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Abstract

We introduce Sky, an extension to the VMM that gathers
insights and information by intercepting system calls made
by guest applications. We show how Sky gains three specific
insights – guest file-size information, metadata-data distinc-
tion, and file-content hints – and uses said information to
enhance virtualized-storage performance. By caching small
files and metadata with higher priority, Sky reduces the run-
time by 2.3 to 8.8 times for certain workloads. Sky also
achieves 4.5 to 18.7 times reduction in the runtime of an
open-source block-layer deduplication system by exploiting
hints about file contents. Sky works underneath both Linux
and FreeBSD guests, as well as under a range of file systems,
thus enabling portable and general VMM-level optimization
underneath a wide range of storage stacks.

1 Introduction

Virtual machine monitors (VMMs) are an integral part
of the cloud computing infrastructure and offer several im-
portant advantages over more traditional approaches, includ-
ing server consolidation [26, 42], reduction in infrastruc-
ture costs [56], simpler failure handling [27], ease of man-
agement [34], support for legacy applications [7, 43, 58],
improved security [10, 14, 15, 22, 39], and better reliabil-
ity [6, 9]. Virtualized storage, found within said VMMs, adds
the benefits of storage consolidation, shared storage across
VMs, out-of-box support across several guest OSes, reduc-
tion of costs, improved availability, efficient backups and
quick snapshots [33, 38, 45, 53, 55, 57]. Not surprisingly,
both server and storage virtualization are prominent and to-
gether form a central part of all modern cloud computing
infrastructures.

As the lowest level in the software stack, the VMM [4]
must manage system resources, including memory, disk,
CPU, and network. In doing so, the VMM must optimize
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their usage for high performance, fairness, and other impor-
tant system-wide goals.

Managing resources effectively fundamentally requires
information: which I/O request is latency sensitive, and thus
should be scheduled soon? Which block is likely to be ac-
cessed again soon, and thus would benefit from placement
within a cache? Without this type of information, making the
decisions a resource manager must make are at best arduous
and often impossible. For example, a VMM cannot typically
differentiate whether an I/O request consists of application
data or is file-system journaling traffic. Without such basic
knowledge, the VMM is inherently limited in its resource-
management capacity.

The main hypothesis that underlies this paper is that the
VMM can efficiently gain access to a wealth of impor-
tant and necessary information through judicious usage of
system-call interposition. In such a configuration, OS-level
system call entry and exit are routed through the VMM. At
these critical junctures, the VMM can record relevant pieces
of information as well as take necessary actions in order to
gain access to facts pertinent to its operation.

To explore this hypothesis, we have designed and imple-
mented Sky, a prototype VMM with system-call intercep-
tion at its core.1 Sky is implemented for the x86-64 architec-
ture and it supports Linux and FreeBSD OSes. Sky extends
KVM with system-call interception to facilitate a range of
new information-gathering techniques. Specifically, Sky im-
plements a core interception framework to track specific pro-
cesses and threads, and then obtains storage-specific insights
atop this basic machinery. The insights include information
such as the size of currently accessed files, the classifica-
tion of block I/O into data and metadata, and file content
assessment. Some of this information is approximate (i.e.,
not guaranteed to be correct); however, as we show, it is still
useful in building various storage-system optimizations. To
aid its information gathering, Sky also (on occasion) injects
its own system calls into the OS above; said insightcalls are
a useful general knowledge-acquisition technique atop the
base interception mechanism.

We demonstrate the utility of Sky by implementing three
case studies, each showcasing different possibilities within

1 The acronym for System Call Interception, SCI, and one possible pronun-

ciation, motivates our name.



the Sky infrastructure. The first is a simple monitoring tool
(§6), which can provide generic information such as block
lifetimes and the amount of metadata generated by different
file systems. With such monitoring in place, a VMM can
serve as a single point of detailed knowledge about guest
file-system behavior.

The second case study, which we refer to as iCache (§7),
implements an aggressive VMM-level caching policy [31],
leading to a 2.3 to 8.8 times improvement in run time for
both search and database workloads. This approach gives
higher priority to small files and file-system metadata and
thus can improve run-time significantly. We also show how
an application (the MySQL database server) can provide fur-
ther hints to the caching layer via Sky and improve perfor-
mance further.

The third case study, known as iDedup (§8), takes ad-
vantage of Sky’s file-content information to improve per-
formance of a block-layer deduplication system [52]. Sky
provides hints to iDedup about block usage patterns (§3.5),
and iDedup uses such hints to avoid expensive lookups and
thus improves performance. Specifically, this optimization
reduces run time by 4.5 to 18.7 times for file-copy and en-
cryption workloads (§8.2).

In each of these cases, Sky implements improvements
within a VMM that previously had required full-stack mod-
ifications to obtain the information needed to implement
said functionality. Sky, in contrast, functions across operat-
ing systems (Linux and FreeBSD), and different file systems
(Linux Ext4, Btrfs, and XFS, for example). In this man-
ner, Sky consolidates implementation of its optimizations,
instead of replicating such effort across different file systems
and operating systems.

The rest of this paper is structured as follows. We first
provide further motivation (§2). We then describe the design
(§3) and implementation (§4) of Sky. Finally, we evaluate
Sky (§5 to §9), discuss related work (§10), and conclude
(§11).

2 Motivation

In modern virtualized storage systems, better perfor-
mance, quality of service, and other critical optimizations
and features can be achieved through access to information.
For example, previous work has shown that classifying I/O
requests, and treating each class differently, can greatly im-
prove performance for some workloads [28, 31, 53].

Unfortunately, due to the simple, restrictive interfaces
exposed by each of the layers, information cannot be easily
passed through the many layers of the storage stack. This
reality leads to the so-called “semantic gap” [8] across said
layers, thus leading to many missed opportunities in the
storage stack [11, 19, 31, 32, 40, 44, 46–49, 59].

Many examples exist in the literature that showcase the
benefits of information (and control) throughout the storage
stack. For example, Thereska et al. classify I/O requests into
flows and associate policies for each of the I/O flows to al-
low differentiated treatment [53]. Mesnier et al. explicitly
classify I/O requests to improve performance, by modify-
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Table 1: Ease of Adoption. This table compares the number of

components of various types that are supported by Sky and other

relevant past research work without any additional implementa-

tion effort. † Sky currently supports FSs that do not change user-

supplied content (e.g., due to compression or encryption within the

FS). Sky uses system-call interception and therefore is not affected

by the choice of the storage layers (e.g., FS and device drivers) or

their interfaces (e.g., VFS, Block I/O and SCSI) present in-between

the system call and the VMM. ‡ We have tested Sky with the FSs

UFS, ZFS in FreeBSD guest OS and with Ext3, Ext4, XFS, JFS,

Nilfs2, Reiserfs, and Btrfs in Linux guest OS.

ing the application, file system, and low-level storage inter-
faces [31]. Sonam et al. use I/O classification to improve in-
line block-layer deduplication by modifying the application,
file system, and block I/O interface to generate hints about
file-system metadata and file contents [28]. All approaches
require changes across many layers of the storage stack.

While these systems all provide significant benefits, we
believe there are important reasons that they often do not
reach deployment. One prominent reason is that any idea
that must be realized throughout the storage stack creates
a large burden upon developers. Table 1 compares the num-
ber of different types of operating systems, file systems, and
storage interfaces that must be modified to support various
storage optimizations [28, 31]. Being able to run underneath
multiple operating systems, file systems, and interfaces has
a multiplicative effect on developers, who must modify each
of these components to reach wide-scale deployment. In
contrast, as the table shows, Sky works across different file
systems and storage interfaces, and provides the infrastruc-
ture needed to work underneath Linux and FreeBSD; devel-
opers of new storage optimizations can thus implement them
once within the Sky framework and deploy them underneath
a wide range of systems.

Of course, if all vendors agree on a set of information to
pass across layers, it is possible that new standards could be
developed and adopted. However, as others have discussed,
changing interfaces is difficult and time consuming [47];
even small changes to the low-level disk standards, such as
the evolution from block-based to object-based storage [16],
may take many years to come to fruition, or never reach
wide-scale adoption at all.



Tracked Information Used for

List of monitored processes, their PIDs and

their page directory base address.

Interception

Framework
(§3.1)

Threads of monitored processes, their TIDs,

stack base pointers and stack size.

Interception

Framework
(§3.1)

Parent child relationship between monitored

processes.

Interception

Framework
(§3.1)

System Calls in progress for monitored

processes along with their arguments and

userspace stack pointer value.
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Framework
(§3.1)

A per-process pool of 8KB userspace buffers

allocated by Sky for issuing insightcalls that

need their arguments to be in memory.
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Framework
(§3.2)

List of monitored file descriptors, their current

file offsets and the maximum file offset ac-

cessed so far.
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(§3.3)

List of memory-mapped pages for monitored
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sponding guest-physical addresses.
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for a certain time period.
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(§3.4)

Whether a process has file-copy I/O pattern or

is encrypting files. Detecting file-copy I/O pat-
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chunks of data read or written by applications

temporarily.

Insight III

(§3.5)

The checksums of 4096-byte chunks at various

file offsets when block lifetimes need to be

calculated.

Block
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(§6.2)

Table 2: Information tracked by Sky. This table lists the

information tracked by Sky about guest OS and its processes.

The best system to support cross-layer optimizations re-
quires modification only at a single spot in the stack, not
requiring changes throughout many layers. The optimiza-
tions realized in such a framework should then work across
a broad range of systems with little or no effort. We now
describe one such system that we have built, Sky, which is
implemented as part of the VMM and enables interesting
information-based storage services to be realized.

3 Design

This section describes the basic techniques used by Sky
(implemented as part of the VMM) to intercept system calls
(§3.1 and §3.2) and then details the insights gained by inter-
cepting I/O-related system calls (§3.3 to §3.5). Our design
was influenced by the following desirables:

• Simple and Universal: Favor simple techniques that are
widely applicable across OSes.
• Timely: Generate reliable hints as early as possible.
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Figure 1: System-Call Interception. This figure shows the

control flow between the guest application, guest OS and the VMM

during a system-call interception in a monitored process. Sky turns

off the hardware interception techniques when unmonitored pro-

cesses are scheduled on a processor.

• Robust and Lightweight: Keep Sky robust and its over-
heads low.

Table 2 is a summary of all the information tracked by
Sky and where the information is used. Sky tracks informa-
tion about processes, threads, process parent-child relation-
ship and in-progress system calls in order to provide the ba-
sic interception framework upon which meaningful insight
gathering techniques can be implemented. Depending on the
insight generated, additional information is tracked by Sky
as listed in Table 2.

3.1 System-Call Interception

Sky intercepts the entry and exit of a subset of I/O and
process-management related system calls executed by the
guest application in order to gain insights that can be used
as hints to improve virtualized-storage performance. Sky
configures the processor before a VM entry so that execution
of a system call entry or exit instruction causes a VM exit
and transfers control back to Sky (part of VMM). Figure 1
shows the control flow during system-call interception. With
this ability to intercept system call entries and exits, Sky can
monitor the arguments and return codes of system calls to
gather insights about the guest application. Being part of
the VMM, Sky can access all of the guest VM’s memory
enabling further optimizations and new features.

3.1.1 Selective System-Call Interception

Sky avoids the overheads due to intercepting all userspace
applications in the guest VM by monitoring only a targeted
set of I/O-bound processes. Sky automatically monitors and
unmonitors the children of the monitored processes by inter-
cepting process-management related system calls like fork,
clone and kill. Sky monitors all threads in a monitored



process by default. Whenever a new guest process is sched-
uled on a virtual processor, Sky checks if the new process is
monitored or not and turns system-call interception on or off
respectively.

In our prototype, monitoring of applications is boot-
strapped by a helper application calling a library function
with its own PID and then launching the benchmark appli-
cation. The library function sends the PID to Sky (which
is part of the VMM in the host machine) through the net-
work. Sky automatically monitors the launched benchmark
application and any other processes it subsequently creates.
More sophisticated policies could be built on top of this
scheme when appropriate in the future: e.g. tracking and
identifying certain applications that are known beforehand
to benefit from Sky or periodically monitoring the latency
of I/O-related system calls made by guest applications and
dynamically turning system-call interception on or off based
on these latencies. Our prototype version does not do this.

Identifying Processes and Threads: Sky keeps track of the
guest-OS assigned process identifiers (PIDs) and thread
identifiers (TIDs) for the monitored processes and threads
respectively. When intercepting system call entries and ex-
its, Sky uses only the virtual-CPU state to identify the cur-
rently executing process or thread. Specifically, processes
are identified using the page directory base register (PDBR)
that contains the guest-physical address of the currently exe-
cuting process’s page directory base. Sky maps a PID to the
page directory base address by issuing a getpid insight-call
(described in §3.2). Sky captures the userspace stack base
address, stack size and the thread identifier while intercept-
ing thread-creation system calls. Sky differentiates between
threads within a process using the stack pointer (SP) regis-
ter that contains the guest-physical address of the top of the
userspace stack. Given the values of the PDBR and SP reg-
ister, Sky identifies the guest-OS issued process and thread
identifiers respectively. Sky maintains a set of all monitored
processes, their PIDs, PDBRs, threads, thread TIDs, thread
SP values and thread stack sizes.

Tracking Guest-OS Scheduling: Sky intercepts all guest-
OS process scheduling by intercepting overwrites to the
PDBR of the virtual processor through hardware mecha-
nisms. The PDBR has to be compulsorily overwritten with
the page directory base address of the new process during
process context switch. Since thread rescheduling does not
involve a PDBR overwrite, Sky uses the following tech-
nique: during a system-call interception, if Sky detects a dif-
ferent currently running TID from the one that last executed
on the same virtual processor during the last system-call
interception, it knows a thread switch has occurred. Such
delayed detection of a thread switch only when a system call
is intercepted is sufficient for matching a system call exit
correctly with its entry.

3.2 Insight-Calls: Sky-Introduced System Calls

In certain scenarios, Sky needs access to the state main-
tained by the guest OS in order to gather more insights effi-
ciently, easily and in a manner that eases portability across

different guest OSes. Sky (which is part of the VMM) is-
sues system calls to the guest OS in the context of an inter-
cepted guest application in order to read state from the guest
OS. We call such Sky-issued system calls as Insight-Calls.
Sky currently issues insight-calls only when it is intercept-
ing an actual system call made by a guest application and to
only read state from the guest OS. Insight-calls never change
the state of the guest OS because that would be outside the
knowledge of the guest application and could lead to erro-
neous application behavior.

Insight-Call: To issue an insight-call, Sky first saves the in-
tercepted system call entry’s system call number and argu-
ments (call it ‘syscallinformation’) into a private data struc-
ture and then replaces them with those corresponding to the
insight-call that it wishes to issue to the guest OS. When
Sky subsequently intercepts the system call exit, it restores
back ‘syscallinformation’ into the appropriate registers and
additionally decrements the current instruction pointer (IP)
appropriately to point back to the system call entry instruc-
tion. This way, the original guest-issued system call is now
executed by the guest OS. Sky can also issue a series of such
insight-calls when more complex information needs to be
gathered from the guest OS. Sky uses insight-calls in several
scenarios like: getting the PID of the process currently exe-
cuting (§3.1.1), getting the current size of the file backing an
open file descriptor (§3.3) and handling ‘misaligned or small
I/O requests’ (§3.4.4).

We note that, customers who do not completely trust their
service providers (e.g., in a IaaS cloud computing model)
with the usage of insight-calls could be given an option to
opt-out of Sky during their sign-up process. Also, to im-
prove performance in some cases, it is possible to avoid
insight-calls and instead directly access the guest-OS inter-
nal state to get the required information [12]. Sky does not
use such optimizations because the effort does not seem jus-
tified given the relatively small number of insight-calls. Ex-
ploring such optimizations is left as future work.

3.3 Insight I: Guest FS File Size Information

A storage system cache can achieve improved cache hit
rates by knowing whether an I/O request is issued on a small
file or a large file [31]. This is because large files are usually
laid out sequentially on a magnetic disk and therefore cache
misses on reads to small files are costlier than misses on a
large file. Moreover, more small files can be cached in the
same cache space occupied by a large file. Sky implicitly
classifies I/O requests based on the size of the corresponding
file by keeping track of the current file sizes of all files
opened by a monitored process. An example of such file size
based classification is shown later in Table 6 of the iCache

case study (§7).
Sky achieves such file-size based classification by in-

tercepting the I/O-related system calls like open, read,
write, lseek and close in order to capture information
like: current open file descriptors in a process, the current
file offsets for those file descriptors, the files behind those
file descriptors and their current file sizes.



Selectively monitoring only certain files: Sky can be in-
structed to selectively intercept I/O to only specific files us-
ing a control command sent through the network. The cur-
rent prototype version of Sky allows specifying such files
using their path prefix that denotes their location in the guest
FS hierarchy. Sky issues a getcwd insight-call in order to
get the current working directory of the process before prefix
matching files opened using relative file paths. A variety of
other policies for specifying which files to selectively moni-
tor are possible.

Tracking File Sizes: Sky tracks the current file offset and
the highest file offset accessed so far for all the monitored
file descriptors whenever an I/O is performed by a guest
application using read, write and other similar system calls.
Sky also tracks the current file size for all monitored file
descriptors using an lstat or lseek insight-call.

Sky translates the file size information into an I/O class

and hints the VMM-level storage cache to adjust the prior-
ity based on the I/O class. Sky always associates gathered
insights with that particular I/O request rather than with the
virtual-disk sectors to which the I/O request is destined in or-
der to avoid insights becoming stale when the corresponding
sectors are reallocated. A case study on such a smart storage
cache called iCache with its performance compared against
a normal storage cache is detailed in §7.

3.4 Insight II: Guest FS Metadata vs. Data Classifica-
tion

Cache hits can be improved by distinguishing FS meta-
data from application data and giving higher priority to FS
metadata [31]. The FS inside the guest-OS kernel organizes
information on the virtual disk by writing metadata infor-
mation (e.g. block allocation bitmap, file offset to disk block
translation) in addition to the data from the guest application.
However, the distinction between guest-FS written metadata
and guest-application written data is not available at the vir-
tual disk in the VMM. Sky provides useful hints to the virtual
disk to distinguish metadata I/O requests from data I/O re-
quests. The basic idea behind this insight is the observation
that all data I/O requests originate from the guest applica-
tion while all metadata I/O requests originate from the in-
kernel FS within the guest OS. Sky tracks the set of all data
I/O requests that originate from the guest application using
system-call interception and identifies metadata I/O requests
by exclusion from this set. §3.4.1 to §3.4.4 detail how to han-
dle different types of I/O system calls using this basic tech-
nique.

3.4.1 Handling Synchronous I/O

Synchronous I/O is performed primarily using the read
and write system calls. Both take three arguments: the
open file descriptor on which I/O is requested, the address
of a userspace buffer for I/O contents and the number of
bytes in the I/O. These system calls return the number of
bytes successfully accessed upon success and a negative er-
ror code upon failure. Other system calls for performing syn-

chronous I/O like pread, pwrite, preadv and pwritev

are handled similarly.

Writes: When a guest application issues a write system call
to write data to a file, Sky intercepts the system call entry and
calculates the checksums of every 4096-byte sized chunk in
the userspace buffer supplied by the application. Sky, being
part of the VMM, easily translates the guest-virtual address
of the userspace buffer to host-virtual addresses while ac-
cessing the userspace buffer. Sky stores these checksums in
a hashtable. The I/O class based on the file size insight de-
scribed earlier in §3.3 can also be stored in this hashtable.
When this system call is then serviced by the guest OS, it
eventually causes a write I/O request to the virtual disk. Sky
also interposes on this subsequent write request to the virtual
disk to calculate the checksums of every 4096-byte chunk
and looks up the checksums in the hashtable. If the check-
sum is found, it indicates that the content originated from
the guest application and hence is a data I/O request. Check-
sums for metadata I/O requests will never be found in the
hashtable. Sky removes the checksums from the hashtable
after the lookup to avoid any future misclassification.

Reads: Reads have to be handled slightly differently by Sky.
When a guest application issues a read system call, the
data is available in the userspace buffer only after the system
call completes because the data has to be read from the vir-
tual disk or the buffer cache as part of the read system call
servicing by the guest OS. Hence, Sky interposes all read
requests to the virtual disk and calculates the checksums of
every 4096-byte sized chunk being read and stores them in a
hashtable along with the corresponding sector number in the
virtual disk and a timestamp. Subsequently, Sky also inter-
poses the exit of the read system call that caused the read
request to the virtual disk, calculates the checksums of every
4096-byte chunk in the userspace buffer and looks up the
checksums from the hashtable. If the lookup succeeds, Sky
classifies the request as data I/O and removes the checksums
from the hashtable. All entries remaining in the hashtable af-
ter a configurable sufficiently long delay (currently set at 4
seconds) are classified as reads due to metadata I/O requests.
In the experiments presented in this paper, we never had to
re-configure this delay value.

3.4.2 Handling Asynchronous I/O:

When a guest application issues an asynchronous I/O sys-
tem call, the I/O is not complete when the system call re-
turns. Rather, the I/O completes at a later point in time and
the guest application learns about the completion later us-
ing a separate system call. Hence, for asynchronous read
I/O system calls, Sky performs the checksum calculation and
lookups after the I/O request is completed by the guest OS.
For asynchronous write I/O requests, the checksum calcula-
tion occurs during the I/O-submission system call entry.

3.4.3 Handling Memory Mapped I/O:

Memory mapped I/O is performed by mapping a region
of the file address space to a region of the process’s virtual-
memory address space. I/O requests to the virtual disk are
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of insight-calls.

automatically issued by the guest OS when the memory
mapped address space is accessed by the guest application.
Because there are no system calls to intercept for insights
when I/O happens, memory-mapped I/O is specially handled
by Sky. Sky intercepts the mmap system call that initially
performs the memory mapping with parameters that spec-
ify the starting virtual-memory address and the length of the
memory-mapped region. At this time, Sky write protects the
host-OS memory pages that contain the guest page-table en-
tries behind the memory-mapped virtual address space. This
write protection ensures traps to Sky whenever the guest
OS changes the guest-physical pages backing the memory-
mapped virtual address space. Thus, Sky continuously keeps
track of the most recent guest-physical pages (and their host-
physical pages) backing the memory-mapped virtual address
space in a global hashtable.

A memory-mapped I/O request automatically issued by
the guest OS to the virtual disk always contains the guest-
physical address backing the memory-mapped virtual page
that was accessed. This is because memory-mapped I/O
skips the buffer cache in the guest OS. When Sky intercepts
the I/O requests to the virtual disk, it also looks up the host-
physical addresses of the pages behind every I/O request in
the global hashtable described above. A successful lookup
indicates a data I/O request while a failure means metadata.
Sky removes the old addresses and adds new ones to the
hashtable when the guest OS unmaps the old guest-physical
pages and maps new ones for the memory-mapped virtual
address space.

3.4.4 Handling Misaligned and Small I/O:

Sky always calculates checksums of 4096-byte chunks
that are aligned with 4096-byte file offset boundaries so
that the checksums remain valid when interposing the I/O
requests to the virtual disk despite the guest OS splitting or
merging I/O requests. 4096 bytes or a sector is the smallest
addressable unit for modern disk drives and is smaller than
or equal to the FS block size. However, guest applications
can issue I/O system calls that result in chunks smaller
than 4096 bytes either due to small I/O requests or due
to I/O requests misaligned with the 4096-byte file offset
boundaries. Sky handles such I/O requests by reading the
necessary contents from the file using Insight-Calls to form
4096-byte chunks as outlined in Figure 2 and described
below. It should be noted that because our prototype uses
the insights as hints for performance improvements, it could
skip handling misaligned and small I/O requests.

1. Sky allocates a 8192- byte private anonymous userspace
buffer in the guest-application’s virtual address space using
a mmap insight-call. Sky also adds this 8192- byte userspace
buffer into a free memory pool that it maintains for every
guest process so that future Insight-Calls for this process can
reuse the same buffer.

2. Sky then reads any necessary additional content located
before and after the small or misaligned I/O request’s file
offset as needed using pread insight-call into the first and
second 4096 bytes of the userspace buffer allocated in the
previous step.

3. Sky then calculates checksums of resulting aligned 4096-
byte chunks before finally reissuing the original guest ap-
plication’s system call. For misaligned reads alone, Sky is-
sues the original guest-application’s system call before is-
suing the pread insight-calls so as to avoid multiple disk
requests for large multiblock reads. This way the total num-
ber of disk I/O requests generated remains the same while
handling misaligned or small read requests.

As an optimization, Sky also caches the contents of the
most recent I/O along with the file descriptor, file offset and
data size information for monitored processes. Using this
information, misaligned I/O resulting from a strided access
pattern that starts at an unaligned offset can be handled with-
out using the process described above that uses additional
insight-calls.

Note: Certain FSs store both metadata and data in the same
virtual-disk block: e.g. Ext4’s inline data feature stores tiny
files inside the inode structure. Sky classifies such blocks as
metadata. There is a very small window of chance when a
monitored guest application could generate data blocks that
match the metadata blocks generated by the guest FS within
the short duration of the virtual-disk access times for those
data blocks. Since, our prototype uses insights as hints, such
small chances of misclassification are tolerable.

3.5 Insight III: Application I/O semantics and patterns

Tracking the I/O semantics and patterns of applications
can be helpful in improving their performance. Sky can de-



tect I/O patterns without any modifications to the applica-
tion or the guest OS. Sky sends the I/O-pattern insights as
hints to the storage system. Example I/O-pattern insights are
‘knowing when an application is encrypting data’ or ‘know-
ing when an application is copying data from one file to an-
other’. We show how these I/O-pattern insights can be used
to improve the performance of a deduplication system in §8.

Detecting File Encryption: Sky uses the names of the ex-
ecutables and the file name extensions of the destination
files to derive hints about encryption. Sky issues a sysctl
insight-call or a readlink insight-call to get the name of
the executable depending on whether the guest OS is Linux
or FreeBSD respectively. The file name extensions are avail-
able as an argument while intercepting open system calls.
Sophisticated executable identification and file type detec-
tion by examining the contents of the executable and desti-
nation file is left as future work.

Detecting File Copy: Sky detects file-copy I/O patterns by
first targeting certain guest applications by using the exe-
cutable names as a hint: e.g. Unix tools like cp and dd.
Sky then stores the checksums of 4096-byte chunks being
read by such targeted application in a hashtable. Finally,
Sky looks up the checksums of 4096-byte data chunks being
written by these applications in the hashtable to confirm the
file-copy I/O pattern. Repeated matches indicate a file-copy
I/O pattern in progress.

3.6 Application Supplied Insights

Certain applications already perform or can be easily
modified to perform better I/O classification because they
have the most information about the I/O requests that they
issue. The exact policy used for I/O classification depends
on the guest application. For example: a cloud file server
can associate its premium customers with a higher priority
I/O classification ensuring a better QoS, a database server
can associate I/O requests to certain data structures like the
‘secondary index’ with lower priority to ensure better overall
throughput (§7.2.2).

Guest applications can pass the I/O classification infor-
mation on a per-system-call basis by calling an alternate
library function that is similar to its counterpart in stan-
dard libraries like libc. This alternate function takes an
additional last argument for the I/O class. For example, a
C application calls iwrite(file descriptor, buffer,
size, ioclass) library function to perform writes instead
of the usual write(file descriptor, buffer, size)
libc function. The iwrite library function issues the write
system call with two additional last arguments: an additional
magic number argument and the I/O classification number.
During system-call interception, if Sky sees that a system
call has the same magic number as the second-to-last argu-
ment, then it indicates that the guest application is supplying
explicit I/O classification information in the last argument.
Therefore, Sky uses the guest application supplied I/O clas-
sification and turns off its own implicit I/O classification
based on ‘file size’, ‘FS metadata vs. data’ and ‘application
I/O semantics’ for that I/O request. This approach of pass-

ing I/O classification along with every system call allows
fine granular control on every I/O request rather than over
an entire file. Also, it allows passing down the I/O classi-
fication information from the guest application to Sky very
efficiently in a timely manner. Guest applications that di-
rectly access a virtual disk without a FS can also pass I/O
classification using this approach.

4 Implementation

4.1 Interception Techniques

Intercepting System Call entries and exits: Sky uses previ-
ously known techniques [10, 39] to intercept all x86-64 sys-
tem call instructions except the IRET instruction for which
we describe a new technique below. All the experiments in
this paper use 64-bit guest OSes and they run on an Intel pro-
cessor; therefore, they all used the Syscall, Sysret and IRET
instructions for performing system calls. We tested out some
of the other previously known interception techniques listed
below but did not use them with Sky. A comparison of Sky
with related work in the field of Virtual Machine Introspec-
tion is in §10.

• INT 80: The Interrupt Descriptor Table (IDT) size is re-
stricted to cause faults during software interrupts.

• Syscall and Sysret: The SCE flag is unset so that the
syscall/sysret instruction causes a VM exit.

• Sysenter and Sysexit: The SYSENTER CS MSR ma-
chine status register is set to NULL so that the sysen-
ter/sysexit instruction causes a VM exit.

• IRET: Both Linux and FreeBSD kernels use the IRET in-
struction for returning from a system call during slow re-
turn scenarios that include situations where userspace signal
handlers are invoked before returning from the system call.
We could not easily intercept the IRET instruction directly
using architectural support with the Intel virtualization ex-
tensions unlike the AMD virtualization technology [3, 20].2

Sky intercepts the system call exits that use IRET instruc-
tion using the following technique. Whenever Sky intercepts
a system call entry instruction, Sky subtracts the size of the
syscall instruction from the userspace IP register and keeps
track of any such subtraction made. This subtraction guar-
antees an interception during the system call exit because
the syscall instruction will be re-executed again artificially
upon system call exit. There are two possibilities during the
subsequent system call exit: the guest OS either uses the
Sysret/Sysexit instruction or uses the IRET instruction. In
the former case, Sky intercepts the Sysret/Sysexit instruc-
tion using hardware mechanisms, gathers insight and undoes
the subtraction because it is no longer needed. In the latter
case, though the IRET instruction cannot be intercepted, the
artificial re-execution of the syscall instruction will be in-
tercepted by Sky, at which point Sky completes the insight

2 The Intel manual [20] mentions that a VM exit occurs upon executing an

IRET instruction if the ‘NMI-window exiting’, ‘NMI Blocking’, ‘Virtual

NMIs’ and ‘NMI Exiting’ control bits are set. Using this technique, a VMM

can queue a virtual NMI to a guest and subsequently inject a virtual NMI

when the guest is ready after execution of an IRET instruction. However,

we have not verified that this technique can be used for intercepting IRET

instructions for the purposes of Sky.



processing and skips executing the artificial syscall instruc-
tion.

Intercepting Guest-OS Scheduling: Both Intel and AMD
hardware virtualization extensions allow intercepting writes
to the PDBR by setting a specific bit in the VM execution
control register.

4.2 Handling Process Rescheduling

Sky gathers insights by analyzing system call arguments
and the returned values. However, there are some tricky sce-
narios that arise when the guest OS reschedules monitored
processes across different virtual processors. In these sce-
narios, associating the value returned by a system call to
its earlier invocation and the corresponding arguments needs
additional effort as detailed in the rest of this section.

Matching system call exits with entries: Sky matches sys-
tem call exits with entries based on the fact that system calls
are synchronous. There is at most one outstanding system
call for any given process (or thread) at any point in time.
Sky copies over the system call number, arguments and the
PID of the currently executing process while intercepting
a system call entry on any of the virtual processors. Sky
matches the subsequent system call exit that occurs on a vir-
tual processor with the currently outstanding system call en-
try on the same virtual processor.

Split system call entries and exits: I/O-related system calls
that usually involve a disk access often get rescheduled to
a different virtual processor after issuing the system call
but before the guest OS returns after processing the system
call. Sky needs to correctly match a system call exit that
occurs on the new virtual processor with its system call
entry that occurred earlier on a different virtual processor. To
this end, whenever a new process is scheduled on a virtual
processor, Sky checks if there is an outstanding system call
entry in that virtual processor. If so, Sky stores that system
call information into a global hashtable with the PID or TID
as the key. In order to match a system call exit to its system
call entry, Sky first looks up in this global hashtable with the
PID or TID of the currently executing process or thread for
any matching outstanding system call. If a match is found, it
is removed and the system call is processed for insights. A
match won’t be found if the previous virtual processor is still
idle and no new process has been scheduled on it yet by the
guest OS. In this case, Sky looks up each of the other virtual
processors for an outstanding system call entry that matches
the PID or TID for the system call exit being matched. This
look up always succeeds because the outstanding system call
entry either has to be in the global hashtable or with one of
the other virtual processors.

Handling Signal Handlers: When there are pending sig-
nals for a process, the corresponding userspace signal han-
dlers (if any) are invoked by the guest OS before a sys-
tem call exit occurs. The signal handlers could possibly is-
sue new system calls too even before the previous system
call is finished. Since the signal handler is invoked using
a signal stack, the new system call will have a different

userspace SP value during system-call interception. Sky de-
tects such signal-handler invocations by noticing this differ-
ence in userspace SP and stores the outstanding system-call
information into the global hashtable. Subsequently, when
the outstanding system call’s exit occurs after the signal-
handler invocation is complete, Sky looks up the global
hashtable to find the system call information and process it
for gathering insights.

4.3 Linux vs. FreeBSD System Call Interface

Guest OS identification: Our prototype takes the guest OS
type as a configuration parameter but it is possible to infer
this automatically. Known techniques that use VM memory
analysis [1] can be used to distinguish Linux from Windows.
Linux and FreeBSD differ in the system call number for
exit which is the last system call executed by a process and
it does not return anything. VM memory analysis coupled
with observation of system call numbers, their arguments,
return values and frequencies could be used as a general
approach to detect the guest-OS type automatically in a
future version of Sky.

Sky handles the following differences between Linux and
FreeBSD system call interfaces:

• Thread-related system calls: FreeBSD guest OS uses sys-
tem calls like thr new, thr kill and thr exit for
threads while Linux guest OS uses clone, kill and exit.

• FreeBSD nosys system call: System Call numbered 0 in
x86-64 FreeBSD is an indirect system call that takes another
system call number as its first argument and invokes its
system call handler. Sky intercepts such nosys system calls
and gathers insights corresponding to the actual system call
that gets executed.

• For failed system calls, the FreeBSD guest OS sets the
Carry Flag in the virtual processor and returns a positive
error code integer while the Linux guest OS just returns the
negated value of the error code integer.

4.4 Prototype

We implemented a prototype of Sky using the KVM/Qemu
VMM for the Linux OS on an x86-64 machine. Figure 3
shows the organization of a typical setup of running VMs
using KVM/Qemu [5, 24]. The Host machine runs a Linux
OS that has a KVM kernel module. Each of the guest VMs
is by itself a userspace process running the Qemu emulation
program. Our prototype supports both Linux and FreeBSD
guest OSes. The KVM kernel module exposes the hardware
virtualization features of the processor to accelerate running
the userspace Qemu-emulated guest VM.

Almost all of the Sky logic is implemented within the
KVM kernel module. We hope that Sky will become part of
the mainstream KVM with options to turn it off if users want
to. Sky is 7.8 KLOC of new code added to 43.6 KLOC of
unmodified KVM source code. This is a modest increase in
the hypervisor codebase. Our prototype uses a pseudo device
driver in the host OS (3.8 KLOC of source code) to inter-
cept the I/O requests to the virtual disk rather than intercept-
ing them in the Qemu userspace emulator. This avoids the
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emulated by Qemu.

Aspect Specification

Host Processor Intel i5,3.3Ghz,VT-x/EPT

Host OS Linux (Kernel v3.11.5)

Guest OS Linux or FreeBSD

Qemu Version Qemu v2.5.0

KVM Version KVM v3.10.1

Host, Guest Memory 16 GB, 6 GB

Virtual Disk 16 GB Paravirt (RAW Disk format)

Backing Disk 80 GB, 7200 RPM Magnetic Disk

Cache Device 2 GB In-Memory Disk

Bcache Version Comes with Linux Kernel

Host FS Ext3

Table 3: Experimental setup. This table shows the experimen-

tal setup used to evaluate the Sky prototype.

overheads associated with the communication between host-
userspace and host-kernelspace while keeping the number
of modified components minimal. Because the I/O requests
to the virtual disk are intercepted within the host-OS ker-
nel, Sky will also intercept disk I/O requests from the VMM
and the host FS that are necessary for laying out the vir-
tual disk on the backing physical disk. Sky correctly clas-
sifies such I/O requests as metadata because they won’t be
found in the set of data I/O requests tracked by Sky. Sky
uses 64 bit checksums calculated using the 64 bit FNV-1a
hash algorithm [13]. Bloom filters are used for quick lookups
when appropriate: to check whether a process is monitored
or unmonitored and to check whether a system call is I/O or
process-management related or not. All the results reported
in the following sections (§5 to §9) are the average of three
trials.

5 Overhead Evaluation

Our experimental setup is outlined in Table 3. The vir-
tual disk is loaded in KVM/Qemu with cache parameter as

‘none’ so that the Qemu-provided cache is disabled for eval-
uating the effects of the enhanced caching with insights. For
all experiments in this paper, the measurements reported as
when running without Sky are taken by disabling the Sky
relevant code in our modified KVM module as opposed to
using an untouched vanilla KVM version. We saw no mea-
sured difference in runtime or memory consumed when run-
ning a vanilla KVM version versus our modified KVM with
Sky related code disabled.

During each VM exit caused by a system-call intercep-
tion, KVM code gets executed in order to figure out the exit
reason, to handle the exit and to emulate the instruction that
caused the VM exit. In addition to this, Sky performs some
computational work and hash table lookups to do the follow-
ing: check whether the current process is monitored or not,
check whether there has been a thread switch since the last
system call interception for the same process, check if this
is a split system call or if there has been a signal-handler
invocation and perform statistics update for timing measure-
ments to aid experimentation. This leads to CPU cache pol-
lution.

We used a set of micro and macro benchmarks to eval-
uate the overheads due to Sky. The benchmarks were run
both with and without Sky. iDedup and iCache were both
disabled for these experiments. We ran these measurements
on two different guest OSes: Linux and FreeBSD. When
run without Sky, there is no system-call interception hap-
pening. The difference in runtime is used to calculate the
overheads introduced by Sky as shown in Table 4. The per-
centage overhead that Sky introduces for real applications
and macro benchmarks is minimal (under 5%) as seen from
the last five rows of the table. The overall overhead is also
split up to show how much of it is due to VM exits, basic
Sky system-call interception and insight generation.

Micro-benchmarks: We use three types of micro bench-
marks to measure the overhead imposed by Sky and their re-
sults are presented in Table 4. The repeated reads and writes
benchmark accesses the same offset in a file leading to no
actual virtual-disk I/O. When there is high-latency disk I/O
(e.g. Random Writes workload), the overhead introduced by
Sky for every I/O request is negligible when compared to
the disk latency. However, the overhead of Sky is relatively
high compared to the request latency when there is no disk
I/O (e.g. Repeated Write to the same offset of a file). Sky
is designed for I/O applications that issue I/O requests that
involve accessing the disk. The repeated reads and writes mi-
cro benchmark is a worst case workload for Sky and hence
system-call interception should be turned off for such appli-
cations.

Macro-benchmark and applications: We measured the over-
head introduced by Sky for file encryption using the gpg

command, file search using the find command, file copy
using the cp command, Filebench varmail benchmark and
TPC-H query on a MySQL database server. As shown in
§7.2, the overheads are minimal (under 5%).



Workload
With Linux Guest OS and Ext3 FS With FreeBSD Guest OS and UFS FS

With

Sky

(secs)

Without

Sky

(secs)

% Total Overhead

(Splitup: VM Exits

/Sky Interception

/Insights)

With

Sky

(secs)

Without

Sky

(secs)

% Total Overhead

(Splitup: VM Exits

/Sky Interception

/Insights)

Random Reads 99.4 98.5 1 (1/ 0/ 0) 185.2 183.3 1 (1/ 0/ 0)

Random Writes 54.9 54.6 1 (1/ 0/ 0) 272.5 269.8 1 (1/ 0/ 0)

Sequential Reads 14.6 14.9 -2 (-/ -/ -) 30.1 25.5 18 (13/ 2/ 3)

Sequential Writes 25.5 23.4 9 (4/ 2/ 3) 50.2 39.5 27 (24/ 1/ 2)

Repeated Reads 20.3 5.7 256 (157/ 41/ 58) 31.7 15.4 106 (68/ 16/ 22)

Repeated Writes 23 6.6 248 (153/ 36/ 59) 33 15.8 109 (68/ 16/ 25)

Encryption 33.8 32.3 5 (0/ 0/ 0) 25.3 24.8 2 (0/ 1/ 1)

File Search 78.3 76.4 4 (2/ 2/ 0) 54.6 53.4 2 (1/ 1/ 0)

File Copy 24.2 24.4 -1 (-/ -/ -) 34.9 34.7 1 (0/ 1/ 0)

Mail Server 385.1 381.1 1 (0/ 1/ 0) 163.5 160.8 2 (0/ 1/ 1)

TPC-H (MySQL) 36.1 35 3 (3/ 0/ 0) 21 21.7 -3 (-/ -/ -)

Table 4: System-Call Interception introduced overheads. This table compares the time taken for various workloads when run with

and without Sky on both Linux and FreeBSD guest OSs. System-Call Interception was turned on when running with Sky and was turned

off when running without Sky. iCache and iDedup were both disabled. The total percentage overhead is shown and also splitup into sub

components of percentage overhead due to VM exits, Sky interception and Sky insight computation.

Guest FSs Guest OS
Misclassification

Error

Ext3,Ext4,XFS,

JFS,Nilfs2,Reiserfs
Linux 0%

Btrfs Linux 3.9%

UFS BSD 0%

ZFS BSD 0.7%

Table 5: Accuracy of Sky. This table shows the data writes

misclassification error percentage for Filebench varmail on differ-

ent FSs.

Memory overhead: Across all the experiments we ran, Sky
used a peak memory usage of 33 MB of memory for its
data structures including the various hashtables (not shown
in Table 4). The amount of state maintained by Sky is on
the order of 10s of bytes for every 4096 bytes of in-progress
I/O (system call has been issued but virtual-disk I/O is not
yet complete). Therefore, even for write-intensive workloads
with 100s of 4K IOPS and a write delay of 10 seconds due
to guest-OS page cache, the memory overhead will be on the
order of 10s of MB.

6 Case Study #1: Information Gathering

In this case study, we show two examples of information
gathering using Sky that are either useful by itself or can be
used to improve storage performance.

6.1 Accuracy of data classification for different FS

We ran the varmail workload from the Filebench [29]
benchmark suite after configuring it to finish after running
a total of 100000 operations like file delete, file create, file
append, file sync and whole file read. We also modified the
Filebench benchmark to report the total number of 4096-
byte chunks of data written to files. Sky classifies all the
written data with a zero error percentage for all but two copy-
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Figure 4: CDF of block lifetimes for a synthetic workload.

This figure shows the CDF of block lifetimes calculated using two

approaches for a synthetic workload that writes 80 MB of data and

deletes the files after a 30 secs delay.

on-write FSs as shown in Table 5. We saw small inaccuracies
for the copy-on-write FSs Btrfs and ZFS (3.9% and 0.7%)
which is a limitation of our current prototype. All writes that
are not data are classified as metadata. This information is
useful to evaluate the accuracy of Sky as well as to take a
closer look into performance of different guest FSs as part
of a virtualized-storage stack.

6.2 Block lifetimes

A VMM could use information about block lifetimes in
order to schedule write back caching using a persistent cache
device, to perform data reorganization on the backing phys-
ical disk, to intelligently prefetch content that skips dead
blocks or to optimize recovery by skipping dead blocks [41,
47]. Sky allows a VMM to get the block liveness informa-
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Figure 5: CDF of block lifetimes for Filebench workloads.

The CDF does not reach 1.0 because there are some blocks still

alive at the end of these Filebench workloads.

tion in a virtual machine setting without modifying the guest
OS, FS or the applications. When the virtual disk and the
FS support TRIM or UNMAP commands, Sky could track
block liveness with less effort by tracking only those blocks
that get deleted and are quickly reallocated before a TRIM
or UNMAP command is issued to the virtual disk. Our cur-
rent prototype of Sky targets applications that can tolerate a
small level of inaccuracy due to checksum collisions. A de-
tailed comparison with past related work on block liveness
is in §10.

Approach: Sky uniquely identifies files by the guest disk de-
vice number and inode number. Sky maintains checksums
of 4096-byte chunks at various file offsets by intercepting
write and other related system calls. It detects block life-
times by detecting overwrites to content already present at
various file offsets. Sky also intercepts unlink, truncate
and related system calls to accurately take into account file
deletes and truncates. Figure 4 compares the block lifetimes
calculated using a naive approach that just uses block over-
writes with that calculated using Sky for a synthetic work-
load that writes 80 MB worth of file contents, sleeps for 30
seconds and finally deletes the files. This synthetic workload
helps illustrate that Sky correctly handles file deletes. Since
the naive approach does not know about the file deletes or
truncates, it thinks all the blocks are still alive, while Sky
correctly calculates the block lifetimes as approximately 30
seconds for all the blocks.

Figure 5 shows the cumulative distribution function
(CDF) of block lifetimes for four Filebench workloads. Sky
could use such block lifetime information about the running
workloads to adjust the delay while scheduling write-back
from a faster persistent cache device to the slower disk. The
CDF does not reach 1.0 because there are some blocks still
alive at the end of these Filebench workloads.

File Size

( MB)
<14 <10 <5 <2 <1

Meta

Data

Skip

Dedup.

I/O class 0 1 2 3 4 5 32

Table 6: Policy to assign I/O class to disk I/O requests.

The default I/O class is 0. Priority increases with increasing I/O

class values (0-lowest,5-highest). Sky uses I/O class 32 to hint that

the payload is unique and deduplication can be skipped.

7 Case Study #2: iCache

In this case study, we show how the effectiveness of
a storage cache can be improved by using the policy of
caching small files and FS metadata with higher prior-
ity. This policy is complementary to the traditional cache-
management algorithms like LRU, LFU, MQ [60] and
ARC [30]. Such traditional cache-management algorithms
differentiate disk blocks only based on their access patterns
and do not associate any semantic meaning to them. Our
work adds this missing semantic meaning to the traditional
cache-management algorithms. Sky helps VMs make better
use of their fair share of cache allocated by the hypervisor
and is complementary to algorithms for fair cache partition-
ing between VMs. We also show how a MySQL server can
be easily modified to pass insights directly to Sky bypassing
the guest OS.

7.1 Implementation

Bcache External Disk Caching Module: We integrated the
Bcache block device caching layer from the Linux kernel
with Sky’s pseudo device driver. I/O to the slower magnetic
disk that contains the virtual disk is cached using an in-
memory disk. We made the following modifications to the
stock Bcache code (adding 10% new code):

• Added statistics collection to track and report sector-level
hits and misses rather than the default request-level report-
ing.
• Added code to search for the slot holding a particular
sector and change its priority.
• Added code to not cache guest FS journal writes
• Allowed ‘clearing the cache’ and ‘reading the list of
cached sectors’ from the userspace for experimental con-
venience.

Sky sets the priority of Bcache slots that contain FS
metadata and small files to higher values than the default.

7.2 Evaluation

We now show how the performance of a variety of real
applications and macro benchmarks can be improved by us-
ing this iCache. The policy used by the iCache is to give the
highest priority to metadata followed by lower priorities for
data depending on the size of the file as shown in Table 6.
The emphasis is on how classification of I/O requests and
their differential treatment can bring benefits rather than the
particular choice of this policy. Applications that fit a differ-
ent policy profile can use their own policies as described in
§7.2.2.
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Figure 6: File Name Search (find) Results. This figure com-

pares the cache hit percentage, cache contents and the runtimes for

the file name search workload on bcache and iCache. The numbers

above the runtime bars for iCache are the speedups achieved over

bcache.

We run the experiments both with a normal cache as well
as with the iCache and compare. The amount of physical
resources available is the same for the normal cache and
iCache. Also, when using the normal cache, system calls
are not intercepted, thereby avoiding interception overheads.
The differences in results are due to the differential caching
done by iCache.

7.2.1 File Name Search (find)

A Linux kernel source code archive of size 115 MB is
unzipped and untarred into a newly created FS 10 times cre-
ating 450K files with total disk usage of 6 GB. The find com-
mand is used to search for a non-existent file. The iCache re-
tains the FS metadata when the Linux kernel source files are
written due to its policy of giving higher priority to metadata
than for the file contents. Because searching for a file using
the find command only reads the FS metadata, the iCache

outperforms the normal cache for this workload by 3.6 to
4.6 times as shown in Figure 6.

7.2.2 TPC-H on MySQL Database Server

We now show how a more sophisticated real world ap-
plication can be modified in a way that it can explicitly
classify I/O requests for differential caching. We changed
the MySQL database server in order to differentiate I/O re-
quests to the Clustered Index (which also contains the table
data) from those to the Secondary Index by storing a tag in
a thread local store at the various I/O-generating functions.
Overheads due to our modifications to MySQL [36] were
negligible. The mechanism described earlier in §3.6 is used
to pass the I/O class along with the system calls. Since the
secondary index can be huge in size and is also sequential
on disk, the current policy we use is to give the secondary
index data a lower priority than all other I/O requests. This
is similar to the policy used by Mesnier et al [31].
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Figure 7: TPCH on MySQL Server Results. This figure

compares the cache hit percentage, cache contents and the runtimes

for a TPC-H query workload on bcache and iCache. The numbers

above the runtime bars for iCache are the speedups achieved over

bcache.

We load the TPC-H tables relevant to query number 16
with scale factor 1.7, create a few secondary indices on some
columns on the tables and finally execute the query [54]. The
iCache is able to retain the table data while the secondary in-
dex is created due to the policy of lower priority to secondary
data. Hence, as shown in Figure 7, query number 16 which
performs a join on two tables without using any secondary
index executes faster on the iCache by 2.3 to 8.8 times.

8 Case Study #3: iDedup

In this case study, we demonstrate how the performance
of a deduplication system can be improved by using hints
about the semantics of the I/O workload. First, we show
how an application that copies one file to another could
greatly benefit by avoiding expensive disk-backed hashtable
lookups. Second, we show how such hashtable lookups and
additions can be avoided for encryption workloads that very
rarely get deduped [50]. The time taken for hash lookups
and additions can be substantial because hashes are ran-
domly distributed and it is impractical to keep all the hashes
in memory; therefore, a disk-backed hashtable that is per-
sisted by frequent flushes leads to slow random I/Os during
lookups and additions [28, 61].

8.1 Implementation

Dmdedup Block Layer Deduplication: We made the fol-
lowing modifications to the stock dmdedup [52] code (adding
14.5% new code):

• Added code to specially handle writes that are known
beforehand to contain unique payload by skipping the initial
search and the subsequent addition to the hashtable mapping
the block checksums to the corresponding physical block
numbers.
• Added code to maintain an in-memory cache of block
checksum to physical-block number mappings. This in-
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Figure 8: File Copy Results. The numbers on top of the light

colored bars show the speedup achieved for the file copy workload

when run with file-copy hints on iDedup.

memory cache is populated during a read issued by a process
flagged by Sky as exhibiting the file-copy I/O pattern. iD-

edup checks this in-memory cache for every write before
issuing an expensive lookup to the disk backed hashtable.
• Added statistics collection to track and report the count of
unique and file-copy hints, the hits in the in-memory cache
of checksums to physical-block numbers, and the total time
spent by all write requests in dmdedup.

8.2 Evaluation

We compare the performance of two different applica-
tions on iDedup against dmdedup. Dmdedup uses Dmbufio
to buffer the I/O accesses to its disk backend. We ran the fol-
lowing experiments with a Dmbufio size of 1% and 10% of
the peak metadata storage needs for the corresponding work-
load. 1% to 10% metadata cache sizes are typical in real
deduplication systems [28]. The system calls are not inter-
cepted for gathering insights when using dmdedup avoiding
the overheads of system-call interception.

8.2.1 File Copy (cp)

The deduplication system is first warmed up by copying
a 500 MB file full of random data on a newly created FS.
Next the experiment is run which copies the just copied
500 MB file to another new file using the Unix cp command.
Sky detects the file-copy I/O pattern and sends down hints
to iDedup for every read issued by application. For such
hinted reads, iDedup caches the mapping between the block
checksum and the physical-disk block in memory. Upon a
subsequent write of the same payload, iDedup looks up the
in-memory cache and avoids the expensive lookups in the
disk-backed hashtable. The stock dmdedup does not get such
hints and hence iDedup is faster by 5.5 to 8.3 times as shown
in Figure 8.

8.2.2 File Encryption (gpg)

A 500 MB file full of random data is encrypted using
the GNU Privacy Guard (gpg) program. Sky infers the en-
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Figure 9: File Encryption Results. The numbers on top of the

light colored bars show the speedup achieved for the file encryption

workload when run with unique content hints on iDedup.

Case Study Workload

W

Sky

(secs)

W/O

Sky

(secs)

SSD

Speedup/

(Overhead)

HDD

Speedup

iCache (§7)

File Name

Search
3.8 4.6 1.2x 4.6x

TPC-H on

MySQL
3.9 3.6 (0.9x) 8.8x

iDedup (§8)

(with 1%

dedup metadata

cache size)

File Copy 32.3 34.1 1.1x 8.3x

File

Encryption
31.5 468.6 14.9x 18.7x

iDedup (§8)

(with 10%

dedup metadata

cache size)

File Copy 18.1 24.8 1.4x 6.5x

File

Encryption
33.5 48.2 1.4x 4.6x

Table 7: Sky with SSD Backing Disk. Sky provides good im-

provements when used with iDedup and provides nominal improve-

ments when used with iCache on a SSD backing disk. Sky poses

about 8% overhead for the TPC-H query on MySQL Server work-

load alone. The last column shows the speedup achieved on a mag-

netic disk for comparision.

cryption by using the executable name of the gpg program
and passes down hints to iDedup about unique data content.
iDedup uses the hint to avoid looking up and subsequently
adding a new entry to the disk-backed hashtable that maps
block checksums to their physical-block numbers. Because
most FS metadata is unique [28], Sky sends unique hints for
all guest FS metadata writes also. iDedup is able to improve
the runtime by 4.5 to 18.7 times over dmdedup as shown in
Figure 9.

9 Fast Storage Devices

Sky’s system-call interception imposes an overhead that
is independent of whether a fast or slow storage device is
used; therefore, the interception overhead is relatively higher
when used with low-latency storage devices. Because of this,



the benefits of iCache (§7) on a SSD storage device are not as
high as those on a magnetic disk. Table 7 lists the speedups
achieved with iCache and iDedup for various workloads on
a Linux guest OS. iDedup (§8) has significant benefits even
when used on a SSD storage device (though not as high
as when used on a magnetic disk). Decreasing the system-
call interception overhead is a good future research direction
in order to make Sky more beneficial when used with fast
storage devices.

10 Related Work

Mesnier et al. implement I/O classification by modify-
ing the OS and application to pass down classification in-
formation that can be used by the storage system for better
caching [31]. IOFlow, a software defined storage architec-
ture, classified I/O requests at the VM granularity and en-
forced policies at various points in the I/O path [53]. Sonam
et al. improve the performance of the dmdedup deduplication
system by modifying the guest applications and FSs to gen-
erate hints [28]. In contrast, Sky obtains I/O-classification
hints on a per system call basis without modifying the guest
OS or the FSs and reaps similar benefits. Sky also provides
an equally expressive interface to modified I/O applications
when compared to the above previous works as discussed in
§3.6. However, Sky targets virtualized-storage in the context
of VMM while the previous works are more broadly appli-
cable.

Several caching algorithms have been proposed in the
past such as LRU-K [35], ARC [30], 2Q [21], MQ [60],
LRFU [25] etc. Our work on associating priorities with in-
sights is complementary to these caching algorithms be-
cause these algorithms differentiate between disk blocks
only based on their access patterns while Sky associates
semantic meaning to the blocks. For example, Sky allows
hits on data from a high-paying customer to be better than
hits on data from a low-paying customer.

Several past research works have shown that insights can
be gained by the storage systems using the knowledge of the
on-disk layout of FSs [2, 47–49, 51]. Having more complex
logic in the storage systems can make them less robust and
more expensive. Sky generates insights with considerably
lesser complexity in the storage.

Virtual Machine Introspection [18] in general and system-
call interception specifically [10, 39] have been applied for
malware analysis and other security applications in the past.
LibVMI [1, 37] is a library to access the guest VM details
that primary supports memory accesses and events based on
memory accesses. LibVMI has examples to show how to
intercept system call entries but not system call exits. Sky
uses system-call interception on both system call entry and
exit for generating hints to improve storage performance.
Sky introduces a new technique to intercept system call ex-
its that use the IRET instruction in the Intel processors when
compared to the past work on system-call interception using
hardware extensions [10, 39]. Virtuoso [12] automatically
generates programs for accessing guest OS information us-
ing training programs, trace collection and dynamic slicing.

Techniques in Virtuoso could be used to fasten up certain
parts of Sky like getting the PID of a process.

Roselli et al. use the auditing infrastructure in UNIX
and the filter driver in Windows NT in order to collect
and analyze traces to understand different FS workloads
(e.g. block lifetimes) [41]. Sky obtains similar information
about the block lifetimes through system-call interception.
FADED [47] provides secure file deletes by providing block
liveness to the storage device. It detects file deletes and trun-
cates implicitly by tracking FS on-disk data structures and
also making small modification to FSs when necessary. Sky
directly intercepts unlink, truncate and related system
calls to know about file deletes and truncates. Because Sky
uses checksums, there is a loss of accuracy in rare scenarios
when FS metadata and data content generate the same check-
sums. A more sophisticated future version of Sky could
avoid this inaccuracy by using FS knowledge.

VirtFS is a paravirtualized FS that avoids the overheads
associated with a generic networked FS by leveraging the 9p
distributed FS protocol directly on top of a paravirtualized
transport [23]. Sky could be used with VirtFS in order
to allow guest applications to pass hints to VMM without
modifying the 9p protocol and the VirtIO transport.

Gu et al. bridge the semantic gap between a VM and
the VMM by running a process from the host on the guest
VM under the cover of an existing running process in the
guest [17]. Such an approach will be costly for Sky because
intercepting system calls at userspace level is expensive due
to the kernel boundary crossings and the context switches
between the monitored and monitoring processes.

11 Conclusion

We proposed system-call interception as a core technique
so that a VMM can gather insights and information without
requiring modifications to the guest OS or the guest appli-
cation. We built Sky, a prototype VMM that uses system-
call interception to gather insights. We showed through ex-
periments that system-call interception is an efficient way
to obtain useful insights about I/O-bound guest applications
with minimal overheads (under 5%). We also used Sky to
implement a better storage cache called iCache and a better
deduplication system called iDedup; these new features can
improve the runtime of a variety of real workloads by 2.3 to
18.7 times.
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