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Abstract
Cloud-based file synchronization services have become

enormously popular in recent years, both for their abil-

ity to synchronize files across multiple clients and for the

automatic cloud backups they provide. However, despite

the excellent reliability that the cloud back-end provides,

the loose coupling of these services and the local file sys-

tem makes synchronized data more vulnerable than users

might believe. Local corruption may be propagated to the

cloud, polluting all copies on other devices, and a crash or

untimely shutdown may lead to inconsistency between a

local file and its cloud copy. Even without these failures,

these services cannot provide causal consistency.

To address these problems, we present ViewBox, an

integrated synchronization service and local file system

that provides freedom from data corruption and inconsis-

tency. ViewBox detects these problems using ext4-cksum,

a modified version of ext4, and recovers from them using a

user-level daemon, cloud helper, to fetch correct data from

the cloud. To provide a stable basis for recovery,ViewBox

employs the view manager on top of ext4-cksum. The

view manager creates and exposes views, consistent in-

memory snapshots of the file system, which the synchro-

nization client then uploads. Our experiments show that

ViewBox detects and recovers from both corruption and

inconsistency, while incurring minimal overhead.

1 Introduction
Cloud-based file synchronization services, such as Drop-

box [11], SkyDrive [28], and Google Drive [13], provide a

convenient means both to synchronize data across a user’s

devices and to back up data in the cloud. While automatic

synchronization of files is a key feature of these services,

the reliable cloud storage they offer is fundamental to their

success. Generally, the cloud backend will checksum and

replicate its data to provide integrity [3] and will retain old

versions of files to offer recovery from mistakes or inad-

vertent deletion [11]. The robustness of these data protec-

tion features, along with the inherent replication that syn-

chronization provides, can provide the user with a strong

sense of data safety.

Unfortunately, this is merely a sense, not a reality; the

loose coupling of these services and the local file system

endangers data even as these services strive to protect it.

Because the client has no means of determining whether

file changes are intentional or the result of corruption,

it may send both to the cloud, ultimately spreading cor-

rupt data to all of a user’s devices. Crashes compound

this problem; the client may upload inconsistent data to

the cloud, download potentially inconsistent files from the

cloud, or fail to synchronize changed files. Finally, even

in the absence of failure, the client cannot normally pre-

serve causal dependencies between files, since it lacks sta-

ble point-in-time images of files as it uploads them. This

can lead to an inconsistent cloud image, which may in turn

lead to unexpected application behavior.

In this paper, we present ViewBox, a system that inte-

grates the local file system with cloud-based synchroniza-

tion services to solve the problems above. Instead of syn-

chronizing individual files, ViewBox synchronizes views,

in-memory snapshots of the local synchronized folder that

provide data integrity, crash consistency, and causal con-

sistency. Because the synchronization client only uploads

views in their entirety, ViewBox guarantees the correct-

ness and consistency of the cloud image, which it then

uses to correctly recover from local failures. Furthermore,

by making the server aware of views, ViewBox can syn-

chronize views across clients and properly handle con-

flicts without losing data.

ViewBox contains three primary components. Ext4-

cksum, a variant of ext4 that detects corrupt and incon-

sistent data through data checksumming, provides View-

Box’s foundation. Atop ext4-cksum, we place the view

manager, a file-system extension that creates and exposes

views to the synchronization client. The view manager

provides consistency through cloud journaling by creat-

ing views at file-system epochs and uploading views to

the cloud. To reduce the overhead of maintaining views,

the view manager employs incremental snapshotting by

keeping only deltas (changed data) in memory since the

last view. Finally, ViewBox handles recovery of damaged

data through a user-space daemon, cloud helper, that inter-

acts with the server-backend independently of the client.

We build ViewBox with two file synchronization ser-

vices: Dropbox, a highly popular synchronization service,

and Seafile, an open source synchronization service based

on GIT. Through reliability experiments, we demonstrate

that ViewBox detects and recovers from local data cor-

ruption, thus preventing the corruption’s propagation. We

also show that upon a crash, ViewBox successfully rolls

back the local file system state to a previously uploaded

view, restoring it to a causally consistent image. By com-
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paring ViewBox to Dropbox or Seafile running atop ext4,

we find that ViewBox incurs less than 5% overhead across

a set of workloads. In some cases, ViewBox even im-

proves the synchronization time by 30%.

The rest of the paper is organized as follows. We first

show in Section 2 that the aforementioned problems ex-

ist through experiments and identify the root causes of

those problems in the synchronization service and the lo-

cal file system. Then, we present the overall architecture

of ViewBox in Section 3, describe the techniques used in

our prototype system in Section 4, and evaluate ViewBox

in Section 5. Finally, we discuss related work in Section

6 and conclude in Section 7.

2 Motivation
As discussed previously, the loosely-coupled design of

cloud-based file synchronization services and file systems

creates an insurmountable semantic gap that not only lim-

its the capabilities of both systems, but leads to incor-

rect behavior in certain circumstances. In this section,

we demonstrate the consequences of this gap, first explor-

ing several case studies wherein synchronization services

propagate file system errors and spread inconsistency. We

then analyze how the limitations of file synchronization

services and file systems directly cause these problems.

2.1 Synchronization Failures
We now present three case studies to show different fail-

ures caused by the semantic gap between local file sys-

tems and synchronization services. The first two of these

failures, the propagation of corruption and inconsistency,

result from the client’s inability to distinguish between le-

gitimate changes and failures of the file system. While

these problems can be warded off by using more advanced

file systems, the third, causal inconsistency, is a funda-

mental result of current file-system semantics.

2.1.1 Data Corruption

Data corruption is not uncommon and can result from a

variety of causes, ranging from disk faults to operating

system bugs [5, 8, 12, 22]. Corruption can be disastrous,

and one might hope that the automatic backups that syn-

chronization services provide would offer some protec-

tion from it. These backups, however, make them likely

to propagate this corruption; as clients cannot detect cor-

ruption, they simply spread it to all of a user’s copies, po-

tentially leading to irrevocable data loss.

To investigate what might cause disk corruption to

propagate to the cloud, we first inject a disk corruption

to a block in a file synchronized with the cloud (by flip-

ping bits through the device file of the underlying disk).

We then manipulate the file in several different ways,

and observe which modifications cause the corruption to

be uploaded. We repeat this experiment for Dropbox,

ownCloud, and Seafile atop ext4 (both ordered and data

Data Metadata

FS Service write mtime ctime atime

ext4

(Linux)

Dropbox LG LG LG L

ownCloud LG LG L L

Seafile LG LG LG LG

ZFS

(Linux)

Dropbox L L L L

ownCloud L L L L

Seafile L L L L

HFS+

(Mac

OS X)

Dropbox LG LG L L

ownCloud LG LG L L

GoogleDrive LG LG L L

SugarSync LG L L L

Syncplicity LG LG L L

Table 1: Data Corruption Results. “L”: corruption

remains local. “G”: corruption is propagated (global).

journaling modes) and ZFS [2] in Linux (kernel 3.6.11)

and Dropbox, ownCloud, Google Drive, SugarSync, and

Syncplicity atop HFS+ in Mac OS X (10.5 Lion).

We execute both data operations and metadata-only op-

erations on the corrupt file. Data operations consist of

both appends and in-place updates at varying distances

from the corrupt block, updating both the modification

and access times; these operations never overwrite the

corruption. Metadata operations change only the time-

stamps of the file. We use touch -a to set the access

time, touch -m to set the modification time, and chown

and chmod to set the attribute-change time.

Table 1 displays our results for each combination of

file system and service. Since ZFS is able to detect lo-

cal corruption, none of the synchronization clients propa-

gate corruption. However, on ext4 and HFS+, all clients

propagate corruption to the cloud whenever they detect a

change to file data and most do so when the modification

time is changed, even if the file is otherwise unmodified.

In both cases, clients interpret the corrupted block as a

legitimate change and upload it. Seafile uploads the cor-

ruption whenever any of the timestamps change. Sugar-

Sync is the only service that does not propagate corrup-

tion when the modification time changes, doing so only

once it explicitly observes a write to the file or it restarts.

2.1.2 Crash Inconsistency

The inability of synchronization services to identify legit-

imate changes also leads them to propagate inconsistent

data after crash recovery. To demonstrate this behavior,

we initialize a synchronized file on disk and in the cloud

at version v0. We then write a new version, v1, and inject

a crash which may result in an inconsistent version v1′ on
disk, with mixed data from v0 and v1, but the metadata

remains v0. We observe the client’s behavior as the sys-

tem recovers. We perform this experiment with Dropbox,

ownCloud, and Seafile on ZFS and ext4.

Table 2 shows our results. Running the synchroniza-
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Upload Download OOS

FS Service local ver. cloud ver.

ext4

(ordered)

Dropbox
√

×
√

ownCloud
√ √ √

Seafile N/A N/A N/A

ext4

(data)

Dropbox
√

× ×
ownCloud

√ √
×

Seafile
√

× ×

ZFS

Dropbox
√

× ×
ownCloud

√ √
×

Seafile
√

× ×

Table 2: Crash Consistency Results. There are three

outcomes: uploading the local (possibly inconsistent) version to

cloud, downloading the cloud version, and OOS (out-of-sync), in

which the local version and the cloud version differ but are not

synchronized. “×” means the outcome does not occur and “
√
”

means the outcome occurs. Because in some cases the Seafile

client fails to run after the crash, its results are labeled “N/A”.

tion service on top of ext4 with ordered journaling pro-

duces erratic and inconsistent behavior for both Dropbox

and ownCloud. Dropbox may either upload the local, in-

consistent version of the file or simply fail to synchronize

it, depending on whether it had noticed and recorded the

update in its internal structures before the crash. In addi-

tion to these outcomes, ownCloud may also download the

version of the file stored in the cloud if it successfully syn-

chronized the file prior to the crash. Seafile arguably ex-

hibits the best behavior. After recovering from the crash,

the client refuses to run, as it detects that its internal meta-

data is corrupted. Manually clearing the client’s meta-

data and resynchronizing the folder allows the client to

run again; at this point, it detects a conflict between the

local file and the cloud version.

All three services behave correctly on ZFS and ext4

with data journaling. Since the local file system provides

strong crash consistency, after crash recovery, the local

version of the file is always consistent (either v0 or v1).

Regardless of the version of the local file, both Dropbox

and Seafile always upload the local version to the cloud

when it differs from the cloud version. OwnCloud, how-

ever, will download the cloud version if the local version

is v0 and the cloud version is v1. This behavior is cor-

rect for crash consistency, but it may violate causal con-

sistency, as we will discuss.

2.1.3 Causal Inconsistency

The previous problems occur primarily because the file

system fails to ensure a key property—either data integrity

or consistency—and does not expose this failure to the file

synchronization client. In contrast, causal inconsistency

derives not from a specific failing on the file system’s part,

but from a direct consequence of traditional file system se-

mantics. Because the client is unable to obtain a unified

view of the file system at a single point in time, the client

has to upload files as they change in piecemeal fashion,

and the order in which it uploads files may not correspond

to the order in which they were changed. Thus, file syn-

chronization services can only guarantee eventual consis-

tency: given time, the image stored in the cloudwill match

the disk image. However, if the client is interrupted—for

instance, by a crash, or even a deliberate powerdown—the

image stored remotely may not capture the causal order-

ing between writes in the file system enforced by primi-

tives like POSIX’s sync and fsync, resulting in a state

that could not occur during normal operation.

To investigate this problem, we run a simple experiment

in which a series of files are written to a synchronization

folder in a specified order (enforced by fsync). During

multiple runs, we vary the size of each file, as well as

the time between file writes, and check if these files are

uploaded to the cloud in the correct order. We perform

this experiment with Dropbox, ownCloud, and Seafile on

ext4 and ZFS, and find that for all setups, there are always

cases in which the cloud state does not preserve the causal

ordering of file writes.

While causal inconsistency is unlikely to directly cause

data loss, it may lead to unexpected application behav-

ior or failure. For instance, suppose the user employs a

file synchronization service to store the library of a photo-

editing suite that stores photos as both full images and

thumbnails, using separate files for each. When the user

edits a photo, and thus, the corresponding thumbnail as

well, it is entirely possible that the synchronization ser-

vice will upload the smaller thumbnail file first. If a fa-

tal crash, such as a hard-drive failure, then occurs before

the client can finish uploading the photo, the service will

still retain the thumbnail in its cloud storage, along with

the original version of the photo, and will propagate this

thumbnail to the other devices linked to the account. The

user, accessing one of these devices and browsing through

their thumbnail gallery to determine whether their data

was preserved, is likely to see the new thumbnail and as-

sume that the file was safely backed up before the crash.

The resultant mismatch will likely lead to confusion when

the user fully reopens the file later.

2.2 Where Synchronization Services Fail

Our experiments demonstrate genuine problems with file

synchronization services; in many cases, they not only

fail to prevent corruption and inconsistency, but actively

spread them. To better explain these failures, we present a

brief case-study of Dropbox’s local client and its interac-

tions with the file system. While Dropbox is merely one

service among many, it is well-respected and established,

with a broad user-base; thus, any of its flaws are likely

to be endemic to synchronization services as a whole and

not merely isolated bugs.

Like many synchronization services, Dropbox actively
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monitors its synchronization folder for changes using a

file-system notification service, such as Linux’s inotify

or Mac OS X’s Events API. While these services inform

Dropbox of both namespace changes and changes to file

content, they provide this information at a fairly coarse

granularity—per file, for inotify, and per directory for the

Events API, for instance. In the event that these services

fail, or that Dropbox itself fails or is closed for a time,

Dropbox detects changes in local files by examining their

statistics, including size and modification timestamps

Once Dropbox has detected that a file has changed, it

reads the file, using a combination of rsync and file chunk-

ing to determine which portions of the file have changed

and transmits them accordingly [10]. If Dropbox detects

that the file has changed while being read, it backs off

until the file’s state stabilizes, ensuring that it does not up-

load a partial combination of several separate writes. If it

detects that multiple files have changed in close temporal

proximity, it uploads the files from smallest to largest.

Throughout the entirety of the scanning and upload pro-

cess, Dropbox records information about its progress and

the current state of its monitored files in a local SQLite

database. In the event that Dropbox is interrupted by a

crash or deliberate shut-down, it can then use this private

metadata to resume where it left off.

Given this behavior, the causes of Dropbox’s inability

to handle corruption and inconsistency become apparent.

As file-system notification services provide no informa-

tion on what file contents have changed, Dropbox must

read files in their entirety and assume that any changes

that it detects result from legitimate user action; it has

no means of distinguishing unintentional changes, like

corruption and inconsistent crash recovery. Inconsistent

crash recovery is further complicated by Dropbox’s inter-

nal metadata tracking. If the system crashes during an up-

load and restores the file to an inconsistent state, Dropbox

will recognize that it needs to resume uploading the file,

but it cannot detect that the contents are no longer consis-

tent. Conversely, if Dropbox had finished uploading and

updated its internal timestamps, but the crash recovery re-

verted the file’s metadata to an older version, Dropbox

must upload the file, since the differing timestamp could

potentially indicate a legitimate change.

2.3 Where Local File Systems Fail

Responsibility for preventing corruption and inconsis-

tency hardly rests with synchronization services alone;

much of the blame can be placed on local file systems,

as well. File systems frequently fail to take the preven-

tative measures necessary to avoid these failures and, in

addition, fail to expose adequate interfaces to allow syn-

chronization services to deal with them. As summarized

in Table 3, neither a traditional file system, ext4, nor a

modern file system, ZFS, is able to avoid all failures.

FS Corruption Crash Causal

ext4 (ordered) × × ×
ext4 (data) ×

√
×

ZFS
√ √

×

Table 3: Summary of File System Capabilities. This

table shows the synchronization failures each file system is able

to handle correctly. There are three types of failures: Corrup-

tion (data corruption), Crash (crash inconsistency), and Causal

(causal inconsistency). “
√
” means the failure does not occur

and “×” means the failure may occur.

File systems primarily prevent corruption via check-

sums. When writing a data or metadata item to disk, the

file system stores a checksum over the item as well. Then,

when it reads that item back in, it reads the checksum and

uses that to validate the item’s contents. While this tech-

nique correctly detects corruption, file system support for

it is limited. ZFS [6] and btrfs [23] are some of the few

widely available file systems that employ checksums over

the whole file system; ext4 uses checksums, but only over

metadata [9]. Even with checksums, however, the file

system can only detect corruption, requiring other mech-

anisms to repair it.

Recovering from crashes without exposing inconsis-

tency to the user is a problem that has dogged file systems

since their earliest days and has been addressed with a va-

riety of solutions. The most common of these is journal-

ing, which provides consistency by grouping updates into

transactions, which are first written to a log and then later

checkpointed to their fixed location. While journaling is

quite popular, seeing use in ext3 [26], ext4 [20], XFS [25],

HFS+ [4], and NTFS [21], among others, writing all data

to the log is often expensive, as doing so doubles all write

traffic in the system. Thus, normally, these file systems

only log metadata, which can lead to inconsistencies in

file data upon recovery, even if the file system carefully

orders its data and metadata writes (as in ext4’s ordered

mode, for instance). These inconsistencies, in turn, cause

the erratic behavior observed in Section 2.1.2.

Crash inconsistency can be avoided entirely using

copy-on-write, but, as with file-system checksums, this

is an infrequently used solution. Copy-on-write never

overwrites data or metadata in place; thus, if a crash oc-

curs mid-update, the original state will still exist on disk,

providing a consistent point for recovery. Implementing

copy-on-write involves substantial complexity, however,

and only recent file systems, like ZFS and btrfs, support it

for personal use.

Finally, avoiding causal inconsistency requires access

to stable views of the file system at specific points in time.

File-system snapshots, such as those provided by ZFS or

Linux’s LVM [1], are currently the only means of obtain-

ing such views. However, snapshot support is relatively

uncommon, and when implemented, tends not to be de-
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signed for the fine granularity at which synchronization

services capture changes.

2.4 Summary
As our observations have shown, the sense of safety pro-

vided by synchronization services is largely illusory. The

limited interface between clients and the file system, as

well as the failure of many file systems to implement key

features, can lead to corruption and flawed crash recov-

ery polluting all available copies, and causal inconsis-

tency may cause bizarre or unexpected behavior. Thus,

naively assuming that these services will provide com-

plete data protection can lead instead to data loss, espe-

cially on some of the most commonly-used file systems.

Even for file systems capable of detecting errors and

preventing their propagation, such as ZFS and btrfs, the

separation of synchronization services and the file system

incurs an opportunity cost. Despite the presence of correct

copies of data in the cloud, the file system has no means

to employ them to facilitate recovery. Tighter integration

between the service and the file system can remedy this,

allowing the file system to automatically repair damaged

files. However, this makes avoiding causal inconsistency

even more important, as naive techniques, such as simply

restoring the most recent version of each damaged file, are

likely to directly cause it.

3 Design
To remedy the problems outlined in the previous section,

we propose ViewBox, an integrated solution in which the

local file system and the synchronization service cooper-

ate to detect and recover from these issues. Instead of a

clean-slate design, we structure ViewBox around ext4 (or-

dered journalingmode), Dropbox, and Seafile, in the hope

of solving these problems with as few changes to existing

systems as possible.

Ext4 provides a stable, open-source, and widely-used

solution on which to base our framework. While both

btrfs and ZFS already provide some of the functionality

we desire, they lack the broad deployment of ext4. Ad-

ditionally, as it is a journaling file system, ext4 also bears

some resemblance to NTFS and HFS+, the Windows and

Mac OS X file systems; thus, many of our solutions may

be applicable in these domains as well.

Similarly, we employ Dropbox because of its reputation

as one of the most popular, as well as one of the most ro-

bust and reliable, synchronization services. Unlike ext4, it

is entirely closed source, making it impossible to modify

directly. Despite this limitation, we are still able to make

significant improvements to the consistency and integrity

guarantees that both Dropbox and ext4 provide. However,

certain functionalities are unattainable without modifying

the synchronization service. Therefore, we take advan-

tage of an open source synchronization service, Seafile,

to show the capabilities that a fully integrated file system

and synchronization service can provide. Although we

only implement ViewBox with Dropbox and Seafile, we

believe that the techniques we introduce apply more gen-

erally to other synchronization services.

In this section, we first outline the fundamental goals

driving ViewBox. We then provide a high-level overview

of the architecture with which we hope to achieve these

goals. Our architecture performs three primary functions:

detection, synchronization, and recovery; we discuss each

of these in turn.

3.1 Goals
In designing ViewBox, we focus on four primary goals,

based on both resolving the problems we have identified

and onmaintaining the features that make users appreciate

file-synchronization services in the first place.

Integrity: Most importantly, ViewBox must be able to

detect local corruption and prevent its propagation

to the rest of the system. Users frequently depend

on the synchronization service to back up and pre-

serve their data; thus, the file system should never

pass faulty data along to the cloud.

Consistency: When there is a single client, ViewBox

should maintain causal consistency between the

client’s local file system and the cloud and prevent

the synchronization service from uploading inconsis-

tent data. Furthermore, if the synchronization service

provides the necessary functionality, ViewBox must

provide multi-client consistency: file-system states

on multiple clients should be synchronized properly

with well-defined conflict resolution.

Recoverability: While the previous properties focus on

containing faults, containment is most useful if the

user can subsequently repair the faults. ViewBox

should be able to use the previous versions of the files

on the cloud to recover automatically. At the same

time, it should maintain causal consistency when

necessary, ideally restoring the file system to an im-

age that previously existed.

Performance: Improvements in data protection cannot

come at the expense of performance. ViewBox must

perform competitively with current solutions even

when running on the low-end systems employed

by many of the users of file synchronization ser-

vices. Thus, naive solutions, like synchronous repli-

cation [17], are not acceptable.

3.2 Fault Detection
The ability to detect faults is essential to prevent them

from propagating and, ultimately, to recover from them as

well. In particular, we focus on detecting corruption and

data inconsistency. While ext4 provides some ability to

detect corruption through its metadata checksums, these

5



6

E0 E1 E2 E3

Synced View

Frozen View

Active View

5

4

6

E0 E1 E2 E3

5

4

6

E0 E1 E2 E3

6

54

7

E0 E1 E2 E3

6

545

(a) Uploading E1 as View 5 (b) View 5 is synchronized (c) Freezing E3 as View 6 (d) Uploading View 6

FS Epoch

Figure 1: Synchronizing Frozen Views. This figure shows how view-based synchronization works, focusing on how to

upload frozen views to the cloud. The x-axis represents a series of file-system epochs. Squares represent various views in the

system, with a view number as ID. A shaded active view means that the view is not at an epoch boundary and cannot be frozen.

do not protect the data itself. Thus, to correctly detect

all corruption, we add checksums to ext4’s data as well,

storing them separately so that we may detect misplaced

writes [6, 18], as well as bit flips. Once it detects corrup-

tion, ViewBox then prevents the file from being uploaded

until it can employ its recovery mechanisms.

In addition to allowing detection of corruption resulting

from bit-flips or bad disk behavior, checksums also allow

the file system to detect the inconsistent crash recovery

that could result from ext4’s journal. Because checksums

are updated independently of their corresponding blocks,

an inconsistently recovered data block will not match its

checksum. As inconsistent recovery is semantically iden-

tical to data corruption for our purposes—both comprise

unintended changes to the file system—checksums pre-

vent the spread of inconsistent data, as well. However,

they only partially address our goal of correctly restoring

data, which requires stronger functionality.

3.3 View-based Synchronization
Ensuring that recovery proceeds correctly requires us to

eliminate causal inconsistency from the synchronization

service. Doing so is not a simple task, however. It requires

the client to have an isolated view of all data that has

changed since the last synchronization; otherwise, user

activity could cause the remote image to span several file

system images but reflect none of them.

While file-system snapshots provide consistent, static

images [16], they are too heavyweight for our purposes.

Because the synchronization service stores all file data re-

motely, there is no reason to persist a snapshot on disk.

Instead, we propose a system of in-memory, ephemeral

snapshots, or views.

3.3.1 View Basics

Views represent the state of the file system at specific

points in time, or epochs, associated with quiescent points

in the file system. We distinguish between three types

of views: active views, frozen views, and synchronized

views. The active view represents the current state of the

local file system as the user modifies it. Periodically, the

file system takes a snapshot of the active view; this be-

comes the current frozen view. Once a frozen view is up-

loaded to the cloud, it then becomes a synchronized view,

and can be used for restoration. At any time, there is only

one active view and one frozen view in the local system,

while there are multiple synchronized views on the cloud.

To provide an example of how views work in practice,

Figure 1 depicts the state of a typical ViewBox system. In

the initial state, (a), the system has one synchronized view

in the cloud, representing the file system state at epoch 0,

and is in the process of uploading the current frozen view,

which contains the state at epoch 1. While this occurs,

the user can make changes to the active view, which is

currently in the middle of epoch 2 and epoch 3.

Once ViewBox has completely uploaded the frozen

view to the cloud, it becomes a synchronized view, as

shown in (b). ViewBox refrains from creating a new

frozen view until the active view arrives at an epoch

boundary, such as a journal commit, as shown in (c). At

this point, it discards the previous frozen view and cre-

ates a new one from the active view, at epoch 3. Finally,

as seen in (d), ViewBox begins uploading the new frozen

view, beginning the cycle anew.

Because frozen views are created at file-system epochs

and the state of frozen views is always static, synchroniz-

ing frozen views to the cloud provides both crash consis-

tency and causal consistency, given that there is only one

client actively synchronizing with the cloud. We call this

single-client consistency.

3.3.2 Multi-client Consistency

When multiple clients are synchronized with the cloud,

the server must propagate the latest synchronized view

from one client to other clients, to make all clients’ state

synchronized. Critically, the server must propagate views

in their entirety; partially uploaded views are inherently

inconsistent and thus should not be visible. However, be-

cause synchronized views necessarily lag behind the ac-

tive views in each file system, the current active file sys-

tem may have dependencies that would be invalidated by

a remote synchronized view. Thus, remote changes must

be applied to the active view in a way that preserves local

causal consistency.

To achieve this, ViewBox handles remote changes in

two phases. In the first phase, ViewBox applies remote

changes to the frozen view. If a changed file does not ex-

ist in the frozen view, ViewBox adds it directly; otherwise,

it adds the file under a new name that indicates a conflict

(e.g., “foo.txt” becomes “remote.foo.txt”). In the second
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Figure 2: Handling Remote Updates. This figure demon-

strates two different scenarios where remote updates are han-

dled. While case (a) has no conflicts, case (b) may, because it

contains concurrent updates.

phase, ViewBox merges the newly created frozen view

with the active view. ViewBox propagates all changes

from the new frozen view to the active view, using the

same conflict handling procedure. At the same time, it

uploads the newly merged frozen view. Once the second

phase completes, the active view is fully updated; only

after this occurs can it be frozen and uploaded.

To correctly handle conflicts and ensure no data is lost,

we follow the same policy as GIT [14]. This can be sum-

marized by the following three guidelines:

• Preserve any local or remote change; a change could

be the addition, modification, or deletion of a file.

• When there is a conflict between a local change and

a remote change, always keep the local copy un-

touched, but rename and save the remote copy.

• Synchronize and propagate both the local copy and

the renamed remote copy.

Figure 2 illustrates how ViewBox handles remote

changes. In case (a), both the remote and local clients

are synchronized with the cloud, at view 0. The remote

client makes changes to the active view, and subsequently

freezes and uploads it to the cloud as view 1. The local

client is then informed of view 1, and downloads it. Since

there are no local updates, the client directly applies the

changes in view 1 to its frozen view and propagates those

changes to the active view.

In case (b), both the local client and the remote client

perform updates concurrently, so conflicts may exist. As-

suming the remote client synchronizes view 1 to the cloud

first, the local client will refrain from uploading its frozen

view, view 2, and download view 1 first. It then merges

the two views, resolving conflicts as described above,

to create a new frozen view, view 3. Finally, the local

client uploads view 3 while simultaneously propagating

the changes in view 3 to the active view.

In the presence of simultaneous updates, as seen in case

(b), this synchronization procedure results in a cloud state

that reflects a combination of the disk states of all clients,

rather than the state of any one client. Eventually, the

different client and cloud states will converge, providing

multi-client consistency. This model is weaker than our

single-client model; thus, ViewBox may not be able to

provide causal consistency for each individual client un-

der all circumstances.

Unlike single-client consistency, multi-client consis-

tency requires the cloud server to be aware of views, not

just the client. Thus, ViewBox can only provide multi-

client consistency for open source services, like Seafile;

providing it for closed-source services, like Dropbox, will

require explicit cooperation from the service provider.

3.4 Cloud-aided Recovery

With the ability to detect faults and to upload consistent

views of the file system state, ViewBox is now capable

of performing correct recovery. There are effectively two

types of recovery to handle: recovery of corrupt files, and

recovery of inconsistent files at the time of a crash.

In the event of corruption, if the file is clean in both the

active view and the frozen view, we can simply recover

the corrupt block by fetching the copy from the cloud. If

the file is dirty, the file may not have been synchronized

to the cloud, making direct recovery impossible, as the

block fetched from cloud will not match the checksum.

If recovering a single block is not possible, the entire file

must be rolled back to a previous synchronized version,

which may lead to causal inconsistency.

Recovering causally-consistent images of files that

were present in the active view at the time of a crash faces

the same difficulties as restoring corrupt files in the active

view. Restoring each individual file to its most recent syn-

chronized version is not correct, as other files may have

been written after the now-corrupted file and, thus, de-

pend on it; to ensure these dependencies are not broken,

these files also need to be reverted. Thus, naive restoration

can lead to causal inconsistency, even with views.

Instead, we present users with the choice of individu-

ally rolling back damaged files, potentially risking causal

inconsistency, or reverting to the most recent synchro-

nized view, ensuring correctness but risking data loss. As

we anticipate that the detrimental effects of causal incon-

sistency will be relatively rare, the former option will be

usable in many cases to recover, with the latter available in

the event of bizarre or unexpected application behavior.

4 Implementation

Now that we have provided a broad overview of View-

Box’s architecture, we delve more deeply into the

specifics of our implementation. As with Section 3, we

divide our discussion based on the three primary compo-

nents of our architecture: detection, as implemented with

our new ext4-cksum file system; view-based synchroniza-

tion using our view manager, a file-system agnostic ex-

tension to ext4-cksum; and recovery, using a user-space

recovery daemon called cloud helper.
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4.1 Ext4-cksum
Like most file systems that update data in place, ext4

provides minimal facilities for detecting corruption and

ensuring data consistency. While it offers experimental

metadata checksums, these do not protect data; similarly,

its default ordered journaling mode only protects the con-

sistency of metadata, while providing minimal guarantees

about data. Thus, it requires changes to meet our require-

ments for integrity and consistency. We now present ext4-

cksum, a variant of ext4 that supports data checksums to

protect against data corruption and to detect data inconsis-

tency after a crash without the high cost of data journaling.

4.1.1 Checksum Region

Ext4-cksum stores data checksums in a fixed-sized check-

sum region immediately after the inode table in each block

group, as shown in Figure 3. All checksums of data blocks

in a block group are preallocated in the checksum region.

This region acts similarly to a bitmap, except that it stores

checksums instead of bits, with each checksum mapping

directly to a data block in the group. Since the region

starts at a fixed location in a block group, the location

of the corresponding checksum can be easily calculated,

given the physical (disk) block number of a data block.

The size of the region depends solely on the total num-

ber of blocks in a block group and the length of a check-

sum, both of which are determined and fixed during file

system creation. Currently, ext4-cksum uses the built-in

crc32c checksum, which is 32 bits. Therefore, it reserves

a 32-bit checksum for every 4KB block, imposing a space

overhead of 1/1024; for a regular 128MB block group, the

size of the checksum region is 128KB.

4.1.2 Checksum Handling for Reads and Writes

When a data block is read from disk, the corresponding

checksum must be verified. Before the file system issues

a read of a data block from disk, it gets the correspond-

ing checksum by reading the checksum block. After the

file system reads the data block into memory, it verifies

the block against the checksum. If the initial verification

fails, ext4-cksum will retry. If the retry also fails, ext4-

cksum will report an error to the application. Note that in

this case, if ext4-cksum is running with the cloud helper

daemon, ext4-cksum will try to get the remote copy from

cloud and use that for recovery. The read part of a read-

modify-write is handled in the same way.

A read of a data block from disk always incurs an ad-

ditional read for the checksum, but not every checksum

read will cause high latency. First, the checksum read

can be served from the page cache, because the checksum

blocks are considered metadata blocks by ext4-cksum and

are kept in the page cache like other metadata structures.

Second, even if the checksum read does incur a disk

I/O, because the checksum is always in the same block

group as the data block, the seek latency will be minimal.

Third, to avoid checksum reads as much as possible, ext4-

cksum employs a simple prefetching policy: always read

8 checksum blocks (within a block group) at a time. Ad-

vanced prefetching heuristics, such as those used for data

prefetching, are applicable here.

Ext4-cksum does not update the checksum for a dirty

data block until the data block is written back to disk. Be-

fore issuing the disk write for the data block, ext4-cksum

reads in the checksum block and updates the correspond-

ing checksum. This applies to all data write-backs, caused

by a background flush, fsync, or a journal commit.

Since ext4-cksum treats checksum blocks as metadata

blocks, with journaling enabled, ext4-cksum logs all dirty

checksum blocks in the journal. In ordered journaling

mode, this also allows the checksum to detect incon-

sistent data caused by a crash. In ordered mode, dirty

data blocks are flushed to disk before metadata blocks

are logged in the journal. If a crash occurs before the

transaction commits, data blocks that have been flushed

to disk may become inconsistent, because the metadata

that points to them still remains unchanged after recovery.

As the checksum blocks are metadata, they will not have

been updated, causing a mismatch with the inconsistent

data block. Therefore, if such a block is later read from

disk, ext4-cksum will detect the checksum mismatch.

To ensure consistency between a dirty data block and

its checksum, data write-backs triggered by a background

flush and fsync can no longer simultaneously occur with

a journal commit. In ext4 with ordered journaling, be-

fore a transaction has committed, data write-backs may

start and overwrite a data block that was just written by

the committing transaction. This behavior, if allowed in

ext4-cksum, would cause a mismatch between the already

logged checksum block and the newly written data block

on disk, thus making the committing transaction inconsis-

tent. To avoid this scenario, ext4-cksum ensures that data

write-backs due to a background flush and fsync always

occur before or after a journal commit.

4.2 View Manager

To provide consistency, ViewBox requires file synchro-

nization services to upload frozen views of the local file

system, which it implements through an in-memory file-

system extension, the view manager. In this section, we

detail the implementation of the view manager, beginning

with an overview. Next, we introduce two techniques,

cloud journaling and incremental snapshotting, which are

key to the consistency and performance provided by the

view manager. Then, we provide an example that de-
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scribes the synchronization process that uploads a frozen

view to the cloud. Finally, we briefly discuss how to inte-

grate the synchronization client with the view manager to

handle remote changes and conflicts.

4.2.1 View Manager Overview

The view manager is a light-weight kernel module that

creates views on top of a local file system. Since it only

needs to maintain two local views at any time (one frozen

view and one active view), the view manager does not

modify the disk layout or data structures of the underly-

ing file system. Instead, it relies on a modified tmpfs to

present the frozen view in memory and support all the

basic file system operations to files and directories in it.

Therefore, a synchronization client now monitors the ex-

posed frozen view (rather than the actual folder in the lo-

cal file system) and uploads changes from the frozen view

to the cloud. All regular file system operations from other

applications are still directly handled by ext4-cksum. The

view manager uses the active view to track the on-going

changes and then reflects them to the frozen view. Note

that the current implementation of the view manager is

tailored to our ext4-cksum and it is not stackable [29]. We

believe that a stackable implementation would make our

view manager compatible with more file systems.

4.2.2 Consistency through Cloud Journaling

As we discussed in Section 3.3.1, to preserve consis-

tency, frozen views must be created at file-system epochs.

Therefore, the view manager freezes the current active

view at the beginning of a journal commit in ext4-cksum,

which serves as a boundary between two file-system

epochs. At the beginning of a commit, the current running

transaction becomes the committing transaction. When a

new running transaction is created, all operations belong-

ing to the old running transaction will have completed,

and operations belonging to the new running transaction

will not have started yet. The view manager freezes the

active view at this point, ensuring that no in-flight op-

eration spans multiple views. All changes since the last

frozen view are preserved in the new frozen view, which

is then uploaded to the cloud, becoming the latest syn-

chronized view.

To ext4-cksum, the cloud acts as an external journaling

device. Every synchronized view on the cloud matches a

consistent state of the local file system at a specific point

in time. Although ext4-cksum still runs in ordered jour-

naling mode, when a crash occurs, the file system now

has the chance to roll back to a consistent state stored on

cloud. We call this approach cloud journaling.

4.2.3 Low-overhead via Incremental Snapshotting

During cloud journaling, the view manager achieves bet-

ter performance and lower overhead through a technique

called incremental snapshotting. The view manager al-

ways keeps the frozen view in memory and the frozen

view only contains the data that changed from the previ-

ous view. The active view is thus responsible for tracking

all the files and directories that have changed since it last

was frozen. When the view manager creates a new frozen

view, it marks all changed files copy-on-write, which pre-

serves the data at that point. The new frozen view is then

constructed by applying the changes associated with the

active view to the previous frozen view.

The view manager uses several in-memory and on-

cloud structures to support this incremental snapshotting

approach. First, the view manager maintains an inode

mapping table to connect files and directories in the frozen

view to their corresponding ones in the active view. The

view manager represents the namespace of a frozen view

by creating frozen inodes for files and directories in tmpfs

(their counterparts in the active view are thus called active

inodes), but no data is usually stored under frozen inodes

(unless the data is copied over from the active view due

to copy-on-write). When a file in the frozen view is read,

the view manager finds the active inode and fetches data

blocks from it. The inode mapping table thus serves as a

translator between a frozen inode and its active inode.

Second, the viewmanager tracks namespace changes in

the active view by using an operation log, which records

all successful namespace operations (e.g., create, mkdir,

unlink, rmdir, and rename) in the active view. When the

active view is frozen, the log is replayed onto the previous

frozen view to bring it up-to-date, reflecting the new state.

Third, the view manager uses a dirty table to track what

files and directories are modified in the active view. Once

the active view becomes frozen, all these files are marked

copy-on-write. Then, by generating inotify events based

on the operation log and the dirty table, the view man-

ager is able to make the synchronization client check and

upload these local changes to the cloud.

Finally, the view manager keeps view metadata on the

server for every synchronized view, which is used to iden-

tify what files and directories are contained in a synchro-

nized view. For services such as Seafile, which internally

keeps the modification history of a folder as a series of

snapshots [24], the view manager is able to use its snap-

shot ID (called commit ID by Seafile) as the view meta-

data. For services like Dropbox, which only provides file-

level versioning, the view manager creates a view meta-

data file for every synchronized view, consisting of a list

of pathnames and revision numbers of files in that view.

The information is obtained by querying the Dropbox

server. The view manager stores these metadata files in

a hidden folder on the cloud, so the correctness of these

files is not affected by disk corruption or crashes.

4.2.4 Uploading Views to the Cloud

Now, we walk through an example in Figure 4 to explain

how the view manager uploads views to the cloud. In the
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Figure 4: Incremental Snapshotting. This figure illus-

trates how the view manager creates active and frozen views.

example, the synchronization service is Dropbox.

Initially, the synchronization folder (D) contains two

files (F1 and F2). While frozen view 5 is being synchro-

nized, in active view 6, F1 is deleted, F2 is modified, and

F3 is created. The view manager records the two names-

pace operations (unlink and create) in the operation log,

and adds F2 and F3 to the dirty table. When frozen view

5 is completely uploaded to the cloud, the view manager

creates a view metadata file and uploads it to the server.

Next, the view manager waits for the next journal com-

mit and freezes active view 6. The view manager first

marks F2 and F3 in the dirty table copy-on-write, preserv-

ing new updates in the frozen view. Then, it creates active

view 7 with a new operation log and a new dirty table,

allowing the file system to operate without any interrup-

tion. After that, the view manager replays the operation

log onto frozen view 5 such that the namespace reflects

the state of frozen view 6.

Finally, the view manager generates inotify events

based on the dirty table and the operation log, thus caus-

ing the Dropbox client to synchronize the changes to the

cloud. Since F3 is not changed in active view 7, the

client reading its data from the frozen view would cause

the view manager to consult the inode mapping table (not

shown in the figure) and fetch requested data directly from

the active view. Note that F2 is deleted in active view 7.

If the deletion occurs before the Dropbox client is able to

upload F2, all data blocks of F2 are copied over and at-

tached to the copy of F2 in the frozen view. If Dropbox

reads the file before deletion occurs, the view manager

fetches those blocks from active view 7 directly, without

making extra copies. After frozen view 6 is synchronized

to the cloud, the view manager repeats the steps above,

constantly uploading views from the local system.

4.2.5 Handling Remote Changes

All the techniques we have introduced so far focus on

how to provide single-client consistency and do not re-

quire modifications to the synchronization client or the

server. They work well with proprietary synchronization

services such as Dropbox. However, when there are mul-

tiple clients running ViewBox and performing updates at

the same time, the synchronization service itself must be

view-aware. To handle remote updates correctly, we mod-

ify the Seafile client to perform the two-phase synchro-

nization described in Section 3.3.2. We choose Seafile

to implement multi-client consistency, because both its

client and server are open-source. More importantly, its

data model and synchronization algorithm is similar to

GIT, which fits our view-based synchronization well.

4.3 Cloud Helper
When corruption or a crash occurs, ViewBox performs re-

covery using backup data on the cloud. Recovery is per-

formed through a user-level daemon, cloud helper. The

daemon is implemented in Python, which acts as a bridge

between the local file system and the cloud. It interacts

with the local file system using ioctl calls and communi-

cates with the cloud through the service’s web API.

For data corruption, when ext4-cksum detects a check-

sum mismatch, it sends a block recovery request to the

cloud helper. The request includes the pathname of the

corrupted file, the offset of the block inside the file, and

the block size. The cloud helper then fetches the requested

block from the server and returns the block to ext4-cksum.

Ext4-cksum reverifies the integrity of the block against the

data checksum in the file system and returns the block to

the application. If the verification still fails, it is possibly

because the block has not been synchronized or because

the block is fetched from a different file in the synchro-

nized view on the server with the same pathname as the

corrupted file.

When a crash occurs, the cloud helper performs a scan

of the ext4-cksum file system to find potentially incon-

sistent files. If the user chooses to only roll back those

inconsistent files, the cloud helper will download them

from the latest synchronized view. If the user chooses

to roll back the whole file system, the cloud helper will

identify the latest synchronized view on the server, and

download files and construct directories in the view. The

former approach is able to keep most of the latest data

but may cause causal inconsistency. The latter guaran-

tees causal consistency, but at the cost of losing updates

that took place during the frozen view and the active view

when the crash occurred.

5 Evaluation
We now present the evaluation results of our ViewBox

prototype. We first show that our system is able to re-

cover from data corruption and crashes correctly and pro-

vide causal consistency. Then, we evaluate the under-

lying ext4-cksum and view manager components sepa-

rately, without synchronization services. Finally we study

the overall synchronization performance of ViewBox with

Dropbox and Seafile.

We implemented ViewBox in the Linux 3.6.11 kernel,

with Dropbox client 1.6.0, and Seafile client and server
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Service Data Metadata

ViewBox w/ write mtime ctime atime

Dropbox DR DR DR DR

Seafile DR DR DR DR

Table 4: Data Corruption Results of ViewBox. In

all cases, the local corruption is detected (D) and recovered

(R) using data on the cloud.

Service Upload Download Out-of-sync

ViewBox w/ local ver. cloud ver. (no sync)

Dropbox ×
√

×
Seafile ×

√
×

Table 5: Crash Consistency Results of ViewBox.
The local version is inconsistent and rolled back to the pre-

vious version on the cloud.

Workload ext4 ext4-cksum Slowdown

(MB/s) (MB/s)

Seq. write 103.69 99.07 4.46%

Seq. read 112.91 108.58 3.83%

Rand. write 0.70 0.69 1.42%

Rand. read 5.82 5.74 1.37%

Table 6: Microbenchmarks on ext4-cksum. This

figure compares the throughput of several micro benchmarks

on ext4 and ext4-cksum. Sequential write/read are writ-

ing/reading a 1GB file in 4KB requests. Random write/read

are writing/reading 128MB of a 1GB file in 4KB requests.

For sequential read workload, ext4-cksum prefetches 8

checksum blocks for every disk read of a checksum block.

Workload ext4 ext4-cksum Slowdown

(MB/s) (MB/s)

Fileserver 79.58 66.28 16.71%

Varmail 2.90 3.96 -36.55%

Webserver 150.28 150.12 0.11%

Table 7: Macrobenchmarks on ext4-cksum. This

table shows the throughput of three workloads on ext4 and

ext4-cksum. Fileserver is configured with 50 threads per-

forming creates, deletes, appends, and whole-file reads and

writes. Varmail emulates a multi-threaded mail server in

which each thread performs a set of create-append-sync,

read-append-sync, read, and delete operations. Webserver

is a multi-threaded read-intensive workload.

1.8.0. All experiments are performed on machines with

a 3.3GHz Intel Quad Core CPU, 16GB memory, and a

1TB Hitachi Deskstar hard drive. For all experiments, we

reserve 512MB of memory for the view manager.

5.1 Cloud Helper
We first perform the same set of fault injection experi-

ments as in Section 2. The corruption and crash test re-

sults are shown in Table 4 and Table 5. Because the local

state is initially synchronized with the cloud, the cloud

helper is able to fetch the redundant copy from cloud and

recover from corruption and crashes. We also confirm that

ViewBox is able to preserve causal consistency.

5.2 Ext4-cksum
We now evaluate the performance of standalone ext4-

cksum, focusing on the overhead caused by data check-

summing. Table 6 shows the throughput of several mi-

crobenchmarks on ext4 and ext4-cksum. From the table,

one can see that the performance overhead is quite min-

imal. Note that checksum prefeteching is important for

sequential reads; if it is disabled, the slowdown of the

workload increases to 15%.

We perform a series of macrobenchmarks using

Filebench on both ext4 and ext4-cksum with checksum

prefetching enabled. The results are shown in Table 7.

For the fileserver workload, the overhead of ext4-cksum

is quite high, because there are 50 threads reading and

writing concurrently and the negative effect of the extra

seek for checksum blocks accumulates. The webserver

workload, on the other hand, experiences little overhead,

because it is dominated by warm reads.

It is surprising to notice that ext4-cksum greatly outper-

forms ext4 in varmail. This is actually a side effect of the

ordering of data write-backs and journal commit, as dis-

cussed in Section 4.1.2. Note that because ext4 and ext4-

cksum are not mounted with “journal async commit”, the

commit record is written to disk with a cache flush and

the FUA (force unit access) flag, which ensures that when

the commit record reaches disk, all previous dirty data (in-

cluding metadata logged in the journal) have already been

forced to disk. When running varmail in ext4, data blocks

written by fsyncs from other threads during the journal

commit are also flushed to disk at the same time, which

causes high latency. In contrast, since ext4-cksum does

not allow data write-back from fsync to run simultane-

ously with the journal commit, the amount of data flushed

is much smaller, which improves the overall throughput

of the workload.

5.3 View Manager
We now study the performance of various file system op-

erations in an active view when a frozen view exists. The

view manager runs on top of ext4-cksum.

We first evaluate the performance of various operations

that do not cause copy-on-write (COW) in an active view.

These operations are create, unlink, mkdir, rmdir, rename,

utime, chmod, chown, truncate and stat. We run a work-

load that involves creating 1000 8KB files across 100 di-

rectories and exercising these operations on those files and

directories. We prevent the active view from being frozen

so that all these operations do not incur a COW. We see a
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Normalized Response Time

Operation Before COW After COW

unlink (cold) 484.49 1.07

unlink (warm) 6.43 0.97

truncate (cold) 561.18 1.02

truncate (warm) 5.98 0.93

rename (cold) 469.02 1.10

rename (warm) 6.84 1.02

overwrite (cold) 1.56 1.10

overwrite (warm) 1.07 0.97

Table 8: Copy-on-write Operations in the View Man-
ager. This table shows the normalized response time (against

ext4) of various operations on a frozen file (10MB) that trig-

ger copy-on-write of data blocks. “Before COW”/”After COW”

indicates the operation is performed before/after affected data

blocks are COWed.

small overhead (mostly less than 5% except utime, which

is around 10%) across all operations, as compared to their

performance in the original ext4., This overhead is mainly

caused by operation logging and other bookkeeping per-

formed by the view manager.

Next, we show the normalized response time of oper-

ations that do trigger copy-on-write in Table 8. These

operations are performed on a 10MB file after the file is

created and marked COW in the frozen view. All oper-

ations cause all 10MB of file data to be copied from the

active view to the frozen view. The copying overhead is

listed under the “Before COW” column, which indicates

that these operations occur before the affected data blocks

are COWed. When the cache is warm, which is the com-

mon case, the data copying does not involve any disk I/O

but still incurs up to 7x overhead. To evaluate the worst

case performance (when the cache is cold), we deliber-

ately force the system to drop all caches before we per-

form these operations. As one can see from the table, all

data blocks are read from disk, thus causing much higher

overhead. Note that cold cache cases are rare and may

only occur during memory pressure. We further measure

the performance of the same set of operations on a file that

has already been fully COWed. As shown under the “Af-

ter COW” column, the overhead is negligible, because no

data copying is performed.

5.4 ViewBox with Dropbox and Seafile
We assess the overall performance of ViewBox using

three workloads: openssh (building openssh from its

source code), iphoto edit (editing photos in iPhoto), and

iphoto view (browsing photos in iPhoto). The latter two

workloads are from the iBench trace suite [15] and are

replayed using Magritte [27]. We believe that these work-

loads are representative of ones people run with synchro-

nization services.

The results of running all three workloads on View-

Box with Dropbox and Seafile are shown in Table 9. In

all cases, the runtime of the workload in ViewBox is at

most 5% slower and sometimes faster than that of the un-

modified ext4 setup, which shows that view-based syn-

chronization does not have a negative impact on the fore-

ground workload. We also find that the memory over-

head of ViewBox (the amount of memory consumed by

the view manager to store frozen views) is minimal, at

most 20MB across all three workloads.

We expect the synchronization time of ViewBox to be

longer because ViewBox does not start synchronizing the

current state of the file system until it is frozen, which

may cause delays. The results of openssh confirm our ex-

pectations. However, for iphoto view and iphoto edit, the

synchronization time on ViewBox with Dropbox is much

greater than that on ext4. This is due to Dropbox’s lack

of proper interface support for views, as described in Sec-

tion 4.2.3. Because both workloads use a file system im-

age with around 1200 directories, to create the view meta-

data for each view, ViewBox has to query the Dropbox

server numerous times, creating substantial overhead. In

contrast, ViewBox can avoid this overhead with Seafile

because it has direct access to Seafile’s internal metadata.

Thus, the synchronization time of iphoto view in View-

Box with Seafile is near that in ext4.

Note that the iphoto edit workload actually has a much

shorter synchronization time on ViewBox with Seafile

than on ext4. Because the photo editing workload in-

volves many writes, Seafile delays uploading when it de-

tects files being constantly modified. After the workload

finishes, many files have yet to be uploaded. Since frozen

views prevent interference, ViewBox can finish synchro-

nizing about 30% faster.

6 Related Work
ViewBox is built upon various techniques, which are re-

lated to many existing systems and research work.

Using checksums to preserve data integrity and consis-

tency is not new; as mentioned in Section 2.3, a num-

ber of existing file systems, including ZFS, btrfs, WAFL,

and ext4, use them in various capacities. In addition, a

variety of research work, such as IRON ext3 [22] and

Z2FS [31], explores the use of checksums for purposes be-

yond simply detecting corruption. IRON ext3 introduces

transactional checksums, which allow the journal to issue

all writes, including the commit block, concurrently; the

checksum detects any failures that may occur. Z2FS uses

page cache checksums to protect the system from corrup-

tion in memory, as well as on-disk. All of these systems

rely on locally stored redundant copies for automatic re-

covery, which may or may not be available. In contrast,

ext4-cksum is the first work of which we are aware that

employs the cloud for recovery. To our knowledge, it is

also the first work to add data checksumming to ext4.

Similarly, a number of works have explored means
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ext4 + Dropbox ViewBox with Dropbox ext4 + Seafile ViewBox with Seafile

Workload Runtime Sync Time Runtime Sync Time Runtime Sync Time Runtime Sync Time

openssh 36.4 49.0 36.0 64.0 36.0 44.8 36.0 56.8

iphoto edit 577.4 2115.4 563.0 2667.3 566.6 857.6 554.0 598.8

iphoto view 149.2 170.8 153.4 591.0 150.0 166.6 156.4 175.4

Table 9: ViewBox Performance. This table compares the runtime and sync time (in seconds) of various workloads running

on top of unmodified ext4 and ViewBox using both Dropbox and Seafile. Runtime is the time it takes to finish the workload and sync

time is the time it takes to finish synchronizing.

of providing greater crash consistency than ordered and

metadata journaling provide. Data journaling mode in

ext3 and ext4 provides full crash consistency, but its high

overhead makes it unappealing. OptFS [7] is able to

achieve data consistency and deliver high performance

through an optimistic protocol, but it does so at the cost of

durability while still relying on data journaling to handle

overwrite cases. In contrast, ViewBox avoids overhead by

allowing the local file system to work in ordered mode,

while providing consistency through the views it synchro-

nizes to the cloud; it then can restore the latest view after

a crash to provide full consistency. Like OptFS, this sac-

rifices durability, since the most recent view on the cloud

will always lag behind the active file system. However,

this approach is optional, and, in the normal case, ordered

mode recovery can still be used.

Due to the popularity of Dropbox and other synchro-

nization services, there are many recent works studying

their problems. Our previous work [30] examines the

problem of data corruption and crash inconsistency in

Dropbox and proposes techniques to solve both problems.

We build ViewBox on these findings and go beyond the

original proposal by introducing view-based synchroniza-

tion, implementing a prototype system, and evaluating our

system with various workloads. Li et al. [19] notice that

frequent and short updates to files in the Dropbox folder

generate excessive amounts of maintenance traffic. They

propose a mechanism called update-batched delayed syn-

chronization (UDS), which acts as middleware between

the synchronized Dropbox folder and an actual folder on

the file system. UDS batches updates from the actual

folder and applies them to the Dropbox folder at once,

thus reducing the overhead of maintenance traffic. The

way ViewBox uploads views is similar to UDS in that

views also batch updates, but it differs in that ViewBox

is able to batch all updates that reflect a consistent disk

image while UDS provides no such guarantee.

7 Conclusion
Despite their near-ubiquity, file synchronization services

ultimately fail at one of their primary goals: protecting

user data. Not only do they fail to prevent corruption and

inconsistency, they actively spread it in certain cases. The

fault lies equally with local file systems, however, as they

often fail to provide the necessary capabilities that would

allow synchronization services to catch these errors. To

remedy this, we propose ViewBox, an integrated system

that allows the local file system and the synchronization

client to work together to prevent and repair errors.

Rather than synchronize individual files, as current

file synchronization services do, ViewBox centers around

views, in-memory file-system snapshots which have their

integrity guaranteed through on-disk checksums. Since

views provide consistent images of the file system, they

provide a stable platform for recovery that minimizes the

risk of restoring a causally inconsistent state. As they re-

main in-memory, they incur minimal overhead.

We implement ViewBox to support both Dropbox and

Seafile clients, and find that it prevents the failures that we

observe with unmodified local file systems and synchro-

nization services. Equally importantly, it performs com-

petitively with unmodified systems. This suggests that the

cost of correctness need not be high; it merely requires ad-

equate interfaces and cooperation.
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