
Design Choices for Utilizing Disk Idleness in a Virtual Machine
Environment

Pradheep Elango, Saisuresh Krishnakumaran, Remzi H. Arpaci-Dusseau
{pradheep, ksai, remzi}@cs.wisc.edu

Computer Sciences Department
University of Wisconsin, Madison

May, 2006

Abstract
In virtualized environments, an operating system may not
have complete knowledge about its resources, as it sees only
virtualized forms of physical resources. The Virtual Machine
Monitor which has access to the physical resources, however,
is not aware of the abstractions of the operating system. In
this paper, we discuss how this lack of information can hinder
the implementation of certain mechanisms that require both
kinds of information. Specifically, we address how informa-
tion about disk idleness can be passed to virtual machines
so that idle disk periods can be effectively utilized to max-
imize disk bandwidth. The main focus of this paper is the
discussion of various mechanisms that could be applicable in
a virtualized environment in order to effectively expose such
information and exercise control. We discuss designs to infer
the number of dirty pages in each domain from the VMM, and
to coerce a domain to flush its dirty pages. Finally, we present
an evaluation of our approaches.

1 Introduction
A Virtual Machine (VM) provides a software environment
that can encapsulate one or more operating systems. Vir-
tual machines (VMs)[3, 6, 7, 15, 16] bring in advantages that
include server consolidation, support for legacy applications
and multiple operating systems, sandboxing, fault tolerance
and others. While virtualization naturally induces processing
overhead, recent hardware advances such as the Intel Van-
derpool technology and software advances such as paravirtu-
alization have minimized the CPU performance overhead of
running virtual machines.

Virtual machines add an extra layer of abstraction, provid-
ing a virtualized view of physical resources to the OS. Ab-
straction leads to hiding away some information. In a virtu-
alized environment, an operating system does not have com-
plete knowledge about its resources. The operating system is
not the all powerful resource allocator as it is in the normal en-
vironment because it sees only virtualized resources. There-
fore, it is typically unaware of the immediate availability of

the resources. This lack of awareness can prevent an operating
system from taking informed decisions about resource alloca-
tion. The more privileged virtual machine monitor (VMM)
can directly observe and control the physical resources. How-
ever, application-specific information that are generally avail-
able to an OS are not available to a VMM, that prevents it
from executing informed resource scheduling.

In this paper, we investigate the lack of awareness of op-
erating systems running on virtual machines, with respect to
disk availability. Generally, in a disk system, write requests to
the disk are batched by the disk driver, whereas reads happen
synchronously. While this could amortize the overall write
latency, it will also affect the read requests that arise during
flushing. Thus, the latency of reads could be affected depend-
ing on their timing; and the frequency and size of the write
requests. One simple approach is to schedule delayed writes
whenever the disk becomes idle [12], rather unconditionally.
We refer to this strategy as opportunistic flush. To perform an
opportunistic flush, the operating system requires knowledge
of the disk idleness. Virtualized environments provide a chal-
lenge to an operating system to obtain this information, as the
OS can observe only the virtualized disk. In this paper, we
discuss different challenges involved in communicating disk
idleness to an OS running on a VM. For the sake of simplicity,
we do not consider other factors such as predicting the length
of idleness in order to take a decision.

Opportunistic flush gives rise to another challenge in a vir-
tual machine environment. Multiple domains (that is, operat-
ing systems on VMs) could be containing different amounts
of dirty data. So, in order to make the best use of the idle
disk, the virtual machine monitor (VMM) should schedule the
domain with the maximum amount of dirty data. A straight-
forward way would be for the OS to explicitly transfer such
information to the VMM; however, this is not always possi-
ble as the OS could be proprietary. Further, if a VMM can
observe and infer specific information, the code needs to be
implemented only once which will benefit operating systems
on other virtual machines above. In this paper, we present
a method that exploits the virtual machine architecture in or-
der to observe the dirtiness of an OS. Moreover, we present

1

a method for the VMM to schedule a chosen domain, and
discuss loose control mechanisms (that do not require any
code changes), and stronger mechanisms (which need code
changes) in order to implement these policies.

In Section 2 we describe related work. We discuss our de-
sign in Section 3, and provide implementation details and is-
sues in Section 4. We finally present an evaluation of our
methods in Section 5 and conclude in Section 6.

2 Related Work
The main advantages of using a delayed write mechanism are
the effects of write cancellation, burstiness and efficient uti-
lization of disk bandwidth [5].

The idea of using delayed writes has been studied in the
past [4, 12] and has been employed by many popular oper-
ating systems such as Unix and its various flavors. In [12],
Mogul observes that technology trends in memory and disk
vary a big deal. While the increasing trends of DRAM tech-
nology has led to an effective increase in main memory size,
effectively increasing the size of the “buffer cache” for a disk,
disk access times have not kept up by the same standards.
This disparity results in an increase in the time required to
flush all buffers in buffer cache to the disk. Mogul proposes a
new technique called Interval Periodic Update policy, which
is similar to the normal periodic update policy except for the
fact that during every periodic flush, only buffers that are aged
above a threshold age are flushed. He also suggests that this
may still not solve the problem of long queues. In order
to avoid implementation of complex timers, he proposes an
Adaptive Interval Periodic Update (AIPU) policy. In fact, fla-
vors of the AIPU policy finds its place in many modern oper-
ating systems such as Linux.

More recently, in [13] and [14] the importance of using
idle time that is widely prevalent in I/O workloads today, is
discussed. In [14], the authors infer that bursty patterns can
be created to conserve power, thereby maximizing disk uti-
lization. Arguing that the normal AIPU policy will lead to
frequent idle time intervals of 5 seconds or less, they simply
change the frequency of the update daemon to flush all dirty
buffers once every minute. However, their approach involves
many changes to the OS such as certain parts of the file sys-
tem interface itself, in order to provide hints to the OS. Thus,
in a way, they do the opposite of what we are trying to do,
since their approach increases burstiness (instead of spreading
it out) so that mean length of idle intervals can be increased
in order to provide significant energy savings. Our work is
different in that our main goal is to increase disk bandwidth
utilization (rather than power conservation). However, our
framework will still be applicable if the same problem needs
to be addressed in a virtualized environment as our mecha-
nisms help expose information that can be used to exercise
control for different purposes.

In [9], Hsu and Smith study the behavior of common work-
loads on personal computers and server systems. The authors

study I/O behavior at a physical level rather than at the log-
ical level and observe that there is much interaction between
reads and writes, and they seldom tend to happen in isola-
tion. Therefore, they strongly argue that idle periods in disks
can be utilized for background operations, such as block re-
organization. In this paper, we discuss how we can use it for
flushing delayed writes.

Golding et al. give a primer on the usefulness of idleness
in [8]. They present an extensive study into how idleness can
be useful in computer systems, and how one can effectively
use idle processor cycles and idle time intervals available in
disks. Further, it discusses typical designs of systems that use
idle time, and stresses on the importance of predicting idle
time intervals, and the value of predictions and feedback in
the system.

In this paper, we take the standpoint that knowing about the
idleness of the disk can be very useful, and we discuss how we
can build mechanisms to control the behavior of an operating
system in a virtualized environment.

A virtualized environment hides information about physi-
cal devices and therefore is philosophically opposite to Ex-
okernel [11] systems which strongly argue that all hardware
resources must be directly exposed to operating systems do-
ing away with all abstractions. More practical research on ex-
tensible operating systems such as gray-box systems [1] and
infokernel [2] systems emphasize the importance of minimiz-
ing changes to the OS code base. While graybox systems
strictly view the OS code to be unchangeable, infokernel sys-
tems allow OS code to be modified, but just to expose infor-
mation. In a virtualized environment, therefore, extending the
OS with additional services to the VMM to expose informa-
tion will constitute an infokernel approach, whereas inferring
the OS state from the VMM without modifying the OS will
be a graybox approach. Since the more privileged monitor
runs beneath the OS, there could be more opportunities to in-
fer about the OS state because of possible traps to do “privi-
leged” operations. Though, in a sense the monitor is actually
the “operating system”, modifying the monitor code is easier
and could be more advantageous than modifying the code of
operating systems on top of it. Techniques to gather infor-
mation about OS abstractions and to exercise control on them
from beneath the OS is the topic of current research [10].

3 Design
Figure 1 shows the overall architecture of our framework. The
host operating system detects disk idleness by tracking the ac-
tive disk requests. The host OS then calls the virtual machine
monitor (VMM) and communicates the disk idleness infor-
mation. The VMM then either calculates the number of dirty
buffers in each of the guest operating systems or uses pre-
calculated values and schedules the guest with the maximum
dirty buffers. The VMM then coerces the guest operating sys-
tem to flush its dirty buffers. This effectively reduces the ef-
fect of burstiness during periodic updates. In the following

2

Figure 1: Overall design: This figure illustrates the various events
that trigger information exposure, and the general flow of informa-
tion and control in our framework

subsections, we discuss the design of each of these issues in
greater detail.

3.1 Detecting Disk Idleness
I/O virtualization makes detection of disk idleness from the
guest operating systems difficult. In a virtualized environ-
ment, the host OS is the single location where all the disk
requests arrive and the guest operating systems typically sees
virtualized resources. Hence information about disk idleness
has to be passed from the host OS. The host OS can export in-
formation about the number of requests currently in the queue
of any particular disk similar to the disk idleness detector,
InfoIdleSched [2]. The main difference here is that the OS
passes information to the VMM which is a more privileged
layer.

3.2 Detecting Dirty Buffers
One of the key features in this system is the ability to de-
tect the number of dirty buffers without actually changing the
guest OS code. This information is necessary for the VMM
to schedule the guest OS that can utilize the idle disk. We
outline a few possible approaches below.

3.2.1 Installing a driver

A driver installed in the guest operating system can serve to
pass the information about the number of dirty pages. Alter-
natively, a list of dirty pages ordered by their relative likeli-
ness to go to disk, can be exported by the operating system
to the VMM similar to the abstractions developed in Infoker-
nel [2]. The principal limitation of this approach is that each
operating system must now be supplied with this driver.

3.2.2 Page Table Walking

Dirty pages can also be detected by traversing the page tables
of the virtual machines. We assume that we have “gray-box”
knowledge of the structure of the page table used by a virtual

machines. A VMM typically has to ensure that any particular
guest OS can modify only the page table entries that the guest
owns. Thus, it is necessary to trap all page table entry updates
in order to keep track of the pages owned by each virtual ma-
chine. This technique can be fine tuned by keeping track of
all page table creates and deletes instead of page table entry
updates, and then traversing only through this list to find all
dirty pages. This mechanism not only helps find the number
of dirty pages in a virtual machine, but also the actual machine
addresses of pages that are dirty.

3.2.3 Page Sampling

The number of dirty pages can also be estimated using sam-
pling techniques. The choice of sampling method plays a sig-
nificant role in the accuracy of sampling and sampling meth-
ods can be as simple as selecting a small random number of
pages. A more relevant set of sample pages can be main-
tained by keeping track of all the page table creates and up-
dates which gives a better estimate of the dirty pages. An
obvious limitation of sampling, however, is that one can only
expect an estimate of the total number of pages to be flushed.

3.2.4 Predicting from host OS

Another approach to detect the number of dirty pages is to
observe the I/O requests passing through the communication
channel between the host OS and a guest OS. This informa-
tion can be used to predict the number of dirty pages a guest
OS will have on its subsequent periodic updates. This as-
sumes that the main write traffic generators are the guest op-
erating systems. While this technique is less heavy-weight, it
could suffer a drop in accuracy and currency of the informa-
tion.

3.2.5 Checksumming to track dirty pages

Checksumming can also be employed to estimate the number
of dirty pages in a virtual machine. The checksum of every
page in memory is maintained and a page is predicted as dirty
if its checksum changes. The advantage of this approach is
that it does not rely on the dirty bits present in the page table
entries. However, the entire page has to be read and processed
in order to calculate the checksum. Thus, checksumming has
a higher overhead compared to reading the page table entries
directly. With checksumming it is also not possible to differ-
entiate whether a page has been dirtied or newly read. Since
newly read pages could possibly replace a page from a page
frame, the checksum for a particular address will change.

3.3 Coercing domains to flush the dirty pages
Once the VMM knows that the disk is idle and the pending
write load of the different domains, it needs to select a domain
to schedule, and effectively control it to flush its requests (to
its virtualized disk), and then schedule the host OS so that

3

these requests are actually transferred to the real disk, thereby
utilizing the idleness. We outline possible mechanisms to co-
erce a selected domain to flush its dirty pages.

3.3.1 Pull-based Mechanism

In order to flush the dirty pages of a user domain transparent
to the OS running in that domain, we could use the informa-
tion available in the VMM about the dirty pages present in
a particular domain and write them to disk when the disk is
idle. In order to avoid flushing the same pages, we need to
track information about the pages that are written to the disk.
Pages that are written this way can be dirtied once again by
the guest OS, and in such cases, they need to be flushed again.
A simple way to do this would be to compute the checksum of
the pages we write ahead during idle periods. When the OS
actually flushes the pages, we compare the checksums and
decide whether to write the page back to disk. We write back
those pages for which the checksums do not match. However,
when the checksums do match, one could choose a cautious
approach, and store page state also along with the checksums,
in which case, the entire page contents have to be compared
whenever the checksums match. As an alternate optimistic
approach, one could avoid storing the contents totally, and
not flush when the checksums match. For this, we need strong
properties in the function that generates the checksum.

3.3.2 Forcing the early scheduling of the update daemon
from the VMM

Exercising control over an operating system scheduler poli-
cies, without actually changing the OS is a challenging prob-
lem. If the OS exports an abstraction, which indicates the
time remaining for its update daemon to be scheduled next,
then the VMM could use this information in order to make its
decision, and select a domain whose update daemon is more
likely to run. If the OS can export an abstraction that even lets
the time interval for an update daemon to be modified, then
the VMM can reduce this interval to its lowest limit, and then
schedule the domain.

3.3.3 Using a driver that calls the update daemon

Alternately, a driver could be inserted into the user domain
which communicates with the VMM and just calls the up-
date daemon when instructed by the VMM. Again, the issues
here are portability of the driver to different operating sys-
tems. Modifying the driver essentially is the same as modi-
fying the operating system, similar to the OS abstraction dis-
cussed above.

3.3.4 Using a balloon driver

Sometimes, virtual machine environments provide balloon
driver interfaces, that let a domain to dynamically control the
size of memory allotted to a virtual machine. Generally, a

balloon driver is used to reclaim memory pages of an OS so
that the policies of the OS are used when choosing pages to
be swapped out [16]. In this situation, the VMM will instruct
the balloon driver to inflate. However, a balloon driver would
pin most of the clean pages when it exerts memory pressure on
the OS. This may not be the best way to flush a domain’s dirty
pages because directly using it does not ensure that all dirty
pages will be flushed. For this to happen, the VMM could
increase the balloon pressure by demanding more and more
memory, and keep track of all the pages eventually restoring
back all pages that were claimed. However, the overheads
of this mechanism need to be investigated.. Further, mem-
ory limitations on drivers/modules could make this technique
infeasible.

4 Implementation
We use Xen 2.0.5 as our base platform for implementing our
design. Xen is a virtual machine monitor (VMM) that sup-
ports execution of multiple guest operating systems (user do-
mains). All I/O is managed by a privileged operating system
called the host OS (Domain 0) which has complete access
to the physical resources. Figure 2 shows a typical I/O path
in the Xen environment. A guest OS sees only virtualized
resources, and requests are communicated through a shared
memory channel to the host OS.

The following sections provide details of certain mecha-
nisms that have been implemented in this framework.

4.1 Idleness detector
This section addresses the issues of detection of disk idleness
at the host OS and communication of this information to the
host OS.

User domains communicate to Domain 0 via a shared mem-
ory channel. This privileged domain is the only place where
the actual disk idleness can be determined accurately. The
disk idleness information can either be communicated to the
Xen hypervisor (VMM) or to the user domains. Communi-
cating the idleness information to the user domains will re-
quire changes to the user domain OS code (or the blockdriver
portion of it). This also makes the control over scheduling
of a particular domain difficult. Hence communicating the
disk idleness information to Xen would be the best possible
choice because the user domain OS code need not be modi-
fied and VMM will also have a global knowledge of the state
of dirty buffers in all the user domains. The following sec-
tions describe finer details of communicating the idleness to
the VMM.

Detecting disk idleness in Domain 0: Domain 0 is the
single point through which the entire disk traffic flows. We
could detect disk idleness using one of two ways. One way is
to read the disk queue directly and determine the number of
active requests. The other way is to track the number of re-
quests that pass across the file system / block driver boundary.

4

Figure 2: I/O path in Domain 0 and Domain 1. a,b,c,d shows the
order of events that occur during I/O operation in the host operat-
ing system. 1 - 10 shows the order of events that occur during I/O
operation in the guest operating system.

Figure 2 shows the path followed by disk requests in Domain
0 and Domain 1.

We maintain a counter, which is incremented every time
submit bio() is called and decremented every time
end bio() is called. submit bio() is the interface
through which block I/O requests are submitted to the driver,
and end bio() is the interface through which driver noti-
fies the OS of the completion of the I/O request. The counter
at any time reflects the number of active disk requests. We
declare the disk is idle if the number of active requests falls
below a threshold. Disk idleness is communicated to Xen by
a hypercall.

4.2 Detecting Dirty Pages
While kernel page tables are stored and pinned in fixed mem-
ory locations, processes create page table dynamically, in the
Linux operating system. So, in order to keep track of all dirty
pages, one heavy-weight way will be to go through all the
machine pages that are allocated to a domain. The Xen data
structure pfn info includes all meta-information about every
machine page that is allotted to a domain. We use this array
to locate dirty machine pages.

4.2.1 Page Table Walking

One way to count all the dirty pages in a system would be by
calculating the number of dirty page table entries in the entire
OS. For a given domain, we count the number of dirty page
table entries in each Level-1 page table page.

A limitation with this approach is that the time taken to tra-
verse the entire range of pages could turn out to be prohibitive,
and it could trigger any watchdog timer to reboot the system.

4.2.2 Page Table Sampling

Instead of traversing through all pages, we can traverse
through a sampling of pages. We implemented a stride sam-
pling technique; instead of choosing the immediately next
page for traversing, we choose the page that is “stride” units

away. This effectively divides the total number of pages that
we traverse by “stride”.

By randomly changing the starting point of traversal and
the stride length, we can effectively traverse the entire list of
pages. This provides a way to quickly carry out the counting
work.

4.2.3 Detecting number of dirty pages with a driver

In Linux, much of the OS state can be tracked using the
/proc filesystem. For example, /proc/meminfo can pro-
vide information about the number of dirty file pages. There-
fore, one way for the hypervisor to get the number of dirty
pages will be by installing a driver in the guest OS, that will
directly export this information to the Xen hypervisor. As
an optimization to reduce the communication overheads be-
tween the driver in the guest OS and the hypervisor, the driver
can directly pass the machine address of the location in (ker-
nel) memory that keeps track of the number of dirty pages.
The hypervisor then directly maps this address to its address
space, and can read whenever required, thus eliminating many
context switches.

One important limitation with this approach however is that
these counters do not include all pages that have to be written
back. For example, memory-mapped pages that are dirtied
will not be kept track of.

4.3 Scheduling the domain with maximum
dirty pages

In our implementation, we modified the round robin sched-
uler to schedule the domain with maximum dirty pages. The
round robin scheduler chooses the domain at the head of the
ready list to schedule next. Once we receive a hypercall from
Domain 0, we traverse the ready list looking for the domain
with maximum number of dirty pages. We then move the
domain to the head of the list and call the scheduler routine
that starts executing this domain. This however will not be
enough if we want the writes to be flushed as soon as pos-
sible. We further place Domain 0 just behind the selected
domain, so that the requests can be written to disk as soon as
possible. Alternatively, each domain structure has a time slice
field which is set to the time quanta of round robin sched-
uler each time the domain is scheduled. Thus, we could have
simply changed the time quanta of all the domains that are
ahead of this domain in the ready list to zero for that iteration.
This change would have made that particular domain to be
scheduled next. However, there is significant overhead asso-
ciated with this approach, where the scheduler has to change
the context for each of these domains only to realize that their
time quanta has expired. Further, these domains will lose a
scheduling opportunity; so, this method is a bit unfair.

5

4.4 Tracking file-backed pages
Counting dirty bits in all page table entries does not give all
the dirty pages in an OS. Specifically, file-backed pages will
not be reflected accurately by just looking at the page table
entries. File-backed pages are those pages that are mapped
from a file to the memory. Changes to the memory page will
be reflected in the file, when the page is flushed out to the
disk.

In Linux, file-backed pages are flushed by a daemon pro-
cess. File-backed pages are all stored in the page cache in the
kernel address space; these pages actually do not “belong” to
any process, and therefore are not mapped in the user address
space.

Further, it is difficult to observe any file-backed pages being
written to the disk, from below the OS. This is because, the
periodic flush daemon makes use of the address space struc-
ture inside every process which has a list of dirty pages. The
hardware is not at all used to detect dirty file pages. Thus, we
cannot detect dirty file pages by counting all dirty page table
entries in the page cache. Further, the dirty bits in these en-
tries are sticky; so the OS does not reset the bits once they are
set.

Our Approach: We reset all the dirty bits in all page table
entries of the page cache from the hypervisor. In Linux, the
kernel page directory is loaded at a fixed location. From this
location, we traverse to access the page tables that belong to
the page cache.

In order to estimate the number of dirty file-backed pages at
any point of time, we reset the dirty bits in all these page table
entries. After a short interval, we count the number of dirty
bits in these page table entries. This effectively provides us a
good estimate of the number of dirty file-backed pages. Since
the kernel does not use these dirty bits for any accounting or
operational purposes, we can safely reset these dirty bits.

To evaluate this approach, we ran a program that issues se-
quential writes totaling a certain amount in an infinite loop.
Using the above approach, we were able to determine the ex-
act number of dirty file-backed pages that a domain has at a
particular point.

4.5 Exercising control over the update daemon
from the VMM

The /proc file system interface in Linux exports information
such as time remaining for “dirty writeback” and the thresh-
old for dirty-to-clean pages ratio to trigger writeback. Since
it provides a read-write interface, the Xen VMM can directly
overwrite the parameter which determines when pdflush is
called in the user domain. Thus, once the domain is sched-
uled, pdflush would be transparently scheduled by the OS,
which would in turn flush the dirty pages. Therefore, in order
to let the VMM exercise control over the pdflush daemon
OSes at least need to export the memory location of these
entries which will be then mapped by the hypervisor into its
address space.

 0

 500

 1000

 1500

 2000

 9.948 9.95 9.952 9.954 9.956 9.958 9.96 9.962 9.964 9.966

Se
rv

ice
 T

im
e

(m
s)

Arrival Time (in e+12 Cycles)

Effect of Bursty Updates on Synchronous Reads

bursty writes in domain 0
reads in domain 1

Figure 3: Effect of bursty updates on read requests. Periodic
writes issued from the host OS can affect the performance of reads
in a user domain.

During the course of our implementation, we observed
that wb kupdate() (the function triggered by pdflush)
is not guaranteed to flush immediately because it might
be sleeping waiting on some locks. We thus invoke
emergency sync(), which is more responsive, inside the
domain. The unprivileged domains receive software inter-
rupts from Xen, whenever Xen knows that the disk is idle. The
obvious downside of this approach is that it requires adding a
driver (to handle the software interrupt) to each of the unpriv-
ileged domains.

5 Evaluation
In this section, we describe a few experiments that we used to
test the efficacy of our system. We first present an experiment
that illustrates the problem, then an experiment to show how
our methods can improve the situation. We then describe ex-
periments that illustrate the effectiveness of different methods
to find the number of dirty pages.

Our system ran on a 425 MHz, Pentium-III processor. Our
experiments were run with one privileged and one user do-
main. Domain 0 was configured with 50 MB, and the user
domain with 52MB. The system ran on a Seagate hard disk of
capacity 8.62 GB, with a speed of 5400 rpm and an average
read time of 10.5 ms.

5.1 Effect of bursty updates on read requests
Figure 3 shows the effect of bursty updates on read requests.
The request arrival time is shown along x-axis and the ser-
vice time is plotted along y-axis. We designed the exper-
iment to make the reads contend with writes during bursty
updates. Our program in Domain 0 kept generating many
asynchronous writes that are buffered and to simulate the ef-
fect of periodic flush, we perform sync once in every 1000

6

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 100 200 300 400 500 600 700 800 900 1000

Se
rv

ice
 ti

m
e

(in
 m

s)

Read request number

Effectiveness of opportunistic flush

Non Competing Reads
Competing Reads

Competing Reads with Opportunistic Flush

Figure 4: Effectiveness of opportunistic flush.With opportunistic
flush, the size of the peaks in the read times have vastly reduced.

writes. Another program generated continuous sequence of
synchronous reads in the guest OS. The peaks indicate the
service time for reads and they are greater because of the con-
tention for the disk with the writes from Domain 0. If these
writes are written to disk during disk idle times, it would have
resulted in lesser contention during periodic flush and hence
lesser service time for reads.

5.2 Effectiveness of opportunistic flush

Figure 4 shows the plot of service time versus the request
number for three different situations. For non-competing
reads, a program generated continuous read requests from the
guest OS. For competing reads, we use the same program as
described in 5.1. The peaks in read response time of com-
peting reads are due to the contention with writes during the
flush operations. Competing reads also suffer greater variance
in service times during bursty write operations. The non-
competing reads, on the other hand have a uniform service
time. However, if we flush whenever the disk is idle (i.e. if
we “opportunistically” flush), then we see that the peaks are
much smaller. There are more number of peaks albeit smaller
ones, because of the frequent disk flush operations. Oppor-
tunistic flush increases the average read bandwidth in these
experiments from 42.33% to 80.87% of the read bandwidth
in the non-competing case. Table 1 shows the overall benefit
of this mechanism. Opportunistic flush improves read latency
by nearly 50%, and throughput by nearly 55%.

5.3 Detecting dirty pages using sampling

In order to test the effectiveness and accuracy of our approach
described in section 4.2.2, we conducted a few experiments.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 5 10 15 20 25 30 35 40 45 50

Ti
m

e
(m

s)

Stride Length

Execution Times for Varying Stride Lengths for Page Table Sampling

Execution Times

Figure 5: Effect of stride length on total time for sampling. Time
savings are not significant beyond a stride length of 20.

5.3.1 Effectiveness of sampling

By increasing the stride length, we are reducing the effective
number of pages that are processed. In our experiments, we
varied stride lengths for sampling and measured relative error
compared to complete traversal of all the page tables. In order
to verify that stride sampling can really estimate the correct
number of dirty pages, we increased the number of dirty pages
by executing a program in the background which constantly
kept dirtying data structures that were allocated on its stack,
with fixed sizes. We observed that the accuracy of sampling
can be unpredictable, with the error rising beyond 50% for
stride lengths of over 20.

5.3.2 Effect of stride length on total time for sampling

Increasing the stride length means going through a smaller
number of pages. This should reduce the total time for sam-
pling. From Fig 5, we can observe that bigger stride lengths
reduce the time taken, but after a certain threshold point, the
savings in time is not significant enough.

We could strike a good trade-off between accuracy and time
taken. In this case, it so happens that the point where we can
get a good accuracy coincides with a point where we could
get the best time savings.

5.3.3 Detecting dirty file-backed pages

In order to evaluate the approach described in section 4.4, we
ran a program in the background that infinitely generated a
fixed number of sequential writes. Since we did not want to
include other dirty pages in the system, we first measured the
number of dirty pages detected by running the program with
no data being written. As we increased the number of pages
that were written, we observed that we could get a very good
estimate of the dirty file-backed pages. Table 2 shows the
results of an experiment in which each trial was run 10 times.

7

Read Response Time (ms) Throughput (reads per sec)
Non Competing Reads 16.64 141

Competing Reads 39.30 60
Competing Reads with Opportunistic Flush 20.58 92

Table 1: Analysis of Opportunistic Flush. The opportunistic flush strategy improves the response time and throughput of competing reads,
and brings them closer to the response time and throughput of the non-competing reads.

Pages Written # Dirty Pages Detected Accuracy
0 115 (105-119) -

25 141 (134-147) 96.0%
50 167 (154-169) 96.0%
75 191 (185-197) 98.7%

100 214 (202-220) 99.0%
125 241 (236-244) 99.9%
150 263 (257-266) 98.7%

Table 2: Detecting dirty file-backed pages. This table shows the ac-
curacy of our estimate for measuring the number of dirty file-backed
pages. The second column indicates the total number of dirty pages
in the system (with minimum and maximum number detected in our
experiments inside parantheses), which includes those not written by
our process.

6 Conclusions
In this paper, we have discussed how the lack of information
about physical resources in the guest OS and the lack of infor-
mation about the operating system abstractions at the VMM
can hinder the implementation of certain mechanisms. We
have presented a basic framework in a virtualized environ-
ment, where knowledge about disk idleness can be effectively
exported to other guest operating systems through the virtual
machine monitor. We have discussed techniques to infer the
number of dirty pages in a guest OS from the VMM. Our
results show that opportunistic flushes can improve the read
performance in presence of competing writes by about 50%.

Working below the OS on a more privileged platform, we
can directly manipulate the hardware that the OS is running
on. We have seen how we could make use of the hardware
to convert a “silent” action into an observable event. Control-
ling scheduling from below the OS is not straight-forward,
especially without communicating anything to the OS. In our
implementation, a driver communicates to a kernel to achieve
the task. The idea of controlling scheduling without changing
the OS is challenging and needs to be explored more.

Acknowledgement
We thank Stephen Todd Jones and Vijayan Prabhakaran for
the numerous discussions and unhesitated help they provided
during our project. We also thank our anonymous reviewers

for their comments on the initial draft of the paper.

References
[1] A. C. Arpaci-Dusseau and R. H. Arpaci-Dusseau. Information and Con-

trol in Gray-Box Systems. In Proceedings of the 18th ACM Sympo-
sium on Operating Systems Principles (SOSP ’01), pages 43–56, Banff,
Canada, October 2001.

[2] A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, N. C. Burnett, T. E.
Denehy, T. J. Engle, H. S. Gunawi, J. Nugent, and F. I. Popovici. Trans-
forming Policies into Mechanisms with Infokernel. In Proceedings of
the 19th ACM Symposium on Operating Systems Principles (SOSP ’03),
Bolton Landing (Lake George), New York, October 2003.

[3] E. Bugion, S. Devine, and M. Rosenblum. Disco:Running Commodity
Systems on Scalable Multiprocessors. In Proceedings of 16th Sympo-
sium on Operating Systems Principles, Oct. 1997.

[4] S. C. Carson and S. Setia. Analysis of the Periodic Update Write Policy
for Disk Cache. IEEE Transactions on Software Engineering, 18(1):44–
54, Jan. 1992.

[5] P. M. Chen. Optimizing delay in delayed-write file systems. Technical
Report CSE-TR-293-96, University of Michigan, May 1996.

[6] B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, I. Pratt, A. Warfield,
P. Barham, and R. Neugebauer. Xen and the Art of Virtualization. In
Proceedings of the ACM Symposium on Operating Systems Principles,
October 2003.

[7] G. Dunlap, S. King, S. Cinar, M. Basrai, and P. Chen. ReVirt: Enabling
intrusion analysis through virtual-machine logging and replay. In Proc.
of the 2002 Symposium on Operating Systems Design and Implementa-
tion, Dec 2002.

[8] R. A. Golding, P. B. II, C. Staelin, T. Sullivan, and J. Wilkes. Idleness
is not sloth. In USENIX Winter, pages 201–212, 1995.

[9] W. Hsu and A. J. Smith. Characteristics of I/O traffic in personal com-
puter and server workloads. IBM Systems Journal, 42(2):347–372,
2003.

[10] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Antfarm:
Tracking processes in a virtual machine environment. In Proceedings of
the USENIX 2006 Annual Technical Conference (USENIX ’06), Boston,
MA, June 2006.

[11] M. F. Kaashoek, D. R. Engler, G. R. Ganger, H. M. Briceno, R. Hunt,
D. Mazières, T. Pinckney, R. Grimm, J. Jannotti, and K. Mackenzie.
Application performance and flexibility on exokernel systems. In 16th
Symp. on Operating Systems Principles, Saint Malo, France, 1997.
ACM.

[12] J. C. Mogul. A better update policy. In Proceedings of the 1994 Summer
USENIX Technical Conference, pages 99–112, Boston, MA, June 1994.

[13] A. E. Papathanasiou and M. L. Scott. Energy efficiency through bursti-
ness. In Proceedings of the 5th IEEE Workshop on Mobile Computing
Systems and Applications (WMCSA’03), October 2003.

[14] A. E. Papathanasiou and M. L. Scott. Energy efficient prefetching and
caching. In In Proceedings of the 2004 USENIX Annual Technical Con-
ference pages 255-268 Boston MA, July 2004.

[15] S. Santhanam, P. Elango, A. Arpaci-Dusseau, and M. Livny. Deploying
virtual machines as sandboxes for the grid. In Second Workshop on
Real, Large Distributed Systems (WORLDS 2005), San Francisco, CA,
December 2005.

[16] C. Waldspurger. Memory resource management in VMware ESX
server. In Proceedings of the Fifth Symposium on Operating Systems
Design and Implementation, December 2002.

8

