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Abstract

We introduce Re-FUSE, a framework that provides sup-

port for restartable user-level file systems. Re-FUSE mon-

itors the user-level file-system and on a crash transparently

restarts the file system and restores its state; the restart pro-

cess is completely transparent to applications. Re-FUSE pro-

vides transparent recovery through a combination of novel

techniques, including request tagging, system-call logging,

and non-interruptible system calls. We tested Re-FUSE with

three popular FUSE file systems: NTFS-3g, SSHFS, and

AVFS. Through experimentation,we show that Re-FUSE in-

duces little performance overhead and can tolerate a wide

range of file-system crashes. More critically, Re-FUSE does

so with minimal modification of existing FUSE file systems,

thus improving robustness to crashes without mandating in-

trusive changes.

Categories and Subject Descriptors D.0 [Software]: Gen-

eral—File system Reliability

General Terms Reliability, Fault tolerance, Performance

Keywords FUSE, Restartable, User-level File Systems

1. Introduction

File system deployment remains a significant challenge

to those developing new and interesting file systems de-

signs [Ganger 2010]. Because of their critical role in the

long-termmanagement of data, organizations are sometimes

reluctant to embrace new storage technology even though

said innovations may address current needs. Similar prob-

lems exist in industry, where venture capitalists are loathe to

fund storage startups, as it is well known that it takes three to
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five years for storage products to “harden” and thus become

ready for real commercial usage [Vahdat 2010].

One reason for this reluctance to adopt new technology

is that unproven software often still has bugs in it, beyond

those that are discovered through testing [Lu 2008]. Such

“heisenbugs” [Gray 1987] often appear only in deployment,

are hard to reproduce, and can lead to system unavailability

in the form of a crash.

File system crashes are harmful for two primary reasons.

First, when a file system crashes, manual intervention is of-

ten required to repair any damage and restart the file sys-

tem; thus, crashed file systems stay down for noticeable

stretches of time and decrease availability dramatically, re-

quiring costly human time to repair. Second, crashes give

users the sense that a file system “does not work” and thus

decrease the chances for adoption.

To address this problem, we introduce Restartable FUSE

(Re-FUSE), a restartable file system layer built as an ex-

tension to the Linux FUSE user-level file system infras-

tructure [Sourceforge 2010a]. Nearly 200 FUSE file sys-

tems have already been implemented [Sourceforge 2010b,

Wikipedia 2010], indicating that the move towards user-level

file systems is significant. In this work, we add a transpar-

ent restart framework around FUSE which hides many file-

system crashes from users; Re-FUSE simply restarts the file

system and user applications continue unharmed.

Restart with Re-FUSE is based on three basic techniques.

The first is request tagging, which differentiates activities

that are being performed on the behalf of concurrent re-

quests; the second is system-call logging, which carefully

tracks the system calls issued by a user-level file system

and caches their results; the third is non-interruptible sys-

tem calls, which ensures that no user-level file-system thread

is terminated in the midst of a system call. Together, these

three techniques enable Re-FUSE to recover correctly from

a crash of a user-level file system by simply re-issuing the

calls that the FUSE file system was processing when the

crash took place; no user-level application using a user-level

file system will notice the failure, except perhaps for a small

drop in performance during the restart. Additional perfor-

mance optimizations, including page versioning and socket



buffering, are employed to lower the overheads of logging

and recovery mechanisms.

We evaluate Re-FUSE with three popular file systems,

NTFS-3g, SSHFS, and AVFS, which differ in their data-

access mechanisms, on-disk structures, and features. Less

than ten lines of code were added to each of these file sys-

tems to make them restartable, showing that the modifica-

tions required to use Re-FUSE are minimal. We tested these

file systems with both micro- and macro-benchmarks and

found that performance overhead during normal operation is

minimal. Moreover, recovery time after a crash is small, on

the order of a few hundred milliseconds in our tests.

Overall, we find that Re-FUSE successfully detects and

recovers from a wide range of fail-stop and transient failures.

By doing so, Re-FUSE increases system availability, as most

crashes no longer make the entire file system unavailable

for long periods of time. Re-FUSE thus removes one critical

barrier to the deployment of future file-system technology.

The rest of the paper is organized as follows. Section 2

gives an overview of FUSE and user-level file systems. Sec-

tion 3 discusses the essentials of a restartable user-level

file system framework. Section 4 presents Re-FUSE, and

Section 5 describes the three modified FUSE file systems.

Section 6 evaluates the robustness and performance of Re-

FUSE. Section 7 concludes the paper.

2. FUSE Background

Before delving into Re-FUSE, we first present background

on the original FUSE system. We discuss the rationale for

such a framework and present its basic architecture.

2.1 Rationale

FUSE was implemented to bridge the gap between features

that users want in a file system and those offered in kernel-

level file systems. Users want simple yet useful features on

top of their favorite kernel-level file systems. Examples of

such features are encryption, de-duplication, and accessing

files inside archives. Users also want simplified file-system

interfaces to access systems like databases, web servers, and

new web services such as Amazon S3. The simplified file-

system interface obviates the need to learn new tools and

languages to access data. Such features and interfaces are

lacking in many popular kernel-level file systems.

Kernel-level file-system developers may not be open to

the idea of adding all of the features users want in file

systems for two reasons. First, adding a new feature re-

quires a significant amount of development and debugging

effort [Zadok 2000]. Second, adding a new feature in a

tightly coupled system (such as a file system) increases the

complexity of the already-large code base. As a result, de-

velopers are likely only willing to include functionality that

will be useful to the majority of users.

FUSE enables file systems to be developed and deployed

at user level and thus simplifies the task of creating a new

file system in a number of ways. First, programmers no

longer need to have an in-depth understanding of kernel

internals (e.g., memory management, VFS, block devices,

and network layers). Second, programmers need not under-

stand how these kernel modules interact with others. Third,

programmers can easily debug user-level file systems using

standard debugging tools such as gdb [GNU 2010] and val-

grind [Nethercote 2007]. All of these improvements com-

bine to allow developers to focus on the features they want

in a particular file system.

In addition to Linux, FUSE has been developed for

FreeBSD [Creo 2010], Solaris [Open Solaris 2010], and

OS X [Google Code 2010] operating systems. Though most

of our discussion revolves around the Linux version of

FUSE, the issues faced herein are likely applicable to FUSE

within other systems.

2.2 Architecture

To better understand how FUSE file systems are different

than traditional kernel-level file systems, we begin by giv-

ing a bit of background on how kernel-level file-systems are

structured. In the majority of operating systems, requests

to file systems from applications begin at the system-call

layer and eventually are routed to the proper underlying file

system through a virtual file system (VFS) layer [Kleiman

1986]. The VFS layer provides a unified interface to imple-

ment file systems within the kernel, and thus much common

code can be removed from the file systems themselves and

performed instead within the generic VFS code. For exam-

ple, VFS code caches file-system objects, thus greatly im-

proving performance when objects are accessed frequently.

FUSE consists of two main components: the Kernel File-

system Module (KFM) and a user-space library libfuse (see

Figure 1). The KFM acts as a pseudo file system and queues

application requests that arrive through the VFS layer. The

libfuse layer exports a simplified file-system interface that

each user-level file system must implement and acts as a

liaison between user-level file systems and the KFM.

A typical application request is processed as follows.

First, the application issues a system call, which is routed

through VFS to the KFM. The KFM queues this applica-

tion request (e.g., to read a block from a file) and puts the

calling thread to sleep. The user-level file system, through

the libfuse interface, retrieves the request off of the queue

and begins to process it; in doing so, the user-level file sys-

tem may issue a number of system calls itself, for example

to read or write the local disk, or to communicate with a

remote machine via the network. When the request process-

ing is complete, the user-level file system passes the result

back through libfuse, which places it within a queue, where

the KFM can retrieve it. Finally, the KFM copies the re-

sult into the page cache, wakes the application blocked on

the request, and returns the desired data to it. Subsequent

accesses to the same block will be retrieved from the page

cache, without involving the FUSE file system.
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Figure 1. FUSE Framework. The figure presents the FUSE

framework. The user-level file system (in solid white box) is a

server process that uses libfuse to communicate with the Kernel-

level FUSE Module (KFM). The client process is the application

process invoking operations on the file system. File-system requests

are processed in the following way: (1) the application sends a

request through the KFM via the VFS layer; (2) the request gets

tagged and is put inside the request queue; (3) the user-level file-

system worker thread dequeues the request; (4) the worker services

the request and returns the response; (5) the response is added back

to the queue; (6) finally, the KFM copies the data into the page

cache before returning it to the application.

Unlike kernel file systems, where the calling thread exe-

cutes the bulk of the work, FUSE has a decoupled execution

model, in which the KFM queues application requests and a

separate user-level file system process handles them. As we

will see in subsequent sections, this decoupled model is use-

ful in the design of Re-FUSE. In addition, FUSE uses multi-

threading to improve concurrency in user-level file systems.

Specifically, the libfuse layer allows user-level file-systems

to create worker threads to concurrently process file-system

requests; as we will see in subsequent sections, such concur-

rency will complicate Re-FUSE.

The caching architecture of FUSE is also of interest. Be-

cause the KFM pretends to be a kernel file system, it must

create in-memory objects for each user-level file system ob-

ject accessed by the application. Doing so improves perfor-

mance greatly, as in the common case, cached requests can

be serviced without consulting the user-level file system.

3. Restartable User-Level File Systems

In this section, we discuss the essentials of a restartable user-

level file system framework. We present our goals, and then

discuss both our assumptions of the fault model as well as

assumptions we make about typical FUSE file systems. We

conclude by discussing some challenges a restartable system

must overcome, as well as some related approaches.

3.1 Goals

We now present our goals in building a restartable file-

system framework for FUSE. Such a framework should have

the following four properties:

Generic: A gamut of user-level file-systems exist today.

These file systems have varied underlying data-access mech-

anisms, features, and reliability guarantees. Ideally, the

framework should enable any user-level file system to be

made restartable with little or no changes.

Application-Transparent:We believe it is difficult for ap-

plications using a user-level file system to handle file-system

crashes. Expecting every application developer to change

and recompile their code to work with a restartable file-

system framework is likely untenable. Thus, any restartable

framework should be completely transparent to applications

and hide failures from them.

Lightweight: FUSE already has significant overheads com-

pared to kernel-level file systems. This additional overhead

is attributed to frequent context switching from user to ker-

nel and back as well as extra data copying [Rajgarhia 2010].

Thus, adding significant overhead on top of already slower

file-systems is not palatable; a restartable framework should

strive to minimize or remove any additional overheads.

Consistent: User-level file systems use different underlying

systems (such as databases, web servers, file systems, etc.)

to access and store their data. Each of these systems provide

different consistency guarantees. The restartable framework

should function properly with whatever underlying consis-

tency mechanisms are in use.

3.2 The Fault Model

Faults in a user-level file-system impact availability. A fault

could occur due to developermistakes, an incomplete imple-

mentation (such as missing or improper error handling), or a

variety of other reasons. On a fault, a user-level file system

becomes unavailable until it is restarted.

We believe that user-level file systems are likely to be

less reliable than kernel-level file systems, due to a num-

ber of factors. First, unlike kernel-level file systems, most

user-level file systems are written by novice programmers.

Second, no common testing infrastructure exists to detect

problems; as a result, systems are likely not stress-tested as

carefully as kernel file systems are before release. Finally, no

FUSE documentation exists to inform user-level file-system

developers about the errors, corner cases, and failure scenar-

ios that a file system should handle.

Our goal is to tolerate a broad class of faults that oc-

cur due to programming mistakes and transient changes in

the environment. Examples of sources of such faults include

sloppy or missing error handling, temporary resource un-

availability, memory corruption, and memory leaks. Given

the relative inexperience of the developers of many user-

level file systems, it is hard to eliminate such failures.



The subset of these failures we seek to address are those

that are “fail-stop” and transient [Qin 2005, Swift 2004,

Zhou 2006]. In these cases, when such faults are triggered,

the system crashes quickly, before ill effects such as perma-

nent data loss can arise; upon retry, the problem is unlikely

to re-occur. Faulty error-handling code and certain program-

ming bugs are thus avoided on restart, as the fault that caused

these errors to manifest does not take place again.

As with many systems, our goal is not to handle faults

caused by basic logic errors and fail-silent bugs. Avoiding

logic errors is critical to the correct operation of the file-

system; we believe that such bugs should (and likely would)

be detected and eliminated during development.On the other

hand, fail-silent bugs are more problematic, as they do not

crash the system but silently corrupt the in-memory state

of the file system. Such corruption could slowly propagate

to other components in the system (e.g., the page cache);

recovery from such faults is difficult if not impossible. To

the best of our knowledge, all previous restartable solutions

make the same fail-stop and transient assumption that we

make [Candea 2004, David 2008, Qin 2005, Sundararaman

2010, Swift 2003; 2004].

In our failure model, we assume that user-level file-

system crashes are due to transient, fail-stop faults. We also

assume that all the other components (i.e., the operating sys-

tem, FUSE itself, and any remote host) work correctly. We

believe it is reasonable to make this assumption as the rest

of the components that the user-level file system interacts

with (i.e., kernel components) are more rigorously tested

and used by a larger number of users.

3.3 The User-level File-SystemModel

To design a restartable framework for FUSE, we must first

understand how user-level file systems are commonly im-

plemented; we refer to these assumptions as our reference

model of a user-level file system.

It is infeasible to examine all FUSE file systems to ob-

tain the “perfect” reference model. Thus, to derive a ref-

erence model, we instead analyze six diverse and popular

file systems. Table 1 presents details on each of the six file

systems we chose to study. NTFS-3g and ext2fuse each are

kernel-like file systems “ported” to user space. AVFS allows

programs to look inside archives (such as tar and gzip) and

TagFS allows users to organize documents using tags inside

existing file systems. Finally, SSHFS and HTTPFS allow

users to mount remote file systems or websites through the

SSH and HTTP protocols, respectively. We now discuss the

properties of the reference file-system model.

Simple Threading Model: A single worker thread is re-

sponsible for processing a file-system request from start to

finish, and only works on a single request at any given time.

Amongst the reference-model file systems, only NTFS-3g

is single-threaded by default; the rest all operate in multi-

threaded mode.

File System Category LOC Downloads

NTFS-3g block-based 32K N/A

ext2fuse block-based 19K 40K

AVFS pass-through 39K 70K

TagFS pass-through 2K 400

SSHFS network-based 4K 93K

HTTPFS network-based 1K 8K

Table 1. Reference Model File Systems.

Request Splitting: Each request to a user-level file system is

eventually translated into one or more system calls. For ex-

ample, an application-level write request to a NTFS-3g file-

system is translated to a sequence of block reads and writes

where NTFS-3g reads in the meta-data and data blocks of

the file and writes them back after updating them.

Access Through System Calls: Any external calls that the

user-level file system needs to make are issued through the

system-call interface. These requests are serviced by either

the local system (e.g., the disk) or a remote server (e.g., a

web server); in either case, system calls are made by the

user-level file system in order to access such services.

Output Determinism: For a given request, the user-level

file system always performs the same sequence of opera-

tions. Thus, on replay of a particular request, the user-level

file system outputs the same values as the original invoca-

tion [Altekar 2009].

Synchronous Writes: Both dirty data and meta-data gener-

ated while serving a request are immediately written back

to the underlying system. Unlike kernel-level file systems,

a user-level file system does not buffer writes in memory;

doing so makes a user-level file system stateless, a property

adhered to by many user-level file systems in order to afford

a simpler implementation.

Our referencemodel clearly does not describe all possible

user-level file-system behaviors. The FUSE framework does

not impose any rules or restrictions on how one should

implement a file system; as a result, it is easy to deviate from

our reference model, if one desires. We discuss this issue

further at the end of Section 4.

3.4 Challenges

FUSE in its current form does not tolerate any file-system

mistakes. On a user-level file system crash, the kernel cleans

up the resources of the killed file-system process, which

forces FUSE to abort all new and in-flight requests of the

user-level file system and return an error (a “connection

abort”) to the application process. The application is thus

left responsible for handling failures from the user-level file

system. FUSE also prevents any subsequent operations on

the crashed file system until a user manually restarts it. As

a result, the file system remains unavailable to applications

during this process. Three main challenges exist in restarting

user-level file systems; we now discuss each in detail.
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Figure 2. SSHFS Create Operation. The figure shows a sim-

plified version of SSHFS processing a create request. The number

within the gray circle indicates the sequence of steps SSHFS per-

forms to complete the operation. The FUSE, application process,

and network components of the OS are not shown for simplicity.

Generic Recovery Mechanism: Currently there are hun-

dreds of user-level file systems and most of them do not have

in-built crash-consistency mechanisms. Crash consistency

mechanisms such as journaling or snapshotting could help

restore file-system state after a crash. Adding such mecha-

nisms would require significant implementation effort, not

only for user-level file-systems but also to the underlying

data-management system. Thus, any recovery mechanism

should not depend upon the user-level file system itself in

order to perform recovery.

Synchronized State: Even if a user-level file system has

some in-built crash-consistencymechanism, leveraging such

a mechanism could still lead to a disconnect between ap-

plication perceived file-system state and the state of the re-

covered file system. This discrepancy arises because crash-

consistency mechanisms group file-system operations into a

single transaction and periodically commit them to the disk;

they are designed only for power failures and not for soft

crashes. Hence, on restart, a crash-consistency mechanism

only ensures that the file system is restored back to the last

known consistent state, which results in a loss of updates

that occurred between the last checkpoint and the crash. As

applications are not killed on a user-level file-system crash,

the file-system state recovered after a crash may not be the

same as that perceived by applications. Thus, any recovery

mechanism must ensure that the file system and application

eventually realize the same view of file system state.

Residual State: The non-idempotent nature of system calls

in user-level file systems can leave residual state on a crash.

This residual state prevents file systems from recreating the

state of partially-completed operations. Both undo or redo

of partially completed operations through the user-level file

system thus may not work in certain situations. The create

operation in SSHFS is a good example of such an operation.

Figure 2 shows the sequence of steps performed by SSHFS

during a create request. SSHFS can crash either before file

create (Step 4) or before it returns the result to the FUSE

module (Step 5). Undo would incorrectly delete a file if it

was already present at the remote host if the crash happened

before Step 4; redo would incorrectly return an error to the

application if it crashed before Step 5. Thus any recovery

mechanism must properly handle residual state.

3.5 Existing Solutions

There has been a great deal of research on restartable sys-

tems. Solutions such as CuriOS [David 2008], Rx [Qin

2005], and Microreboot [Candea 2004] help restart and re-

cover application processes from crashes. These solutions

require significant implementation effort to both the file sys-

tem and underlying data-access system and also have high

performance overheads. For example, CuriOS heavily in-

struments file-system code to force the file system to store

its state in a separate address space. On restart, CuriOS uses

the stored state to rebuild in-memory file-system state, but

does not take care of on-disk consistency.

Solutions that use either roll-back [Hitz 1994] or roll-

forward [Hagmann 1987, Sweeney 1996, Ts’o 2002] do not

work well for user-level file systems. The residual state left

by non-idempotent operations coupled with utilization of an

underlying data-access system (such as a database) prevent

proper recovery using these techniques.

Our earlier work on Membrane [Sundararaman 2010]

shows how to restart kernel-level file systems. However, the

techniques developed therein are highly tailored to the in-

kernel environment and have no applicability to the FUSE

context. Thus, a new FUSE-specific approach is warranted.

4. Re-FUSE: Design and Implementation

Re-FUSE is designed to transparently restart the affected

user-level file system upon a crash, while applications and

the rest of the operating system continue to operate normally.

In this section, we first present an overview of our approach.

We then discuss how Re-FUSE anticipates, detects, and re-

covers from faults. We conclude with a discussion of how

Re-FUSE leverages many existing aspects of FUSE to make

recovery simpler, and some limitations of our approach.

4.1 Overview

The main challenge for Re-FUSE is to restart the user-level

file system without losing any updates, while also ensuring

the restart activity is both lightweight and transparent. File

systems are stateful, and as a result, both in-memory and

on-disk state needs to be carefully restored after a crash.

Three types of work must be done by the system to ensure

correct recovery. First is anticipation, which is the additional

work that must be done during the normal operation of a file

system to prepare the file system for a failure. The second is

detection, which notices a problem has occurred. The third

component, recovery, is the additional work performed after

a failure is detected to restore the file system back to its fully-

operational mode.

Unlike existing solutions, Re-FUSE takes a different ap-

proach to restoring the consistency of a user-level file system

after a file-system crash. After a crash, most existing systems

rollback their state to a previous checkpoint and attempt to

restore the state by re-executing operations from the begin-

ning [Candea 2004, Qin 2005, Sundararaman 2010]. In con-



trast, Re-FUSE does not attempt to rollback to a consistent

state, but rather continues forward from the inconsistent state

towards a new consistent state. Re-FUSE does so by allow-

ing partially-completed requests to continue executing from

where they were stopped at the time of the crash. This action

has the same effect as taking a snapshot of the user-level file

system (including on-going operations) just before the crash

and resuming from the snapshot during the recovery.

Most of the complexity and novelty in Re-FUSE comes

in the fault anticipation component of the system. We now

discuss this piece in greater detail, before presenting the

more standard detection and recovery protocols.

4.2 Fault Anticipation

In anticipation of faults, Re-FUSE must perform a number

of activities in order to ensure it can properly recover once

the said fault arises. Specifically, Re-FUSE must track the

progress of application-level file-system requests in order to

continue executing them from their last state once a crash

occurs. The inconsistency in file-system state is caused by

partially-completed operations at the time of the crash; fault

anticipation must do enough work during normal operation

in order to help the file system move to a consistent state

during recovery.

To create light-weight continuous snapshots of a user-

level file system, Re-FUSE fault anticipation uses three dif-

ferent techniques: request tagging, system-call logging, and

uninterruptible system calls. Re-FUSE also optimizes its

performance through page versioning. We now discuss each

of these in detail.

4.2.1 Request Tagging

Tracking the progress of each file-system request is difficult

in the current FUSE implementation. The decoupled execu-

tion model of FUSE combined with request splitting at the

user-level file systemmakes it hard for Re-FUSE to correlate

an application request with the system calls performed by a

user-level file system to service said application request.

Request tagging enables Re-FUSE to correlate applica-

tion requests with the system calls that each user-level file

system makes on behalf of the request. As the name sug-

gests, request tagging transparently adds a request ID to the

task structure of the file-system process (i.e., worker thread)

that services it.

Re-FUSE instruments the libfuse layer to automatically

set the ID of the application request in the task structure of

the file-system thread whenever it receives a request from the

KFM. Re-FUSE adds an additional attribute to the task struc-

ture to store the request ID. Any system call that the thread

issues on behalf of the request thus has the ID in its task

structure. On a system call, Re-FUSE inspects the tagged re-

quest ID in the task structure of the process to correlate the

system call with the original application request. Re-FUSE

also uses the tagged request ID in the task structure of the

file-system process to differentiate system calls made by the
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Figure 3. Request Tagging and System-call Logging. The

figure shows how Re-FUSE tracks the progress of individual file-

system request. When KFM queues the application requests (de-

noted by R with a subscript). Re-FUSE tracks the progress of the

request in the following way: (1) the request identifier is transpar-

ently attached to the task structure of the worker thread at the lib-

fuse layer; (2) the user-level file system worker thread issues one or

more system calls (denoted by S with a subscript) while processing

the request; (3 and 4) Re-FUSE (at the system call interface) iden-

tifies these calls through the request ID in the caller’s task structure

and logs the input parameters along with the return value; (5) the

KFM, upon receiving the response from the user-level file system

for a request, deletes its entries from the log.

user-level file system from other processes in the operating

system. Figure 3 presents these steps in more detail.

4.2.2 System-Call Logging

Re-FUSE checkpoints the progress of individual application

requests inside the user-level file system by logging the

system calls that the user-level file system makes in the

context of the request. On a restart, when the request is re-

executed by the user-level file system, Re-FUSE returns the

results from recorded state to mimic its execution.

The logged state contains the type, input arguments, and

the response (return value and data), along with a request

ID, and is stored in a hash table called the syscall request-

response table. This hash table is indexed by the ID of the

application request. Figure 3 shows how system-call logging

takes place during regular operations.

Re-FUSE maintains the number of system calls that a

file-system process makes to differentiate between user-level

file-system requests to the same system call with identi-

cal parameters. For example, on a create request, NTFS-

3g reads the same meta-data block multiple times between

other read and write operations. Without a sequence num-

ber, it would be difficult to identify its corresponding entry

in the syscall request-response table. Additionally, the se-

quence number also serves as a sanity check to verify that



the system calls happen in the same order during replay. Re-

FUSE removes the entries of the application request from

the hash table when the user-level file system returns the re-

sponse to the KFM.

4.2.3 Non-interruptible System Calls

The threading model in Linux prevents this basic logging

approach from working correctly. Specifically, the thread-

ing model in Linux forces all threads of a process to be

killed when one of the thread terminates (or crashes) due

to a bug. Moreover, the other threads are killed independent

of whether they are executing in user or kernel mode. Our

logging approach only works if the system call issued by

the user-level file system finishes completely, as a partially-

completed system call could leave some residual state in-

side the kernel, thus preventing correct replay of in-flight

requests.

To remedy this problem, Re-FUSE introduces the no-

tion of non-interruptible system calls. Such a system call

provides the guarantee that if a system call starts execut-

ing a request, it continues until its completion. Of course,

the system call can still complete by returning an error, but

the worker thread executing the system call cannot be killed

prematurely when one of its sibling threads is killed within

the user-level file-system. In other words, by using non-

interruptible system calls, Re-FUSE allows a user-level file-

system thread to continue to execute a system call to com-

pletion even when another file-system thread is terminated

due to a crash.

Re-FUSE implements non-interruptible system calls by

changing the default termination behavior of a thread group

in Linux. Specifically, Re-FUSE modifies the termination

behavior in the following way: when a thread abruptly ter-

minates, Re-FUSE allows other threads in the group to com-

plete whatever system call they are processing until they are

about to return the status (and data) to the user. Re-FUSE

then terminates said threads after logging their responses (in-

cluding the data) to the syscall request-response table.

Re-FUSE eagerly copies input parameters to ensure that

the crashed process does not infect the kernel. Lazy copy-

ing of input parameters to a system call in Linux could po-

tentially corrupt the kernel state as non-interruptible sys-

tem calls allow other threads to continue accessing the pro-

cess state. Re-FUSE prevents access to corrupt input argu-

ments by eagerly copying in parameters from the user buffer

into the kernel and also by skipping COPY FROM USER and

COPY TO USER functions after a crash. It is important to

note that the process state is never accessed within a sys-

tem call except for copying arguments from the user to the

kernel at the beginning. Moreover, non-interruptible system

calls are enforced only for user-level file system processes

(i.e., only for processes that have a FUSE request ID set in

their task structure). As a result, other application processes

remain unaffected by non-interruptible system calls.

4.2.4 Performance Optimizations

Logging responses of read operations has high overheads in

terms of both time and space as we also need to log the data

returned with each read request. To reduce these overheads,

instead of storing the data as part of the log records, Re-

FUSE implements page versioning, which can greatly im-

prove performance. Re-FUSE first tracks the pages accessed

(and also returned) during each read request and then marks

them as copy-on-write. The operating system automatically

creates a new version whenever a subsequent request modi-

fies the previously-marked page. The copy-on-write flag on

the marked pages is removed when the response is returned

back from the user-level file system to the KFM layer. Once

the response is returned back, the file-system request is re-

moved from the request queue at the KFM layer and need

not be replayed back after a crash.

Page versioning does not work for network-based file sys-

tems, which use socket buffers to send and receive data. To

reduce the overheads of logging read operations, Re-FUSE

also caches the socket buffers of the file-system requests un-

til the request completes.

4.3 Fault Detection

Re-FUSE detects faults in a user-level file-system through

file-system crashes. As discussed earlier, Re-FUSE only

handles faults that are both transient and fail-stop. Unlike

kernel-level file systems, detection of faults in a user-level

file system is simple. The faults Re-FUSE attempts to re-

cover crash the file-system as soon as they are triggered (see

Section 3.2). Re-FUSE inspects the return value and the sig-

nal attached to the killed file-system process to differentiate

between regular termination and a crash.

Re-FUSE currently only implements a lightweight fault-

detection mechanism. Fault detection can be further hard-

ened in user-level file systems by applying techniques used

in other systems [Cowan 1998, Necula 2005, Zhou 2006].

Such techniques can help to automatically add checks (by

code or binary instrumentation) to crash file systems more

quickly when certain types of bugs are encountered (e.g.,

out-of-bounds memory accesses).

4.4 Fault Recovery

The recovery subsystem is responsible for restarting and

restoring the state of the crashed user-level file system. To

restore the in-memory state of the crashed user-level file

system, Re-FUSE leverages the information about the file-

system state available through the KFM. Recovery after a

crash mainly consists of the following steps: cleanup, re-

initialize, restore the in-memory state of the user-level file

system, and re-execute the in-flight file-system requests at

the time of the crash. The decoupled execution model in

the FUSE preserves application state on a crash. Hence,

application state need not be restored. We now explain the

steps in the recovery process in detail.



The operating system automatically cleans up the re-

sources used by a user-level file system on a crash. The file

system is run as a normal process with no special privileges

by the FUSE. On a crash, like other killed user-level pro-

cesses, the operating system cleans up the resources of the

file system, obviating the need for explicit state clean up.

Re-FUSE holds an extra reference on the FUSE device

file object owned by the crashed process. This file object

is the gateway to the request queue that was being handled

by the crashed process and KFM’s view of the file system.

Instead of doing a new mount operation, the file-system

process sends a restart message to the KFM to attach itself

to the old instance of the file system in KFM. This action

also informs the KFM to initiate the recovery process for the

particular file system.

The in-memory file-system state required to execute file-

system requests is restored using the state cached inside the

kernel (i.e., the VFS layer). Re-FUSE then exploits the fol-

lowing property: an access on a user-level file-system ob-

ject through the KFM layer recreates it. Re-FUSE performs

a lookup for each of the object cached in the VFS layer,

which recreates the corresponding user-level file-system ob-

ject in memory. Re-FUSE also uses the information returned

in each call to point the cached VFS objects to the newly cre-

ated file-system object. It is important to note that lookups

do not recreate all file-system objects but only those required

to re-execute both in-flight and new requests. To speed up re-

covery, Re-FUSE looks up file-system objects lazily.

Finally, Re-FUSE restores the on-disk consistency of the

user-level file-system by re-executing in-flight requests. To

re-execute the crashed file-system requests, a copy of each

request that is available in the KFM layer is put back on

the request queue for the restarted file system. For each

replayed request, the FUSE request ID, sequence number of

the external call, and input arguments are matched with the

entry in the syscall request-response table and if they match

correctly, the cached results are returned to the user-level

file system. If the previously encountered fault is transient,

the user-level file system successfully executes the request to

completion and returns the results to the waiting application.

On an error during recovery, Re-FUSE falls back to the

default FUSE behavior, which is to crash the user-level file

system and wait for the user to manually restart the file sys-

tem. An error could be due to a non-transient fault or a mis-

match in one or more input arguments in the replayed system

call (i.e., violating our assumptions about the reference file-

system model). Before giving up on recovering the file sys-

tem, Re-FUSE dumps useful debugging information about

the error for the file-system developer.

4.5 Leveraging FUSE

The design of FUSE simplifies the recovery process in a

user-level file system for the following four reasons. First,

in FUSE, the file-system is run as a stand-alone user-level

process. On a file-system crash, only the file-system process

is killed and other components such as FUSE, the operating

system, local file system, and even a remote host are not

corrupted and continue to work normally.

Second, the decoupled execution model blocks the appli-

cation issuing the file-system request at the kernel level (i.e.,

inside KFM) and a separate file-system process executes the

request on behalf of the application. On a crash, the decou-

pled execution model preserves application state and also

provides a copy of file-system requests that are being ser-

viced by the user-level file system.

Third, requests from applications to a user-level file sys-

tem are routed through the VFS layer. As a result, the VFS

layer creates an equivalent copy of the in-memory state of

the file system inside the kernel. Any access (such as a

lookup) to the user-level file system using the in-kernel copy

recreates the corresponding in-memory object.

Finally, application requests propagated from KFM to a

user-level file system are always idempotent (i.e., this idem-

potency is enforced by the FUSE interface). The KFM layer

ensures idempotency of operations by changing all relative

arguments from the application to absolute arguments be-

fore forwarding it to the user-level file system. The idempo-

tent requests from the KFM allow requests to be re-executed

without any side effects. For example, the read system call

does not take the file offset as an argument and uses the cur-

rent file offset of the requesting process; the KFM converts

this relative offset to an absolute offset (i.e., an offset from

beginning of the file) during a read request.

4.6 Limitations

Our approach is obviously not without limitations. First, one

of the assumptions that Re-FUSE makes for handling non-

idempotency is that operations execute in the same sequence

every time during replay. If file systems have some internal

non-determinism, additional support would be required from

the remote (or host) system to undo the partially-completed

operations of the file system. For example, consider block al-

location inside a file system. The block allocation process is

deterministic in most file systems today; however, if the file

system randomly picked a block during allocation, the ar-

guments to the subsequent replay operations (i.e., the block

number of the bitmap block) would change and thus could

potentially leave the file system in an inconsistent state.

Re-FUSE does not currently support all I/O interfaces.

For example, file systems cannot use mmap to write back

data to the underlying system as updates to mapped files are

not immediately visible through the system-call interface.

Similarly, page versioning does not work in direct-I/Omode;

Re-FUSE needs the data to be cached within the page cache.

Multi-threading can also limit the applicability of Re-

FUSE. For example, multi-threading in block-based file sys-

tems could lead to race conditions during replay of in-flight

requests and hence data loss after recovery. Different thread-

ing models could also involve multiple threads to handle a

single request. For such systems, the FUSE request ID needs



Component Original Added Modified

libfuse 9K 250 8

KFM 4K 750 10

Total 13K 1K 18

FUSE Changes

Component Original Added Modified

VFS 37K 3K 0

MM 28K 250 1

NET 16K 60 0

Total 81K 3.3K 1

Kernel Changes

Table 2. Implementation Effort. The table presents the code

changes required to transform FUSE and Linux 2.6.18 into their

restartable counterparts.

to be explicitly transferred between the (worker) threads so

that the operating system can identify the FUSE request ID

for which the corresponding system call is issued.

The file systems in our reference model do not cache data

in user space, but user-level file systems certainly could do

so to improve performance (e.g., to reduce the disk or net-

work traffic). For such systems, the assumption about the

completion of requests (by the time the response is writ-

ten back) would be broken and result in lost updates after

a restart. One solution to handle this issue is to add a com-

mit protocol to the request-handling logic, where in addi-

tion to sending a response message back, the user-level file

system should also issue a commit message after the write

request is completed. Requests in the KFM could be safely

thrown away from the request queue only after a commit

message is received from the user-level file system. In the

event of a crash, all cached requests for which the commit

message has not been received will be replayed to restore

file-system state. For multi-threaded file systems, Re-FUSE

would also need to maintain the execution order of requests

to ensure correct replay. Moreover, if a user-level file system

internally maintains a special cache (for some reason), for

correct recovery, the file system would need to to explicitly

synchronize the contents of the cache with Re-FUSE.

4.7 Implementation Statistics

Our Re-FUSE prototype is implemented in Linux 2.6.18

and FUSE 2.7.4. Table 2 shows the code changes done in

both FUSE and the kernel proper. For Re-FUSE, around

3300 and 1000 lines of code were added to the Linux ker-

nel and FUSE, respectively. The code changes in libfuse

include request tagging, fault detection, and state restora-

tion; changes in KFM center around support for recovery.

The code changes in the VFS layer correspond to the sup-

port for system-call logging, and modifications in the MM

andNETmodules correspond to page versioning and socket-

buffer caching respectively.

5. Re-FUSE File Systems

Re-FUSE is not entirely transparent to user-level file sys-

tems. We briefly describe the minor changes required in the

three file systems employed in this work.

NTFS-3g: NTFS-3g reads a few key metadata pages into

memory during initialization, just after the creation of the

file system, and uses these cached pages to handle subse-

quent requests. However, any changes to these key metadata

pages are immediately written back to disk while processing

requests. On a restart of the file-system process, NTFS-3g

would again perform the same initialization process. How-

ever, if we allow the process to read the current version of

the metadata pages, it could potentially access inconsistent

data and may thus fail. To avoid this situation, we return the

oldest version of the metadata page on restart, as the oldest

version points to the version that existed before the handling

of a particular request (note that NTFS-3g operates in single-

threaded mode).

AVFS: To make AVFS work with Re-FUSE, we simply

increment the reference count of open files and cache the file

descriptor so that we can return the same file handle when it

is reopened again after a restart.

SSHFS: To make SSHFS work correctly with Re-FUSE,

we made the following changes to SSHFS. SSHFS internally

generates its own request IDs to match the responses from

the remote host with waiting requests. The request IDs are

stored inside SSHFS and are lost on a crash. After restart, on

replay of an in-flight request, SSHFS generates new request

IDs which could be different than the old ones. In order to

match new request IDs with the old ones, Re-FUSE uses

the FUSE request ID tagged in the worker thread along

with the sequence number. Once requests are matched, Re-

FUSE correctly returns the cached response. Also, to mask

the SSHFS crash from the remote server, Re-FUSE holds an

extra reference count on the network socket, and re-attaches

it to the new process that is created.Without this action, upon

a restart, SSHFS would start a new session, and the cached

file handle would not be valid in the new session.

6. Evaluation

We now evaluate Re-FUSE in the following three categories:

generality, robustness, and performance. Generality helps to

demonstrate that our solution can be easily applied to other

file systems with little or no change. Robustness helps show

the correctness of Re-FUSE. Performance results help us

analyze the overheads during regular operations and during

a crash to see if they are acceptable.

All experiments were performed on a machine with a 2.2

GHz Opteron processor, two 80GBWDC disks, and 2GB of

memory running Linux 2.6.18. We evaluated Re-FUSE with

FUSE (2.7.4) using NTFS-3g (2009.4.4), AVFS (0.9.8), and

SSHFS (2.2) file systems. For SSHFS, we use public-key

authentication to avoid typing the password on restart.



File System Original Added Modified

NTFS-3g 32K 10 1

AVFS 39K 4 1

SSHFS 4K 3 2

Table 3. Implementation Complexity. The table presents the

code changes required to transform NTFS-3g, AVFS and SSHFS

into their restartable counterparts.

6.1 Generality

To show Re-FUSE can be used by many user-level file sys-

tems, we chose NTFS-3g, AVFS, and SSHFS. These file

systems are different in their underlying data access mech-

anism, reliability guarantees, features, and usage. Table 3

shows the code changes required in each of these file sys-

tems to work with Re-FUSE.

From the table, we can see that file-system specific

changes required to work with Re-FUSE are minimal. To

each user-level file system, we have added less than 10 lines

of code, and modified a few more. Some of these lines were

added to daemonize the file system and to restart the pro-

cess in the event of a crash. A few further lines were added

or modified to make recovery work properly, as discussed

previously in Section 5.

6.2 Robustness

To analyze the robustness of Re-FUSE, we use fault injec-

tion. We employ both controlled and random fault-injection

to show the inability of current user-level file systems to tol-

erate faults and how Re-FUSE helps them.

The injected faults are fail-stop and transient. These faults

try to mimic some of the possible crash scenarios in user-

level file systems.We first run the fault injection experiments

on a vanilla user-level file system running over FUSE and

then compare the results by repeating them over the adapted

user-level file system running over Re-FUSE both with and

without kernel modifications. The experiments without the

kernel modifications are denoted by Restart and those with

the kernel changes are denoted by Re-FUSE. We include

the restart column to show that, without the kernel support,

simple restart and replay of in-flight operations does not

work well for FUSE.

6.2.1 Controlled Fault Injection

We employ controlled fault injection to understand how

user-level file systems react to failures. In these experi-

ments, we exercise different file-system code paths (e.g.,

create(), mkdir(), etc.) and crash the file system by in-

jecting transient faults (such as a null-pointer dereference) in

these code paths. We performed a total of 60 fault-injection

experiments for all three file systems; we present the user-

visible results.

User-visible results help analyze the impact of a fault both

at the application and the file-system level. We choose ap-

plication state, file-system consistency, and file-system state

as the user-visible metrics of interest. Application state in-

dicates how a fault affects the execution of the application

that uses the user-level file system. File-system consistency

indicates if a potential data loss could occur as a result of a

fault. File-system state indicates if a file system can continue

servicing subsequent requests after a fault.

Table 4 summarizes the results of our fault-injection ex-

periments. The caption explains how to interpret the data in

the table. We now discuss the major observations and the

conclusions of our fault-injection experiments.

First, we analyze the vanilla versions of the file systems

running on vanilla FUSE and a vanilla Linux kernel. The re-

sults are shown in the leftmost result column in Table 4. We

observe that the vanilla versions of user-level file systems

and FUSE do a poor job in hiding failures from applications.

In all experiments, the user-level file system is unusable af-

ter the fault; as a result, applications have to prematurely

terminate their requests after receiving an error (a “software-

caused connection abort”) from FUSE. Moreover, in 40% of

the cases, crashes lead to inconsistent file system state.

Second, we analyze the usefulness of fault-detection and

simple restart at the KFM without any explicit support from

the operating system. The second result column (denoted

by Restart) of Table 4 shows the result. We observe that a

simple restart of the user-level file system and replay of in-

flight requests at the KFM layer ensures that the application

completes the failed operation in the majority of the cases

(around 60%). It still cannot, however, re-execute a signif-

icant amount (around 40%) of partially-completed opera-

tions due to the non-idempotent nature of the particular file-

system operation. Moreover, an error is wrongly returned to

the application and the crashes leave the file system in an

inconsistent state.

Finally, we analyze the usefulness of Re-FUSE that in-

cludes restarting the crashed user-level file system, replaying

in-flight requests, and has support from the operating sys-

tem for re-executing non-idempotent operations (i.e., all the

support described in Section 4). The results of the experi-

ments are shown in the rightmost column of Table 4. From

the table, we can see that all faults are handled properly, ap-

plications successfully complete the operation, and the file

system is always left in a consistent state.

6.2.2 Random Fault Injection

In order to stress the robustness of our system, we use ran-

dom fault injection. In the random fault-injection experi-

ments, we arbitrarily crash the user-level file system during

different workloads and observe the user-visible results. The

sort, Postmark, and OpenSSH macro-benchmarks are used

as workloads for these experiments; each is described further

below. We perform the experiments on the vanilla versions

of the user-level file systems, FUSE and Linux kernel, and

on the adapted versions of the user-level file systems that run

with Re-FUSE.
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create fuse create × × × e ×
√ √ √ √

mkdir fuse create × × × e ×
√ √ √ √

symlink fuse create × × × e ×
√ √ √ √

link link × × × e ×
√ √ √ √

rename link × × × e ×
√ √ √ √

open fuse open ×
√

×
√ √ √ √ √ √

read fuse read ×
√

×
√ √ √ √ √ √

readdir fuse readdir ×
√

×
√ √ √ √ √ √

readlink fuse readlink ×
√

×
√ √ √ √ √ √

write fuse write × × ×
√

×
√ √ √ √

unlink delete × × × e ×
√ √ √ √

rmdir inode sync × × × e ×
√ √ √ √

truncate fuse truncate × × ×
√

×
√ √ √ √

utime inode sync ×
√

×
√ √ √ √ √ √

SSHFS

SSHFS fn Regular Restart Re-FUSE

create open common ×
√

× e
√ √ √ √ √

mkdir mkdir ×
√

× e
√ √ √ √ √

symlink symlink ×
√

× e
√ √ √ √ √

rename rename ×
√

× e
√ √ √ √ √

open open common ×
√

×
√ √ √ √ √ √

read sync read ×
√

×
√ √ √ √ √ √

readdir getdir ×
√

×
√ √ √ √ √ √

readlink readlink ×
√

×
√ √ √ √ √ √

write write ×
√

×
√ √ √ √ √ √

unlink unlink ×
√

× e
√ √ √ √ √

rmdir rmdir ×
√

× e
√ √ √ √ √

truncate truncate ×
√

×
√ √ √ √ √ √

chmod chmod ×
√

×
√ √ √ √ √ √

stat getattr ×
√

×
√ √ √ √ √ √

AVFS

AVFS fn Regular Restart Re-FUSE

create mknod × × × e ×
√ √ √ √

mkdir mkdir × × × e ×
√ √ √ √

symlink symlink × × × e ×
√ √ √ √

link link × × × e ×
√ √ √ √

rename rename × × × e ×
√ √ √ √

open open ×
√

×
√ √ √ √ √ √

read read ×
√

×
√ √ √ √ √ √

readdir readdir ×
√

×
√ √ √ √ √ √

readlink readlink ×
√

×
√ √ √ √ √ √

write write × × ×
√

×
√ √ √ √

unlink unlink × × × e ×
√ √ √ √

rmdir rmdir × × × e ×
√ √ √ √

truncate truncate × × ×
√

×
√ √ √ √

chmod chmod ×
√

×
√ √ √ √ √ √

stat getattr ×
√

×
√ √ √ √ √ √

Table 4. Fault Study. The table shows the affect of fault in-

jections on the behavior of NTFS-3g, SSHFS and AVFS, respec-

tively. Each row presents the results of a single experiment, and the

columns show (in left-to-right order) the intended operation, the

file system function that was fault injected, how it affected the ap-

plication, whether the file system was consistent after the fault, and

whether the file system was usable for other operations. Various

symbols are used to condense the presentation. For application be-

havior, “
√
”: application observed successful completion of the operation;

“×”: application received the error “software caused connection abort”;

“e”: application incorrectly received an error.

File System Injected Faults Sort OpenSSH Postmark

+ Re-FUSE (Survived) (Survived) (Survived)

NTFS-3g 100 100 100 100

SSHFS 100 100 100 100

AVFS 100 100 100 100

Table 5. Random Fault Injection. The table shows the af-

fect of randomly injected crashes on the three file systems sup-

ported with Re-FUSE. The second column refers to the total num-

ber of random (in terms of the crash point in the code) crashes

injected into the file system during the span of time it is serving a

macro-benchmark. The crashes are injected by sending the signal

SIGSEGV to the file system process periodically. The right-most

three columns indicate the number of survived crashes by the re-

inforced file systems during each macro-benchmark. We do not in-

clude the results of the experiments on the vanilla versions of these

file systems in the table; those file systems remain unusable after

the first crash even though we inject the crash at varied time-points

during the workload.

We use three commonly-used macro-benchmarks to help

analyze file-system robustness (and later, performance).

Specifically, we utilize the sort utility, Postmark [Katcher

1997], and OpenSSH [Sourceforge 2010c]. The sort bench-

mark represents data-manipulation workloads, Postmark

represents I/O-intensive workloads, and OpenSSH repre-

sents user-desktop workloads.

Table 5 presents the result of our study. From the table,

Re-FUSE ensures that the application continues executing

through the failures, thus making progress. We also found

that a vanilla user-level file system with no support for fault

handling cannot tolerate crashes (not shown in the table).

In summary, both from controlled and random fault injec-

tion experiments, we clearly see the usefulness of Re-FUSE

in recovering from user-level file system crashes. In a stan-

dard environment, a user-level file system is always unusable

after the crash and applications using the user-level file sys-

tem are killed. Moreover, in many cases, the file system is

also left in an inconsistent state. In contrast, Re-FUSE, upon

detecting a user-level file system crash, transparently restarts

the crashed user-level file system and restores it to a consis-

tent and usable state. It is important to understand that even

though Re-FUSE recovers cleanly from both controlled and

random faults, it is still limited in its applicability (i.e., Re-

FUSE only works for faults that are both fail-stop and tran-

sient and for file systems that strictly adhere to the reference

file-system model described in Section 3.3).

6.3 Performance

Though fault-tolerance is our primary goal, we also evalu-

ate the performance of Re-FUSE in the context of regular

operations and recovery time.



ntfs ntfs+ overhead sshfs sshfs+ Overhead avfs avfs+ Overhead

Benchmark Re-FUSE % Re-FUSE % Re-FUSE %

Sequential read 9.2 9.2 0.0 91.8 91.9 0.1 17.1 17.2 0.6

Sequential write 13.1 14.2 8.4 519.7 519.8 0.0 17.9 17.9 0.0

Random read 150.5 150.5 0.0 58.6 59.5 1.5 154.4 154.4 0.0

Random write 11.3 12.4 9.7 90.4 90.8 0.4 53.2 53.7 0.9

Create 20.6 23.2 12.6 485.7 485.8 0.0 17.1 17.2 0.6

Delete 1.4 1.4 0.0 2.9 3.0 3.4 1.6 1.6 0.0

Table 6. Microbenchmarks. This table compares the execution time (in seconds) for various benchmarks for restartable versions of

ntfs-3g, sshfs, avfs (on Re-FUSE) against their regular versions on the unmodified kernel. Sequential reads/writes are 4 KB at a time to a

1-GB file. Random reads/writes are 4 KB at a time to 100 MB of a 1-GB file. Create/delete copies/removes 1000 files each of size 1MB to/from

the file system respectively. All workloads use a cold file-system cache.

ntfs ntfs+ Overhead sshfs sshfs+ Overhead avfs avfs+ Overhead

Benchmark Re-FUSE % Re-FUSE % Re-FUSE %

Sort 133.5 134.2 0.5 145.0 145.2 0.1 129.0 130.3 1.0

OpenSSH 32.5 32.5 0.0 55.8 56.4 1.1 28.9 29.3 1.4

PostMark 112.0 113.0 0.9 5683 5689 0.1 141.0 143.0 1.4

Table 7. Macrobenchmarks. The table presents the performance (in seconds) of different benchmarks running on both standard and

restartable versions of ntfs-3g, sshfs, and avfs. The sort benchmark (CPU intensive) sorts roughly 100MB of text using the command-line sort

utility. For the OpenSSH benchmark (CPU+I/O intensive), we measure the time to copy, untar, configure, and make the OpenSSH 4.51 source

code. PostMark (I/O intensive) parameters are: 3000 files (sizes 4KB to 4MB), 60000 transactions, and 50/50 read/append and create/delete

biases.

6.3.1 Regular Operations

We now evaluate the performance of Re-FUSE. Specifically,

we measure the overhead of our system during regular op-

erations and also during user-level file system crashes to see

if a user-level file system running on Re-FUSE has accept-

able overheads. We use both micro- and macro-benchmarks

to evaluate the overheads during regular operation.

Micro-benchmarks help analyze file-system performance

for frequently performed operations in isolation. We use se-

quential read/write, random read/write, create, and delete

operations as our micro benchmarks. These operations ex-

ercise the most frequently accessed code paths in file sys-

tems. The caption in Table 6 describes our micro-benchmark

configuration in more detail. We also use the previously-

described macro-benchmarks sort, Postmark, and OpenSSH;

the caption in Table 7 describes the exact configuration pa-

rameters for our experiments.

Table 6 and Table 7 show the results of micro- and macro-

benchmarks respectively. From the tables, we can see that for

both micro- and macro-benchmarks, Re-FUSE has minimal

overhead, often less than 3%. The overheads are small due to

in-memory logging and our optimization through page ver-

sioning (or socket buffer caching in the context of SSHFS).

These results show that the additional reliability Re-FUSE

achieves comes with negligible overhead for common file-

system workloads, thus removing one important barrier of

adoption for Re-FUSE.

Vanilla Re-FUSE

Total Total Restart

File System Time (s) Time (s) Time (ms)

NTFS-3g 133.5 134.45 65.54

SSHFS 145.0 145.4 255.8

AVFS 129.0 130.7 6.0

Table 8. Restart Time in Re-FUSE. The table shows the

impact of a single restart on the restartable versions of the file

systems. The benchmark used is sort and the restart is triggered

approximately mid-way through the benchmark.

6.3.2 Recovery Time

We nowmeasure the overhead of recovery time in Re-FUSE.

Recovery time is the time Re-FUSE takes to restart and re-

store the state of the crashed user-level file system. To mea-

sure the recovery-time overhead, we ran the sort benchmark

for ten times and crashed the file system half-way through

each run. Sort is a good benchmark for testing recovery as

it makes many I/O system calls and both reads and updates

file-system state.

Table 8 shows the elapsed time and the average time Re-

FUSE spent in restoring the crashed user-level file system

state. The restoration process includes restart of the user-

level file-system process and restoring its in-memory state.

From the table, we can see that the restart time is in the order

of a few milliseconds. The application also does not see any

observable increase in its execution time due to the user-level

file-system crash.



7. Conclusions

“Failure is not falling down but refusing to get up.”

–Chinese Proverb

Software imperfections are common and are a fact of

life especially for code that has not been well tested. Even

though user-level file systems crashes are isolated from the

operating system by FUSE, the reliability of individual file

systems has not necessarily improved. File systems still re-

main unavailable to applications after a crash. Re-FUSE em-

braces the fact that failures sometimes occur and provides a

framework to transparently restart crashed file systems.

We develop a number of new techniques to enable effi-

cient and correct user-level file system restartability. In par-

ticular, request tagging allows Re-FUSE to differentiate be-

tween concurrently-serviced requests; system-call logging

enables Re-FUSE to track (and eventually, replay) the se-

quence of operations performed by a user-level file sys-

tem; non-interruptible system calls ensure that user-level

file-system threadsmove to a reasonable state before file sys-

tem recovery begins. Through experiments, we demonstrate

that our techniques are reasonable in their performance over-

heads and effective at detection and recovery from a certain

class of faults.

In the future, much work can be done to enhance Re-

FUSE. More file systems can be ported to use it, and more

experience with the real pitfalls of running a file system

within such a framework can be obtained. It is unlikely

developers will ever build the “perfect” file system; Re-

FUSE presents one way to tolerate these imperfections.
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