Analyzing the Effects of Disk-Pointer Corruption

Lakshmi N. Bairavasundaram, Meenali Rurigtsitin Agrawal,
Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, andh&d4cM. Swift
University of Wisconsin-Madison *Google, Inc.

Abstract corruption [8]. The techniques above are useful for detect-
ing corruption. In order to recover from corruption, most

The long-term availability of data stored in a file system I i dd F =
depends on how well it safeguards on-disk pointers used toSystems rely on replicated data structures. For exampi,

access the data. Ideally, a system would correct all pointer and_NTFS replicate key data _structures, giving them the po-
errors. In this paper, we examine how well corruption- tential to recover from corruption of these structures P4, 2

handling techniques work in reality. We develop a new tech- [N this paper, we seek to evaluate how a set of corruption-
nique calledype-aware pointer corruptida systematically ~ handling techniques work in reality. While conceptually
explore how a file system reacts to corrupt pointers. This SImPIe, there may be design or implementation details that
approach reduces the exploration space for corruption ex- Preclude a file system from reaping the full reliability ben-
periments and works without source code. efit of these te_chnlq_ues. We ev_al_uate f|I(=T system_s using
We use type-aware pointer corruption to examine Win- softwar_e fault injection. One_z difficulty with a pointer-

dows NTFS and Linux ext3. We find that they rely on typ(_:,corruptlon_study is t_he potentially huge exploranon space
and sanity checks to detect corruption, and NTFS recoy- fOr corruption experiments. To deal with this problem, we
ers using replication in some instances. However, NTFS dévelop @ new fault injection technique callgghe-aware
and ext3 do not recover from most corruptions, including POinter corruption(TAPC). TAPC reduces the search space
many scenarios for which they possess sufficient redundanPy Systematically changing the values of only one disk
information, leading to further corruption, crashes, amtu ~ POInter of each type in the file system, then exercising the

mountable file systems. We use our study to identify impor-ﬁle system and observing its behgvior. Wg further narrow
tant lessons for handling corrupt pointers. the large search space by corrupting the disk pointers to re-
fer to each type of data structure, instead of to random disk

] blocks. An important advantage of TAPC is that it helps

1. Introduction understand the underlying causes for observed system be-

Much of the value peop'e p|ace in Computer Systems havior. TAPC works outside the file System, ObViating the
stems from the value of the data stored therein. The long-need for source code.
term availability of such data is therefore of the utmostim- ~ We use TAPC to evaluate two widely-used file systems,
portance. An integral part of ensuring the long-term avail- Windows NTFS and Linux ext3 [28]. We examine their use
ability of data is ensuring the reliability and availabyjlibf of type checking, sanity checking, and replication to deal
access pathso data, that is, pointers. Pointers are funda- With corrupt pointers. We ask the simple questido:these
mental to the construction of nearly all data structuresgs Th  techniques work well in reality%Ve focus on NTFS in this
observation is especially true for file systems, which rely paper; our study of ext3 is less-detailed, primarily aimed a
on pointers located in on-disk metadata to access data. Undemonstrating the general utility of our approach.
fortunately, disk pointers are susceptible to corruption f We find that NTFS successfully uses type information to
various reasons; the literature is rife with examples dkdis defend against many pointer-corruption scenarios. NTFS
controller, and transport flaws [3, 12, 13, 18, 24] and file detects corruption by verifying the presence of a “magic
system bugs [30] that lead to on-disk corruption. number” in data structures that it accesses. NTFS alsc repli

File systems today use a variety of techniques to protectcates key data structures to automatically recover from cor
against corruption. ReiserFS, JFS and Windows NTFS per-ruption. TAPC thus enables us to identify the checks per-
form lightweight corruption checks like type checking [18] formed and techniques used by NTFS to deal with corrup-
that is, ensuring that the disk block being read contains thetion, without knowledge of source code.
expected data type. These file systems also employ sanity Of our 360 different corruption scenarios, NTFS is able
checking (verifying that particular values in data struess  to continue normal operation il scenarios {7%). We
follow certain constraints) to detect corruption [18]. ZFS find that NTFS cannot handle many cases of pointer cor-
checksums both data and metadata blocks to protect againstuption, leading to data or metadata los$iR casesZ8%),



system crashes &2 cases§%), and unmountable file sys- drives and).06% of FC drives developed corruption in 17
tems in133 cases 7%). Despite type information and re- months of use [3].
dundancy, NTFS fails to recover from many pointer corrup- ~ Why Pointer Corruption : Although any block on disk
tions as it does not always correctly use this information. may become corrupt, some corruptions are more damaging

We examine)3 corruption scenarios in ext3. In contrast than others. If a data block of a file is corrupt, then only the
to NTFS, we find that ext3 relies more on sanity checks application that reads the file is impacted. However, if & dis
than on type checks, thus detecting different corruptions.block belonging to file-system metadata is corrupt, then the
Although ext3 extensively replicates key data structutes, entire file system can be affected; for example, if the boot
never uses the replicas to recover; its typical reaction is t sector is corrupt, the file system may not be mountable. In
report an error and remount the file system read-only. Thus,other cases, a corrupt pointer incorrectly referring taadat
ext3 is no better than NTFS in handling pointer corruption. belonging to a different data structure can cause the data

We use our analyses to identify several lessons and pit-to be overwritten and corrupted. Therefore, we focus on
falls for building corruption-proof file systems, inclugjn effects of corrupt pointers.

e Type checking does not work for all pointers. Detailed

sanity checking should also be performed. 3. Type-Aware Pointer Corruption
e Replication should be managed and used with corrup-

tion in mind: systems should compare replicas before To identify the behavior of file systems when disk point-

overwriting, and use different pointers for replicas ers are corrupted, we develop and applye-aware pointer
9. P b ' corruption (TAPC). We observe how the file system reacts

* Ma:jn:/hmd;exes r;t]re f&mplty perfort?a?lce |mi>rov<tamfe_r|1ts after we modify different types of on-disk pointers to refer
and their loss should not cause the file system tofail. v, yjgy pocks containing different types of data.

h Had these I(j)?sons bezr;_?pg;lid, T;;gs and ?XB could A pointer-corruption study is especially difficult because
ave recovered from an additio ands? scenariosre- it is nearly impossible to corrupt every pointer on disk to

sp?rchtlvely Itn \]fvthh'Ch they c.urrently.fallt.j foll Section 2 every possible value in a reasonable amount of time. Often,
€ rest ot this paper 1s organized as 1oflows. Seclion 2, g4)tion has been to use random values. This approach

dlspusses the P“’b'e”.‘ of disk cor_ruptlon. _Sec'uon 3 de'suffers from two problems: (a) a large number of corruption
scribes type-aware pointer corruption. Section 4 presents

) . experiments might be needed to trigger the interesting sce-
an overview of NT.FS and Section 5 p_resent§ the results Ofnarios, and (b) use of random values makes it more difficult
our analysis. We discuss related work in Section 6, and con

: . "to understand underlying causes of observed behavior.
clude in Section 7.
We use type-awareness to address both problems. Type-
2. Motivation awareness reduces t_he exploration space for corruption ex-
periments by assuming that system behavior depends only
In this section, we motivate our study by describing how g two types: (i) the type of pointer that has been corrupted,
blocks on disk can become corrupted and why we focus onand (ji) the type of block that it points to after corruption.
the corruption of pointers. Examples are (i) corrupting File A's data pointer is the same
Disk Corruption: Sources of disk corruption are a5 corrupting File B's data pointer, and (i) corrupting a
throughout the storage stack, including errors within file pointer to refer to inode-block P is the same as corrupting
systems, device drivers, bus controller, transport laiek it o refer to inode-block Q (if all inodes in P and Q are for
firmware, and the electrical, mechanical and media com-ser files). This approach is motivated by the fact that code
ponents of the disk. A software bug within the file sys- paths within the file system that exercise the same types of
tem, or a corruption of main memory, can cause the file pointers are the same, and disk blocks of the same type of
system to write incorrect data to disk. Further, buggy de- gata structure contain similar contents. Thus, TAPC gyeatl
vice drivers can issue disk requests with bad parametergeqyces the experimental space while still covering almost
or data [10, 11]. Bus controllers have also been shown g of the interesting cases. Also, by its very design, this a
to incorrectly indicate that disk requests are complete or proach attaches file system semantics to each experiment,
to swap status bits with data [13]. Drive firmware some- \hich can be used to understand the results.
times silently corrupts data, directs writes to the wrong lo Terminology: The following terms are used to describe
cation, or reports the data has been written when in faCtmethodoIogy and discuss results.
it has not [12, 24]. Within the disk, power spikes, erratic
arm movements, media scratches, and “bit rot” (change in ® Container: disk block in which the disk pointer is

bit state over time) could cause disk blocks to become cor-  Present. Corrupting the pointer involves modifying the
rupted (although most medium errors are caught by disk ~ contents of theontainer.
ECC) [1, 19, 26]. In a study involving.53 million disks in o Targetoriginai: disk block that the disk pointer should

production storage systems, we found that% of SATA point to; that is the block pointed to on no corruption.



Term Description

Cluster The fundamental unit of disk storage; it consists of a fixexhber of sectors, similar to aNux disk block.

LCN A Logical Cluster Number (LCN) is assigned to each disk @usfThis is the same as a physical block number in
UNIx-based systems. On-disk pointers contain the LCN of thdegitisey point to.

VCN A Virtual Cluster Number is the same as a file offset (in nuntdfédrlocks) in UNIX.

Data run The format of NTFS on-disk pointers, consisting of a base 20N length, and a series aoffset,length> fields. E.g.,
if base LCN isX, the length field is:, and the firsi<offset,length> combination is< b, ¢ >, the data being pointed
tois located at LCNsX to X + a and then fromX + bto X + b + c. In our experiments we corrupt the base LCN.

Boot sector The boot sector is the sector read first by NTFS when the filesys mounted. It is the starting point for discovering
the LCNs of all other data structures. The last cluster ofiteesystem contains a copy of the boot sector.

MFT Master File Table contains an entry for each file (both usdrsystem). First 24 entries are reserved for system files.

MFT entry Equivalent of a Wix inode. Most pointers that are corrupted are located inraiffeMFT entries in form of data runs.

MFT VCN 0 This is the first cluster of the MFT. Its LCN is present in theobsector. The first entry of this cluster is a file that
contains LCNs of itself and the rest of the MFT.

MFT mirror This is a replica of MFT VCN 0. Its LCN is also present in the bsector.

Index buffer An index buffer consists of a series of index entries thavig®information for indexing into any data structure.

Directory A directory in NTFS consists of index buffers. The entrieshiese buffers point to MFT entries of the directory’s files.

MFT bitmap This is a bitmap that tracks whether MFT entries are allatatenot.

Volume bitmap | This is a bitmap that tracks whether disk clusters are afatar not.

Log file NTFS implements ordered journaling mode: whenever a usiesvdata to disk, the data cluster is flushed first,
followed by log updates, and finally the metadata clusterss drganized as a restart area, a redundant copy of the
restart area, and a “logging area”, which consists of lognéxthat each denote a disk action to be performed.

$Secure NTFS stores information about the owner of the file and thenfs=ions granted to other users by the owner (in form of
ACLs) in a security descriptor. Each unique descriptorasest in $Secure along with its hash and giveseaurity id
This security id is stored in the MFT entry of the file for longiup the correct descriptor from $Secure. The descriptors
in $Secure are indexed on the hash of the security desceptbthe security id.

Upcase table This is an upper case - lower case character conversiondabémtial for directory path name traversal.

Table 1. NTFS Terminology. This table provides brief descriptions of NTFS terminolagy data structures. The descriptions
offer a simplified view of NTFS, eliminating details that at essential for understanding the experiments.

o Targeteorrupt: disk block being pointed to by a cor-
rupt disk pointer. experiments involve the following steps:
Corruption Model : Any of the sources of corruption dis- e The test harness creates a file system on disk with a
cussed in Section 2 could produce a corrupt file system im-few files and directories. It then instructs the corrupter to
age on disk. Our corruption model reflects the state of a file corrupt a specific pointer to a specific value and performs
system on functioning hardware that experienced a corrup-file operations€.g, mount,Cr eat eFi | e, etc. for NTFS
tion event in the past: and mountcr eat , etc. for ext3) to exercise the pointer
¢ Exactly one pointer is corrupted for each experiment. under consideration. We execute the file operations from a
The rest of the data is not corrupted. Also, other faults user with limited permissions (non-administrator).
like crashes or sector errors are not injected. e The corrupter intercepts the disk accesses performed
e We emulate pointer corruptions that aersistent The by the file system and scans the requests fortheainer
corruption is persistent because simply re-reading the(the disk block containing the pointer). When that disk
pointer from disk will not recover the correct value. block is read, exactly one pointer in the data structure is
e The pointer corruption isiot sticky Future writes to ~ modified to a specific value.
the pointer by the file system can potentially correctthe e The corrupter continues to monitor disk accesses.
corruption. Reads performed after a write will be re- The same corruption is performed on future reads to the
turned the newly written data and not the corrupt data. container. Disk writes to thecontainer may overwrite
Corruption Framework : Our TAPC framework has been any corruption and therefore further reads to the disk block
designed to work without file system source code. It con- are returned the newly-written data.
sists of acorrupterlayer that injects pointer corruption and e All disk accesses, system call return values, and the
atest harnesshat controls the experiments. The corrupter system event log are examined in order to identify the be-
resides between the file system and the disk drivers; thehavior of the file system. This holistic view of system
layer has been implemented as a Windows filter driver for behavior in co-ordination with type-awareness is esskentia
NTFS and as a pseudo-device for ext3. This layer cor-to understanding the underlying design or implementation
rupts disk pointers and observes disk traffic. Thus, the cor-flaws that lead to any system failures.
rupter has knowledge of the file system’s on disk data struc- Our experiments are performed on an installation of
tures [21]. The test harness is a user-level program that exeWindows XP (Professional Edition without Service Pack 2)

cutes file system operations and controls the corrupter. The



Pointer Container Targetoriginal Workload Pointer

Boot - MFTO Boot MFT VCN O Boot - MFTO, Boot - MFTM MFTO- MFT,

Boot - MFTM Boot MFT mirror mount MFTO- MFTM LogFi | e, Root SecDesc,

MFTO- MFT MFT VCN O The MFT clusters (to itself) SDS, S

MFTBI t map MFT VCN O MFT bitmap mount then MFTBI t map, Root | ndxBuf , SDH,

MFTO- MFTM MFT VCN 0 MFT mirror CreateFile | DirlndxBuf

LogFile MFT VCN O Log file mount then UpCase

Root SecDesc | MFT VCN 1 Root directory ReadFi |l e
security descriptor mount then Fil eDat a

Root | ndxBuf | MFT VCN 1 Root directory index buffers WiteFile

SDS MFT VCN 2 $Secure security descriptors

SDH MFT VCN 2 Index of security Table 3. NTFS Workloads. This table presents
descriptors” hash the workloads that exercise the disk pointers. mount

St MFTVCN2 | Index of security enables the file system volume for use; it consists of
descriptors’ ids a Devicel oControl system call with the control

UpCase MFT VCN 2 Upcase table Y .

Di r | ndxBuf MFT any VCN | A directory’s index buffer EOdeFS”CTLUNLOCKVOLUME, performed on a pl’eVI.Ously

Ei | eDat a MFT any VCN | A file's data cluster locked” volume. CreateFil e creates a new file of

size 0, ReadFi | e reads the first cluster of a file, and

Wit eFi| e writes the first cluster of a file.
of redundancy exists for the pointeé3BS, SDH, andSlI | .

To exercise each pointer, we run a specialized workload;
Table 3 indicates the workload used for each of the pointers.
Most workloads involves modifications argetoriginais
potentially creating the worst case scenario in case the cor

Table 2. NTFS Disk Pointers. This table presents the
different on-disk pointers used by NTFS.

for NTFS and Linux 2.6.12 for ext3. We run them both

on top of VMWare Workstation for ease of experimenta-
tion. The experiments use a separate 2GB IDE virtual disk.
We believe that the use of a VMWare virtual disk does not ruption is not detected. The pointers are corrupted to the

c_hange the results; §ince the corrupter layer is_between th%? different types of values. In addition to using disk loca-
file system and the virtual disk, we observe all disk requeststionS that belong to all the different NTES data types(

and responses, and we did not detect any anomaly. directory index buffer and MFT cluster), we also include
4. NTFS clusters of a certain type that serve a special purpesg (
MFT VCN 0, MFT mirror), unallocated clusters, and out-

Although TAPC can be applied to any file system, the of-range values. Table 4 lists the different types of val-

specific pointers to be corrupted and the interesting cerrup ues used a%'arget.o.-upt- 1N MoOst cases, the data struc-

tion values depend upon the file system under test. We nowture used ag arget ot iS at a specific location, while

describe how we have applied TAPC to NTFS. We do not for FileData, we create a file and use the location of its

provide ext3 details due to space constraints. data block as the numerical value for corruption. Thus, we
NTFS Data Structures We provide a brief introduc-  perform360 experiments on NTFS, corrupting 14 different

tion to NTFS. A detailed description can be found else- pointers with 27 different values.

where [22]. NTFS, the Windows NT File System, is the

standard file system for Windows NT, 2000, XP and Vista. 5. Results

Itis a journaling file system that guarantees the integffity o

k This section discusses the results. First, we describe
its metadata str_uctures on a crash. All user _data_an_d metagome terminology, then our visual representation of the re-
data structures in an NTFS volume are contained in files, al-

c ' ! ) sults. Then, we discuss NTFS behavior as observed by the
lowing NTF_S to fI_eX|ny allocate disk space for its metadata. experimenter. Our discussion focuses on how NTFS deals
Table 1 defines important NTFS terms and data structuresyitn nointer corruption. Next, we discuss the user-visible

that we use in our descriptions and results. For example, &eqits of NTFS pointer corruption. This view is important

clusteris the NTFS term for a disk block. since the primary concern of end users is the observed data
_NTFS Pointer Corruption: We corrupt 14 of the 15 5nq system reliability. Finally, we present results for3ext

different pointer types that NTFS uses on disk. Table 2 \ve organize our results intobservationgfacets of sys-

summarizes these pointers. We give each pointer a uniqugem pehavior uncovered by TAPGssonsor corruption-

name based on itd'argetorigina, @nd resolving name  panqiing techniques, and potential desifalls.
conflicts by prefixing those names with itentainer.

Note that NTFS replicates important data structures like 9-1. Terminology for System Behavior

Boot and MFT VCN 0. Thus, the pointeBoot - MFTO, Detection The file system identifies that either the
Boot - MFTM MFTO- MFT, MFTBI t map, MFTO- MFTM pointer or the disk block pointed to is corrupt.

andLogFi | e are replicated. Security descriptors are also  Recovery. The file system is able to regenerate the data
replicated and their indexes can be rebuilt; thus, some formlost due to pointer corruption using redundant information



We provide an example from Figure 1a to illustrate the

Value Description . . . .
Boot The boot sector (LN 0) |nterpretat|on_ of the flgurgs. Th_e results of cc_)rruptlng
LogRes Log restart area Boot - MFTO is presented in the first row. The first cell
LogResDup Copy of Log restart area corresponds to the boot sector (Boot). The symbol in the
k/ﬁgf;:a #ﬁg ?\j/laé?r ‘;)'F:Ster cell corresponds to “Detects and recovers.” This indicates
vero | werveno T that when the pointeBoot - MFTO is corrupted to the value
MFT1 MFT VCN 1 Boot, NTFS detects the corruption and fully recovers from
MFT2 MFT VCN 2 _ it, thus continuing normal operation. The value MFTO (col-
MFTRes Contains unused, reserved MFT entries umn 6) is the correct value for the pointer and hence the
MFTFree Unallocated MFT entries “Not licable” bol i d. Note that th . .
MET6 MET VCN 6 “Not applicable” symbol is used. Note that there is no sim-
MFETOthers Contains user file MET entries ilar correct value for pointers likEi | eDat a since we can
SDS Security descriptors use data locations ofdifferentfile to corrupt the pointer.
AttrDef File with definitions of file attributes .
SDH Index of security descriptor hash 5.3. NTFS Behavior
'\SA'I':TM_ 'an?mfl’:f TseC_U“W descriptor ids We discuss the behavior of NTFS when each of its point-
Irror e mirror H H :
RootindxBuf | Root directory index buffer ers are corrupted. The detailed resulfcs are presented4n F|g
RootSecDesc | Root dir security descriptor ure la and Table 5. Table 6 summarizes these results. This
\VolBitmap Volume bitmap subsection distills the results into higher-level obstoves
BPICZS‘E . XPCZS_G tftib'e_ dox bu on system behavior and lessons to be learned. The goal is to
Irindxsu ny directory inaex putrer . . . .
FileData Any user file data cluster analyze whether NTFS effectively uses its type m_formatlon
Unalloc Unallocated clusters and redundancy, and to understand why NTFS is or is not
Last-Size+1 Data Run ends at last cluster able to detect and recover from pointer corruption.
LastCluster | Boot sector copy N Out of 360 corruption experiments, NTFS detects cor-
Out-of-Bounds | Data Run exceeds disk partition

ruption in 238 cases (66%) and recovers in only 51 cases

(14%). Despite the availability of redundant information
for recovery for most cases, NTFS either simply reports an
error to the user or retries the mount operation. Also, de-
spite detecting the corruption, NTFS itself causes further
corruption in 42 cases (12%).

5.3.1. Detection
thereby continuing execution without errors. From our experiments, we find that NTFS uses type check-

Report: The file system informs the application or user ing and sanity checking to detect pointer corruption. We
that it has encountered an error. discuss each of these techniques below.

Retry: The file system repeats the set of disk accesses Type checking verifies that a disk cluster conforms to
needed for the mount operation. the requirements for a data type. Typically, type informati

Repair: The file system modifies corrupt data structures for a cluster is encoded in the form of a “magic” number and
in order to continue execution. The modification does not stored in the cluster. In order to perform type checking, the
necessarily lead to error-free execution. cluster pointed to should be read.

Detection is essential for the rest of the actions to occur. ~ Sanity checkingverifies that certain values in data struc-
Recovery is the ideal action the file system can perform. If tures follow constraints. A pointer can be compared with
recovery is not possible, repair is an alternative approachwell-known values, such as locations of metadata like the
for continuing execution. If a file operation fails due to-cor boot sector or disk partition size, to ensure that the pointe
ruption, the file system is expected to report an error. is not corrupt. In this case, corruption can be detected even

. L. before the cluster pointed to is read.
5.2. Visualization of Results Observation 1 NTFS detects corruption errors primarily

We now describe the visualization in Figure 1. In the through type checking.
two figures, each row presents the results of corruptingwe observe that NTFS detects corruption erraifs
one pointer ¢.g, Boot - MFTO). Every row is divided into  ter reading T'arget corrup: fOr many pointers, including
27 columns, each corresponding to differ€atrget.orrupt Boot - MFTO, MFTO- MFT, LogFi | e, Root | ndxBuf,
values used to corrupt the pointez.§, LogData). Each S| |, andDi r I ndxBuf. An examination of the corre-
cell is marked with a symbol representing our observationssponding data structures shows that they contain “magic”
when the pointer for its row is corrupted with the column numbers (“FILE” for MFT clusters, “RSTR” for log restart
value. A dot before pointer name indicates that some form area, “INDX” for index buffers) that identify the clusters a
of redundancy exists for the pointer or fbrrgetoriginai- a certain data type.

Table 4. NTFS Pointer Corruption Values. This
table presents the different values used for corrupting dis
pointers used by NTFS, sorted in the order of typical disk
location. In total, 27 different values are used. Note that
the value Last-Size+1 is applicable only for pointers that
point to data runs of length- 1.



(a) NTFS BEHAVIOR (b) USER-VISIBLE RESULTS
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Bl Unmountable file system [ Data or metadata loss, operations fail

[*] Detects and recovers [*] System works without problems [B] System crash

[O] Detects, but no recovery B No detection, no recovery [ Operations fail Bl Implications are data dependent
@ Detects, but corrupts [ Not applicable B User data corruption O Not applicable

Figure 1. NTFS Corruption Behavior and Implications. These figures present (a) the corruption behavior of NTF8, an
(b) the implications of this behavior for the user. Each rdwr{zontal strip) characterizes the behavior for the giyainter. Each
cell in a row is marked with the corruption behavior/implimmns observed for the given pointer when it is corruptedtie value

of that column. Of the different values, Last-Size+1 denbtist Cluster - Size of data run + 1 and is applicable only fatedruns

of length greater than 1. A large dot next to a pointer namedioy row implies that some form of redundancy exists; in tiealid
case NTFS would be able to recover from any corruption toefmsnters. Note that in the case of unallocated clustemshéun
corruption just implies that the cluster is overwritten @ by definition, the cluster cannot be “corrupted”.

Lesson 1 Type checking is useful for detecting pointer cor- in Figure 1a), although th€arget,,gina for each pointer
ruption. However, systems that use type checking should nots the same as before. This difference in behavior points to

overload the data types. the lack of a consistent approach. There are more examples
NTFS does not detect corruption when one index buffer of inconsistencies — pointers for which some corruptioes ar
pointer Root | ndxBuf, SDH, SI I, or Di r | ndxBuf) recovered from, while others are not even detected.

points to a wrong index buffer. In this case, the type | esson 2 Type checks do not work for all pointers. There-

structures used for different purposes. Not detecting cor-Type checking is not useful for pointers li& | eDat a
ruption in these cases leads to further corruption by NTFS. since a type identifier cannot be stored in a user data clus-
Thus, when a data type is used for different purposes in dif-ter, |n these cases, sanity checking assumes greater sig-
ferent places, it must be assigned a different type identifie npificance. However, NTFS does not perform many simple
to prevent corruption across uses. sanity checks that can determine whether a pointer is cor-
Pitfall 1 Inadequate / inconsistent use of sanity checks. ~ rupt. For example, NTFS does not check whether a pointer
We observe that NTFS detects corruption to any IS pointing to the boot sector (Boot).

pointer with an out-of-bounds value without reading e note that not all NTFS behavior can be explained
Targeteorrup. Similarly, the corruption is detected im- based on sanity ortype checking. NTFS detects corru_ptlon
mediately wherBoot - MFTMis assigned the value MFTO ©f UpCase after readingl’argetcorrup fOr some experi-
(Row 2, column 6 in Figure 1a). These immediate detec- Ments but does not detect for others. It is not clear what
tions indicate the use of sanity checks. However, while kind of check is used for this pointer.

NTFS detects the above corruption scenario where point-5.3.2. Reactions

ers Boot - MFTM and Boot - MFTO are equal, it allows NTFS reacts in various ways on detecting corruption. It
MFTO- M-TMandMFTO- MFT to be equal (Row 5, column 6  either recovers from corruption, or reports an error to the



Pointer NTFS Behavior Details

Boot - MFTO Reports error andretries mount for values MFTMirror, LastCluster and Out-of-boun@oversusing replica for others.

Boot - MFTM Reports error andretries mount for values MFTO, LastCluster and Out-of-bourm@spversusing replica for others.

MFTO- MFT Recoversusing MFT mirror for values RootSecDesc, LastCluster ant@bounds;reports error andretries mount for
others — however, botiargetcorrupt and the replica (MFT Mirror) are corrupted if the valuenistan MFT entry or Boot.

MFTBI t map Recoversonly for an out-of-bounds valueeports error for the value Boot (however, NTFS corrupts Boot); doesdetect
all other cases corruptirifargetcorrupt and possibly an MFT entry.

MFTO- MFTM Recovers for an out-of-bounds valuereports error for LastCluster; does not detect all other cases andumis

Targetcorrupt. Interestingly, this corruption of'argetcorrupt is reversed for LogRes and LogResDup due to the or-
der of disk operations.

LogFile Recoversfor an out-of-bounds value or LastCluster; attempizair but corrupts clusters for LogResDup; reports error and
retries for others but corrupts the replica of the pointdviFiT mirror.

Root SecDesc | Reportserror andretries mount for values LastCluster and Out-of-bounds; othersase undetected.

Root | ndxBuf | Reportserror andretries mount for all values except for other index buffers (SDH, @IDirlndxBuf) which go undetected
thus corruptingl'argetcorrupt.

SDS Reportserror andretries for Boot, LastCluster Last-Size+1 and out-of-bounds (FasttSize+1, report and retry occur after
corrupting it); attempts toepair data structure for other cases, resulting in corruptioff@f getcorrupt.

SDH Reports andretries during mount for an out-of-bounds valuesports error duringCr eat eFi | e for other values except
for index buffers (SlI, RootindxBuf and DirlndxBuf) whictogundetected thus corruptiargetcorrupt-

SI Reports andretries mount for all values.

UpCase Reports error andretries mount for the 10 detected cases (refer Figure 1); undeteetegs do not cause further corruption.

Di r | ndxBuf Reports an error for all values except for other index buffers (thgseindetected, thus corruptitigergetcorrupt).

Fi | eDat a Reports an error for values Last Cluster and out-of-bounds; othersiat detected leading to corruptionBérgetcorrupt.

The corruption is reversed for LogRes, LogResDup, MFTO,&d Mirror due to the order of disk operations.

Table 5. NTFS Behavior Details. The table presents the details of NTFS behavior when itdqsiare corrupted.

application, or retries the mount operation, or attempts to When the pointeiSDS is corrupted, NTFS assumes that
repair a seemingly corrupt data structure. the security descriptors pointed to BpS are corrupt and

Observation 2 NTFS typically uses replication to recover attempts to reinitialize the data structure, thus corngpti
from corruption. Targetcorrupt. Similar behavior occurs whehogFi | e

We observe that NTFS uses replication of MFT VCN 0 to points to Lo.gResDup ins.tead of LogRes (the log rgstart
recover from corruption to the pointBoot - METO. In this area). .In this case, the first cluster of the data region of
case, it uses the MFT mirror to obtain the required informa- th€ 109 is corrupted.

tion. Similarly, NTFS uses redundant information in MFT Pitfall 2 Detecting that a pointer target is corrupt instead
VCN 0 to recover from corruption tBoot - MFTM Inter- of detecting that the pointer is corrupt.

estingly, for both pointers, this recoverytemporary that ~ The instances under Observation 4 above show that NTFS
is, NTFS does not overwrite the corrupt pointer with the trusts the pointer to be correct, while not trusting thetelus
correct value. Thus, the same recovery has to be performeghointed to. Thus, attempting to repair a seemingly corrupt
for each mount. This approach could lead to unrecoverabletarget causes more harm than good if the corruption is actu-
data loss in the event of a second failure (loss or corrup-ally to the pointer.

tion). When an out-of-bounds value is used for the pointers  |n general, we observe that there are multiple instances
MFTO- MFT, MFTBI t map, MFTO- MFTM andLogFi | e, where NTFS does not detect the corruption or detects the
NTFS performspermanentrecovery; that is, the pointer corruption but does not recover from it despite possessing
value is overwritten with the correct value, thus CompLeteI type information to detect Corruption and redundancy to re-

healing the file system image. cover from corruption. Table 6 shows that despite possess-
Observation 3 NTFS uses error reporting and retries in re-  ing redundant information, NTFS detects an error but does
sponse to Corruption when it is unable to recover. not recover from it in 87 cases, and in fact, causes further

As described in Table 5, typically, NTFS reports an error to corruption in 88 cases. From these failures, we derive more
the application when corruption is detected. For a subset ofPotential pitfalls when handling pointer corruption.

cases, NTFS also retries the mount operation, perhaps hoppitfall 3 Ineffective replica management: (a) not using
Ing that the F:Orruptlon IS tl‘a_nSIent and mount W|” succeed replicas when ava”ab|e’ (b) destroying Secondary rerﬂica
the second time. These retries do not succeed since the cokgithout verifying the primary, and (c) not maintaining inde
ruption is persistent. Examples of pointers for which this pendent access paths for replicas.

behavior is observed includd=TO- MFT andLogFi | e. (a) When pointersin MFT VCN 0 are corrupted, NTFS does
Observation 4 NTFS attempts to repair certain data struc- not use the copy of pointers available in the MFT mirror for
tures that it believes to be corrupt. most scenarios. For some pointers, NTFS could but does
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S lee 3812 |2 || 5| 3 ever, when eitheBDHor SI | is corrupted, NTFS does not
B (eg|gs 28| & |2 |82 recover despite detecting the corruption.
3 |g3|g¢ |e2| ° ||€2 |af
Pointer r |8z |82 |88 | 2 |28 |28 5.4. User-Visible NTFS Results
200: - gﬁ\’ﬂ v ;g 2 The previous subsection detailed NTFS behavior in re-
M?o: VET \\; 3 =16 6116 sponse to pointer corruption. However, understandingethes
NETBI t nap VA 1 T 23 1 22 [ 22 actions does not imply an understar_lding of how they mani-
MFTO- MFTM V[ 2 1 23 || 20 fest to users or applications. The primary concern for users
LogFile V[ 21231 1 )24 is data and system reliability. Hence, in this subsectian, w
Root SecDesc 2 25 discuss user-visible results of NTFS behavior. Figure 1b
Root | ndxBuf 22 3 3 resents the user-visible results
SDH v 22 3 3 Observation 5 The system works correctly when NTFS re-
Sl v 25 covers from corruption.
gPrCf‘rS]ZX o ;(2) 147 ; The system works without problemséi scenarios(7%),
Flebaia 5 52130 prlmarlly because NTFS Qetects and recovers fr_om corrup-
Total EL [ 145 42 | 122 || 115 | 64 tion. Fc_>r exa}mple, corruption of any one pointer field (MFT,
Total recoverable | +/ || 51 | 87 | 42 | 49 || 88 | 64 MFTMirror) in the boot sector does not affect normal opera-
tion. In 10 other cases, even though NTFS does not recover,
Table 6. NTFS Behavior Summary. The table pointer corruption does not cause problems due to the order

summarizes observed NTFS behavior on corruption for  of disk operations or due to non-use®irget corrupt.

the different pointers. The first column indicates whether . .. .
some form of redundancy exists for either the pointer or ~ Observation 6 The most frequent user-visible result is an

Targetorigina- Columns 2 to 5 summarize the number of unmountable file system.

cases for which NTFS behaves in a certain manner (from  The file system becomes unmountable when NTFS detects

Figure 1). The last two columns indicate the total number .\ vion to a pointer used during mount, but is unable
of cases for which further corruption occurs and for which

the replica of the pointer is destroyed. The penultimate row {0 récover. This situation applies to many pointers across

is the sum of all rows and the last row is the sum of rows the range of values used. An example of such a pointer is

that have a,/ for the “Redundancy?” column. LogFi | e. The file system could also become unmountable

when undetected pointer corruptioad, for Fi | eDat a)

not use the replica for comparing and detecting that the causes key data structures to be corrupted. The file system
pointer is possibly corrupt. An example M~TBi t map. is rendered unmountable 33 scenarios37%).
For other pointers, NTFS detects corruption through dif-
ferent means (type or sanity checking). However, NTFS . . .
does not use the replica for recovering from the corruption. of dgta or user-visible m_etadata, (b) _fa|lure of many file op-
(b) There are 64 instances where the replica of the pointererat'ons’ and (c) corruption of user file d"f‘ta' )
is overwritten by NTFS with the corrupt value (the last col- (8) Data or metadata loss occurs D2 scenarios
umn of Table 6). In particular, in the cases where the pri- (2_8%). Data is rendered inaccessible when the pointers
mary MFT (MFT VCN 0) is corrupt, but the MFT mirroris D 1 ndxBuf, Root SecDesc, SDS, and UpCase are
correct, NTFS erroneously synchronizes the two copies bycorrupted. (b) For some corruption scenarios, file opera-
overwriting the MFT mirror with data in the corrupt MFT. ~ tions fail since NTFS does not recover from the pointer
(c) For some of the data structures in NTFS, the replica is COrruption. An example is corruption ®DH; attempts to
placed at a fixed virtual offset from the regular copy, thus create files fail V\_/h|le files al_ready created can be acc_essed.
often using a single pointer value to access both. The secyNote that operations also fail when data or metadata is lost.
rity descriptors are an example. Corruption to the pointer IN total, file operations fail in 27 scenarios{5%). (c) User
SDS will thus make both the regular copy and the replica data corruption occurs i@ scenariosZ%), when user file

inaccessible (Figure 1a shows that NTFS does not recovefata is overwritten with other data or metadata, e.g., when a
whenSDS is corrupted). file data pointer points to another file's data clusters.

Observation 7 Other user-visible results include: (a) loss

_ o ) ) Lesson 3 Undetected pointer corruption can pose a signif-
Pitfall 4 Not realizing that most indexes are simply perfor- jcant security risk.

mance improvements and that their unavailability should

. One would expect that pointer corruption might affect data
not cause complete failure.

on a particular disk. However, it could be worse; most
NTFS uses two indexes SDH and SlI for its security de- experiments involving the point&FTBi t map result in a
scriptors in $Secure. The security descriptors contain all system crash2@ cases), thus affecting the entire system.
information necessary to rebuild both the indexes. How- By systematically setting bits contained Turget orrupt
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S low |82 |2 | = strates that TAPC can be applied to very different file sys-
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S gz lsg|se |3 |2 |88 tems. One advantage with ext3 is that we have verified our

(4] 2| © S |55 .
_ ? |32 |3c|B85| 2 (55|82 results by reading ext3 source code.

Pointer o ox 0oc 0o | 2 Lo |Xo
Block bitmap V4 1 12 [ 12 5.6. Discussion
Inode bitmap v > 8 1 8 Using TAPC to characterize system behavior yields
Inode table Vi 13 I for handli : If NTES and 3
Journal superblock 3 many lessons for handling corruption. and ext
Root directory 11 2 2 follow these lessons, they can completely recover from over
Directory data 11 3 3 55% and40% corruption scenarios respectively. We discuss
File data 1 13 || 13 general issues related to TAPC and corruption handling.
Total 0 |55] 0 |38] 38| 0 First, TAPC does not consider the likelihood of different
Total recoverable Vi 0 19| 0 [ 20| 20| ©

values used for corruption. This likelihood depends on the
Table 7. Ext3 System Behavior Summary. The ta- source _of corruption. For example, if the corru_ption values
ble summarizes observed ext3 behavior on corruption. The ~ are arbitrary, more than 99% of the values will be out-of-
columns are the same as in Table 6. bounds, while corruption due to bit flips will imply that the
corrupt value is “closer” to the correct value. While our
(the disk block being pointed to after corruption), we ob- |ikelihood-agnostic approach does not provide probaksit
serve that the system crash happens whenever the allocapy file system failures due to corruption, it provides inter
tion status bits corresponding to the system files $Quota,esting insights into how a file system handles corruption.
$Objld and $Reparse happen to be zero (instead of one), second, a question that arises from the results is whether
resulting in their MFT entries getting re-used (and hence type and sanity checks are the right techniques to use, es-
corrupted). Thus, a particular series of operations (mount pecially when there are many pitfalls involved. While it is
Cr eat eFi | e) can be performed on specifically corrupted  trye that the use of checksums (like in ZFS [8]) might sig-
file system images to cause crashes. Such malicious diskjficantly improve corruption handling, it does not subsume
images [29] could become a security threat with the use ofthe protection offered by type and sanity checks. For exam-
portable flash drives and disk image downloads. ple, checksums cannot protect against file system bugs that
In certain pointer corruption scenarios, the user-visible place the wrong pointer value and checksum it as well.
results depend on the actual data present in various clus- Third, it is non-trivial to add checksums and other pro-
ters. CorruptingV=TBi t map with the location of a file  tection to a file system without changing the on-disk format.
data cluster (FileData) is an example. Depending on theType-aware pointer corruption helps identify potential-sa

exact values of bits in the file data cluster, there may be ajty checks that can be used without format changes.
system crash, or data might be lost.
6. Related Work

5.5. Ext3 Results Software fault injection: A multitude of software fault-
We corrupt 7 primary ext3 pointers with 14 values each, jnjection techniques and frameworks have been developed
chosen in similar fashion to NTFS. Table 7 presents a sum-gyerthe years [6, 9, 15, 16, 17, 27]. The FTAPE [27] frame-
mary of ext3 results. work is most related to our work — it consists of a workload
e Unlike NTFS, ext3 relies more on sanity checks than generator and a device-driver-level disk-fault injectbhe
on type checks. For example, it verifies that bitmap and faylt-injection frameworks and techniques have been em-
inode table pointers point within the block group. Also, ployed in various studies of real systems. For example, Gu
when allocating inodes ext3 verifies that the inode bitmap et 7. [14] examine the behavior of the Linux kernel when
has marked “reserved” inodes as allocated, unlike NTFS’ grrors are injected into the instruction stream.
(mis)handling of MFTBi t map. However, lack of type File system studies: Recent research efforts [29, 30]
checks causes ext3 to use the superblock as directory datahave used static-analysis and model-checking techniques
e Like NTFS, ext3 typically assumes that the cluster instead of fault injection to extract bugs in file-systemeod
pointed to (rather than the pointer) is corrupt. Our study is also related to previous fault-injection-tiase
e Even though ext3 replicates the group descriptors, it failure-behavior analyses [2, 18] from our research group.
never uses these replicas even when a pointer in the primaryrhese analyses use type information for fault injection in
copy is detected as corrupt. order to understand the behavior of systems for disk errors
¢ The typical reaction on detecting corruption s to report and randomly-corrupted disk blocks, while this paper ex-
an error and remount the file system as read-only. Ext3 doesamines the effects of corrupt pointers and analyzes NTFS
not recover even in one corruption scenario. in detail; indeed, we obtain new insights into file-system
In summary, our analysis of ext3 shows that it is no better behavior. Type-aware pointer corruption and some initial
than NTFS in pointer protection. Our analysis also demon- NTFS experiments are discussed in our position paper [4].



Pointer integrity: Research efforts have looked at pro-
tecting systems from pointer errors. Particularly relatesl
research on data-structure redundancy [25] and data protec 71
tion in highly-available systems using checksums [5]. Vari
ous file systems have been built to protect data and metadata[8]

using checksums [8, 18, 23]. It would be interesting to use

TAPC on Sun ZFS [8] to understand the tricky details of
using checksumming. Another related effort istppe-safe

disks [20] which ensure that file systems do not use corrupt [10]
on-disk pointers to access data.

7. Conclusion

File systems rely on on-disk pointers to access data. As [12]
file systems employ different and newer techniques to pro- [13]
tect against corrupt pointers, we need to understand how
these techniques perform in reality.

We develop type-aware pointer corruption as a way to

rapidly and systematically analyze the corruption-hamgli

capability of file systems. We apply type-aware pointer cor-
ruption to NTFS and ext3, and find that despite their po-

tential to recover from many pointer-corruption scenarios
they do not, causing data loss, unmountable file systems,
and system crashes. We use this study to learn important[17]
lessons on how to handle corrupt pointers.

We believe that future file systems should be more care-
ful in implementing pointer protection techniques. A first
step would be to develop a consistent corruption-handling

policy and the corresponding machinery that can be used

by all file system components.
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