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Abstract
The long-term availability of data stored in a file system

depends on how well it safeguards on-disk pointers used to
access the data. Ideally, a system would correct all pointer
errors. In this paper, we examine how well corruption-
handling techniques work in reality. We develop a new tech-
nique calledtype-aware pointer corruptionto systematically
explore how a file system reacts to corrupt pointers. This
approach reduces the exploration space for corruption ex-
periments and works without source code.

We use type-aware pointer corruption to examine Win-
dows NTFS and Linux ext3. We find that they rely on type
and sanity checks to detect corruption, and NTFS recov-
ers using replication in some instances. However, NTFS
and ext3 do not recover from most corruptions, including
many scenarios for which they possess sufficient redundant
information, leading to further corruption, crashes, and un-
mountable file systems. We use our study to identify impor-
tant lessons for handling corrupt pointers.

1. Introduction
Much of the value people place in computer systems

stems from the value of the data stored therein. The long-
term availability of such data is therefore of the utmost im-
portance. An integral part of ensuring the long-term avail-
ability of data is ensuring the reliability and availability of
access pathsto data, that is, pointers. Pointers are funda-
mental to the construction of nearly all data structures. This
observation is especially true for file systems, which rely
on pointers located in on-disk metadata to access data. Un-
fortunately, disk pointers are susceptible to corruption for
various reasons; the literature is rife with examples of disk,
controller, and transport flaws [3, 12, 13, 18, 24] and file
system bugs [30] that lead to on-disk corruption.

File systems today use a variety of techniques to protect
against corruption. ReiserFS, JFS and Windows NTFS per-
form lightweight corruption checks like type checking [18];
that is, ensuring that the disk block being read contains the
expected data type. These file systems also employ sanity
checking (verifying that particular values in data structures
follow certain constraints) to detect corruption [18]. ZFS
checksums both data and metadata blocks to protect against

corruption [8]. The techniques above are useful for detect-
ing corruption. In order to recover from corruption, most
systems rely on replicated data structures. For example, JFS
and NTFS replicate key data structures, giving them the po-
tential to recover from corruption of these structures [7, 22].

In this paper, we seek to evaluate how a set of corruption-
handling techniques work in reality. While conceptually
simple, there may be design or implementation details that
preclude a file system from reaping the full reliability ben-
efit of these techniques. We evaluate file systems using
software fault injection. One difficulty with a pointer-
corruption study is the potentially huge exploration space
for corruption experiments. To deal with this problem, we
develop a new fault injection technique calledtype-aware
pointer corruption(TAPC). TAPC reduces the search space
by systematically changing the values of only one disk
pointer of each type in the file system, then exercising the
file system and observing its behavior. We further narrow
the large search space by corrupting the disk pointers to re-
fer to each type of data structure, instead of to random disk
blocks. An important advantage of TAPC is that it helps
understand the underlying causes for observed system be-
havior. TAPC works outside the file system, obviating the
need for source code.

We use TAPC to evaluate two widely-used file systems,
Windows NTFS and Linux ext3 [28]. We examine their use
of type checking, sanity checking, and replication to deal
with corrupt pointers. We ask the simple question:do these
techniques work well in reality?We focus on NTFS in this
paper; our study of ext3 is less-detailed, primarily aimed at
demonstrating the general utility of our approach.

We find that NTFS successfully uses type information to
defend against many pointer-corruption scenarios. NTFS
detects corruption by verifying the presence of a “magic
number” in data structures that it accesses. NTFS also repli-
cates key data structures to automatically recover from cor-
ruption. TAPC thus enables us to identify the checks per-
formed and techniques used by NTFS to deal with corrup-
tion, without knowledge of source code.

Of our 360 different corruption scenarios, NTFS is able
to continue normal operation in61 scenarios (17%). We
find that NTFS cannot handle many cases of pointer cor-
ruption, leading to data or metadata loss in102 cases (28%),



system crashes in22 cases (6%), and unmountable file sys-
tems in133 cases (37%). Despite type information and re-
dundancy, NTFS fails to recover from many pointer corrup-
tions as it does not always correctly use this information.

We examine93 corruption scenarios in ext3. In contrast
to NTFS, we find that ext3 relies more on sanity checks
than on type checks, thus detecting different corruptions.
Although ext3 extensively replicates key data structures,it
never uses the replicas to recover; its typical reaction is to
report an error and remount the file system read-only. Thus,
ext3 is no better than NTFS in handling pointer corruption.

We use our analyses to identify several lessons and pit-
falls for building corruption-proof file systems, including:
• Type checking does not work for all pointers. Detailed

sanity checking should also be performed.
• Replication should be managed and used with corrup-

tion in mind: systems should compare replicas before
overwriting, and use different pointers for replicas.

• Many indexes are simply performance improvements
and their loss should not cause the file system to fail.

Had these lessons been applied, NTFS and ext3 could
have recovered from an additional144 and39 scenarios re-
spectively in which they currently fail.

The rest of this paper is organized as follows. Section 2
discusses the problem of disk corruption. Section 3 de-
scribes type-aware pointer corruption. Section 4 presents
an overview of NTFS and Section 5 presents the results of
our analysis. We discuss related work in Section 6, and con-
clude in Section 7.

2. Motivation
In this section, we motivate our study by describing how

blocks on disk can become corrupted and why we focus on
the corruption of pointers.

Disk Corruption : Sources of disk corruption are
throughout the storage stack, including errors within file
systems, device drivers, bus controller, transport layer,disk
firmware, and the electrical, mechanical and media com-
ponents of the disk. A software bug within the file sys-
tem, or a corruption of main memory, can cause the file
system to write incorrect data to disk. Further, buggy de-
vice drivers can issue disk requests with bad parameters
or data [10, 11]. Bus controllers have also been shown
to incorrectly indicate that disk requests are complete or
to swap status bits with data [13]. Drive firmware some-
times silently corrupts data, directs writes to the wrong lo-
cation, or reports the data has been written when in fact
it has not [12, 24]. Within the disk, power spikes, erratic
arm movements, media scratches, and “bit rot” (change in
bit state over time) could cause disk blocks to become cor-
rupted (although most medium errors are caught by disk
ECC) [1, 19, 26]. In a study involving1.53 million disks in
production storage systems, we found that0.66% of SATA

drives and0.06% of FC drives developed corruption in 17
months of use [3].

Why Pointer Corruption : Although any block on disk
may become corrupt, some corruptions are more damaging
than others. If a data block of a file is corrupt, then only the
application that reads the file is impacted. However, if a disk
block belonging to file-system metadata is corrupt, then the
entire file system can be affected; for example, if the boot
sector is corrupt, the file system may not be mountable. In
other cases, a corrupt pointer incorrectly referring to data
belonging to a different data structure can cause the data
to be overwritten and corrupted. Therefore, we focus on
effects of corrupt pointers.

3. Type-Aware Pointer Corruption

To identify the behavior of file systems when disk point-
ers are corrupted, we develop and applytype-aware pointer
corruption (TAPC). We observe how the file system reacts
after we modify different types of on-disk pointers to refer
to disk blocks containing different types of data.

A pointer-corruption study is especially difficult because
it is nearly impossible to corrupt every pointer on disk to
every possible value in a reasonable amount of time. Often,
the solution has been to use random values. This approach
suffers from two problems: (a) a large number of corruption
experiments might be needed to trigger the interesting sce-
narios, and (b) use of random values makes it more difficult
to understand underlying causes of observed behavior.

We use type-awareness to address both problems. Type-
awareness reduces the exploration space for corruption ex-
periments by assuming that system behavior depends only
on two types: (i) the type of pointer that has been corrupted,
and (ii) the type of block that it points to after corruption.
Examples are (i) corrupting File A’s data pointer is the same
as corrupting File B’s data pointer, and (ii) corrupting a
pointer to refer to inode-block P is the same as corrupting
it to refer to inode-block Q (if all inodes in P and Q are for
user files). This approach is motivated by the fact that code
paths within the file system that exercise the same types of
pointers are the same, and disk blocks of the same type of
data structure contain similar contents. Thus, TAPC greatly
reduces the experimental space while still covering almost
all of the interesting cases. Also, by its very design, this ap-
proach attaches file system semantics to each experiment,
which can be used to understand the results.
Terminology: The following terms are used to describe
methodology and discuss results.

• Container: disk block in which the disk pointer is
present. Corrupting the pointer involves modifying the
contents of thecontainer.

• Targetoriginal: disk block that the disk pointer should
point to; that is the block pointed to on no corruption.



Term Description
Cluster The fundamental unit of disk storage; it consists of a fixed number of sectors, similar to a UNIX disk block.
LCN A Logical Cluster Number (LCN) is assigned to each disk cluster. This is the same as a physical block number in

UNIX -based systems. On-disk pointers contain the LCN of the cluster they point to.
VCN A Virtual Cluster Number is the same as a file offset (in numberof blocks) in UNIX .
Data run The format of NTFS on-disk pointers, consisting of a base LCNand length, and a series of<offset,length> fields. E.g.,

if base LCN isX, the length field isa, and the first<offset,length> combination is< b, c >, the data being pointed
to is located at LCNsX to X + a and then fromX + b to X + b + c. In our experiments we corrupt the base LCN.

Boot sector The boot sector is the sector read first by NTFS when the file system is mounted. It is the starting point for discovering
the LCNs of all other data structures. The last cluster of thefile system contains a copy of the boot sector.

MFT Master File Table contains an entry for each file (both user and system). First 24 entries are reserved for system files.
MFT entry Equivalent of a UNIX inode. Most pointers that are corrupted are located in different MFT entries in form of data runs.
MFT VCN 0 This is the first cluster of the MFT. Its LCN is present in the boot sector. The first entry of this cluster is a file that

contains LCNs of itself and the rest of the MFT.
MFT mirror This is a replica of MFT VCN 0. Its LCN is also present in the boot sector.
Index buffer An index buffer consists of a series of index entries that provide information for indexing into any data structure.
Directory A directory in NTFS consists of index buffers. The entries inthese buffers point to MFT entries of the directory’s files.
MFT bitmap This is a bitmap that tracks whether MFT entries are allocated or not.
Volume bitmap This is a bitmap that tracks whether disk clusters are allocated or not.
Log file NTFS implements ordered journaling mode: whenever a user writes data to disk, the data cluster is flushed first,

followed by log updates, and finally the metadata clusters. It is organized as a restart area, a redundant copy of the
restart area, and a “logging area”, which consists of log records that each denote a disk action to be performed.

$Secure NTFS stores information about the owner of the file and the permissions granted to other users by the owner (in form of
ACLs) in a security descriptor. Each unique descriptor is stored in $Secure along with its hash and given asecurity id.
This security id is stored in the MFT entry of the file for looking up the correct descriptor from $Secure. The descriptors
in $Secure are indexed on the hash of the security descriptorand the security id.

Upcase table This is an upper case - lower case character conversion tableessential for directory path name traversal.

Table 1. NTFS Terminology. This table provides brief descriptions of NTFS terminologyand data structures. The descriptions
offer a simplified view of NTFS, eliminating details that arenot essential for understanding the experiments.

• Targetcorrupt: disk block being pointed to by a cor-
rupt disk pointer.

Corruption Model : Any of the sources of corruption dis-
cussed in Section 2 could produce a corrupt file system im-
age on disk. Our corruption model reflects the state of a file
system on functioning hardware that experienced a corrup-
tion event in the past:
• Exactly one pointer is corrupted for each experiment.

The rest of the data is not corrupted. Also, other faults
like crashes or sector errors are not injected.

• We emulate pointer corruptions that arepersistent. The
corruption is persistent because simply re-reading the
pointer from disk will not recover the correct value.

• The pointer corruption isnot sticky. Future writes to
the pointer by the file system can potentially correct the
corruption. Reads performed after a write will be re-
turned the newly written data and not the corrupt data.

Corruption Framework : Our TAPC framework has been
designed to work without file system source code. It con-
sists of acorrupter layer that injects pointer corruption and
a test harnessthat controls the experiments. The corrupter
resides between the file system and the disk drivers; the
layer has been implemented as a Windows filter driver for
NTFS and as a pseudo-device for ext3. This layer cor-
rupts disk pointers and observes disk traffic. Thus, the cor-
rupter has knowledge of the file system’s on disk data struc-
tures [21]. The test harness is a user-level program that exe-

cutes file system operations and controls the corrupter. The
experiments involve the following steps:

• The test harness creates a file system on disk with a
few files and directories. It then instructs the corrupter to
corrupt a specific pointer to a specific value and performs
file operations (e.g., mount,CreateFile, etc. for NTFS
and mount,creat, etc. for ext3) to exercise the pointer
under consideration. We execute the file operations from a
user with limited permissions (non-administrator).

• The corrupter intercepts the disk accesses performed
by the file system and scans the requests for thecontainer

(the disk block containing the pointer). When that disk
block is read, exactly one pointer in the data structure is
modified to a specific value.

• The corrupter continues to monitor disk accesses.
The same corruption is performed on future reads to the
container. Disk writes to thecontainer may overwrite
any corruption and therefore further reads to the disk block
are returned the newly-written data.

• All disk accesses, system call return values, and the
system event log are examined in order to identify the be-
havior of the file system. This holistic view of system
behavior in co-ordination with type-awareness is essential
to understanding the underlying design or implementation
flaws that lead to any system failures.

Our experiments are performed on an installation of
Windows XP (Professional Edition without Service Pack 2)



Pointer Container Targetoriginal

Boot-MFT0 Boot MFT VCN 0
Boot-MFTM Boot MFT mirror
MFT0-MFT MFT VCN 0 The MFT clusters (to itself)
MFTBitmap MFT VCN 0 MFT bitmap
MFT0-MFTM MFT VCN 0 MFT mirror
LogFile MFT VCN 0 Log file
RootSecDesc MFT VCN 1 Root directory

security descriptor
RootIndxBuf MFT VCN 1 Root directory index buffers
SDS MFT VCN 2 $Secure security descriptors
SDH MFT VCN 2 Index of security

descriptors’ hash
SII MFT VCN 2 Index of security

descriptors’ ids
UpCase MFT VCN 2 Upcase table
DirIndxBuf MFT any VCN A directory’s index buffer
FileData MFT any VCN A file’s data cluster

Table 2. NTFS Disk Pointers. This table presents the
different on-disk pointers used by NTFS.

for NTFS and Linux 2.6.12 for ext3. We run them both
on top of VMWare Workstation for ease of experimenta-
tion. The experiments use a separate 2GB IDE virtual disk.
We believe that the use of a VMWare virtual disk does not
change the results; since the corrupter layer is between the
file system and the virtual disk, we observe all disk requests
and responses, and we did not detect any anomaly.

4. NTFS

Although TAPC can be applied to any file system, the
specific pointers to be corrupted and the interesting corrup-
tion values depend upon the file system under test. We now
describe how we have applied TAPC to NTFS. We do not
provide ext3 details due to space constraints.

NTFS Data Structures: We provide a brief introduc-
tion to NTFS. A detailed description can be found else-
where [22]. NTFS, the Windows NT File System, is the
standard file system for Windows NT, 2000, XP and Vista.
It is a journaling file system that guarantees the integrity of
its metadata structures on a crash. All user data and meta-
data structures in an NTFS volume are contained in files, al-
lowing NTFS to flexibly allocate disk space for its metadata.
Table 1 defines important NTFS terms and data structures
that we use in our descriptions and results. For example, a
clusteris the NTFS term for a disk block.

NTFS Pointer Corruption : We corrupt 14 of the 15
different pointer types that NTFS uses on disk. Table 2
summarizes these pointers. We give each pointer a unique
name based on itsTargetoriginal, and resolving name
conflicts by prefixing those names with itscontainer.
Note that NTFS replicates important data structures like
Boot and MFT VCN 0. Thus, the pointersBoot-MFT0,
Boot-MFTM, MFT0-MFT, MFTBitmap, MFT0-MFTM,
andLogFile are replicated. Security descriptors are also
replicated and their indexes can be rebuilt; thus, some form

Workload Pointer
Boot-MFT0, Boot-MFTM, MFT0-MFT,

mount MFT0-MFTM, LogFile, RootSecDesc,
SDS, SII

mount then MFTBitmap, RootIndxBuf, SDH,
CreateFile DirIndxBuf
mount then UpCase
ReadFile
mount then FileData
WriteFile

Table 3. NTFS Workloads. This table presents
the workloads that exercise the disk pointers. mount
enables the file system volume for use; it consists of
a DeviceIoControl system call with the control
codeFSCTLUNLOCK VOLUME performed on a previously
“locked” volume. CreateFile creates a new file of
size 0, ReadFile reads the first cluster of a file, and
WriteFile writes the first cluster of a file.

of redundancy exists for the pointersSDS, SDH, andSII.
To exercise each pointer, we run a specialized workload;

Table 3 indicates the workload used for each of the pointers.
Most workloads involves modifications toTargetoriginal,
potentially creating the worst case scenario in case the cor-
ruption is not detected. The pointers are corrupted to the
27 different types of values. In addition to using disk loca-
tions that belong to all the different NTFS data types (e.g.,
directory index buffer and MFT cluster), we also include
clusters of a certain type that serve a special purpose (e.g.,
MFT VCN 0, MFT mirror), unallocated clusters, and out-
of-range values. Table 4 lists the different types of val-
ues used asTargetcorrupt. In most cases, the data struc-
ture used asTargetcorrupt is at a specific location, while
for FileData, we create a file and use the location of its
data block as the numerical value for corruption. Thus, we
perform360 experiments on NTFS, corrupting 14 different
pointers with 27 different values.

5. Results
This section discusses the results. First, we describe

some terminology, then our visual representation of the re-
sults. Then, we discuss NTFS behavior as observed by the
experimenter. Our discussion focuses on how NTFS deals
with pointer corruption. Next, we discuss the user-visible
results of NTFS pointer corruption. This view is important
since the primary concern of end users is the observed data
and system reliability. Finally, we present results for ext3.
We organize our results intoobservations(facets of sys-
tem behavior uncovered by TAPC),lessonsfor corruption-
handling techniques, and potential designpitfalls.

5.1. Terminology for System Behavior

Detection: The file system identifies that either the
pointer or the disk block pointed to is corrupt.

Recovery: The file system is able to regenerate the data
lost due to pointer corruption using redundant information,



Value Description
Boot The boot sector (LCN 0)
LogRes Log restart area
LogResDup Copy of Log restart area
LogData Log data cluster
MFTBitmap The MFT bitmap
MFT0 MFT VCN 0
MFT1 MFT VCN 1
MFT2 MFT VCN 2
MFTRes Contains unused, reserved MFT entries
MFTFree Unallocated MFT entries
MFT6 MFT VCN 6
MFTOthers Contains user file MFT entries
SDS Security descriptors
AttrDef File with definitions of file attributes
SDH Index of security descriptor hash
SII Index of security descriptor ids
MFTMirror The MFT mirror
RootIndxBuf Root directory index buffer
RootSecDesc Root dir security descriptor
VolBitmap Volume bitmap
UpCase Upcase table
DirIndxBuf Any directory index buffer
FileData Any user file data cluster
Unalloc Unallocated clusters
Last-Size+1 Data Run ends at last cluster
LastCluster Boot sector copy
Out-of-Bounds Data Run exceeds disk partition

Table 4. NTFS Pointer Corruption Values. This
table presents the different values used for corrupting disk
pointers used by NTFS, sorted in the order of typical disk
location. In total, 27 different values are used. Note that
the value Last-Size+1 is applicable only for pointers that
point to data runs of length> 1.

thereby continuing execution without errors.
Report: The file system informs the application or user

that it has encountered an error.
Retry: The file system repeats the set of disk accesses

needed for the mount operation.
Repair: The file system modifies corrupt data structures

in order to continue execution. The modification does not
necessarily lead to error-free execution.

Detection is essential for the rest of the actions to occur.
Recovery is the ideal action the file system can perform. If
recovery is not possible, repair is an alternative approach
for continuing execution. If a file operation fails due to cor-
ruption, the file system is expected to report an error.

5.2. Visualization of Results

We now describe the visualization in Figure 1. In the
two figures, each row presents the results of corrupting
one pointer (e.g., Boot-MFT0). Every row is divided into
27 columns, each corresponding to differentTargetcorrupt

values used to corrupt the pointer (e.g., LogData). Each
cell is marked with a symbol representing our observations
when the pointer for its row is corrupted with the column
value. A dot before pointer name indicates that some form
of redundancy exists for the pointer or forTargetoriginal.

We provide an example from Figure 1a to illustrate the
interpretation of the figures. The results of corrupting
Boot-MFT0 is presented in the first row. The first cell
corresponds to the boot sector (Boot). The symbol in the
cell corresponds to “Detects and recovers.” This indicates
that when the pointerBoot-MFT0 is corrupted to the value
Boot, NTFS detects the corruption and fully recovers from
it, thus continuing normal operation. The value MFT0 (col-
umn 6) is the correct value for the pointer and hence the
“Not applicable” symbol is used. Note that there is no sim-
ilar correct value for pointers likeFileData since we can
use data locations of adifferentfile to corrupt the pointer.

5.3. NTFS Behavior

We discuss the behavior of NTFS when each of its point-
ers are corrupted. The detailed results are presented in Fig-
ure 1a and Table 5. Table 6 summarizes these results. This
subsection distills the results into higher-level observations
on system behavior and lessons to be learned. The goal is to
analyze whether NTFS effectively uses its type information
and redundancy, and to understand why NTFS is or is not
able to detect and recover from pointer corruption.

Out of 360 corruption experiments, NTFS detects cor-
ruption in 238 cases (66%) and recovers in only 51 cases
(14%). Despite the availability of redundant information
for recovery for most cases, NTFS either simply reports an
error to the user or retries the mount operation. Also, de-
spite detecting the corruption, NTFS itself causes further
corruption in 42 cases (12%).

5.3.1. Detection
From our experiments, we find that NTFS uses type check-
ing and sanity checking to detect pointer corruption. We
discuss each of these techniques below.

Type checking verifies that a disk cluster conforms to
the requirements for a data type. Typically, type information
for a cluster is encoded in the form of a “magic” number and
stored in the cluster. In order to perform type checking, the
cluster pointed to should be read.

Sanity checkingverifies that certain values in data struc-
tures follow constraints. A pointer can be compared with
well-known values, such as locations of metadata like the
boot sector or disk partition size, to ensure that the pointer
is not corrupt. In this case, corruption can be detected even
before the cluster pointed to is read.

Observation 1 NTFS detects corruption errors primarily
through type checking.
We observe that NTFS detects corruption errorsaf-
ter reading Targetcorrupt for many pointers, including
Boot-MFT0, MFT0-MFT, LogFile, RootIndxBuf,
SII, andDirIndxBuf. An examination of the corre-
sponding data structures shows that they contain “magic”
numbers (“FILE” for MFT clusters, “RSTR” for log restart
area, “INDX” for index buffers) that identify the clusters as
a certain data type.
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Legend Legend

Detects, but corrupts
Detects, but no recovery
Detects and recovers

Not applicable
No detection, no recovery

User data corruption
Operations fail
System works without problems
Unmountable file system

Not applicable
Implications are data dependent
System crash
Data or metadata loss, operations fail

Figure 1. NTFS Corruption Behavior and Implications. These figures present (a) the corruption behavior of NTFS, and
(b) the implications of this behavior for the user. Each row (horizontal strip) characterizes the behavior for the givenpointer. Each
cell in a row is marked with the corruption behavior/implications observed for the given pointer when it is corrupted with the value
of that column. Of the different values, Last-Size+1 denotes Last Cluster - Size of data run + 1 and is applicable only for data runs
of length greater than 1. A large dot next to a pointer name forany row implies that some form of redundancy exists; in the ideal
case NTFS would be able to recover from any corruption to these pointers. Note that in the case of unallocated clusters, further
corruption just implies that the cluster is overwritten since, by definition, the cluster cannot be “corrupted”.

Lesson 1 Type checking is useful for detecting pointer cor-
ruption. However, systems that use type checking should not
overload the data types.
NTFS does not detect corruption when one index buffer
pointer (RootIndxBuf, SDH, SII, or DirIndxBuf)
points to a wrong index buffer. In this case, the type
“INDX” is overloaded; it is used to represent different data
structures used for different purposes. Not detecting cor-
ruption in these cases leads to further corruption by NTFS.
Thus, when a data type is used for different purposes in dif-
ferent places, it must be assigned a different type identifier
to prevent corruption across uses.

Pitfall 1 Inadequate / inconsistent use of sanity checks.
We observe that NTFS detects corruption to any
pointer with an out-of-bounds value without reading
Targetcorrupt. Similarly, the corruption is detected im-
mediately whenBoot-MFTM is assigned the value MFT0
(Row 2, column 6 in Figure 1a). These immediate detec-
tions indicate the use of sanity checks. However, while
NTFS detects the above corruption scenario where point-
ers Boot-MFTM and Boot-MFT0 are equal, it allows
MFT0-MFTM andMFT0-MFT to be equal (Row 5, column 6

in Figure 1a), although theTargetoriginal for each pointer
is the same as before. This difference in behavior points to
the lack of a consistent approach. There are more examples
of inconsistencies – pointers for which some corruptions are
recovered from, while others are not even detected.

Lesson 2 Type checks do not work for all pointers. There-
fore, detailed sanity checks should be performed.
Type checking is not useful for pointers likeFileData
since a type identifier cannot be stored in a user data clus-
ter. In these cases, sanity checking assumes greater sig-
nificance. However, NTFS does not perform many simple
sanity checks that can determine whether a pointer is cor-
rupt. For example, NTFS does not check whether a pointer
is pointing to the boot sector (Boot).

We note that not all NTFS behavior can be explained
based on sanity or type checking. NTFS detects corruption
of UpCase after readingTargetcorrupt for some experi-
ments but does not detect for others. It is not clear what
kind of check is used for this pointer.

5.3.2. Reactions
NTFS reacts in various ways on detecting corruption. It
either recovers from corruption, or reports an error to the



Pointer NTFS Behavior Details
Boot-MFT0 Reports error andretries mount for values MFTMirror, LastCluster and Out-of-bounds; recoversusing replica for others.
Boot-MFTM Reports error andretries mount for values MFT0, LastCluster and Out-of-bounds;recoversusing replica for others.
MFT0-MFT Recoversusing MFT mirror for values RootSecDesc, LastCluster and Out-of-bounds;reports error andretries mount for

others – however, bothTargetcorrupt and the replica (MFT Mirror) are corrupted if the value isnotan MFT entry or Boot.
MFTBitmap Recoversonly for an out-of-bounds value;reports error for the value Boot (however, NTFS corrupts Boot); doesnot detect

all other cases corruptingTargetcorrupt and possibly an MFT entry.
MFT0-MFTM Recovers for an out-of-bounds value;reports error for LastCluster; does not detect all other cases and corrupts

Targetcorrupt. Interestingly, this corruption ofTargetcorrupt is reversed for LogRes and LogResDup due to the or-
der of disk operations.

LogFile Recoversfor an out-of-bounds value or LastCluster; attemptsrepair but corrupts clusters for LogResDup; reports error and
retries for others but corrupts the replica of the pointer inMFT mirror.

RootSecDesc Reports error andretries mount for values LastCluster and Out-of-bounds; other cases are undetected.
RootIndxBuf Reports error andretries mount for all values except for other index buffers (SDH, SIIor DirIndxBuf) which go undetected

thus corruptingTargetcorrupt.
SDS Reportserror andretries for Boot, LastCluster Last-Size+1 and out-of-bounds (For Last-Size+1, report and retry occur after

corrupting it); attempts torepair data structure for other cases, resulting in corruption ofTargetcorrupt.
SDH Reports andretries during mount for an out-of-bounds value;reports error duringCreateFile for other values except

for index buffers (SII, RootIndxBuf and DirIndxBuf) which go undetected thus corruptingTargetcorrupt.
SII Reports andretries mount for all values.
UpCase Reports error andretries mount for the 10 detected cases (refer Figure 1); undetectedcases do not cause further corruption.
DirIndxBuf Reports an error for all values except for other index buffers (thesego undetected, thus corruptingTargetcorrupt).
FileData Reportsan error for values Last Cluster and out-of-bounds; others are not detected leading to corruption ofTargetcorrupt.

The corruption is reversed for LogRes, LogResDup, MFT0, andMFTMirror due to the order of disk operations.

Table 5. NTFS Behavior Details.The table presents the details of NTFS behavior when its pointers are corrupted.

application, or retries the mount operation, or attempts to
repair a seemingly corrupt data structure.

Observation 2 NTFS typically uses replication to recover
from corruption.
We observe that NTFS uses replication of MFT VCN 0 to
recover from corruption to the pointerBoot-MFT0. In this
case, it uses the MFT mirror to obtain the required informa-
tion. Similarly, NTFS uses redundant information in MFT
VCN 0 to recover from corruption toBoot-MFTM. Inter-
estingly, for both pointers, this recovery istemporary; that
is, NTFS does not overwrite the corrupt pointer with the
correct value. Thus, the same recovery has to be performed
for each mount. This approach could lead to unrecoverable
data loss in the event of a second failure (loss or corrup-
tion). When an out-of-bounds value is used for the pointers
MFT0-MFT, MFTBitmap, MFT0-MFTM, andLogFile,
NTFS performspermanentrecovery; that is, the pointer
value is overwritten with the correct value, thus completely
healing the file system image.

Observation 3 NTFS uses error reporting and retries in re-
sponse to corruption when it is unable to recover.
As described in Table 5, typically, NTFS reports an error to
the application when corruption is detected. For a subset of
cases, NTFS also retries the mount operation, perhaps hop-
ing that the corruption is transient and mount will succeed
the second time. These retries do not succeed since the cor-
ruption is persistent. Examples of pointers for which this
behavior is observed includeMFT0-MFT andLogFile.

Observation 4 NTFS attempts to repair certain data struc-
tures that it believes to be corrupt.

When the pointerSDS is corrupted, NTFS assumes that
the security descriptors pointed to bySDS are corrupt and
attempts to reinitialize the data structure, thus corrupting
Targetcorrupt. Similar behavior occurs whenLogFile
points to LogResDup instead of LogRes (the log restart
area). In this case, the first cluster of the data region of
the log is corrupted.

Pitfall 2 Detecting that a pointer target is corrupt instead
of detecting that the pointer is corrupt.
The instances under Observation 4 above show that NTFS
trusts the pointer to be correct, while not trusting the cluster
pointed to. Thus, attempting to repair a seemingly corrupt
target causes more harm than good if the corruption is actu-
ally to the pointer.

In general, we observe that there are multiple instances
where NTFS does not detect the corruption or detects the
corruption but does not recover from it despite possessing
type information to detect corruption and redundancy to re-
cover from corruption. Table 6 shows that despite possess-
ing redundant information, NTFS detects an error but does
not recover from it in 87 cases, and in fact, causes further
corruption in 88 cases. From these failures, we derive more
potential pitfalls when handling pointer corruption.

Pitfall 3 Ineffective replica management: (a) not using
replicas when available, (b) destroying secondary replicas
without verifying the primary, and (c) not maintaining inde-
pendent access paths for replicas.
(a) When pointers in MFT VCN 0 are corrupted, NTFS does
not use the copy of pointers available in the MFT mirror for
most scenarios. For some pointers, NTFS could but does
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Boot-MFT0
√

22 3
Boot-MFTM

√
22 3

MFT0-MFT
√

3 7 16 16 16
MFTBitmap

√
1 1 23 24 24

MFT0-MFTM
√

1 1 23 20
LogFile

√
2 23 1 1 24

RootSecDesc 2 25
RootIndxBuf 22 3 3
SDS

√
3 24 24

SDH
√

22 3 3
SII

√
25

UpCase 10 17
DirIndxBuf 22 4 4
FileData 2 24 20

Total 51 145 42 122 115 64
Total recoverable

√
51 87 42 49 88 64

Table 6. NTFS Behavior Summary. The table
summarizes observed NTFS behavior on corruption for
the different pointers. The first column indicates whether
some form of redundancy exists for either the pointer or
Targetoriginal. Columns 2 to 5 summarize the number of
cases for which NTFS behaves in a certain manner (from
Figure 1). The last two columns indicate the total number
of cases for which further corruption occurs and for which
the replica of the pointer is destroyed. The penultimate row
is the sum of all rows and the last row is the sum of rows
that have a

√

for the “Redundancy?” column.

not use the replica for comparing and detecting that the
pointer is possibly corrupt. An example isMFTBitmap.
For other pointers, NTFS detects corruption through dif-
ferent means (type or sanity checking). However, NTFS
does not use the replica for recovering from the corruption.
(b) There are 64 instances where the replica of the pointer
is overwritten by NTFS with the corrupt value (the last col-
umn of Table 6). In particular, in the cases where the pri-
mary MFT (MFT VCN 0) is corrupt, but the MFT mirror is
correct, NTFS erroneously synchronizes the two copies by
overwriting the MFT mirror with data in the corrupt MFT.
(c) For some of the data structures in NTFS, the replica is
placed at a fixed virtual offset from the regular copy, thus
often using a single pointer value to access both. The secu-
rity descriptors are an example. Corruption to the pointer
SDS will thus make both the regular copy and the replica
inaccessible (Figure 1a shows that NTFS does not recover
whenSDS is corrupted).

Pitfall 4 Not realizing that most indexes are simply perfor-
mance improvements and that their unavailability should
not cause complete failure.

NTFS uses two indexes SDH and SII for its security de-
scriptors in $Secure. The security descriptors contain all
information necessary to rebuild both the indexes. How-

ever, when eitherSDH or SII is corrupted, NTFS does not
recover despite detecting the corruption.

5.4. User-Visible NTFS Results

The previous subsection detailed NTFS behavior in re-
sponse to pointer corruption. However, understanding these
actions does not imply an understanding of how they mani-
fest to users or applications. The primary concern for users
is data and system reliability. Hence, in this subsection, we
discuss user-visible results of NTFS behavior. Figure 1b
presents the user-visible results.
Observation 5 The system works correctly when NTFS re-
covers from corruption.
The system works without problems in61 scenarios (17%),
primarily because NTFS detects and recovers from corrup-
tion. For example, corruption of any one pointer field (MFT,
MFTMirror) in the boot sector does not affect normal opera-
tion. In 10 other cases, even though NTFS does not recover,
pointer corruption does not cause problems due to the order
of disk operations or due to non-use ofTargetcorrupt.

Observation 6 The most frequent user-visible result is an
unmountable file system.

The file system becomes unmountable when NTFS detects
corruption to a pointer used during mount, but is unable
to recover. This situation applies to many pointers across
the range of values used. An example of such a pointer is
LogFile. The file system could also become unmountable
when undetected pointer corruption (e.g., for FileData)
causes key data structures to be corrupted. The file system
is rendered unmountable in133 scenarios (37%).

Observation 7 Other user-visible results include: (a) loss
of data or user-visible metadata, (b) failure of many file op-
erations, and (c) corruption of user file data.

(a) Data or metadata loss occurs in102 scenarios
(28%). Data is rendered inaccessible when the pointers
DirIndxBuf, RootSecDesc, SDS, and UpCase are
corrupted. (b) For some corruption scenarios, file opera-
tions fail since NTFS does not recover from the pointer
corruption. An example is corruption toSDH; attempts to
create files fail while files already created can be accessed.
Note that operations also fail when data or metadata is lost.
In total, file operations fail in127 scenarios (35%). (c) User
data corruption occurs in8 scenarios (2%), when user file
data is overwritten with other data or metadata, e.g., when a
file data pointer points to another file’s data clusters.

Lesson 3 Undetected pointer corruption can pose a signif-
icant security risk.

One would expect that pointer corruption might affect data
on a particular disk. However, it could be worse; most
experiments involving the pointerMFTBitmap result in a
system crash (22 cases), thus affecting the entire system.
By systematically setting bits contained inTargetcorrupt
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Block bitmap
√

1 12 12
Inode bitmap

√
5 8 8

Inode table
√

13
Journal superblock 13
Root directory 11 2 2
Directory data 11 3 3
File data 1 13 13

Total 0 55 0 38 38 0
Total recoverable

√
0 19 0 20 20 0

Table 7. Ext3 System Behavior Summary.The ta-
ble summarizes observed ext3 behavior on corruption. The
columns are the same as in Table 6.

(the disk block being pointed to after corruption), we ob-
serve that the system crash happens whenever the alloca-
tion status bits corresponding to the system files $Quota,
$ObjId and $Reparse happen to be zero (instead of one),
resulting in their MFT entries getting re-used (and hence
corrupted). Thus, a particular series of operations (mount,
CreateFile) can be performed on specifically corrupted
file system images to cause crashes. Such malicious disk
images [29] could become a security threat with the use of
portable flash drives and disk image downloads.

In certain pointer corruption scenarios, the user-visible
results depend on the actual data present in various clus-
ters. CorruptingMFTBitmap with the location of a file
data cluster (FileData) is an example. Depending on the
exact values of bits in the file data cluster, there may be a
system crash, or data might be lost.

5.5. Ext3 Results

We corrupt 7 primary ext3 pointers with 14 values each,
chosen in similar fashion to NTFS. Table 7 presents a sum-
mary of ext3 results.

• Unlike NTFS, ext3 relies more on sanity checks than
on type checks. For example, it verifies that bitmap and
inode table pointers point within the block group. Also,
when allocating inodes ext3 verifies that the inode bitmap
has marked “reserved” inodes as allocated, unlike NTFS’
(mis)handling ofMFTBitmap. However, lack of type
checks causes ext3 to use the superblock as directory data.

• Like NTFS, ext3 typically assumes that the cluster
pointed to (rather than the pointer) is corrupt.

• Even though ext3 replicates the group descriptors, it
never uses these replicas even when a pointer in the primary
copy is detected as corrupt.

• The typical reaction on detecting corruption is to report
an error and remount the file system as read-only. Ext3 does
not recover even in one corruption scenario.

In summary, our analysis of ext3 shows that it is no better
than NTFS in pointer protection. Our analysis also demon-

strates that TAPC can be applied to very different file sys-
tems. One advantage with ext3 is that we have verified our
results by reading ext3 source code.

5.6. Discussion

Using TAPC to characterize system behavior yields
many lessons for handling corruption. If NTFS and ext3
follow these lessons, they can completely recover from over
55% and40% corruption scenarios respectively. We discuss
general issues related to TAPC and corruption handling.

First, TAPC does not consider the likelihood of different
values used for corruption. This likelihood depends on the
source of corruption. For example, if the corruption values
are arbitrary, more than 99% of the values will be out-of-
bounds, while corruption due to bit flips will imply that the
corrupt value is “closer” to the correct value. While our
likelihood-agnostic approach does not provide probabilities
for file system failures due to corruption, it provides inter-
esting insights into how a file system handles corruption.

Second, a question that arises from the results is whether
type and sanity checks are the right techniques to use, es-
pecially when there are many pitfalls involved. While it is
true that the use of checksums (like in ZFS [8]) might sig-
nificantly improve corruption handling, it does not subsume
the protection offered by type and sanity checks. For exam-
ple, checksums cannot protect against file system bugs that
place the wrong pointer value and checksum it as well.

Third, it is non-trivial to add checksums and other pro-
tection to a file system without changing the on-disk format.
Type-aware pointer corruption helps identify potential san-
ity checks that can be used without format changes.

6. Related Work
Software fault injection: A multitude of software fault-

injection techniques and frameworks have been developed
over the years [6, 9, 15, 16, 17, 27]. The FTAPE [27] frame-
work is most related to our work – it consists of a workload
generator and a device-driver-level disk-fault injector.The
fault-injection frameworks and techniques have been em-
ployed in various studies of real systems. For example, Gu
et al. [14] examine the behavior of the Linux kernel when
errors are injected into the instruction stream.

File system studies: Recent research efforts [29, 30]
have used static-analysis and model-checking techniques
instead of fault injection to extract bugs in file-system code.
Our study is also related to previous fault-injection-based
failure-behavior analyses [2, 18] from our research group.
These analyses use type information for fault injection in
order to understand the behavior of systems for disk errors
and randomly-corrupted disk blocks, while this paper ex-
amines the effects of corrupt pointers and analyzes NTFS
in detail; indeed, we obtain new insights into file-system
behavior. Type-aware pointer corruption and some initial
NTFS experiments are discussed in our position paper [4].



Pointer integrity: Research efforts have looked at pro-
tecting systems from pointer errors. Particularly relatedare
research on data-structure redundancy [25] and data protec-
tion in highly-available systems using checksums [5]. Vari-
ous file systems have been built to protect data and metadata
using checksums [8, 18, 23]. It would be interesting to use
TAPC on Sun ZFS [8] to understand the tricky details of
using checksumming. Another related effort is ontype-safe
disks [20] which ensure that file systems do not use corrupt
on-disk pointers to access data.

7. Conclusion
File systems rely on on-disk pointers to access data. As

file systems employ different and newer techniques to pro-
tect against corrupt pointers, we need to understand how
these techniques perform in reality.

We develop type-aware pointer corruption as a way to
rapidly and systematically analyze the corruption-handling
capability of file systems. We apply type-aware pointer cor-
ruption to NTFS and ext3, and find that despite their po-
tential to recover from many pointer-corruption scenarios,
they do not, causing data loss, unmountable file systems,
and system crashes. We use this study to learn important
lessons on how to handle corrupt pointers.

We believe that future file systems should be more care-
ful in implementing pointer protection techniques. A first
step would be to develop a consistent corruption-handling
policy and the corresponding machinery that can be used
by all file system components.
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