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Abstract

Recent research has shown that even modern hard disks
have complex failure modes that do not conform to “fail-
stop” operation. Disks exhibit partial failures like block
access errors and block corruption. Commodity operating
systems are required to deal with such failures as commod-
ity hard disks are known to be failure-prone. An important
operating system component that is exposed to disk failures
is the virtual memory system. In this paper, we examine the
failure handling policies of different virtual memory systems
for different classes of partial disk errors. We use type and
context aware fault injection to explore as many of the inter-
nal code paths as possible. From experiments, we find that
failure handling policies in current virtual memory systems
are at best simplistic, and often inconsistent or even ab-
sent. Our fault injection technique also identifies bugs in
the failure handling code in these systems. The study iden-
tifies possible reasons for poor failure handling, which can
help in the design of a failure-aware virtual memory system.

1. Introduction

Modern commodity operating systems cannot assume
that disk drives either work perfectly or fail perfectly. Even
modern hard disks are far from being perfect. They do not
operate in “fail-stop” fashion: they exhibit complex par-
tial failures, in which a set of blocks may be inaccessi-
ble [11, 20] or the data stored in some blocks may be silently
corrupted [5, 15]. The complex causes of these errors are
still under study [28]. Worse, such errors are not expected
to diminish as disk technology improves. Increase in disk
drive complexity [4], and increased use of low-cost, unreli-
able ATA disks mean that the incidence of such errors could
increase. Therefore, commodity operating systems should

be equipped to deal with partial disk failures. While high-
end systems have typically employed mechanisms to deal
with disk faults by using techniques like checksumming [5]
and disk scrubbing [27], commodity operating systems do
not have explicitly specified failure handling mechanisms
and policies.

Recent work [26] has explored the failure handling poli-
cies of commodity file systems. In this paper, we explore
the failure handling capabilities of virtual memory systems,
an integral part of any modern operating system, and like
file systems, a significant user of disk storage.

We use type and context aware fault injection techniques
to elicit the failure handling policies of the virtual mem-
ory systems of two operating systems, Linux 2.6.13 and
FreeBSD 6.0. We also perform a preliminary study of the
Windows XP virtual memory system. We characterize the
policies of these systems based on the Internal RObustness
(IRON) taxonomy proposed in earlier work [26].

We find that these virtual memory systems are not well-
equipped to deal with partial failures. Like the file systems
studied earlier, the virtual memory systems use policies that
are illogically inconsistent and their failure handling rou-
tines have bugs. In most cases, the failure handling policy
is simplistic, and in some cases, even absent. This disregard
for partial disk failures leads to many problems, ranging for
loss of physical memory abstraction, to data corruption, and
even to system security violations.

The paper is organized as follows. Section 2 provides a
background on partial disk failures, virtual memory systems
and the IRON taxonomy. Section 3 describes our fault in-
jection and analysis methodology. Section 4 presents exper-
imental results and analyzes the failure handling approaches
of the systems. Section 5 discusses related work and Sec-
tion 6 concludes.



2. Background

This section first discusses partial failures in commod-
ity hard disks, then provides background on virtual mem-
ory systems, and finally presents the taxonomy of failure
handling policies used in the paper to characterize failure
handling in virtual memory systems.

2.1. Partial disk failures

This section presents different causes of partial failures
in the disk subsystem and discusses a suitable failure model
for disks. Almost all layers of the storage stack con-
tribute to the partial failures exhibited by the disk subsys-
tem. The causes range from classic problems such as me-
dia errors due to “bit rot” or head crashes, to errors in bus
controllers [34], and to more recent problems arising from
buggy firmware code [31]. Additionally, it has been shown
that device drivers are likely to contain more bugs than the
rest of the operating system [12, 10, 29]. The entire range
of sources of disk failures has been documented in a recent
paper [26], which also proposes a failure model for disks
called the Fail-Partial Failure Model. We adopt this model
for injecting disk errors in this study. Our study makes use
of the following aspects of the fail-partial failure model:
• Types of errors: Partial disk failures can cause (a) I/O
errors when blocks are read or written; that is, an error code
is returned by the disk, or (b) block corruption, wherein the
contents of a disk block read by the operating system is al-
tered and no error code is returned by the disk.
• Transience of errors: Disk failures can be permanent
(“sticky”) or temporary (“transient”). In the case of a tran-
sient failure, there are no errors if the same I/O operation is
performed again.

The failure model does not incorporate specific frequen-
cies for the different error types since data on the frequency
of partial disk failures is scarce. Drive manufacturers are
loathe to provide such information [3, 30]. Schwarz et al.
estimate that partial disk errors may occur five times more
often than absolute disk failures [27]. More recent experi-
ments by Gray and Ingen [14] with SATA disk drives un-
covered 30 uncorrectable read errors from the point of view
of the operating system in a 6-month experiment period.

Given that partial disk failures occur and should be dealt
with, the question arises as to what component should deal
with the failures. For instance, one may argue that disk
mirroring can be used to deal with such errors. But, our
belief is that operating system components cannot rely on
mirrored disks to provide a dependable computing environ-
ment. Moreover, possible component-specific policies and
optimizations cannot be employed when simple mirroring
is used. Therefore, each operating system component that
uses disks should include its own failure handling policy.

2.2. Virtual memory systems

A virtual memory system uses disk storage to provide
applications with an address space larger than available
physical memory. This helps the system execute multiple
processes with large address spaces simultaneously. The
disk area used by the virtual memory system is called swap
space. The virtual memory system uses swap space to store
memory pages that are not expected to be of immediate use.
Typically, systems tend to remove pages that have not been
accessed recently or that are not accessed frequently from
memory and store them on disk (called page-out). When
a page stored on disk is accessed again, it is brought back
into physical memory (called page-in). The page-out/page-
in process is transparent to applications (except for perfor-
mance effects). Thus, the virtual memory system is respon-
sible for handling disk errors and maintaining the illusion
that the page is actually in physical memory.

Virtual memory systems make use of file systems in two
situations. First, instead of directly using on-disk space,
swap space can also be maintained as a file in a file sys-
tem. Second, virtual memory systems allow applications to
memory-map file data (e.g. using the mmap system call).
When a file (or a portion of a file) is memory mapped, ap-
plications can operate on file data as if they were memory
locations. User code pages are also memory-mapped from
the executable file when a program is executed. In situations
involving a file system, the virtual memory system depends
on the file system to recover from or propagate disk errors.

The following subsections outline the features of two
virtual memory systems, Linux 2.6.13 and FreeBSD 6.0,
whose failure handling policies have been studied in this
paper. The features of the Windows XP virtual memory sys-
tem will be discussed with its evaluation in Section 4.1.4.

2.2.1. Linux 2.6.13

The Linux 2.6.13 virtual memory system has largely been
derived from the previous Linux versions. It performs
swapping only for user-mode pages [7]. User-mode pages
are the data, stack, and code pages that form the user pro-
cess. In order to keep the virtual memory system simple,
pages that belong to the kernel are not paged out. This sim-
plification is not highly restrictive as kernel pages occupy
only a small portion of main memory. The page replace-
ment algorithm used is similar to the “2Q” algorithm [18].
When paged-out pages are accessed, space is created for the
pages and they are read from disk. The system also issues
reads in advance (i.e., read-ahead) based on application ac-
cesses to improve performance. The swap area can either be
a separate disk partition or a file in a file system. It contains
a swap header that has information about the swap area like
number of blocks, a list of faulty blocks and so on.



Level Technique Comment
DZero No detection Assumes disk works
DErrorCode Check return codes from lower levels Assumes lower level can detect errors
DSanity Check data structures for consistency May require extra space per block
DRedundancy Redundancy over one or more blocks Detect corruption in end-to-end way

Table 1. The Levels of the IRON Detection Taxonomy. The table describes the different levels of Detection in the
IRON taxonomy. These levels were developed in an earlier paper [26].

Level Technique Comment
RZero No recovery Assumes disk works
RPropagate Propagate error Informs user
RRecord Record that operation did not succeed Prevents dependent actions from proceeding
RStop Stop activity (crash, prevent writes) Limit amount of damage
RGuess Return “guess” at block contents Could be wrong; failure hidden
RRetry Retry read or write Handles failures that are transient
RRepair Repair data structs Could lose data
RRemap Remaps block or file to different locale Assumes disk informs VM system of failures
RRedundancy Block replication or other forms Enables recovery from loss/corruption

Table 2. The Levels of the IRON Recovery Taxonomy. The table describes the different levels of Recovery in the
IRON taxonomy. These levels were developed earlier [26]. The level RRecord has been added in this paper.

2.2.2. FreeBSD 6.0

FreeBSD [1] is an open source operating system derived
from BSD UNIX. The design of the virtual memory sys-
tem in FreeBSD is originally based on the Mach 2.0 virtual
memory system, with considerable updates over the years.
The FreeBSD 6.0 virtual memory system allocates pages
when requested from a free list of pages and it maintains
sufficient free pages by paging out less frequently used (in-
active) pages [23]. The FreeBSD virtual memory system
also provides for paging out entire processes. This implies
that in addition to user-mode pages, the kernel thread stacks
of processes can be paged out and page tables can be freed
when the system is under extreme memory pressure [23].
Unlike Linux, the FreeBSD virtual memory system does not
perform extra read-ahead; that is, it does not issue separate
block read commands, although it tries to read as many as
8 blocks as part of one read command for a block that is
needed. Like in Linux, the FreeBSD swap area can either
be a disk partition or a file. The FreeBSD swap area does
not have any data structures like the Linux swap header.

2.3. Failure Handling Policy Taxonomy

In this paper, we extend the IRON taxonomy proposed
in an earlier paper [26]. The taxonomy was originally de-
signed to describe the failure handling policies of file sys-
tems, but we find that it is applicable to virtual memory sys-
tems as well. The IRON taxonomy consists of two axis:
Detection and Recovery. Table 1 and Table 2 describe the
different levels of Detection and Recovery respectively. In

addition to the levels proposed previously, we include a new
recovery level: RRecord. At this level, the system records
that the I/O operation did not succeed. This level of re-
covery prevents the system from performing any action that
assumes successful completion of the I/O operation. For
example, when a write error is detected and the system re-
covers using RRecord, it does not free the “dirty” memory
page assuming that it has been successfully written out to
disk, thus avoiding data loss.

We also extend the IRON taxonomy by adding a third
axis: Prevention. The Prevention axis encompasses tech-
niques used to avoid loss due to partial disk failures. Table 3
describes different levels of Prevention:
• Zero: The system may not use any special prevention
techniques. In this case, the system assumes either that the
disk works or that errors can be dealt with when they occur.
• Remember: A basic prevention strategy that can be used is
to remember that a specific block is “bad” once the system
has had at least one bad experience in using the block. This
strategy could prevent future data loss.
• Reboot: A phenomenon that has been observed for a long
time is that systems are either less likely to fail or faults are
cured if the systems are rebooted or reinitialized [9] (since
the systems can be rid of effects of transient bugs accumu-
lated over time). This fact can be used as a failure pre-
vention strategy by periodically rebooting subsystems [17].
The rebooting strategy for virtual memory systems could
range from disabling and then enabling a swap area period-
ically to even re-initializing the drivers/disk controllers.
• LoadBalance: This prevention technique attempts to re-
duce the wear on the data blocks by balancing the load on



Level Technique Comment
PZero No prevention Assumes disk works
PRemember Remembers disk errors Prevents usage of blocks with errors
PReboot Periodically re-initializes the system Tries to avoid bugs due to excess state
PLoadBalance Balances the read/write load on disk blocks Attempts to reduce the effects of “wear” on blocks
PScan Performs read or write checks with bogus data Detects possibly “sticky” block errors

Table 3. The Levels of the IRON Prevention Taxonomy. The table describes the different levels of Prevention.

them. An example of this technique is the use of wear-
leveling in file systems for flash drives (like JFFS2 [2]).
• Scan: The final prevention technique is scanning the disk
for bad blocks by performing accesses, perhaps with bo-
gus data. This technique is used in RAID systems to weed
out potential bad blocks – the process is called “disk scrub-
bing” [20, 27]. While this technique was classified as an
eager Detection technique earlier [26], we feel that it can be
employed as a prevention technique. Virtual memory sys-
tems can scan the swap area periodically during disk idle
time or by using freeblock scheduling [21] and avoid using
disk blocks found to be “bad” in the scan.

3. Methodology

In this section, we describe our fault injection and anal-
ysis methodology. Our fault injection framework consists
of two components, the Benchmark and the Injector. The
Benchmark layer sets the system up for exposure to disk
faults. The layer consists of three types of user processes: a
coordinator for managing the benchmarking and fault injec-
tion, victims that allocate a large memory region, sleep for
a while and then read the memory region, and aggressors
that allocate large memory regions to force out the victims’
pages to the swap area or the file system. Disk errors are in-
jected either when the victims’ pages are paged out to disk
or when they are read back by the victims.

The error injection is performed by the Injector layer,
which interposes between the virtual memory system and
the hard disk. Specifically, the Injector has been built as a
pseudo-device driver for Linux 2.6.13, as a geom layer [23]
for FreeBSD 6.0, and as an upper filter driver for Win-
dows XP. The Injector is located above the device drivers
because: (a) drivers are a significant source of errors [29]
and the virtual memory system should be equipped to han-
dle errors, and (b) the policies of the virtual memory system
can be observed in isolation using this method.

The different types of errors injected by the Injector are
read errors, write errors, and corruption errors. In the case
of read and write errors, an error code is returned to the vir-
tual memory system. We also ensure that valid data is not
placed in memory if the read is failed with an error code.
This technique is needed because the virtual memory sys-
tem may ignore an error code returned; in such a case, if

valid data is placed in the respective memory page, the sys-
tem may seem to work just fine. For corruption errors, the
block contents are altered; we zero out the block in our ex-
periments and in case the corruption is detected, we perform
a more detailed analysis, corrupting each field of the data
structure with field-specific values in separate experiments.

We perform type and context aware fault injection by in-
jecting disk errors for specific disk blocks at specific times.
An example of a data type is a user-level private data seg-
ment (user data). Therefore, an error injected for a disk
block that holds a private user data page is type-aware. A
context is a basic function performed by the virtual memory
system or an interface offered by the virtual memory system
to applications. An example of a context is the swapoff
system call. Therefore, an error injected for a disk block
when swapoff is in progress is context-aware. Table 4
presents various data types for which errors are injected and
indicates which virtual memory systems use them, and Ta-
ble 5 presents different contexts when error injection can be
performed. The different types and contexts that can be ex-
plored are dependent on the particular system under study.

In order to perform type-aware error injection, the Injec-
tor should be able to detect the type of blocks being read
or written. This detection is accomplished in a variety of
ways. The Benchmark layer communicates type informa-
tion regarding data pages to the Injector. For example, the
Benchmark allocates data pages and initializes those pages
to contain specific values and conveys the values to the In-
jector. Thus, in such cases, the Injector uses block contents
to determine the block type. Another method employed to
determine the type is to use the location of the block. For ex-
ample, the Linux swap header is always located at block 0.

The failure handling policy of the system is identified
by a manual observation of the results of error injection.
Specifically, we use the following sources of information:
• The Injector: The Injector logs all I/O operations in de-
tail, enabling us to determine some failure handling poli-
cies; for instance, whether the virtual memory system is
performing retries (read or write is repeated with the same
disk block number) or remapping (disk write is repeated for
a different disk block, but with the same memory page).
• The Benchmark: The Benchmark records all return val-
ues and signals received. This helps in determining whether
an error is propagated. The Benchmark also checks (and re-
ports) the validity of data read back. This helps in checking



Block Type Description Detection Virtual Memory System
swap header Describes the swap space Location Linux 2.6.13
user data Page from private user data segment Content Linux 2.6.13, FreeBSD 6.0
user stack Page from user stack segment Content Linux 2.6.13, FreeBSD 6.0
shared Shared memory page used by many processes Content Linux 2.6.13, FreeBSD 6.0
mmapped Memory-mapped file data Content Linux 2.6.13, FreeBSD 6.0
user code Page from user code segment Location Linux 2.6.13, FreeBSD 6.0
kernel stack Page from kernel thread stack of a user process Kernel information FreeBSD 6.0

Table 4. Data Types. The table describes the different types of blocks that are failed and gives the detection method and
applicable virtual memory system for each type. In order to detect kernel thread stack pages, we made a simple modification to the
FreeBSD kernel to obtain the memory addresses of these pages.

Context Workload Virtual memory system actions
swapon Makes swap space available for swapping Read swap header if any, initialize in-core structures
swapoff Removes swap space from use Page-in valid blocks and free the swap space
pagetouch Page is accessed by the victim Read page from disk
readahead Workload induces readahead by reading nearby pages Perform read-ahead by reading blocks from disk
madvise Victim issues madvise (MADV WILLNEED) May or may not page-in the blocks

to hint possible future reads specified in hint
pageout Aggressors create memory pressure causing page-out Write inactive memory pages to disk
umount The file system is unmounted May have to write of “dirty” mmaped file data
complete Process scheduled again after complete page-out Page-in essential data structures of process

Table 5. Contexts. The table shows the workload for the different contexts that are used in the experiments and the actions
performed by the virtual memory system for each context.

whether there is data corruption.
• System messages: The operating system may emit error
messages to the system message log.

We use these techniques to determine the failure han-
dling policies adopted by virtual memory systems for dif-
ferent combinations of data type, context and error type.
These techniques are primarily used to determine Detection
and Recovery policies. We discuss experiments to deter-
mine Prevention policies in Section 4.1.3.

4. Analysis

In this section, we first present the results of our exper-
iments on three virtual memory systems, then analyze the
failure handling approach of the systems, and finally discuss
our experience with the fault injection techniques used.

4.1. Experimental Results

We have performed a detailed analysis of the
Linux 2.6.13 and FreeBSD 6.0 virtual memory systems, and
a preliminary analysis of the Windows XP virtual memory
system. We first focus on Detection and Recovery tech-
niques of Linux and FreeBSD, then discuss Prevention tech-
niques of those systems, and finally evaluate Windows XP.

We present about 30 different scenarios (combinations of
data type, context and error type) for Linux and FreeBSD.

All experiments involving swap space are performed using
a separate disk partition as swap space (except for Win-
dows XP), while experiments involving memory-mapped
files or user code pages use the ext3 file system [33] in
Linux 2.6.13 and the Unix File System (UFS2) [23] in
FreeBSD 6.0. The observed failure handling policy for ex-
periments involving a file system is a combination of the
policies of the virtual memory system and the file system.

4.1.1. Linux 2.6.13

Tables 6 and 7 present the results of fault injection on the
Linux 2.6.13 virtual memory system.
Detection: We find that most read errors are detected us-
ing DErrorCode, which is checking of return codes. The
exceptions occur during swapoff (when the virtual mem-
ory system pages valid blocks into memory); the error is
not detected (DZero) and the application to which the data
belongs is given junk data on a future memory access. This
could lead to application crashes or data corruption.

None of the write errors are detected (DZero). A read of
the page after an ignored write error causes the virtual mem-
ory system to page-in the disk block with its previous con-
tents. Missing these errors can lead to application crashes
or application data corruption (because of bad data) or even
system security problems since the application could possi-
bly read data that belongs to another process.
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Symbols Z Zero E Errorcode Y Sanity
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Comments (1) Sanity checks for swap space signature, version number
and bad block count

Table 6. Linux 2.6.13 Detection Techniques.
This table presents the Linux 2.6.13 detection techniques
for read, write and corruption errors for combinations of
data type (rows) and context (columns). Comments, if any,
are provided below the tables.

Almost all corruption errors are not detected and the cor-
rupted data is returned to the application. One exception
is the use of DSanity for the swap header during swapon.
The sanity checks are for (a) the correct swap space signa-
ture (b) the correct version number, and (c) the number of
bad blocks being less than the maximum allowable.
Recovery: For cases where the disk error is detected, Linux
uses basic recovery mechanisms. When there is a read er-
ror for an application-accessed page, the SIGBUS signal is
used to inform the application of an error (RPropagate). In
the case of a shared memory page, all processes that touch
the page after the read error occurs receive the SIGBUS
signal – in other words, the virtual memory system does not
retry the read when each process accesses the page. Another
use of RPropagate is when the swap header is corrupted, in
which case an error is returned for the swapon call.

In the experiments with memory-mapped file data and
user code, a retry is observed (RRetry) for the specific disk
block that the system actually needs; even if the original
operation involved many disk blocks, the retry is performed
for only one block. This retry may have been initiated by
the file system and not the virtual memory system. When a
read to the swap header fails during swapon, a retry is per-
formed (RRetry), but perhaps due to implementation bugs,
the results of the retry are not actually used. Also, swapon
returns success during read errors even though the call fails
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Comments (1) SIGBUS signal (2) One separate retry for every block
needed in the original request (3) Retry is not actually used (4) Operation
fails but success is returned (error is not propagated) (5) This operation is

remembered when page is actually touched (6) Error propagates to all
processes that touch the page after the read error occurs

Table 7. Linux 2.6.13 Recovery Techniques.
This table presents the Linux 2.6.13 recovery techniques for
read, write and corruption errors for combinations of data
type (rows) and context (columns). † indicates a possible
bug in the implementation. Comments, if any, are provided
below the tables.

internally (i.e. it does not propagate the error).
RRecord is used to handle read errors for readahead

and madvise. By using RRecord, the system records
the failure of the read for future reference. In both
readahead and madvise, the data is not required imme-
diately – read-ahead is only an optimization by the virtual
memory system and madvise is only a hint that the block
will likely be accessed. In the readahead case, the er-
ror is propagated when the page is actually touched and for
madvise, a retry is performed when the page is touched –
both actions use the fact that the first read was unsuccessful.

4.1.2. FreeBSD 6.0

Tables 8 and 9 present the results of fault injection on the
FreeBSD 6.0 virtual memory system.
Detection: DErrorCode is used in every single case for de-
tecting both read and write errors – the FreeBSD 6.0 vir-
tual memory system always checks the error code returned.
FreeBSD does not detect block corruption (DZero). While
this leads to application crash or data corruption in most
cases, it leads to a kernel crash when corruption of kernel
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Table 8. FreeBSD 6.0 Detection Techniques.
This table presents the FreeBSD 6.0 detection techniques
for read, write and corruption errors for combinations of
data type (rows) and context (columns). FreeBSD does not
read any block during swapon and does not read pages in
for madvise (— in the table).

thread stack blocks is not detected; in this case serious er-
rors like system becoming unbootable are also possible.

Recovery: Various recovery mechanisms are used in
FreeBSD 6.0 to deal with detected errors. RRetry is used
when memory-mapped data is written during a file system
unmount. In fact, the system retries as many as 6 times
for each umount call. We believe that these retries are
performed by the file system and not the virtual memory
system (we still document the behavior here since it is the
behavior observed by an application using memory-mapped
file data, a feature supported by the virtual memory system).

Read errors during page accesses cause the virtual mem-
ory system to deliver a SIGSEGV (segmentation fault)
to the application, an instance of RPropagate. Experi-
ments showed that in the case of shared memory, unlike in
Linux, processes sharing the memory region operate inde-
pendently; that is, even if the error has been propagated to
one of the processes that accessed the page, the disk ac-
cess is retried when a second process accesses the page.
RPropagate is also used when all write retries are failed dur-
ing umount; an I/O error is returned to the application.

RStop is used for read errors during swapoff and for
read errors during a page-in of the kernel thread stack.
In both cases, the result is a kernel panic, a conserva-
tive action. During pageout, the virtual memory system
attempts to free memory pages by writing them to swap
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Symbols Z Zero P Propagate R Retry D Record
S Stop — Experiment not applicable

Comments (1) Kernel crashes when the stack is used (2) SIGSEGV
signal (3) kernel panic (4) Memory page is not freed; alternate victim
chosen for page-out (5) Upto six retries of the write operation (for all

blocks) (6) I/O error returned

Table 9. FreeBSD 6.0 Recovery Techniques.
This table presents the FreeBSD 6.0 recovery techniques
for read, write and corruption errors for combinations of
data type (rows) and context (columns). Comments, if any,
are provided below the tables. FreeBSD does not read
any block during swapon and does not read pages in for
madvise (— in the table).

space. If write errors occur during this page-out process, the
FreeBSD virtual memory system recovers using RRecord.
In this case, the virtual memory system remembers that the
write operation has not been performed successfully, so that
the memory page is not freed. Since the virtual memory
system is not able to successfully free the memory page, it
proceeds to select an alternate victim for page-out.

4.1.3. Prevention Techniques

Determining Prevention policies is more difficult than deter-
mining Detection and Recovery policies since the Preven-
tion policy may not be triggered by a particular disk fault.
Therefore, our methodology for uncovering the Prevention
policy is to use a specific test for each Prevention technique.

PRemember is the only technique triggered by faults. We
test for PRemember by injecting a “sticky” error repeatedly
for the same disk block and checking whether the virtual
memory system stops using the disk block. The work-
load performs 10 iterations of a page-out/page-in of vic-
tim pages. For both Linux 2.6.13 and FreeBSD 6.0 we
find that the “bad” disk block is used repeatedly, in spite



of returning an error each time. The same results are ob-
tained for both read and write errors. This indicates that
Linux and FreeBSD likely do not keep track of bad blocks
(i.e. PRemember is not used).

We test for PLoadBalance by causing the virtual mem-
ory system to page-out many pages numerous times and
checking whether all blocks in the swap area are used fairly
evenly. This workload performs 10 iterations of a page-
out/page-in of victim pages. In both Linux and FreeBSD,
the same disk blocks are reused repeatedly, even though
many other blocks in the swap area have not been written
to even once. This indicates that the systems likely do not
perform wear-leveling (i.e. PLoadBalance is not used).

Finally, to detect PReboot and PScan we simply observe
whether these activities occur over an interval of using the
virtual memory system. Given that we did not observe any
instance of PReboot or PScan during any of our experiments,
we infer that it is likely that neither Linux nor FreeBSD
use these techniques. In summary, our experiments indicate
that neither Linux 2.6.13 nor FreeBSD 6.0 appear to use
Prevention techniques.

4.1.4. Windows XP

This section first outlines particular features of the Win-
dows XP virtual memory system, then discusses its fail-
ure handling policies. Windows XP uses a file in an NTFS
partition to store memory pages that get paged-out. There-
fore, the failure handling policy we extract is a combina-
tion of policies of NTFS and the virtual memory system.
Windows XP allows for paging out of both user and kernel
memory. We inject faults only for user data pages. Read
and corruption errors are injected during pagetouch and
write errors are injected during pageout. We use the error
code STATUS DEVICE DATA ERROR for read and write errors.
Detection: Windows XP uses the error code returned by
the disk to detect both read and write errors (DErrorCode).
Corruption errors are not detected (DZero).
Recovery: Recovery from read errors is by terminat-
ing the user application, reporting the error InPageError
(RPropagate). Recovery from write errors is more involved.
It primarily uses RRecord: the memory pages for which the
error occurs are written elsewhere when they are selected
for paging out again. As for the disk block with the er-
ror, it is first read back. If this read succeeds, a half-block
write is performed. If the read fails, a half-block read is
performed. Irrespective of the success or failure of the half-
block operations, the block is used for future writes, using
RRecord to deal with any errors to these writes. We have so
far not been able to identify the purpose of the half-block
operations. Also, after a transient write error, although the
disk blocks are subsequently successfully written, they are
not read back even when the application accesses the data,

thereby leading to the application receiving junk data. This
indicates a possible bug in handling write errors. Further
investigation is required to ascertain this behavior.
Prevention: Error injection experiments demonstrated that
a given disk block is not re-used after about 6 errors for the
block (PRemember). The block is added to a bad cluster file
and is never used again unless the disk is re-formatted.

4.2. Failure Handling Approaches

In this section, we discuss the approaches that current
virtual memory systems adopt to handle disk failures, con-
trasting the techniques used and identifying the deficiencies
of the systems. We also compare the approach of virtual
memory systems to that of file systems (explored in [26]).
We start by summarizing the different approaches of the vir-
tual memory systems:
• Linux: Linux fails to detect many disk errors (even ones
where error codes are returned) and follows simple recov-
ery schemes to deal with detected errors. With respect to
corruption, only swap header corruption is detected.
• FreeBSD: FreeBSD correctly detects all disk errors with
error codes, but ignores corruption errors. It uses simple
recovery schemes to deal with errors, although it is more
conservative than Linux for some cases – the kernel calls
panic to stop the entire system when a read fails during
swapoff, even if the read affects only a single application.
• Windows XP: Windows XP detects disk errors with error
codes but ignores corruption errors. It uses simple recovery
schemes. It is the only system for which we observed a
prevention technique (PRemember).

In general, the systems suffer from the following defi-
ciencies:
• Simple recovery techniques. The virtual memory sys-
tems studied use only simple recovery techniques to deal
with disk errors. There is no attempt to use techniques like
redundancy to completely recover from the disk errors.
• Ignoring data corruption. Of all our data corruption ex-
periments, only one case (Linux swap header) is detected.
Virtual memory systems assume that disks store data reli-
ably, which may not be true for commodity hardware.
• Under-developed mechanisms. A prime example of an
under-developed mechanism is remembering bad blocks.
The Linux swap header has a provision to store a list of
bad blocks. This list can be used effectively to prevent data
loss (PRemember). However, the list is initialized during
mkswap and not updated afterward when new errors occur
(on the other hand, Windows XP actively uses and updates
a bad cluster file to avoid using error-prone blocks).
• Memory abstraction mismatch. Applications expect all
their pages to behave as if they are always in memory. The
virtual memory system should maintain this memory ab-
straction even when there are disk errors. An important part



of maintaining the abstraction is error reporting. If an error
cannot be handled by the system, it should be propagated
in a manner that fits the memory abstraction. For example,
Linux uses the SIGBUS signal to propagate page read errors
(by definition, hardware failures can cause SIGBUS to be
generated). However, FreeBSD uses the SIGSEGV signal
(which almost always is intended to indicate a programming
error) to propagate read errors, which is not appropriate.
• Very few retries. There were very few instances of retry-
ing an operation when an error occurs. Retrying can solve
the problem in the case of a transient error and systems
would benefit greatly by employing retries [14].
• Illogical inconsistency. The error recovery techniques
employed are inconsistent for cases which are not very dif-
ferent. For example, in FreeBSD, a read error for a user data
page may result in a propagate in one case (pagetouch),
while it results in kernel panic in another (swapoff).
• Buggy implementation. It is observed in Linux that fail-
ure handling code is buggy. For example, the result of a
retry is ignored, making it useless. We suspect that failure
handling code is rarely tested and is thus likely to have bugs,
as seen elsewhere [24].
• Security issues. A system that is fairly secure during nor-
mal operation could become insecure when there is a par-
tial failure. In Linux, when data is read back after a failed
write, the disk block’s previous contents are returned to the
application, possibly delivering data that the application is
not authorized to read. Such failures need to be dealt with
given that there is an increasing awareness towards exploit-
ing even transient hardware errors to attack systems [13].
• Kernel exposure. Systems should take special care when
kernel-mode data is stored on disk. In FreeBSD, corruption
of the kernel thread stack is not detected. This may result in
undesirable crashes or severe data corruption.

When the policies of virtual memory systems are com-
pared to that of file systems, we observe the following:
• Both kinds of systems share problems like illogical incon-
sistency and implementation bugs in failure handling code.
This points to a general disregard for partial disk errors, thus
exposing commodity computer systems to data loss, data
corruption and inexplicable crashes.
• The Linux virtual memory system, like some file sys-
tems [26], misses a large number of write errors.
• Both virtual memory systems and file systems do not deal
with corruption errors in an elegant manner. We see that
file systems perform some sanity checking to deal with cor-
ruption to file system data structures, but there is no protec-
tion for user data (which is the only data handled by virtual
memory systems for the most part).
• FreeBSD and Windows XP leverage an important differ-
ence between file systems and virtual memory systems in
that writes are required to succeed in file systems, while
virtual memory systems have alternatives like choosing an

other page as victim and writing it elsewhere on disk.

4.3. Experience

Experimenting with multiple systems not only helps us
compare these systems, but also provides an insight into the
advantages and limitations of our methodology. Our expe-
rience is that the techniques are simple to use and can be
applied to many different systems. While the tool has to be
rewritten for each environment, we find that the task is not
onerous. We observed one particular limitation: there is no
easy way to identify the source of disk accesses and the ac-
cesses may be attributed to error recovery while it may be
unrelated. An example of this problem occurs when a read
error is injected for a user data page in FreeBSD or Win-
dows XP. We observe what seems to be a “retry” of the read.
Even if this “retry” succeeds, the application is terminated,
indicating a possible bug in the retry code. Only closer
examination revealed that the second read is performed to
create a core dump and not to recover from the error. It
would be interesting to explore techniques to identify the
exact source of disk accesses in future work.

5. Related Work

Many techniques have been developed over the years
to inject faults in various systems [6, 19, 22, 32]. These
and other techniques have been used in fault injection
studies that explore operating system behavior under er-
rors [16, 22]. However, these studies do not explore partial
disk failures in detail, or bring out techniques and policies
used by the operating system to deal with such failures.

Our study is similar in spirit to Brown and Patterson’s
study of failure policies of different software RAID sys-
tems [8]. While software RAIDs are type and context ag-
nostic, the behavior of a virtual memory system differs con-
siderably for different data types and contexts and therefore
requires more complex fault injection and analysis.

This study is most related to our earlier studies on how
file systems handle partial disk failures [25, 26]. Along with
file systems, the virtual memory system is one of the most
important operating system components that uses disks sig-
nificantly. While applications are aware that a disk is used
to store files, the use of disks by the virtual memory sys-
tem is completely transparent to applications, requiring the
virtual memory system to be robust to disk failures.

6. Conclusions

Commodity hardware is becoming increasingly unreli-
able due to escalating complexity and cost pressures. Oper-
ating systems can no longer assume that hardware compo-
nents, especially hard disks, work or fail as a whole. The



virtual memory system is an important subsystem in ev-
ery modern operating system. Therefore, virtual memory
systems should be designed to deal with partial disk fail-
ures. From our fault injection experiments, we find that
current virtual memory systems do not employ consistent
failure policies that provide complete recovery from partial
failures. Improving the failure-awareness of these systems
would enable them to truly virtualize memory, providing
applications with a robust memory abstraction.
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