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Abstract
Containerized applications are becoming increas-
ingly popular, but unfortunately, current container-
deployment methods are very slow. We develop a
new container benchmark, HelloBench, to evaluate the
startup times of 57 different containerized applications.
We use HelloBench to analyze workloads in detail, study-
ing the block I/O patterns exhibited during startup and
compressibility of container images. Our analysis shows
that pulling packages accounts for 76% of container
start time, but only 6.4% of that data is read. We use
this and other ndings to guide the design of Slacker, a
new Docker storage driver optimized for fast container
startup. Slacker is based on centralized storage that is
shared between all Docker workers and registries. Work-
ers quickly provision container storage using backend
clones and minimize startup latency by lazily fetching
container data. Slacker speeds up the median container
development cycle by 20× and deployment cycle by 5×.

1 Introduction
Isolation is a highly desirable property in cloud comput-
ing and other multi-tenant platforms [8, 14, 27, 22, 24,
34, 38, 40, 42, 49]. Without isolation, users (who are
often paying customers) must tolerate unpredictable per-
formance, crashes, and privacy violations.
Hypervisors, or virtual machine monitors (VMMs),

have traditionally been used to provide isolation for ap-
plications [12, 14, 43]. Each application is deployed
in its own virtual machine, with its own environment
and resources. Unfortunately, hypervisors need to in-
terpose on various privileged operations (e.g., page-table
lookups [7, 12]) and use roundabout techniques to infer
resource usage (e.g., ballooning [43]). The result is that
hypervisors are heavyweight, with slow boot times [50]
as well as run-time overheads [7, 12].
Containers, as driven by the popularity of Docker [25],

have recently emerged as a lightweight alternative to
hypervisor-based virtualization. Within a container, all
process resources are virtualized by the operating sys-
tem, including network ports and le-system mount
points. Containers are essentially just processes that
enjoy virtualization of all resources, not just CPU and
memory; as such, there is no intrinsic reason container
startup should be slower than normal process startup.

Unfortunately, as we will show, starting containers is
much slower in practice due to le-system provisioning
bottlenecks. Whereas initialization of network, compute,
and memory resources is relatively fast and simple (e.g.,
zeroing memory pages), a containerized application re-
quires a fully initialized le system, containing applica-
tion binaries, a complete Linux distribution, and pack-
age dependencies. Deploying a container in a Docker or
Google Borg [41] cluster typically involves signicant
copying and installation overheads. A recent study of
Google Borg revealed: “[task startup latency] is highly
variable, with the median typically about 25 s. Pack-
age installation takes about 80% of the total: one of the
known bottlenecks is contention for the local disk where
packages are written” [41].
If startup time can be improved, a number of oppor-

tunities arise: applications can scale instantly to han-
dle ash-crowd events [13], cluster schedulers can fre-
quently rebalance nodes at low cost [17, 41], software
upgrades can be rapidly deployed when a security aw
or critical bug is xed [30], and developers can interac-
tively build and test distributed applications [31].
We take a two-pronged approach to solving the

container-startup problem. First, we develop a new open-
source Docker benchmark, HelloBench, that carefully
exercises container startup. HelloBench is based on
57 different container workloads and measures the time
from when deployment begins until a container is ready
to start doing useful work (e.g., servicing web requests).
We use HelloBench and static analysis to characterize
Docker images and I/O patterns. Among other ndings,
our analysis shows that (1) copying package data ac-
counts for 76% of container startup time, (2) only 6.4%
of the copied data is actually needed for containers to
begin useful work, and (3) simple block-deduplication
across images achieves better compression rates than
gzip compression of individual images.
Second, we use our ndings to build Slacker, a new

Docker storage driver that achieves fast container distri-
bution by utilizing specialized storage-system support at
multiple layers of the stack. Specically, Slacker uses
the snapshot and clone capabilities of our backend stor-
age server (a Tintri VMstore [6]) to dramatically reduce
the cost of common Docker operations. Rather than pre-
propagate whole container images, Slacker lazily pulls
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image data as necessary, drastically reducing network
I/O. Slacker also utilizes modications we make to the
Linux kernel in order to improve cache sharing.
The result of using these techniques is a massive im-

provement in the performance of common Docker oper-
ations; image pushes become 153× faster and pulls be-
come 72× faster. Common Docker use cases involving
these operations greatly benet. For example, Slacker
achieves a 5× median speedup for container deployment
cycles and a 20× speedup for development cycles.
We also build MultiMake, a new container-based build

tool that showcases the benets of Slacker’s fast startup.
MultiMake produces 16 different binaries from the same
source code, using different containerized GCC releases.
With Slacker, MultiMake experiences a 10× speedup.
The rest of this paper is organized as follows. First,

we describe the existing Docker framework (§2). Next,
we introduce HelloBench (§3), which we use to analyze
Docker workload characteristics (§4). We use these nd-
ings to guide our design of Slacker (§5). Finally, we
evaluate Slacker (§6), present MultiMake (§7), discuss
related work (§8), and conclude (§9).

2 Docker Background
We now describe Docker’s framework (§2.1), storage in-
terface (§2.2), and default storage driver (§2.3).

2.1 Version Control for Containers
While Linux has always used virtualization to isolate
memory, cgroups [37] (Linux’s container implementa-
tion) virtualizes a broader range of resources by provid-
ing six new namespaces, for le-system mount points,
IPC queues, networking, host names, process IDs, and
user IDs [19]. Linux cgroups were rst released in
2007, but widespread container use is a more recent phe-
nomenon, coinciding with the availability of new con-
tainer management tools such as Docker (released in
2013). With Docker, a single command such as “docker
run -it ubuntu bash” will pull Ubuntu packages
from the Internet, initialize a le system with a fresh
Ubuntu installation, perform the necessary cgroup setup,
and return an interactive bash session in the environment.
This example command has several parts. First,

“ubuntu” is the name of an image. Images are read-
only copies of le-system data, and typically contain ap-
plication binaries, a Linux distribution, and other pack-
ages needed by the application. Bundling applications in
Docker images is convenient because the distributor can
select a specic set of packages (and their versions) that
will be used wherever the application is run. Second,
“run” is an operation to perform on an image; the run
operation creates an initialized root le system based on
the image to use for a new container. Other operations
include “push” (for publishing new images) and “pull”
(for fetching published images from a central location);

an image is automatically pulled if the user attempts to
run a non-local image. Third, “bash” is the program to
start within the container; the user may specify any exe-
cutable in the given image.
Docker manages image data much the same way tradi-

tional version-control systems manage code. This model
is suitable for two reasons. First, there may be differ-
ent branches of the same image (e.g., “ubuntu:latest” or
“ubuntu:12.04”). Second, images naturally build upon
one another. For example, the Ruby-on-Rails image
builds on the Rails image, which in turn builds on the
Debian image. Each of these images represent a new
commit over a previous commit; there may be additional
commits that are not tagged as runnable images. When
a container executes, it starts from a committed image,
but les may be modied; in version-control parlance,
these modications are referred to as unstaged changes.
The Docker “commit” operation turns a container and its
modications into a new read-only image. In Docker, a
layer refers to either the data of a commit or to the un-
staged changes of a container.
Docker worker machines run a local Docker daemon.

New containers and images may be created on a spe-
cic worker by sending commands to its local daemon.
Image sharing is accomplished via centralized registries
that typically run on machines in the same cluster as the
Docker workers. Images may be published with a push
from a daemon to a registry, and imagesmay be deployed
by executing pulls on a number of daemons in the clus-
ter. Only the layers not already available on the receiv-
ing end are transferred. Layers are represented as gzip-
compressed tar les over the network and on the registry
machines. Representation on daemon machines is deter-
mined by a pluggable storage driver.
2.2 Storage Driver Interface
Docker containers access storage in two ways. First,
users may mount directories on the host within a con-
tainer. For example, a user running a containerized com-
piler may mount her source directory within the con-
tainer so that the compiler can read the code les and
produce binaries in the host directory. Second, contain-
ers need access to the Docker layers used to represent
the application binaries and libraries. Docker presents a
view of this application data via a mount point that the
container uses as its root le system. Container storage
and mounting is managed by a Docker storage driver;
different drivers may choose to represent layer data in
different ways. The methods a driver must implement
are shown in Table 1 (some uninteresting functions and
arguments are not shown). All the functions take a string
“id” argument that identies the layer being manipulated.
The Get function requests that the driver mount the

layer and return a path to the mount point. The mount
point returned should contain a view of not only the “id”
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Table 1: Docker Driver API.

Figure 1: Diff and ApplyDiff. Worker A is using Diff to
package local layers as compressed tars for a push. B is using
ApplyDiff to convert the tars back to the local format. Local
representation varies depending on the driver, as indicated by
the question marks.

layer, but of all its ancestors (e.g., les in the parent layer
of the “id” layer should be seen during a directory walk
of the mount point). Put unmounts a layer. Create

copies from a parent layer to create a new layer. If the
parent is NULL, the new layer should be empty. Docker
calls Create to (1) provision le systems for new con-
tainers, and (2) allocate layers to store data from a pull.
Diff and ApplyDiff are used during Docker push

and pull operations respectively, as shown in Figure 1.
When Docker is pushing a layer, Diff converts the layer
from the local representation to a compressed tar le con-
taining the les of the layer. ApplyDiff does the oppo-
site: given a tar le and a local layer it decompresses the
tar le over the existing layer.
Figure 2 shows the driver calls that are made when a

four-layer image (e.g., ubuntu) is run for the rst time.
Four layers are created during the image pull; two more
are created for the container itself. Layers A-D represent
the image. The Create for A takes a NULL parent, so
A is initially empty. The subsequent ApplyDiff call,
however, tells the driver to add the les from the pulled
tar to A. Layers B-D are each populated with two steps:
a copy from the parent (via Create), and the addition of
les from the tar (via ApplyDiff). After step 8, the pull
is complete, and Docker is ready to create a container.
It rst creates a read-only layer E-init, to which it adds
a few small initialization les, and then it creates E, the
le system the container will use as its root.

2.3 AUFS Driver Implementation
The AUFS storage driver is a common default for Docker
distributions. This driver is based on the AUFS le sys-
tem (Another Union File System). Union le systems do
not store data directly on disk, but rather use another le
system (e.g., ext4) as underlying storage.

Figure 2: Cold Run Example. The driver calls that are
made when a four-layer image is pulled and run are shown.
Each arrow represents a call (Create or ApplyDiff), and the
nodes to which an arrow connects indicate arguments to the
call. Thick-bordered boxes represent layers. Integers indicate
the order in which functions are called.

A union mount point provides a view of multiple di-
rectories in the underlying le system. AUFS is mounted
with a list of directory paths in the underlyingle system.
During path resolution, AUFS iterates through the list of
directories; the rst directory to contain the path being
resolved is chosen, and the inode from that directory is
used. AUFS supports specialwhiteout les to make it ap-
pear that certain les in lower layers have been deleted;
this technique is analogous to deletion markers in other
layered systems (e.g., LSM databases [29]). AUFS also
supports COW (copy-on-write) at le granularity; upon
write, les in lower layers are copied to the top layer be-
fore the write is allowed to proceed.
The AUFS driver takes advantage the AUFS le sys-

tem’s layering and copy-on-write capabilities while also
accessing the le system underlying AUFS directly. The
driver creates a new directory in the underlying le sys-
tem for each layer it stores. An ApplyDiff simple untars
the archived les into the layer’s directory. Upon a Get
call, the driver uses AUFS to create a unioned view of a
layer and its ancestors. The driver uses AUFS’s COW to
efciently copy layer data when Create is called. Un-
fortunately, as we will see, COW at le granularity has
some performance problems (§4.3).

3 HelloBench
We present HelloBench, a new benchmark designed to
exercise container startup. HelloBench directly executes
Docker commands, so pushes, pulls, and runs can be
measured independently. The benchmark consists of two
parts: (1) a collection of container images and (2) a test
harness for executing simple tasks in said containers.
The images were the latest available from the Docker
Hub library [3] as of June 1, 2015. HelloBench con-
sists of 57 images of the 72 available at the time. We
selected images that were runnable with minimal cong-
uration and do not depend on other containers. For ex-
ample, WordPress is not included because a WordPress
container depends on a separate MySQL container.
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Table 2: HelloBench Workloads. HelloBench runs 57
different container images pulled from the Docker Hub.

Table 2 lists the images used by HelloBench. We di-
vide the images into six broad categories as shown. Some
classications are somewhat subjective; for example, the
Django image contains a web server, but most would
probably consider it a web framework.
The HelloBench harness measures startup time by ei-

ther running the simplest possible task in the container
or waiting until the container reports readiness. For the
language containers, the task typically involves compil-
ing or interpreting a simple “hello world” program in the
applicable language. The Linux distro images execute
a very simple shell command, typically “echo hello”.
For long-running servers (particularly databases and web
servers), HelloBench measures the time until the con-
tainer writes an “up and ready” (or similar) message to
standard out. For particularly quiet servers, an exposed
port is polled until there is a response.
HelloBench images each consist of many layers, some

of which are shared between containers. Figure 3 shows
the relationships between layers. Across the 57 images,
there are 550 nodes and 19 roots. In some cases, a tagged
image serves as a base for other tagged images (e.g.,
“ruby” is a base for “rails”). Only one image consists of
a single layer: “alpine”, a particularly lightweight Linux
distribution. Application images are often based on non-
latest Linux distribution images (e.g., older versions of
Debian); that is why multiple images will often share a
common base that is not a solid black circle.
In order to evaluate how representative HelloBench is

of commonly used images, we counted the number of
pulls to every Docker Hub library image [3] on January
15, 2015 (7 months after the original HelloBench images
were pulled). During this time, the library grew from
72 to 94 images. Figure 4 shows pulls to the 94 im-
ages, broken down by HelloBench category. HelloBench
is representative of popular images, accounting for 86%
of all pulls. Most pulls are to Linux distribution bases
(e.g., BusyBox and Ubuntu). Databases (e.g., Redis and
MySQL) and web servers (e.g., nginx) are also popular.
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Figure 3: HelloBench Hierarchy. Each circle repre-
sents a layer. Filled circles represent layers tagged as runnable
images. Deeper layers are to the left.

4 Workload Analysis
In this section, we analyze the behavior and performance
of the HelloBench workloads, asking four questions:
how large are the container images, and howmuch of that
data is necessary for execution (§4.1)? How long does
it take to push, pull, and run the images (§4.2)? How
is image data distributed across layers, and what are the
performance implications (§4.3)? And how similar are
access patterns across different runs (§4.4)?
All performance measurements are taken from a vir-

tual machine running on an PowerEdge R720 host with
2 GHz Xeon CPUs (E5-2620). The VM is provided 8 GB
of RAM, 4 CPU cores, and a virtual disk backed by a
Tintri T620 [1]. The server and VMstore had no other
load during the experiments.
4.1 Image Data
We begin our analysis by studying the HelloBench im-
ages pulled from the Docker Hub. For each image, we
take three measurements: its compressed size, uncom-
pressed size, and the number of bytes read from the im-
age when HelloBench executes. We measure reads by
running the workloads over a block device traced with
blktrace [11]. Figure 5 shows a CDF of these three
numbers. We observe that only 20 MB of data is read
on median, but the median image is 117 MB compressed
and 329 MB uncompressed.
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the number of reads in the HelloBench workloads and for the
uncompressed and compressed sizes of the HelloBench images.

We break down the read and size numbers by category
in Figure 6. The largest relative waste is for distro work-
loads (30× and 85× for compressed and uncompressed
respectively), but the absolute waste is also smallest for
this category. Absolute waste is highest for the language
and web framework categories. Across all images, only
27MB is read on average; the average uncompressed im-
age is 15× larger, indicating only 6.4% of image data is
needed for container startup.
Although Docker images are much smaller when com-

pressed as gzip archives, this format is not suitable for
running containers that need to modify data. Thus, work-
ers typically store data uncompressed, which means that
compression reduces network I/O but not disk I/O. Dedu-
plication is a simple alternative to compression that is
suitable for updates. We scan HelloBench images for
redundancy between blocks of les to compute the ef-
fectiveness of deduplication. Figure 7 compares gzip
compression rates to deduplication, at both le and block
(4 KB) granularity. Bars represent rates over single im-
ages. Whereas gzip achieves rates between 2.3 and 2.7,
deduplication does poorly on a per-image basis. Dedu-
plication across all images, however, yields rates of 2.6
(le granularity) and 2.8 (block granularity).
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Implications: the amount of data read during exe-
cution is much smaller than the total image size, either
compressed or uncompressed. Image data is sent over
the network compressed, then read and written to local
storage uncompressed, so overheads are high for both
network and disk. One way to decrease overheads would
be to build leaner images with fewer installed packages.
Alternatively, image data could be lazily pulled as a con-
tainer needs it. We also saw that global block-based
deduplication is an efcient way to represent image data,
even compared to gzip compression.

4.2 Operation Performance
Once built, containerized applications are often deployed
as follows: the developer pushes the application image
once to a central registry, a number of workers pull the
image, and each worker runs the application. We mea-
sure the latency of these operations with HelloBench, re-
porting CDFs in Figure 8. Median times for push, pull,
and run are 61, 16, and 0.97 seconds respectively.
Figure 9 breaks down operation times by workload

category. The pattern holds in general: runs are fast
while pushes and pulls are slow. Runs are fastest for the
distro and language categories (0.36 and 1.9 seconds re-
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spectively). The average times for push, pull, and run
are 72, 20, and 6.1 seconds respectively. Thus, 76% of
startup time will be spent on pull when starting a new
image hosted on a remote registry.

As pushes and pulls are slowest, we want to know
whether these operations are merely high latency, or
whether they are also costly in a way that limits through-
put even if multiple operations run concurrently. To
study scalability, we concurrently push and pull varying
numbers of articial images of varying sizes. Each im-
age contains a single randomly generated le. We use
articial images rather than HelloBench images in order
to create different equally-sized images. Figure 10 shows
that the total time scales roughly linearly with the num-
ber of images and image size. Thus, pushes and pulls are
not only high-latency, they consume network and disk
resources, limiting scalability.

Implications: container startup time is dominated by
pulls; 76% of the time spent on a new deployment will
be spent on the pull. Publishing images with push will
be painfully slow for programmers who are iteratively
developing their application, though this is likely a less
frequent case than multi-deployment of an already pub-
lished image. Most push work is done by the storage
driver’s Diff function, and most pull work is done by
the ApplyDiff function (§2.2). Optimizing these driver
functions would improve distribution performance.
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4.3 Layers
Image data is typically split across a number of layers.
The AUFS driver composes the layers of an image at run-
time to provide a container a complete view of the le
system. In this section, we study the performance im-
plications of layering and the distribution of data across
layers. We start by looking at two performance prob-
lems (Figure 11) to which layered le systems are prone:
lookups to deep layers and small writes to non-top layers.
First, we create (and compose with AUFS) 16 layers,

each containing 1K empty les. Then, with a cold cache,
we randomly open 10 les from each layer, measuring
the open latency. Figure 11a shows the result (an aver-
age over 100 runs): there is a strong correlation between
layer depth and latency. Second, we create two layers,
the bottom of which contains large les of varying sizes.
We measure the latency of appending one byte to a le
stored in the bottom layer. As shown by Figure 11b, the
latency of small writes correspond to the le size (not the
write size), as AUFS does COW at le granularity. Be-
fore a le is modied, it is copied to the topmost layer, so
writing one byte can take over 20 seconds. Fortunately,
small writes to lower layers induce a one-time cost per
container; subsequent writes will be faster because the
large le will have been copied to the top layer.
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Having considered how layer depth corresponds with
performance, we now ask, how deep is data typically
stored for the HelloBench images? Figure 12 shows the
percentage of total data (in terms of number of les,
number of directories, and size in bytes) at each depth
level. The three metrics roughly correspond. Some data
is as deep as level 28, but mass is more concentrated to
the left. Over half the bytes are at depth of at least nine.
We now consider the variance in how data is dis-

tributed across layers, measuring, for each image, what
portion (in terms of bytes) is stored in the topmost layer,
bottommost layer, and whatever layer is largest. Fig-
ure 13 shows the distribution: for 79% of images, the
topmost layer contains 0% of the image data. In con-
trast, 27% of the data resides in the bottommost layer in
the median case. A majority of the data typically resides
in a single layer.
Implications: for layered le systems, data stored in

deeper layers is slower to access. Unfortunately, Docker
images tend to be deep, with at least half of le data at
depth nine or greater. Flattening layers is one technique
to avoid these performance problems; however, atten-
ing could potentially require additional copying and void
the other COW benets that layered le systems provide.
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Figure 14: Repeated I/O. The bars represent total I/O
done for the average container workload in each category. Bar
sections indicate read/write ratios. Reads that could have po-
tentially been serviced by a cache populated by previous con-
tainer execution are dark gray.

4.4 Caching
We now consider the case where the same worker runs
the same image more than once. In particular, we want
to know whether I/O from the rst execution can be used
to prepopulate a cache to avoid I/O on subsequent runs.
Towards this end, we run every HelloBench workload
twice consecutively, collecting block traces each time.
We compute the portion of reads during the second run
that could potentially benet from cache state populated
by reads during the rst run.
Figure 14 shows the reads and writes for the second

run. Reads are broken into hits and misses. For a given
block, only the rst read is counted (we want to study
the workload itself, not the characteristics of the specic
cache beneath which we collected the traces). Across
all workloads, the read/write ratio is 88/12. For distro,
database, and language workloads, the workload consists
almost completely of reads. Of the reads, 99% could po-
tentially be serviced by cached data from previous runs.
Implications: The same data is often read during dif-

ferent runs of the same image, suggesting cache sharing
will be useful when the same image is executed on the
same machine many times. In large clusters with many
containerized applications, repeated executions will be
unlikely unless container placement is highly restricted.
Also, other goals (e.g., load balancing and fault isolation)
may make colocation uncommon. However, repeated ex-
ecutions are likely common for containerized utility pro-
grams (e.g., python or gcc) and for applications running
in small clusters. Our results suggest these latter scenar-
ios would benet from cache sharing.

5 Slacker
In this section, we describe Slacker, a new Docker stor-
age driver. Our design is based on our analysis of con-
tainer workloads and ve goals: (1) make pushes and
pulls very fast, (2) introduce no slowdown for long-
running containers, (3) reuse existing storage systems
whenever possible, (4) utilize the powerful primitives

7
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Figure 15: Slacker Architecture. Most of our work was
in the gray boxes, the Slacker storage plugin. Workers and reg-
istries represent containers and images as les and snapshots
respectively on a shared Tintri VMstore server.

Figure 16: Driver Stacks. Slacker uses one ext4 le
system per container. AUFS containers share one ext4 instance.

provided by a modern storage server, and (5) make no
changes to the Docker registry or daemon except in the
storage-driver plugin (§2.2).
Figure 15 illustrates the architecture of a Docker clus-

ter running Slacker. The design is based on centralized
NFS storage, shared between all Docker daemons and
registries. Most of the data in a container is not needed
to execute the container, so Docker workers only fetch
data lazily from shared storage as needed. For NFS stor-
age, we use a Tintri VMstore server [6]. Docker images
are represented by VMstore’s read-only snapshots. Reg-
istries are no longer used as hosts for layer data, and
are instead used only as name servers that associate im-
age metadata with corresponding snapshots. Pushes and
pulls no longer involve large network transfers; instead,
these operations simply share snapshot IDs. Slacker uses
VMstore snapshot to convert a container into a share-
able image and clone to provision container storage
based on a snapshot ID pulled from the registry. In-
ternally, VMstore uses block-level COW to implement
snapshot and clone efciently.
Slacker’s design is based on our analysis of container

workloads; in particular, the following four design sub-
sections (§5.1 to §5.4) correspond to the previous four
analysis subsections (§4.1 to §4.4). We conclude by
discussing possible modications to the Docker frame-
work itself that would provide better support for non-
traditional storage drivers such as Slacker (§5.5).

5.1 Storage Layers
Our analysis revealed that only 6.4% of the data trans-
ferred by a pull is actually needed before a container can
begin useful work (§4.1). In order to avoid wasting I/O
on unused data, Slacker stores all container data on an
NFS server (a Tintri VMstore) shared by all workers;
workers lazily fetch only the data that is needed. Fig-
ure 16a illustrates the design: storage for each container
is represented as a single NFS le. Linux loopbacks
(§5.4) are used to treat each NFS le as a virtual block
device, which can be mounted and unmounted as a root
le system for a running container. Slacker formats each
NFS le as an ext4 le system.
Figure 16b compares the Slacker stack with the AUFS

stack. Although both use ext4 (or some other local le
system) as a key layer, there are three important differ-
ences. First, ext4 is backed by a network disk in Slacker,
but by a local disk with AUFS. Thus, Slacker can lazily
fetch data over the network, while AUFS must copy all
data to the local disk before container startup.
Second, AUFS does COW above ext4 at the le level

and is thus susceptible to the performance problems
faced by layered le systems (§4.3). In contrast, Slacker
layers are effectively attened at the le level. How-
ever, Slacker still benets from COW by utilizing block-
level COW implemented within VMstore (§5.2). Fur-
thermore, VMstore deduplicates identical blocks inter-
nally, providing further space savings between contain-
ers running on different Docker workers.
Third, AUFS uses different directories of a single ext4

instance as storage for containers, whereas Slacker backs
each container by a different ext4 instance. This differ-
ence presents an interesting tradeoff because each ext4
instance has its own journal. With AUFS, all containers
will share the same journal, providing greater efciency.
However, journal sharing is known to cause priority in-
version that undermines QoS guarantees [48], an impor-
tant feature of multi-tenant platforms such as Docker.
Internal fragmentation [10, Ch. 17] is another potential
problem when NFS storage is divided into many small,
non-full ext4 instances. Fortunately, VMstore les are
sparse, so Slacker does not suffer from this issue.

5.2 VMstore Integration
Earlier, we found that Docker pushes and pulls are quite
slow compared to runs (§4.2). Runs are fast because stor-
age for a new container is initialized from an image using
the COW functionality provided by AUFS. In contrast,
push and pull are slow with traditional drivers because
they require copying large layers between different ma-
chines, so AUFS’s COW functionality is not usable. Un-
like other Docker drivers, Slacker is built on shared stor-
age, so it is conceptually possible to do COW sharing
between daemons and registries.

8
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Figure 17: Push/Pull Timelines. Slacker implements
Diff and ApplyDiff with snapshot and clone operations.

Fortunately, VMstore extends its basic NFS interface
with an auxiliary REST-based API that, among other
things, includes two related COW functions, snapshot
and clone. The snapshot call creates a read-only snap-
shot of an NFS le, and clone creates an NFS le from
a snapshot. Snapshots do not appear in the NFS names-
pace, but do have unique IDs. File-level snapshot and
clone are powerful primitives that have been used to
build more efcient journaling, deduplication, and other
common storage operations [46]. In Slacker, we use
snapshot and clone to implement Diff and Apply-

Diff respectively. These driver functions are respec-
tively called by Docker push and pull operations (§2.2).
Figure 17a shows how a daemon running Slacker in-

teracts with a VMstore and Docker registry upon push.
Slacker asks VMstore to create a snapshot of the NFS
le that represents the layer. VMstore takes the snap-
shot, and returns a snapshot ID (about 50 bytes), in this
case “212”. Slacker embeds the ID in a compressed tar
le and sends it to the registry. Slacker embeds the ID
in a tar for backwards compatibility: an unmodied reg-
istry expects to receive a tar le. A pull, shown in Fig-
ure 17b, is essentially the inverse. Slacker receives a
snapshot ID from the registry, from which it can clone
NFS les for container storage. Slacker’s implementa-
tion is fast because (a) layer data is never compressed or
uncompressed, and (b) layer data never leaves the VM-
store, so only metadata is sent over the network.
The names “Diff” and “ApplyDiff” are slight mis-

nomers given Slacker’s implementation. In particular,
Diff(A, B) is supposed to return a delta from which
another daemon, which already has A, could reconstruct
B. With Slacker, layers are effectively attened at the
namespace level. Thus, instead of returning a delta,
Diff(A, B) returns a reference from which another
worker could obtain a clone of B, with or without A.
Slacker is partially compatible with other daemons

running non-Slacker drivers. When Slacker pulls a tar,
it peeks at the rst few bytes of the streamed tar be-
fore processing it. If the tar contains layer les (instead
of an embedded snapshot), Slacker falls back to simply
decompressing instead cloning. Thus, Slacker can pull
images that were pushed by other drivers, albeit slowly.
Other drivers, however, will not be able to pull Slacker
images, because they will not know how to process the
snapshot ID embedded in the tar le.

5.3 Optimizing Snapshot and Clone
Images often consist of many layers, with over half the
HelloBench data being at a depth of at least nine (§4.3).
Block-level COW has inherent performance advantages
over le-level COW for such data, as traversing block-
mapping indices (which may be attened) is simpler than
iterating over the directories of an underlyingle system.
However, deeply-layered images still pose a challenge

for Slacker. As discussed (§5.2), Slacker layers are at-
tened, so mounting any one layer will provide a complete
view of a le system that could be used by a container.
Unfortunately, the Docker framework has no notion of
attened layers. When Docker pulls an image, it fetches
all the layers, passing each to the driver with ApplyDiff.
For Slacker, the topmost layer alone is sufcient. For 28-
layer images (e.g., jetty), the extra clones are costly.
One of our goals was to work within the existing

Docker framework, so instead of modifying the frame-
work to eliminate the unnecessary driver calls, we opti-
mize them with lazy cloning. We found that the primary
cost of a pull is not the network transfer of the snap-
shot tar les, but the VMstore clone. Although clones
take a fraction of a second, performing 28 of them nega-
tively impacts latency. Thus, instead of representing ev-
ery layer as an NFS le, Slacker (when possible) repre-
sents them with a piece of local metadata that records
a snapshot ID. ApplyDiff simply sets this metadata in-
stead of immediately cloning. If at some point Docker
calls Get on that layer, Slacker will at that point perform
a real clone before the mount.
We also use the snapshot-ID metadata for snapshot

caching. In particular, Slacker implements Create,
which makes a logical copy of a layer (§2.2) with a snap-
shot immediately followed by a clone (§5.2). If many
containers are created from the same image, Createwill
be called many times on the same layer. Instead of do-
ing a snapshot for each Create, Slacker only does it the
rst time, reusing the snapshot ID subsequent times. The
snapshot cache for a layer is invalidated if the layer is
mounted (once mounted, the layer could change, making
the snapshot outdated).
The combination of snapshot caching and lazy cloning

can make Create very efcient. In particular, copying
from a layer A to layer B may only involve copying from
A’s snapshot cache entry to B’s snapshot cache entry,
with no special calls to VMstore. In Figure 2 from the
background section (§2.2), we showed the 10 Create

and ApplyDiff calls that occur for the pull and run of
a simple four-layer image. Without lazy caching and
snapshot caching, Slacker would need to perform 6 snap-
shots (one for each Create) and 10 clones (one for each
Create or ApplyDiff). With our optimizations, Slacker
only needs to do one snapshot and two clones. In step 9,
Create does a lazy clone, but Docker calls Get on the

9
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Figure 18: Loopback Bitmaps. Containers B and C are
started from the same image, A. Bitmaps track differences.

E-init layer, so a real clone must be performed. For step
10, Create must do both a snapshot and clone to pro-
duce and mount layer E as the root for a new container.

5.4 Linux Kernel Modications
Our analysis showed that multiple containers started
from the same image tend to read the same data, suggest-
ing cache sharing could be useful (§4.4). One advantage
of the AUFS driver is that COW is done above an under-
lying le system. This means that different containers
may warm and utilize the same cache state in that under-
lying le system. Slacker does COW within VMstore,
beneath the level of the local le system. This means that
two NFS les may be clones (with a few modications)
of the same snapshot, but cache state will not be shared,
because the NFS protocol is not built around the concept
of COW sharing. Cache deduplication could help save
cache space, but this would not prevent the initial I/O.
It would not be possible for deduplication to realize two
blocks are identical until both are transferred over the
network from the VMstore. In this section, we describe
our technique to achieve sharing in the Linux page cache
at the level of NFS les.
In order to achieve client-side cache sharing between

NFS les, we modify the layer immediately above the
NFS client (i.e., the loopback module) to add awareness
of VMstore snapshots and clones. In particular, we use
bitmaps to track differences between similar NFS les.
All writes to NFS les are via the loopback module,
so the loopback module can automatically update the
bitmaps to record new changes. Snapshots and clones
are initiated by the Slacker driver, so we extend the loop-
back API so that Slacker can notify the module of COW
relationships between les.
Figure 18 illustrates the techniquewith a simple exam-

ple: two containers, B and C, are started from the same
image, A. When starting the containers, Docker rst cre-
ates two init layers (B-init and C-init) from the base (A).
Docker creates a few small init les in these layers. Note
that the “m” is modied to an “x” and “y” in the init lay-
ers, and that the zeroth bits are ipped to “1” to mark the
change. Docker the creates the topmost container layers,
B and C from B-init and C-init. Slacker uses the new
loopback API to copy the B-init and C-init bitmaps to B
and C respectively. As shown, the B and C bitmaps ac-
cumulate more mutations as the containers run and write

data. Docker does not explicitly differentiate init layers
from other layers as part of the API, but Slacker can in-
fer layer type because Docker happens to use an “-init”
sufx for the names of init layers.
Now suppose that container B reads block 3. The

loopback module sees an unmodied “0” bit at position
3, indicating block 3 is the same in les B and A. Thus,
the loopback module sends the read to A instead of B,
thus populating A’s cache state. Now suppose C reads
block 3. Block 3 of C is also unmodied, so the read is
again redirected to A. Now, C can benet from the cache
state of A, which B populated with its earlier read.
Of course, for blocks where B and C differ from A, it

is important for correctness that reads are not redirected.
Suppose B reads block 1 and then C reads from block
1. In this case, B’s read will not populate the cache since
B’s data differs fromA. Similarly, suppose B reads block
2 and then C reads from block 2. In this case, C’s read
will not utilize the cache since C’s data differs from A.
5.5 Docker Framework Discussion
One our goals was to make no changes to the Docker
registry or daemon, except within the pluggable stor-
age driver. Although the storage-driver interface is quite
simple, it proved sufcient for our needs. There are,
however, a few changes to the Docker framework that
would have enabled a more elegant Slacker implementa-
tion. First, it would be useful for compatibility between
drivers if the registry could represent different layer for-
mats (§5.2). Currently, if a non-Slacker layer pulls a
layer pushed by Slacker, it will fail in an unfriendly way.
Format tracking could provide a friendly error message,
or, ideally, enable hooks for automatic format conver-
sion. Second, it would be useful to add the notion of
attened layers. In particular, if a driver could inform the
framework that a layer is at, Docker would not need to
fetch ancestor layers upon a pull. This would eliminate
our need for lazy cloning and snapshot caching (§5.3).
Third, it would be convenient if the framework explicitly
identied init layers so Slacker would not need to rely on
layer names as a hint (§5.4).

6 Evaluation
We use the same hardware for evaluation as we did for
our analysis (§4). For a fair comparison, we also use the
same VMstore for Slacker storage that we used for the
virtual disk of the VM running the AUFS experiments.
6.1 HelloBench Workloads
Earlier, we saw that with HelloBench, push and pull
times dominate while run times are very short (Figure 9).
We repeat that experiment with Slacker, presenting the
new results alongside the AUFS results in Figure 19. On
average, the push phase is 153× faster and the pull phase
is 72× faster, but the run phase is 17% slower (the AUFS
pull phase warms the cache for the run phase).
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Different Docker operations are utilized in different
scenarios. One use case is the development cycle: after
each change to code, a developer pushes the application
to a registry, pulls it to multiple worker nodes, and then
runs it on the nodes. Another is the deployment cycle:
an infrequently-modied application is hosted by a reg-
istry, but occasional load bursts or rebalancing require a
pull and run on new workers. Figure 20 shows Slacker’s
speedup relative to AUFS for these two cases. For the
median workload, Slacker improves startup by 5.3× and
20× for the deployment and development cycles respec-
tively. Speedups are highly variable: nearly all work-
loads see at least modest improvement, but 10% of work-
loads improve by at least 16× and 64× for deployment
and development respectively.

6.2 Long-Running Performance
In Figure 19, we saw that while pushes and pulls are
much faster with Slacker, runs are slower. This is ex-
pected, as runs start before any data is transferred, and
binary data is only lazily transferred as needed. We now
run several long-running container experiments; our goal
is to show that once AUFS is done pulling all image data
and Slacker is done lazily loading hot image data, AUFS
and Slacker have equivalent performance.
For our evaluation, we select two databases and two

web servers. For all experiments, we execute for ve
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Figure 21: Long-Running Workloads. Left: the ratio
of Slacker’s to AUFS’s throughput is shown; startup time is in-
cluded in the average. Bars are labeled with Slacker’s average
operations/second. Right: startup delay is shown.

minutes, measuring operations per second. Each exper-
iment starts with a pull. We evaluate the PostgreSQL
database using pgbench, which is “loosely based on
TPC-B” [5]. We evaluate Redis, an in-memory database,
using a custom benchmark that gets, sets, and updates
keys with equal frequency. We evaluate the Apache web
server, using the wrk [4] benchmark to repeatedly fetch a
static page. Finally, we evaluate io.js, a JavaScript-based
web server similar to node.js, using the wrk benchmark
to repeatedly fetch a dynamic page.
Figure 21a shows the results. AUFS and Slacker

usually provide roughly equivalent performance, though
Slacker is somewhat faster for Apache. Although the
drivers are similar with regard to long-term performance,
Figure 21b shows Slacker containers start processing re-
quests 3-19× sooner than AUFS.
6.3 Caching
We have shown that Slacker provides much faster startup
times relative to AUFS (when a pull is required) and
equivalent long-term performance. One scenario where
Slacker is at a disadvantage is when the same short-
running workload is run many times on the same ma-
chine. For AUFS, the rst run will be slow (as a pull
is required), but subsequent runs will be fast because
the image data will be stored locally. Moreover, COW
is done locally, so multiple containers running from the
same start image will benet from a shared RAM cache.
Slacker, on the other hand, relies on the Tintri VM-

store to do COW on the server side. This design enables
rapid distribution, but one downside is that NFS clients
are not naturally aware of redundancies between les
without our kernel changes. We compare our modied
loopback driver (§5.4) to AUFS as a means of sharing
cache state. To do so, we run each HelloBench work-
load twice, measuring the latency of the second run (af-
ter the rst has warmed the cache). We compare AUFS
to Slacker, with and without kernel modications.
Figure 22 shows a CDF of run times for all the work-

loads with the three systems (note: these numbers were
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collected with a VM running on a ProLiant DL360p
Gen8). Although AUFS is still fastest (with median runs
of 0.67 seconds), the kernel modications signicantly
speed up Slacker. The median run time of Slacker alone
is 1.71 seconds; with kernel modications to the loop-
back module it is 0.97 seconds. Although Slacker avoids
unnecessary network I/O, the AUFS driver can directly
cache ext4 le data, whereas Slacker caches blocks be-
neath ext4, which likely introduces some overhead.

6.4 Scalability
Earlier (§4.2), we saw that AUFS scales poorly for
pushes and pulls with regard to image size and the num-
ber of images beingmanipulated concurrently. We repeat
our earlier experiment (Figure 10) with Slacker, again
creating synthetic images and pushing or pulling varying
numbers of these concurrently.
Figure 23 shows the results: image size no longer mat-

ters as it does for AUFS. Total time still correlates with
the number of images being processed simultaneously,
but the absolute times are much better; even with 32 im-
ages, push and pull times are at most about two seconds.
It is also worth noting that push times are similar to pull
times for Slacker, whereas pushes were much more ex-
pensive for AUFS. This is because AUFS uses compres-
sion for its large data transfers, and compression is typi-
cally more costly than decompression.
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Figure 24: GCC Version Testing. Left: run time of a
C program doing vector arithmetic. Each point represents per-
formance under a different GCC release, from 4.8.0 (Mar ‘13)
to 5.3 (Dec ‘15). Releases in the same series have a common
style (e.g., 4.8-series releases are solid gray). Right: perfor-
mance of MultiMake is shown for both drivers. Time is broken
into pulling the image, running the image (compiling), testing
the binaries, and deleting the images from the local daemon.

7 Case Study: MultiMake
When starting Dropbox, Drew Houston (co-founder and
CEO) found that building a widely-deployed client in-
volved a lot of “grungy operating-systemswork” to make
the code compatible with the idiosyncrasies of various
platforms [18]. For example, some bugs would only
manifest with the Swedish version of Windows XP Ser-
vice Pack 3, whereas other very similar deployments
(including the Norwegian version) would be unaffected.
One way to avoid some of these bugs is to broadly
test software in many different environments. Several
companies provide containerized integration-testing ser-
vices [33, 39], including for fast testing of web applica-
tions against dozens of releases of of Chrome, Firefox,
Internet Explorer, and other browsers [36]. Of course,
the breadth of such testing is limited by the speed at
which different test environments can be provisioned.
We demonstrate the usefulness of fast container pro-

visioning for testing with a new tool, MultiMake. Run-
ning MultiMake on a source directory builds 16 different
versions of the target binary using the last 16 GCC re-
leases. Each compiler is represented by a Docker im-
age hosted by a central registry. Comparing binaries
has many uses. For example, certain security checks
are known to be optimized away by certain compiler re-
leases [44]. MultiMake enables developers to evaluate
the robustness of such checks across GCC versions.
Another use for MultiMake is to evaluate the perfor-

mance of code snippets against different GCC versions,
which employ different optimizations. As an example,
we use MultiMake on a simple C program that does 20M
vector arithmetic operations, as follows:

for (int i=0; i<256; i++) {

a[i] = b[i] + c[i] * 3;

}
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Figure 24a shows the result: most recent GCC re-
leases optimize the vector operations well, but the but
the code generated by the 4.6- and 4.7-series compilers
takes about 50% longer to execute. GCC 4.8.0 produces
fast code, even though it was released before some of the
slower 4.6 and 4.7 releases, so some optimizations were
clearly not backported. Figure 24b shows that collecting
this data is 9.5× faster with Slacker (68 seconds) than
with the AUFS driver (646 seconds), as most of the time
is spent pulling with AUFS. Although all the GCC im-
ages have a common Debian base (which must only be
pulled once), the GCC installations represent most of the
data, which AUFS pulls every time. Cleanup is another
operation that is more expensive for AUFS than Slacker.
Deleting a layer in AUFS involves deleting thousands of
small ext4 les, whereas deleting a layer in Slacker in-
volves deleting one large NFS le.
The ability to rapidly run different versions of code

could benet other tools beyond MultiMake. For ex-
ample, git bisect nds the commit that introduced
a bug by doing a binary search over a range of com-
mits [23]. Alongside container-based automated build
systems [35], a bisect tool integrated with Slacker could
very quickly search over a large number of commits.

8 Related Work
Work optimizing the multi-deployment of disk images is
similar to ours, as the ext4-formatted NFS les used by
Slacker resemble virtual-disk images. Hibler et al. [16]
built Frisbee, a system that optimizes differential image
updates by using techniques based on le-system aware-
ness (e.g., Frisbee does not consider blocks that are un-
used by the le system). Wartel et al. [45] compare
multiple methods of lazily distributing virtual-machine
images from a central repository (much like a Docker
registry). Nicolae et al. [28] studied image deployment
and found “prepropagation is an expensive step, espe-
cially since only a small part of the initial VM is actu-
ally accessed.” They further built a distributed le sys-
tem for hosting virtual machine images that supports lazy
propagation of VM data. Zhe et al. [50] built Twinkle,
a cloud-based platform for web applications that is de-
signed to handle “ash crowd events.” Unfortunately,
virtual-machines tend to be heavyweight, as they note:
“virtual device creation can take a few seconds.”
Various cluster management tools provide con-

tainer scheduling, including Kubernetes [2], Google’s
Borg [41], Facebook’s Tupperware [26], Twitter’s Au-
rora [21], and Apache Mesos [17]. Slacker is comple-
mentary to these systems; fast deployment gives cluster
managers more exibility, enabling cheap migration and
ne-tuned load balancing.
A number of techniques bear resemblance to our strat-

egy for sharing cache state and reducing redundant I/O.

VMware ESX server [43] and Linux KSM [9] (Kernel
Same-pageMerging) both scan and deduplicate memory.
While this technique saves cache space, it does not pre-
vent initial I/O. Xingbo et al. [47] also observed the prob-
lem where reads to multiple nearly identical les cause
avoidable I/O. They modied btrfs to index cache pages
by disk location, thus servicing some block reads issued
by btrfs with the page cache. Sapuntzakis et al. [32] use
dirty bitmaps for VM images to identify a subset of the
virtual-disk image blocks that must be transferred during
migration. Lagar-Cavilla et al. [20] built a “VM fork”
function that rapidly creates many clones of a running
VM. Data needed by one clone is multicast to all the
clones as a means of prefetch. Slacker would likely ben-
et from similar prefetching.

9 Conclusions
Fast startup has applications for scalable web services,
integration testing, and interactive development of dis-
tributed applications. Slacker lls a gap between two so-
lutions. Containers are inherently lightweight, but cur-
rent management systems such as Docker and Borg are
very slow at distributing images. In contrast, virtual ma-
chines are inherently heavyweight, but multi-deployment
of virtual machine images has been thoroughly studied
and optimized. Slacker provides highly efcient deploy-
ment for containers, borrowing ideas from VM image-
management, such as lazy propagation, as well as intro-
ducing new Docker-specic optimizations, such as lazy
cloning. With these techniques, Slacker speeds up the
typical deployment cycle by 5× and development cycle
by 20×. HelloBench and a snapshot [15] of the images
we use for our experiments in this paper are available
online: https://github.com/Tintri/hello-bench
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