a write to the
root structure anyway.

A major challenge to perform de-indirection with COW file systems or other
file systems that support snapshots or versions is that multiple metadata structures
can point to the same data block. For both nameless writes andFSDV, multiple
metadata blocks need to be updated to de-virtualize a block.One possible way to
control the number of metadata updates is to add a small amount of indirection for
data blocks that are pointed to by many metadata structures.An additional problem
for nameless writes is the large amount of associated metadata because of multiple
pointers. We can use file system intrinsic back references, such as those in btrfs, or
structures likeBacklog[63] to represent associated metadata.

Extent-Based File Systems: One final type of file systems worth considering are
extent-basedfile systems, such as Linux btrfs and ext4, where contiguous regions
of a file are pointed to via (pointer, length) pairs instead ofa single pointer per
fixed-sized block.

Modifying an extent-based file system to use nameless writeswould require a
bit of work; as nameless writes of data are issued, the file system would not (yet)
know if the data blocks will form one extent or many. Thus, only when the writes
complete will the file system be able to determine the outcome. Later writes would
not likely be located nearby, and thus to minimize the numberof extents, updates
should be issued at a single time.

For FSDV, instead of the file tree that uses indirect blocks, the extent tree
needs to be processed to use physical addresses, which may break the continu-
ity of the original logical addresses. Therefore, another mechanism is needed that
de-virtualizes extent trees.

Extents also hint at the possibility of a new interface for de-indirection. Specifi-

121

cally, it might be useful to provide an interface toreservea larger contiguous region
on the device; doing so would enable the file system to ensure that a large file is
placed contiguously in physical space, and thus affords a highly compact extent-
based representation.

8.3.2 De-indirection of Redundant Arrays

As flash-based storage is gaining popularity in enterprise settings, a major prob-
lem to be solve is the reliability of such storage. Redundancy solutions such as
RAID [75] can be used to to provide reliability. One way to build reliable and
high-performance storage layer is to use arrays of flash-based SSDs [64, 94].

The major problem with de-virtualizing redundant arrays ofSSDs is how un-
derlying physical addresses of the devices and their migration (due to garbage col-
lection and wear-leveling) can be associated with file system structure and RAID
construction.

Another important issue of de-virtualizing RAID is to maintain the array for-
mation, such as mirroring and striping. Since we do not maintain address mapping
after de-indirection, it is difficult to maintain such arrayformation. For example,
a nameless write can be allocated to two different physical addresses on a mir-
rored pair. Since the file system stores only one physical address of the data, we
cannot locate the data on the other mirrored pair. Even if we allocate the same
physical address on both pair, one of them can be migrated to adifferent physical
address because of garbage collection or wear-leveling. Similar problems happen
with striping and parity, too.

8.3.3 De-indirection in Virtualized Environment

Another interesting environment which can use de-indirection of storage devices
is the virtualized environment (e.g., when a guest OS uses a flash-based SSD as
its storage device). The virtualized environment providesboth opportunities and
challenges to perform de-indirection.

With the virtualized environment, the hypervisor has better control and more
freedom in its access to various guest states. For example, currently FSDV requires
the file system to send the inode number with each block write,while the hypervisor
can acquire such information (the inode number) by peaking into the guest memory.
With this and other similar techniques performed by the hypervisor, we believe that
the guest file system and its device interface will require noor only small changes.

Another situation in the virtualized environment is the useof device indirection
layer in software [46]. The major challenge and difference in this situation is to

122

provide dynamic de-indirection; the indirection table space for a guest can be dy-
namically allocated and changed over time. The hypervisor thus can dynamically
remove a certain amount of indirection from one guest. FSDV is an initial effort
to provide such dynamism; we believe that better solutions exist to make use of
hypervisor and the virtualized environment.

8.4 Closing Words

As software and hardware are getting more complex and are likely to remain so in
the future, redundant levels of indirection can exist in a single system for different
reasons. Such excess indirection results in both memory space and performance
overhead.

We believe that after carefully examining the cause of excess indirection, we
can remove the redundant indirection without changing the basic layered structure
of an existing system. We hope that this dissertation can help researchers and sys-
tem builders by demonstrating how redundant indirection can be removed. We also
hope that this dissertation serves as a hint for future system designer to be cautious
about adding another level of indirection.

Bibliography

[1] A. Modelli and A. Visconti and R. Bez. Advanced flash memory reliability. In Proceedings
of the IEEE International Conference on Integrated CircuitDesign and Technology (ICICDT
’04), Austin, Texas, May 2004.

[2] K. Adams and O. Agesen. A Comparison of Software and Hardware Techniques for x86 Vir-
tualization. InProceedings of the 13th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS XIII), Seattle, Washington, March
2008.

[3] N. Agarwal, V. Prabhakaran, T. Wobber, J. D. Davis, M. Manasse, and R. Panigrahy. Design
Tradeoffs for SSD Performance. InProceedings of the USENIX Annual Technical Conference
(USENIX ’08), Boston, Massachusetts, June 2008.

[4] N. Agrawal, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Generating Realistic Impres-
sions for File-System Benchmarking. InProceedings of the 7th USENIX Symposium on File
and Storage Technologies (FAST ’09), San Francisco, California, February 2009.

[5] N. Agrawal, W. J. Bolosky, J. R. Douceur, and J. R. Lorch. AFive-Year Study of File-System
Metadata. InProceedings of the 5th USENIX Symposium on File and Storage Technologies
(FAST ’07), San Jose, California, February 2007.

[6] N. Agrawal, V. Prabhakaran, T. Wobber, J. Davis, M. Manasse, and R. Panigrahy. Design
tradeoffs for ssd performance. InUSENIX, 2008.

[7] A. Akel, A. M. Caulfield, T. I. Mollov, R. K. Gupta, and S. Swanson. Onyx: A protoype
phase-change memory storage array. InHotStorage, 2011.

[8] A. Anand, S. Sen, A. Krioukov, F. Popovici, A. Akella, A. C. Arpaci-Dusseau, R. H. Arpaci-
Dusseau, and S. Banerjee. Avoiding File System Micromanagement with Range Writes. In
Proceedings of the 8th Symposium on Operating Systems Design and Implementation (OSDI
’08), San Diego, California, December 2008.

[9] A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, and V. Prabhakaran. Removing the costs of
indirection in flash-based ssds with nameless writes. InHotStorage, 2010.

[10] R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau.Operating Systems: Three Easy Pieces.
Arpaci-Dusseau Books, 0.5 edition, 2012.

[11] B. Tauras, Y. Kim, and A. Gupta. PSU Objected-Oriented Flash based SSD simulator.
http://csl.cse.psu.edu/?q=node/321.

[12] M. Ben-Yehuda, M. D. Day, Z. Dubitzky, M. Factor, N. HarEl, A. Gordon, A. Liguori,
O. Wasserman, and B.-A. Yassour. The Turtles Project: Design and Implementation of Nested

123

124

Virtualization. InProceedings of the 9th Symposium on Operating Systems Design and Imple-
mentation (OSDI ’10), Vancouver, Canada, December 2010.

[13] S. Boboila and P. Desnoyers. Write Endurance in Flash Drives: Measurements and Analysis.
In Proceedings of the 8th USENIX Symposium on File and Storage Technologies (FAST ’10),
San Jose, California, February 2010.

[14] S. Boboila and P. Desnoyers. Write endurance in flash drives: Measurements and analysis. In
FAST, 2010.

[15] J. S. Bucy and G. R. Ganger. The DiskSim Simulation Environment Version 3.0 Reference
Manual. Technical Report CMU-CS-03-102, Carnegie Mellon University, January 2003.

[16] E. Bugnion, S. Devine, and M. Rosenblum. Disco: RunningCommodity Operating Systems on
Scalable Multiprocessors. InProceedings of the 16th ACM Symposium on Operating Systems
Principles (SOSP ’97), pages 143–156, Saint-Malo, France, October 1997.

[17] T. Bunker, M. Wei, and S. Swanson. Ming II: A flexible platform for nand flash-based research.
In UCSD TR CS2012-0978, 2012.

[18] S. Byan, J. Lentini, A. Madan, L. Pabon, M. Condict, J. Kimmel, S. Kleiman, C. Small, and
M. W. Storer. Mercury: Host-side Flash Caching for the Data Center. InProceedings of the
2012 IEEE Symposium on Mass Storage Systems and Technologies (MSST 2012), April 2012.

[19] Cade Metz. Flash Drives Replace Disks at Amazon, Facebook, Dropbox.
htpp://www.wired.com/wiredenterprise/2012/06/flash-data-centers/all/, 2012.

[20] P. Cappelletti, C. Golla, and E. Zanoni.Flash Memories. Kluwer, 1999.

[21] A. M. Caulfield, A. De, J. Coburn, T. I. Mollov, R. K. Gupta, and S. Swanson. Moneta: A high-
performance storage array architecture for next-generation, non-volatile memories. InIEEE
Micro, 2010.

[22] F. Chen, T. Luo, and X. Zhang. CAFTL: A content-aware flash translation layer enhancing the
lifespan of flash memory based solid state drives. InFAST, 2011.

[23] V. Chidambaram, T. Sharma, A. C. Arpaci-Dusseau, and R.H. Arpaci-Dusseau. Consistency
Without Ordering. InProceedings of the 10th USENIX Symposium on File and StorageTech-
nologies (FAST ’12), San Jose, California, February 2012.

[24] T.-S. Chung, D.-J. Park, S. Park, D.-H. Lee, S.-W. Lee, and H.-J. Song. System Software for
Flash Memory: A Survey. InProceedings of thei 5th International Conference on Embedded
and Ubiquitous Computing (EUC ’06), pages 394–404, August 2006.

[25] Computer Systems Laboratory, SKKU. Embedded Systems Design Class.http://csl.
skku.edu/ICE3028S12/Overview.

[26] J. D. Davis and L. Zhang. FRP: a nonvolatile memory research platform targeting nand flash.
In Workshop on Integrating Solid-state Memory into the Storage Hierarchy, ASPLOS, 2009.

[27] D. R. Engler, M. F. Kaashoek, and J. W. O’Toole. Exokernel: An Operating System Architec-
ture for Application-Level Resource Management. InProceedings of the 15th ACM Symposium
on Operating Systems Principles (SOSP ’95), pages 251–266, Copper Mountain Resort, Col-
orado, December 1995.

[28] R. M. English and A. A. Stepanov. Loge: A Self-Organizing Disk Controller. InProceed-
ings of the USENIX Winter Technical Conference (USENIX Winter ’92), pages 237–252, San
Francisco, California, January 1992.

125

[29] Facebook. Facebook FlashCache. http://www.github.com/facebook/
flashcache.

[30] Fusion-io Inc. directCache. http://www.fusionio.com/data-sheets/
directcache.

[31] Fusion-io Inc. ioDrive2.http://www.fusionio.com/products/iodrive2.

[32] Fusion-io Inc. ioMemory Application SDK.http://www.fusionio.com/products/
iomemorysdk.

[33] Fusion-io Inc. ioXtreme PCI-e SSD Datasheet.http://www.fusionio.com/
ioxtreme/PDFs/ioXtremeDS_v.9.pdf.

[34] E. Gal and S. Toledo. Algorithms and Data Structures forFlash Memories.ACM Computing
Surveys, 37:138–163, June 2005.

[35] E. Gal and S. Toledo. Algorithms and data structures forflash memories. InACM Computing
Surveys, 2005.

[36] J. L. Griffin, J. Schindler, S. W. Schlosser, J. S. Bucy, and G. R. Ganger. Timing-accurate Stor-
age Emulation. InProceedings of the 1st USENIX Symposium on File and Storage Technologies
(FAST ’02), Monterey, California, January 2002.

[37] L. M. Grupp, A. M. Caulfield, J. Coburn, S. Swanson, E. Yaakobi, P. H. Siegel, and J. K. Wolf.
Characterizing Flash Memory: Anomalies, Observations, and Applications. InProceedings of
MICRO-42, New York, New York, December 2009.

[38] L. M. Grupp, J. D. Davis, and S. Swanson. The Bleak Futureof NAND Flash Memory. In
Proceedings of the 10th USENIX Symposium on File and StorageTechnologies (FAST ’12), San
Jose, California, February 2012.

[39] H. S. Gunawi, V. Prabhakaran, S. Krishnan, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau.
Improving file system reliability with i/o shepherding. InSOSP, pages 293–306, October 2007.

[40] A. Gupta, Y. Kim, and B. Urgaonkar. DFTL: a Flash Translation Layer Employing Demand-
Based Selective Caching of Page-Level Address Mappings. InProceedings of the 14th In-
ternational Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS XIV), pages 229–240, Washington, DC, March 2009.

[41] J.-Y. Hwang. F2FS: Flash-friendly file system, 2013. Presented at the Embedded Linux Con-
ference.

[42] Intel Corp. Understanding the flash translation layer (ftl) specification, December 1998. Appli-
cation Note AP-684.

[43] Intel Corp. Intel Smart Response Technology.http://download.intel.com/
design/flash/nand/325554.pdf, 2011.

[44] Intel Corporation. Intel X25-M Mainstream SATA Solid-State Drives.
ftp://download.intel.com/design/flash/NAND/mainstream/
mainstream-sata-ssd-datasheet.pdf.

[45] W. K. Josephson, L. A. Bongo, D. Flynn, and K. Li. DFS: a file system for virtualized flash
storage. InFAST, 2010.

[46] W. K. Josephson, L. A. Bongo, K. Li, and D. Flynn. DFS: A File System for Virtualized Flash
Storage. InProceedings of the 8th USENIX Symposium on File and Storage Technologies (FAST
’10), San Jose, California, February 2010.

126

[47] D. Jung, Y.-H. Chae, H. Jo, J.-S. Kim, and J. Lee. A Group-based Wear-Leveling Algorithm for
Large-Capacity Flash Memory Storage Systems. InProceedings of the 2007 international con-
ference on Compilers, architecture, and synthesis for embedded systems (CASES ’07), October
2007.

[48] J.-U. Kang, H. Jo, J.-S. Kim, and J. Lee. A Superblock-Based Flash Translation Layer for
NAND Flash Memory. InProceedings of the 6th ACM & IEEE International conference on
Embedded software (EMSOFT ’08), Seoul, Korea, August 2006.

[49] Y. Kang, J. Yang, and E. L. Miller. Efficient storage management for object-based flash mem-
ory. In Proceedings of the 18th Annual Meeting of the IEEE International Symposium on
Modeling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS
2010), August 2010.

[50] Y. Kang, J. Yang, and E. L. Miller. Object-based scm: An efficient interface for storage class
memories. InProceedings of the 27th IEEE Conference on Mass Storage Systems and Tech-
nologies (MSST 2011), May 2011.

[51] A. Kawaguchi, S. Nishioka, and H. Motoda. A Flash-Memory Based File System. InPro-
ceedings of the USENIX 1995 Winter Technical Conference, New Orleans, Louisiana, January
1995.

[52] T. Kgil and T. N. Mudge. Flashcache: A nand flash memory file cache for low power web
servers. InCASES, 2006.

[53] Y. Kim, B. Tauras, A. Gupta, D. M. Nistor, and B. Urgaonkar. FlashSim: A Simulator for
NAND Flash-based Solid-State Drives. InProceedings of the 1st International Conference on
Advances in System Simulation (SIMUL ’09), Porto, Portugal, September 2009.

[54] S. Kleiman. Flash on compute servers, netapp inc. InHPTS, 2009.

[55] R. Koller and R. Rangaswami. I/O deduplication: Utilizing content similarity to improve I/O
performance. InFAST, 2010.

[56] J. Lee, E. Byun, H. Park, J. Choi, D. Lee, and S. H. Noh. CPS-SIM: Configurable and Accurate
Clock Precision Solid State Drive Simulator. InProceedings of the Annual ACM Symposium
on Applied Computing (SAC ’09), Honolulu, Hawaii, March 2009.

[57] S. Lee, K. Fleming, J. Park, K. Ha, A. M. Caulfield, S. Swanson, Arvind, , and J. Kim.
BlueSSD: An open platform for cross-layer experiments for nand flash-based ssds. InWorkshop
on Architectural Research Prototyping, 2010.

[58] S. Lee, K. Ha, K. Zhang, J. Kim, and J. Kim. FlexFS: a flexible flash file system for mlc nand
flash memory. InUsenix ATC, 2009.

[59] S. Lee, D. Shin, Y.-J. Kim, and J. Kim. LAST: Locality-Aware Sector Translation for NAND
Flash Memory-Based Storage Systems.In Proceedings of the International Workshop on Stor-
age and I/O Virtualization, Performance, Energy, Evaluation and Dependability (SPEED2008),
February 2008.

[60] S.-W. Lee, D.-J. Park, T.-S. Chung, D.-H. Lee, S. Park, and H.-J. Song. A Log Buffer-Based
Flash Translation Layer Using Fully-Associative Sector Translation. IEEE Transactions on
Embedded Computing Systems, 6, 2007.

[61] A. Leventhal. Flash Storage Today.ACM Queue, 6(4), July 2008.

[62] S.-P. Lim, S.-W. Lee, and B. Moon. FASTer FTL for Enterprise-Class Flash Memory SSDs.
May 2010.

127

[63] P. Macko, M. Seltzer, and K. A. Smith. Tracking Back References in a Write-Anywhere File
System. InProceedings of the 8th USENIX Symposium on File and Storage Technologies (FAST
’10), San Jose, California, February 2010.

[64] Mahesh Balakrishnan, Asim Kadav, Vijayan Prabhakaran, and Dahlia Malkhi. Differential
RAID: Rethinking RAID for SSD Reliability. InProceedings of the EuroSys Conference (Eu-
roSys ’10), Paris, France, April 2010.

[65] Marvell Corp. Dragonfly platform family. http://www.marvell.com/storage/
dragonfly/, 2012.

[66] J. N. Matthews, D. Roselli, A. M. Costello, R. Y. Wang, and T. E. Anderson. Improving the
Performance of Log-Structured File Systems with Adaptive Methods. InProceedings of the
16th ACM Symposium on Operating Systems Principles (SOSP ’97), pages 238–251, Saint-
Malo, France, October 1997.

[67] M. Mesnier, J. B. Akers, F. Chen, and T. Luo. Differentiated storage services. InSOSP, 2011.

[68] D. T. Meyer and W. J. Bolosky. A Study of Practical Deduplication. InProceedings of the
9th USENIX Symposium on File and Storage Technologies (FAST’11), San Jose, California,
February 2011.

[69] MjM Data Recovery Ltd. Bad Sector Remapping.http://www.ukdatarecovery.com/
articles/bad-sector-remapping.html.

[70] N. Mielke, T. Marquart, N. Wu, J. Kessenich, H. Belgal, E. Schares, and F. Trivedi. Bit error
rate in nand flash memories. InProceedings of the 46th IEEE International Reliability Physics
Symposium (IRPS ’08), Phoenix, Arizona, April 2008.

[71] D. Narayanan, E. Thereska, A. Donnelly, S. Elnikety, and A. Rowstron. Migrating server
storage to SSDs: analysis of tradeoffs. InProceedings of the EuroSys Conference (EuroSys
’09), Nuremburg, Germany, April 2009.

[72] NVM Express. Nvm express revision 1.0b.http://www.nvmexpress.org/index.
php/download_file/view/42/1/, July 2011.

[73] OCZ Technologies. Synapse Cache SSD.http://www.ocztechnology.com/
ocz-synapse-cache-sata-iii-2-5-ssd.html.

[74] Y. Oh, J. Choi, D. Lee, and S. H. Noh. Caching less for better performance: Balancing cache
size and update cost of flash memory cache in hybrid storage systems. InFAST, 2012.

[75] D. Patterson, G. Gibson, and R. Katz. A Case for Redundant Arrays of Inexpensive Disks
(RAID). In Proceedings of the 1988 ACM SIGMOD Conference on the Management of Data
(SIGMOD ’88), pages 109–116, Chicago, Illinois, June 1988.

[76] V. Prabhakaran, L. N. Bairavasundaram, N. Agrawal, H. S. Gunawi, A. C. Arpaci-Dusseau, and
R. H. Arpaci-Dusseau. IRON file systems. InSOSP, pages 206–220, 2005.

[77] M. Rosenblum and J. Ousterhout. The Design and Implementation of a Log-Structured File
System.ACM Transactions on Computer Systems, 10(1):26–52, February 1992.

[78] M. Saxena, M. M. Swift, and Y. Zhang. FlashTier: A lightweight, consistent and durable
storage cache. InEuroSys, 2012.

[79] M. Saxena, Y. Zhang, M. M. Swift, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Getting
Real: Lessons in Transitioning Research Simulations into Hardware Systems. InProceedings
of the 11th USENIX Symposium on File and Storage Technologies (FAST ’13), San Jose, Cali-
fornia, February 2013.

128

[80] M. She.Semiconductor Flash Memory Scaling. PhD thesis, University of California, Berkeley,
2003.

[81] G. Soundararajan, V. Prabhakaran, M. Balakrishnan, and T. Wobber. Extending SSD Lifetimes
with Disk-Based Write Caches. InProceedings of the 8th USENIX Symposium on File and
Storage Technologies (FAST ’10), San Jose, California, February 2010.

[82] D. Spinellis. Another Level of Indirection. In A. Oram and G. Wilson, editors,Beautiful
Code: Leading Programmers Explain How They Think, chapter 17, pages 279–291. O’Reilly
and Associates, 2007.

[83] Sun Microsystems. Solaris Internals: FileBench.http://www.solarisinternals.
com/wiki/index.php/FileBench.

[84] Sun-Online. Sun Storage F5100 Flash Array.http://www.sun.com/F5100.

[85] S. S. Technology.Donovan Anderson. Mindshare Press, 2007.

[86] The OpenSSD Project. Indilinx Jasmine Platform.http://www.openssd-project.
org/wiki/The_OpenSSD_Project.

[87] The OpenSSD Project. Participating Institutes.http://www.openssd-project.org/
wiki/Jasmine_OpenSSD_Platform.

[88] VLDB Lab. SKKU University, Korea.http://ldb.skku.ac.kr.

[89] R. Wang, T. E. Anderson, and D. A. Patterson. Virtual Log-Based File Systems for a Pro-
grammable Disk. InProceedings of the 3rd Symposium on Operating Systems Design and
Implementation (OSDI ’99), New Orleans, Louisiana, February 1999.

[90] Western Digital. NAND Evolution and its Effects on Solid State Drive (SSD) Useable Life.
http://www.wdc.com/WDProducts/SSD/whitepapers/ en/NAND Evolution 0812.pdf, 2009.

[91] J. Wilkes, R. Golding, C. Staelin, and T. Sullivan. The HP AutoRAID Hierarchical Storage
System.ACM Transactions on Computer Systems, 14(1):108–136, February 1996.

[92] D. Woodhouse. JFFS2: The Journalling Flash File System, Version 2, 2003. http:
//sources.redhat.com/jffs2/jffs2.

[93] YAFFS. YAFFS: A flash file system for embedded use, 2006.http://www.yaffs.net/.

[94] Yiying Zhang and Andrea C. Arpaci-Dusseau and Remzi H. Arpaci-Dusseau. Warped mirrors
for flash. InProceedings of the 29th IEEE Conference on Massive Data Storage (MSST ’13),
Long Beach, California, May 2013.

[95] Yiying Zhang and Leo Prasath Arulraj and Andrea C. Arpaci-Dusseau and Remzi H. Arpaci-
Dusseau. De-indirection for flash-based ssds with namelesswrites. In Proceedings of the
10th USENIX Symposium on File and Storage Technologies (FAST ’12), San Jose, California,
February 2012.

[96] Youyou Lu and Jiwu Shu and Weimin Zheng. Extending the lifetime of flash-based storage
through reducing write amplification from file systems. InProceedings of the 10th USENIX
Symposium on File and Storage Technologies (FAST ’12), San Jose, California, February 2013.

[97] Y. Zhang, L. P. Arulraj, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. De-indirection for
Flash-based SSDs with Nameless Writes. InProceedings of the 10th USENIX Symposium on
File and Storage Technologies (FAST ’12), San Jose, California, February 2012.

[98] B. Zhu, K. Li, and H. Patterson. Avoiding the Disk Bottleneck in the Data Domain Dedu-
plication File System. InProceedings of the 6th USENIX Symposium on File and Storage
Technologies (FAST ’08), San Jose, California, February 2008.

