
Limiting Trust in the Storage Stack

Lakshmi N. Bairavasundaram, Meenali Rungta,
Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau

University of Wisconsin, Madison

{laksh, meenali, dusseau, remzi}@cs.wisc.edu

ABSTRACT
We propose a framework for examining trust in the stor-
age stack based on different levels of trustworthiness present
across different channels of information flow. We focus on
corruption in one of the channels, the data channel and as
a case study, we apply type-aware corruption techniques to
examine Windows NTFS behavior when on-disk pointers are
corrupted. We find that NTFS does not verify on-disk point-
ers thoroughly before using them and that even established
error handling techniques like replication are often used in-
effectively. Our study indicates the need to more carefully
examine how trust is managed within modern file systems.

Categories and Subject Descriptors
D [4]: 5. Fault-tolerance

General Terms
Reliability, Security

Keywords
Pointer corruption, Type-aware corruption, Verifiable in-
variants

1. INTRODUCTION
Long-term reliability, availability, and security of data is

of the utmost importance, both in corporate environments
as well as in the home. Indeed, much of the value people
place in computer systems stems from the value of the data
stored therein – as made abundantly clear by web services
such as Google and digital photo management software such
as iPhoto, it is the information inside our computer systems
that makes them valuable to end users.

With valuable information within them, it is crucial that
storage systems carefully manage such data, preserving the
integrity of the data over long periods of time. However,
two trends combine to make reliable management of data

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
StorageSS’06, October 30, 2006, Alexandria, Virginia, USA.
Copyright 2006 ACM 1-59593-552-5/06/0010 ...$5.00.

more challenging. First, disk complexity increases the like-
lihood that unusual hardware faults will arise; for example,
latent sector errors [7, 16] and block corruption [13] are not
uncommon occurrences. Second, the file systems themselves
are increasingly complex. As features are added to improve
scalability [22], consistency management [25], and other as-
pects of file storage, the sheer size of the file system has
exploded; for example, Linux ext3 is an order of magnitude
larger than its non-journaling cousin ext2.

With complex disks managed by complex file systems, a
natural set of questions arise: how much trust does the file
system place in the correct operation of the disk drive? Fur-
ther, can the file system be trusted to manage data correctly
despite its own sheer size and complexity? (i.e., how much
does the file system trust itself?)

We thus believe a study of how trust is managed within
the storage system is necessary. In this paper, we outline a
framework for studying and managing trust in the storage
stack based on trustworthiness, the level of trust that can
be attributed to any entity, and channels, paths in the stor-
age stack that are used to store and retrieve information.
We focus further on the effects of a corrupt or malicious
data channel. We take a first step by performing a study
of Windows NTFS, a popular and important commercial
file system. We focus on one aspect of trust management
within NTFS, specifically, how much trust it places in its
on-disk pointers. It is well-known within the programming
languages community that pointers are powerful constructs
and must be treated with great care [6, 11, 12]; hence, we
were curious to see how much care a file system such as
NTFS placed within its on-disk pointers.

To perform our analysis, we use type-aware corruption, in
which we systematically change the values of disk pointers
in the file system, exercise the file system, and then observe
the resulting behavior. Type-aware corruption narrows the
extremely large search space by corrupting disk pointers to
refer to specific types of data structures, instead of to arbi-
trary and random disk blocks.

From our analysis, we find that NTFS primarily relies on
invariants such as the presence of a “magic” number in some
block types to detect pointer corruption and uses replicas to
recover from the errors. However, NTFS also fails to de-
tect many cases of pointer corruption, leading to possible
security problems and system crashes. Also, replica man-
agement in NTFS is sometimes ineffective since it is pri-
marily targeted at recovering from data loss and not data
corruption.

Thus, the contributions of the paper are as follows:
• We develop a framework based on channels for exploring

trust in the storage stack.
• We develop a type-aware corruption technique to explore

the result of on-disk pointer corruption in file systems.
• We perform a case study of NTFS, applying type-aware

corruption to the on-disk pointers of NTFS, thereby iden-
tifying invariant checks performed by the system and ana-
lyzing the corruption detection and recovery mechanisms of
NTFS.

The rest of this paper is organized as follows. Section 2
motivates the need to limit trust in the storage stack. Sec-
tion 3 presents our framework for exploring trust. Section 4
motivates the importance of pointers and the use of invari-
ants in verifying pointers. Section 5 describes type-aware
corruption and how it is employed to corrupt NTFS point-
ers. Section 6 presents the results of our experiments and
Section 7 concludes.

2. MOTIVATION
This section motivates the need to rethink trust in the

storage stack. We first outline the different sources of errors
in the storage stack and the problems that could be caused
by such errors. We then present the objectives of a system
that limits trust and its potential advantages. Finally, we
outline the reasons why checksums do not solve all disk error
problems.

2.1 Trust-breakers
Storage stack errors can arise from a variety of sources.

While some of the sources are the traditionally explored
hardware errors, today there is an increasing number of soft-
ware errors and security problems that can occur. We list
the sources below.
•Unreliable hardware: The magnetic storage medium

is by nature unreliable; “bit rot” is known to corrupt data
stored on disk. In addition, the mechanical components of
the disk can cause media scratches to occur resulting in la-
tent sector errors thereby rendering the data inaccessible [7,
16]. Bus controller hardware has also been known to cause
errors like data corruption [4].
•Unreliable transport: The transport between the host

and disk may be unreliable and cause transient errors [24].
•Unreliable software and firmware: The disk firmware

consists of thousands of lines of low-level code that can be
buggy and thus could introduce corruption errors [8]. There
are bugs that could even lead to writing the correct data
to the wrong location (misdirected writes) or reporting an
incomplete or failed write as completed (lost writes). In
addition to bugs in disk firmware, device drivers are known
to be buggy [2, 23] and could cause data corruption.
•Malicious errors: While maliciousness has previously

been explored in the network or networked storage con-
text [9, 14], it has recently been explored in the context
of local file systems [26]. Malicious errors may be caused
by a person or application with (perhaps temporary) direct
access to the disk. In this case the file system image may
be modified with a view to compromise the system. As a
possibility, consider a malicious file system image on the
widely-used portable flash drives. Even mounting the file
system could lead to serious problems [26].
•The file system: The file system itself can be a source

of storage stack errors. Recent research [27] has shown that
even modern file systems have bugs. These bugs may lead
to “advanced” corruption that is hard to detect.

2.2 Objectives
The objectives of a system limiting trust should be:

•Protect against data loss. An obvious goal of a file

system that limits trust is to safeguard the data stored on
disk so that it is available for access at all times.
•Protect against intrusions. The file system should

also possess the ability to protect against security violations
wherein data belonging to a user can be read, written or
deleted by another unauthorized user. This objective has
two parts: (i) to protect components like in-memory kernel
data and applications or even file systems on other disks and
(ii) protect the data on the faulty disk.
•Forward progress. File systems should ensure forward

progress. This implies that (i) the file system should not
crash the entire system indiscriminately (for example, ear-
lier work [13] showed examples of errors for which ReiserFS
crashed the entire system using panic), and (ii) the file sys-
tem should not indefinitely retry operations thereby wasting
system resources.

2.3 Advantages of Limiting Trust
An important consideration of advocating less trust on

the storage stack is the advantages of such an approach. We
enumerate some of these below:
•Reliability. According to Merriam-Webster dictionary:

“Reliability is a extent to which an experiment, test or mea-
suring procedure yields the same result on repeated trials.”
A system which limits its trust on the storage stack has
mechanisms to detect errors and recover from them, and can
therefore return the same data to the user over repeated tri-
als regardless of possibly corrupt data returned by underly-
ing storage system itself. It will thus improve the reliability
of the system.
•Availability. By ensuring forward progress and not crash-

ing the whole system when a single operation fails or part of
metadata gets corrupted, such a system contributes to over-
all availability. Also, by protecting against data loss, such a
system increases data availability.
•Security. Security is a crucial aspect of today’s sys-

tems. Systems like PayPal store sensitive financial informa-
tion about millions of people worldwide. A proactive non-
trusting approach in the design of systems will help keep
data and the system more secure.

2.4 Need for a New Approach
Most solutions that deal with the problem of disk integrity

rely on checksumming [13, 21]. However, checksums do not
solve all integrity issues. A major concern is the fact that
the file system itself can contain bugs. In this case, the error-
neous data might have the “correct” checksum and will go
undetected. Further, in the absence of a signature-based so-
lution, malicious modifications can and will include suitable
modifications to the checksums or any replicas if present.

It is therefore important to develop a framework that can
serve as a base for exploring different solutions that are suit-
able for the various problems that may arise. As Riedel et
al. [14] demonstrate, a framework is very useful for studying
security and survivability aspects of storage systems.

3. TRUSTWORTHINESS IN STORAGE
This section presents the different levels of trustworthiness

that can found in the storage stack and discusses how these
different levels can exist in different channels that comprise
the storage stack. This framework is related to the disk fail-
ure model proposed in earlier work [13]. The new framework
focuses on both the the type of error or trust issue as well
as the source of the error in order to provide a better base
for examining trust in the storage stack.

3.1 Levels
The different elements that comprise the storage stack

may exhibit different levels of trustworthiness. The following
are some specific levels:
•Perfect. The highest level is perfect: the element is reli-

able, available, and secure.
•Lossy. A lossy element is prone to losing information and

is therefore less trustworthy. The hard disk drive medium is
lossy. Latent sector errors can lead to data loss.
•Corrupting. A corrupting element could modify infor-

mation randomly. For example, software and firmware bugs
may lead to corruption of data stored on disk.
•Malicious. At the lowest level of trustworthiness, a ma-

licious element can try to perform special modifications to
the information that passes through the element.

How minimally the storage stack can be trusted depends
on the hardware resources available and the performance
requirements. At least some minimal level of trust is re-
quired because even if hardware and performance pose no
constraints, the file system has to trust itself to a certain
extent.

3.2 Channels
A channel is a path through which information flows. The

storage stack can be decomposed into four channels: data,
address, control and error. The data channel consists of
the data and metadata that the file system stores on disk.
This is the only channel that exists across different mounts
of the file system. The address channel is used to specify
the location on disk to read or write. The control channel
specifies the operation to be performed by the storage stack,
for example, to read a block. The error channel is the path
used by the disk and rest of the storage stack to inform the
file system of an operation’s result.

Each of these channels can be associated with some level
of trustworthiness. For example, a data channel in which
latent sector errors occur is a lossy data channel while a
data channel that consists of a maliciously generated file
system image is a malicious data channel. Similarly, an ad-
dress channel is considered corrupt when misdirected reads
or writes can occur and the control channel is lossy when
lost writes take place. We discuss below the different levels
of trustworthiness applicable to each of the channels, situa-
tions in which they occur and techniques that have been or
can be used to deal with lower levels of trust.

3.2.1 Data Channel
The data channel is probably the most explored channel

with respect to errors that could occur. The data channel
could potentially be lossy, corrupt or malicious. Replication
and parity based techniques have been used by many sys-
tems over the years to deal with lossy data channels. Cor-

rupt or malicious data channels are harder to deal with.
Checksums can be used to a limited extent in dealing with
corrupt data channels [20, 21]. As discussed earlier, check-
sums do not protect against corrupt data channels where
the source of corruption is the file system itself. In this pa-
per, we explore problems caused by a corrupt or malicious
data channel. It is important to note that a malicious data
channel does not imply that the data on disk need not be
protected. It only implies that some of the data (or meta-
data) might be maliciously generated.

The easiest method that can be used to create a mali-
cious data channel is to modify the on-disk pointers of the
file system. Pointers and data can be verified against invari-
ants by the file system to protect against pointer corruption.
Section 4 discusses pointers and invariants in greater detail.

3.2.2 Address Channel
The address channel could potentially be corrupt or ma-

licious. An example of a corrupt address channel is one
that causes misdirected reads or writes. Checksums located
outside of the data blocks that they checksum, like used in
earlier work [13, 20], can help in detecting problems due to
a corrupt address channel. A malicious address channel is
difficult to deal with. One needs redundant hardware paths
to safely access the data on disk when the address channel
could be malicious.

3.2.3 Control Channel
The control channel could be lossy, corrupt or malicious.

Only lossy control channels can be dealt with by software-
only methods. Verifying data written to the disk by per-
forming a subsequent read can help detect control channel
write losses. Sanity checking and suitable memory initializa-
tion prior to reads can possibly detect control channel read
losses. These techniques need to explored in detail in future
work.

3.2.4 Error Channel
The error channel could be lossy, corrupt or malicious.

When the error channel is lossy, the effect is similar to that
of a control channel loss and needs to be dealt with in similar
fashion. A corrupt or malicious error channel may indicate
the wrong type of error when an error occurs. Some types
of errors can invoke retries by the file system and drivers. A
malicious error channel could possibly invoke indefinite re-
tries thereby wasting system resources. File systems should
employ defenses against threats to forward progress by lim-
iting retries.

In this paper, we focus on limiting trust in the data chan-
nel, specifically on corrupt or malicious data channels. Lim-
iting trust in the other channels presents a great opportunity
for future work.

4. POINTERS AND INVARIANTS
This section first outlines the importance of protecting

pointers and safeguarding pointer-based operations in the
context of a corrupt or malicious data channel, and then
discusses the use of verifiable invariants to protect pointer-
based reads and writes.

Pointers are powerful constituents of the data channel.
The on-disk state of most file systems consists of a set of
data structures which relate to one another via pointers [19].
For example, a Unix inode typically contains N direct disk

pointers, which are addresses of the first N data blocks of
the file. References may take different forms as well. For
example, a Unix directory contains a list of (filename, inode
number) tuples; the inode number here serves as an index
into the on-disk inode array, and hence combining it with a
base offset results in a true disk pointer.

Previous work in on-disk consistency management has re-
alized the salience of disk pointers. For example, many early
Unix file systems [10, 15] carefully order writes to prevent
the creation of bad on-disk pointers (e.g., FFS makes sure to
initialize a directory data block Dir before writing a struc-
ture that has a pointer to Dir to disk). Subsequent work
on soft updates [3] and journaling file systems [5, 17] also
treat pointers with care to maintain metadata consistency
in the presence of crashes. Recent work [18] explores the
need to protect pointers from corruption and proposes the
use of type safe disks that understand on-disk pointers and
can therefore better protect the data stored on disk from
pointer corruption.

Less well known is how file systems behave or should
behave when confronted with a corrupt or malicious data
channel that contains a disk pointer with the wrong value.
Corrupt pointers can lead to many problems within the file
system. For example, given that one must know where a
data structure is located on disk in order to reference it,
a corrupt pointer can lead to inaccessible data. Further,
a corrupt pointer incorrectly referring to data belonging to
another data structure can cause the unlucky data to be
overwritten and corrupted as well.

We propose the use of verifiable invariants as a file sys-
tem level technique that can be used to deal with incorrect
or malicious pointers. Many file systems have invariants
that can be verified against during file system operation. A
list of some possible invariants follow. (i) A basic invariant
true for all file systems is that the same location on disk
cannot contain two different data objects. For example, the
data block of a user file cannot co-exist with the superblock
of the file system. (ii) An invariant for almost all file sys-
tems is that the superblock occupies a known location on
disk, typically block 0. (iii) A third invariant is that a block
belonging to the file system cannot be present outside the
boundaries of the file system. The given invariants for a file
system can be combined to generate rules for system opera-
tion. For example, combining invariants (i) and (ii), block 0
cannot be the data block for a user file. This invariant can
now be used when reading or writing data to a user file to
protect against illegal read or write operations to the su-
perblock. While the invariants listed above are simple and
static, and can be verified in the form of “assertions” while
reading metadata, a more advanced file system needs tech-
niques to deal with a large number of invariants that could
be specific to each file system image.

Identifying invariants used by a file system helps in char-
acterizing a significant portion of the capabilities of the file
system in protecting against pointer corruption. In this pa-
per, we explore how NTFS deals with pointer corruption
and identify invariants used by NTFS for this purpose.

5. TYPE-AWARE CORRUPTION
To identify the behavior of NTFS when disk pointers are

corrupted, we develop and apply type-aware corruption. With
this approach, we directly observe how NTFS reacts after
we have corrupted important disk pointers to values within

ranges of different types. Type-awareness is necessary be-
cause it would be nearly impossible to corrupt a pointer on
disk to every possible value in a reasonable amount of time.

Type-awareness assumes that pointers of the same type
behave similarly. This assumption has two components.
First, we assume that corrupting a pointer A of type Z to
value X induces the same behavior as corrupting a pointer
B of type Z to value X; for example, corrupting a pointer
to file data of File A is same as corrupting a pointer to file
data of File B. Second, we assume that corrupting a pointer
to value X that exists in a region of type Z induces the same
behavior as corrupting to a value Y that also exists in a re-
gion of type Z; for example, corrupting a pointer to refer to
the beginning of the log is the same as referring to the mid-
dle of the log. Thus, type-aware corruption greatly reduces
the experimental space while still covering almost all of the
interesting cases.

Our framework uses two layers, one on each side of the file
system, to control experiments and to corrupt data struc-
tures read by the file system. The first layer is a user-level
microbenchmark layer that executes file system operations
above NTFS. The second layer is the corrupter that resides
between NTFS and the disk drivers. This layer corrupts on-
disk pointers and bitmaps and observes disk traffic, and has
been implemented as an upper filter driver.

NTFS uses many different pointers on disk. A detailed de-
scription of NTFS data structures and pointers can be found
elsewhere [1]. We have performed experiments that corrupt
all the pointer types used by NTFS using values that corre-
spond to the entire range of cluster1 types on disk. In this
paper, we discuss experiments with 5 pointers: the pointer
to the Master File Table (MFT) present in the boot sector
(Boot-MFT), the pointer to the logfile present in the first
cluster of the MFT (MFT-Logfile), the pointer to the MFT
Bitmap (which controls allocation of MFT records) present
in the first cluster of the MFT (MFTBitmap), the pointer
to a directory index buffer (which contains directory entries)
present in the MFT record for a directory (DirIndxBuf) and
the pointer to a data cluster present in the MFT record for
a user file. Each pointer is corrupted to point to a range
of different values. We use the following ranges of values:
(a) values that point to essential clusters (e.g., boot sector),
(b) values that point to different data types (e.g., directory
index buffer and MFT cluster), (c) unallocated clusters, and
(d) out of range values. Each experiment corrupts exactly
one pointer to one value in the above range.

6. EXPERIMENTS
This section presents the results of pointer corruption ex-

periments on NTFS. We first outline the experimental setup
and workloads used, then present the results and finally an-
alyze the results obtained.

6.1 Experimental Setup and Workloads
All our experiments are performed on an installation of

Windows XP (Professional Edition without Service Pack 2)
run on top of VMWare Workstation 4.5.2. The experiments
use a separate 2GB IDE virtual disk.

The workloads used to observe NTFS reactions to pointer
corruption are as follows. The file system is mounted to

1NTFS refers to data blocks as clusters and we adopt the
terminology for the rest of the paper.

exercise the boot sector’s MFT pointer (Boot-MFT) and
the MFT’s logfile pointer (MFT-Logfile). A file is created
to exercise the MFT Bitmap pointer and the Directory Index
Buffer pointer (DirIndxBuf). A file is written to in order to
exercise the file data pointer.

6.2 Results
We first discuss corruption cases that are not detected

by NTFS, then discuss cases that are detected, then list
invariants used by NTFS to perform detection, and finally
discuss the mechanisms used by NTFS to deal with detected
corruption events.

6.2.1 No detection
NTFS does not detect pointer corruption when the MFT

Bitmap pointer or the File data pointer are corrupted, the
only exceptions occurring when the pointer points outside
the file system boundary. This has two direct effects on the
system. First, in both cases, NTFS overwrites the cluster
pointed to by the pointer, thereby corrupting the cluster.
Second, in the case of the MFT Bitmap, NTFS also uses the
information in the cluster pointed to for allocating an MFT
record entry for the file being created, possibly overwriting
a valid file entry. This behavior in turn causes NTFS to
overwrite the file entry of a system file which eventually
leads to a system crash (blue screen).

NTFS also does not detect a pointer corruption when a
directory index buffer pointer points to the some other direc-
tory’s index buffer, thereby corrupting the other directory
by adding a new file to it (the workload is file create).

Not detecting file data pointer corruption is a security
problem. After a single malicious corruption event, the en-
tire file system could possibly be compromised forever.

6.2.2 Detection
NTFS detects pointer corruption when the pointer in ques-

tion is Boot-MFT, MFT-Logfile or DirIndxBuf. It also de-
tects corruption if any pointer points beyond the file system
boundary.

The timing of detection can vary. Specifically, detection
can occur immediately, or after the cluster pointed to is read,
or during a delayed write:
• Immediate: Whenever the pointer directly points out-

side the disk partition, NTFS does not require a disk read
to detect the corruption, i.e., the detection is immediate.
Immediate detection also occurs when Boot-MFT has the
same value as the pointer to MFT’s replica, also in the boot
sector. This shows that NTFS checks to ensure that the two
replicas do not point to the same location.
• After cluster pointed to is read: In some cases, NTFS

reads the cluster pointed to, and detects the error when
it performs type checking. For example, directory index
buffers are typed with the magic number “INDX”. When a
file is created, NTFS reads the directory index buffer cluster,
detects the absence of the magic number, and returns an
error stating that the directory is corrupt.
• During “delayed write”: This detection timing is spe-

cific to some cases where the pointer points to the last clus-
ter (which contains a copy of the boot sector) and there is
a write to the cluster. The write operation returns success
to the application, and the corruption is detected when the
cluster is later written to disk. This typically results in a
“pop-up” that informs the user that a delayed write failed.

6.2.3 Invariants
We can use the results of the experiments, especially whether

detection occurred and the detection time, to develop the set
of invariants used by NTFS. We summarize the invariants
below:
• A pointer cannot point outside the file system boundary.

• Replicas cannot occupy the same location on disk.

• Directory index buffers contain the magic number “INDX”,

and the first log file cluster (the log restart area) contains
the magic number “RSTR”
• The first MFT cluster contains the magic number “FILE”

and contains the MFT record number as 0.
However, NTFS does not use simple invariants like “a

user file write cannot overwrite block 0 (boot sector) with
random data”. Given that the NTFS source code is not
available, obtaining information regarding these invariants
demonstrates the utility of type-aware corruption.

6.2.4 Reactions
The various ways in which NTFS reacts upon detecting

an error are summarized below:
• Recovery: If possible, NTFS uses redundancy to ob-

tain the required information. The first cluster of the MFT
is replicated and the boot sector contains a pointer to the
replica. Therefore, when Boot-MFT is corrupted, NTFS
reads the cluster pointed to, detects that the cluster is not
the right one, then chooses to use the information in the
replica of the MFT.
• Retry the entire mount: NTFS uses retries to recover

from corruption in some cases. This behavior could be useful
if the corruption was not persistent on disk, but due to a
transient malfunctioning of some component in the system.
In particular, we observe retries when the MFT’s pointer to
the logfile is corrupted.
• Propagate error to application: This action is ob-

served when type checks fail, and recovery is not possible
because of lack of redundancy. For example, when a direc-
tory’s index buffer points to any cluster that does not have
the magic number “INDX”, the error is propagated to the
application.

6.3 Analysis
Limiting trust in the storage stack should form one of the

core design goals of a file system. Our experiments with
NTFS have demonstrated some of the dangers that arise
when not designed so. In this section, we outline the lessons
learned towards techniques used to limit trust.
•Filesystems should place a low level of trust on the data

channel even for user files. A lossy data channel has a low
impact when user files are accessed. However, a corrupt or
malicious data channel can pose significant problems even
when user files are accessed, as demonstrated by the ability
to read or write any portion of the disk with a corrupt user
file data pointer in the case of NTFS.
•Filesystems should devise strong, useful invariants. NTFS

experiments show that simple type checking doesn’t work
if one directory points to another, and the file system can
be left in an inconsistent state. It might be more useful
to devise more sophisticated invariants that take into con-
sideration, for example, the directory’s ID along with the
type.
• A replica is only useful if it is actually used. We have

seen that NTFS does not take advantage of the correct in-
formation that is stored in a replica when the primary has
been corrupted. For example, NTFS does not always use
the information in the MFT replica, even after detecting
that primary MFT is corrupt. A specific case in point is
when NTFS detects that the log file (or the pointer to it)
is corrupt and simply retries the mount without checking
the copy of the pointer in the MFT replica. In other cases,
NTFS could have used a replica to detect corruption, but did
not bother to perform the comparison; for example, NTFS
does not detect corruption of the MFTBitmap pointer even
though a copy is readily available in the MFT replica (which
is also read).
• A replica is only useful if it not destroyed. In some in-

stances, NTFS actually destroys the contents of valid repli-
cas. NTFS treats each replica strictly as either a primary or
a secondary, that is NTFS places greater trust in one of the
replicas, even though there is no reason why that replica is
more trustworthy; for example, in the case where the pri-
mary MFT is corrupt, but the MFT replica is correct, NTFS
erroneously synchronizes the two copies by overwriting the
correct MFT replica with the contents of the corrupt MFT.

While some of the lessons are well-established, it simply
underscores the fact that even a widely-used commercial file
system lacks the capability to deal with corruption effec-
tively. Detailed studies of other file systems like ZFS [21]
will help understand current systems better.

7. CONCLUSIONS
File systems have long placed a great deal of trust in the

disks they place data upon and within the correctness of the
file system code itself. In this paper, we show the potential
ill-effects of such trust: less reliable and secure file systems
than one might hope for. As we consider building the next
generation of file systems, it is important to carefully con-
sider exactly what levels of trust the file system places in the
disk subsystem and within its own code. By making such
trust a first-class consideration, the reliability, availability,
and security of storage is likely to significantly improve.

8. REFERENCES
[1] A. Altaparmakov. The Linux-NTFS Project.

http://linux-ntfs.sourceforge.net/ntfs, August 2005.

[2] A. Chou, J.-F. Yang, B. Chelf, S. Hallem, and
D. Engler. An Empirical Study of Operating System
Errors. In Proceedings of the 18th ACM Symposium on
Operating Systems Principles (SOSP ’01), pages
73–88, Banff, Canada, October 2001.

[3] G. R. Ganger and Y. N. Patt. Metadata Update
Performance in File Systems. In Proceedings of the 1st
Symposium on Operating Systems Design and
Implementation (OSDI ’94), pages 49–60, Monterey,
California, November 1994.

[4] R. Green. EIDE Controller Flaws Version 24.
http://mindprod.com/jgloss/eideflaw.html, 2005.

[5] R. Hagmann. Reimplementing the Cedar File System
Using Logging and Group Commit. In Proceedings of
the 11th ACM Symposium on Operating Systems
Principles (SOSP ’87), Austin, Texas, November 1987.

[6] T. Jim, G. Morrisett, D. Grossman, M. Hicks,
J. Cheney, and Y. Wang. Cyclone: A Safe Dialect of
C. In Proceedings of the USENIX Annual Technical

Conference (USENIX ’02), Monterey, California, June
2002.

[7] H. H. Kari. Latent Sector Faults and Reliability of
Disk Arrays. PhD thesis, Helsinki University of
Technology, September 1997.

[8] B. Lewis. Smart Filers and Dumb Disks. NSIC OSD
Working Group Meeting, April 1999.

[9] J. Li, M. Krohn, D. Mazires, and D. Shasha. Secure
untrusted data repository (sundr). In Proceedings of
the 6th Symposium on Operating Systems Design and
Implementation (OSDI ’04), San Francisco, California,
December 2004.

[10] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S.
Fabry. A Fast File System for UNIX. ACM
Transactions on Computer Systems, 2(3):181–197,
August 1984.

[11] G. C. Necula, J. Condit, M. Harren, S. McPeak, and
W. Weimer. CCured: Type-Safe Retrofitting of
Legacy Software. ACM Transactions on Programming
Languages and Systems, 27(3), May 2005.

[12] B. C. Pierce. Types and Programming Languages. MIT
Press, 2002.

[13] V. Prabhakaran, L. N. Bairavasundaram, N. Agrawal,
H. S. Gunawi, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. IRON File Systems. In Proceedings of
the 20th ACM Symposium on Operating Systems
Principles (SOSP ’05), pages 206–220, Brighton,
United Kingdom, October 2005.

[14] E. Riedel, M. Kallahalla, and R. Swaminathan. A
Framework for Evaluating Storage System Security. In
Proceedings of the 1st USENIX Symposium on File
and Storage Technologies (FAST ’02), pages 14–29,
Monterey, California, January 2002.

[15] D. M. Ritchie and K. Thompson. The unix

Time-Sharing System. Communications of the ACM,
17(7):365–375, July 1974.

[16] T. J. Schwarz, Q. Xin, E. L. Miller, D. D. Long,
A. Hospodor, and S. Ng. Disk Scrubbing in Large
Archival Storage Systems. In Proceedings of the 12th
Annual Meeting of the IEEE International Symposium
on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems (MASCOTS),
Volendam, Netherlands, October 2004.

[17] M. I. Seltzer, G. R. Ganger, M. K. McKusick, K. A.
Smith, C. A. N. Soules, and C. A. Stein. Journaling
Versus Soft Updates: Asynchronous Meta-data
Protection in File Systems. In Proceedings of the
USENIX Annual Technical Conference (USENIX ’00),
pages 71–84, San Diego, California, June 2000.

[18] G. Sivathanu, S. Sundararaman, and E. Zadok.
Type-Safe Disks. In Proceedings of the 7th Symposium
on Operating Systems Design and Implementation
(OSDI ’06) (to appear), Seattle, WA, November 2006.

[19] M. Sivathanu, A. C. Arpaci-Dusseau, R. H.
Arpaci-Dusseau, and S. Jha. A Logic of File Systems.
In Proceedings of the 4th USENIX Symposium on File
and Storage Technologies (FAST ’05), pages 1–15, San
Francisco, California, December 2005.

[20] C. A. Stein, J. H. Howard, and M. I. Seltzer. Unifying
File System Protection. In Proceedings of the USENIX
Annual Technical Conference (USENIX ’01), Boston,
Massachusetts, June 2001.

[21] Sun Microsystems. ZFS: The Last Word in File
Systems. http://www.sun.com/2004-0914/feature/,
2004.

[22] A. Sweeney, D. Doucette, W. Hu, C. Anderson,
M. Nishimoto, and G. Peck. Scalability in the XFS
File System. In Proceedings of the USENIX Annual
Technical Conference (USENIX ’96), San Diego,
California, January 1996.

[23] M. M. Swift, B. N. Bershad, and H. M. Levy.
Improving the Reliability of Commodity Operating
Systems. In Proceedings of the 19th ACM Symposium
on Operating Systems Principles (SOSP ’03), Bolton
Landing (Lake George), New York, October 2003.

[24] N. Talagala and D. Patterson. An Analysis of Error
Behaviour in a Large Storage System. In The IEEE
Workshop on Fault Tolerance in Parallel and
Distributed Systems, San Juan, Puerto Rico, April
1999.

[25] T. Ts’o and S. Tweedie. Future Directions for the
Ext2/3 Filesystem. In Proceedings of the USENIX
Annual Technical Conference (FREENIX Track),
Monterey, California, June 2002.

[26] J. Yang, C. Sar, P. Twohey, C. Cadar, and D. Engler.
Automatically Generating Malicious Disks using
Symbolic Execution. In IEEE Security and Privacy,
Berkeley, California, May 2006.

[27] J. Yang, P. Twohey, D. Engler, and M. Musuvathi.
Using Model Checking to Find Serious File System
Errors. In Proceedings of the 6th Symposium on
Operating Systems Design and Implementation (OSDI
’04), San Francisco, California, December 2004.

