Parity Lost and Parity Regained

Andrew Krioukov, Lakshmi N. BairavasundaramGarth R. GoodsdnpKiran Srinivasan,
Randy Theleh Andrea C. Arpaci-DusseauRemzi H. Arpaci-Dussedau
*University of Wisconsin-Madison fNetwork Appliance, Inc.

{krioukov, laksh, dusseau, remh@cs.wisc.edu, {goodson, skiran, rthelén@ netapp.com

Abstract Although getting an implementation to work correctly
RAID storage systems protect data from storage errorgnay be challenging (often involving hundreds of thou-
such as data corruption, using a set of one or more insands of lines of code [38]), one could feel confident that
tegrity techniques, such as checksums. The exact prdhe design properly handles the expected errors.
tection offered by certain techniques or a combination of Unfortunately, storage systems today are confronted
techniques is sometimes unclear. We introduce and apwith a much richer landscape of storage errors, thus
ply a formal method of analyzing the design of data pro-considerably complicating the construction of correctly-
tection strategies. Specifically, we use model checkinglesigned protection strategies. For example, disks (and
to evaluate whether common protection techniques usedther storage subsystem components) are known to ex-
in parity-based RAID systems are sufficient in light of hibit latent sector errors, corruption, lost writes, mis-
the increasingly complex failure modes of modern diskdirected writes, and a number of other subtle problems
drives. We evaluate the approaches taken by a number efuring otherwise normal operation [2, 3, 17, 21, 30, 37].
real systems under single-error conditions, and find flawg hus, a fully-formed protection strategy must consider
in every scheme. In particular, we identify a parity pol- these errors and protect data despite their occurrence.
lution problem that spreads corrupt data (the result of a A number of techniques have been developed over
single error) across multiple disks, thus leading to dataime to cope with errors such as these. For example,
loss or corruption. We further identify which protection various forms of checksumming can be used to detect
measures must be used to avoid such problems. Finallgorruption [4, 35]; combined with redundaneyd, mir-
we show how to combine real-world failure data with rors or parity), checksumming enables both the detec-
the results from the model checker to estimate the actualon of and recovery from certain classes of errors. How-
likelihood of data loss of different protection strategies ever, given the broad range of techniques (including sec-
tor checksums, block checksums, parental checksums,
1 Introduction write-verify operations, identity information, and disk
scrubbing, to list a few), exactly which strategies protect
Data reliability and integrity is vital to storage systems. against which errors is sometimes unclear; worse, com-
Performance problems can be tuned, tools can be adddudning different approaches in a single system may lead
to cope with management issues, but data loss is seen #sunexpected gaps in data protection.
catastrophic. As Keetoet al. state, data unavailability =~ We propose a more formal approach based on model
may cost a company “... more than $1 million/hour”, but checking [20] to analyze the design of protection
the price of data loss is “even higher” [23]. schemes in modern storage systems. We develop and
In well-designed, high-end systems, disk-related erapply a simplemodel checketo examine different data
rors are still one of the main causes of potential trou-protection schemes. Within the system, one first imple-
ble and thus must be carefully considered to avoid datanents a simple logical version of the protection strategy
loss [25]. Fortunately, with simple disk errors.g, an under test; the model checker then applies different se-
entire disk failing in a fail-stop fashion), designing pro- quences of read, write, and error events to exhaustively
tection schemes to cope with disk errors is not overlyexplore the state space of the system, either producing a
challenging. For example, early systems successfullghain of events that lead to data loss or a “proof” that the
handle the failure of a single disk through the use of mir-scheme works as desired.
roring or parity-based redundancy schemes [6, 24, 29]. We use the model checker to evaluate a number of dif-

ferent approaches found in real RAID systems, focus2 Background

ing on parity-based protection and single errors. We find

holes in all of the schemes examined, where systems pd&/e provide some background first on a number of pro-
tentially exposes data to loss or returns corrupt data téection techniques found in real systems, and then on the
the user. In data loss scenarios, the error is detected, bipes of storage errors one might expect to see in modern
the data cannot be recovered, while in the rest, the errggystems.

is not detected and therefore corrupt data is returned to

the user. For example, we examine a combinationoftw® 1 Protection Techniques

techniques — block-level checksums (where checksums

of the data block are stored within the same disk block a$’rotection techniques have evolved greatly over time.
data and verified on every read) and write-verify (whereEarly multiple disk systems focused almost solely on re-
data is read back immediately after it is written to disk COvery from entire disk failures; detection was performed
and verified for correctness), and show that the schemBY the controller, and redundana.g, mirrors or parity)

could still fail to detect certain error conditions, thus re Was used to reconstruct data on the failed disk [12].
turning corrupt data to the user. Unfortunately, as disk drives became bigger, faster,

We di deularly int i q Itand cheaper, new and interesting failure modes began
¢ discover oné particularly Interesting and generag,, appear. For example, Network Appliadéérecently
problem that we calparity pollution In this situation,

¢ data | block of i ds 1o oth added protection against “lost writes” [3Tk., write re-
corrupt data in one biock ot a stripe spreads 10 0 erquests that appear to have been completed by the disk,
blocks through various parity calculations. We find a

: : but (for some reason) do not appear on the media. Man
number of cases where parity pollution occurs, and sho () bp Y

Yother systems do not (yet) have such protections, and the

how pollution can lead to data loss. Specifically, we fmdimportance of such protection is difficult to gauge.

that data scrubbing (which is used to reduce the chances This anecdote serves to illustrate the organic nature
of double disk failures) tends to be one of the main CauSess yata protection. While it would be optimal to simply

of parity pollution. write down a set of assumptions about the fault model
We construct a protection scheme to address all isand then design a system to handle the expected errors,
sues we discover including parity pollution. The schemein practice such an approach is not practical. Disks (and
uses a version-mirroring technigue in combination withother storage subsystem components) provide an ever-
block-level checksums and physical and logical identitymoving target; tomorrow’s disk errors may not be present
information, leading to a system that is robust to a fulltoday. Worse, as new problems arise, they must be incor-
and realistic range of storage errors. porated into existing schemes, rather than attacked from

With analyses of each scheme in hand, we also shoujrst principles. This aspect of data protection motivates
how a system designer can combine real data of errofhe need for a formal and rigorous approach to help un-
probability with our model checker’s results to arrive dersta_md the exact protection offered by combinations of
upon a final estimation of data loss probability. Doing sot€chniques. _
enables one to compare different protection approaches Table 1 shows the protection schemes employed by a
and determine which is best given the current environfange of modern systems. Although the table may be
ment. An interesting observation that emerges from thdncomplete €.g, a given system may use more than the
probability estimations is the trade-off between a higheProtections we list, as we only list what is readily made
probability detected data loss versus a lower probabilPublic via published papers, web sites, and documen-
ity of undetectable data corruption. For example, thistation), it hints at the breadth of approaches employed
trade-off is relevant when one decides between storin@S Well as the on-going development of protection tech-
checksums in the data block itself versus storing them ifliques. We discuss each of these techniques in more de-
a parent block. Another interesting observation is that@il in Section 4, where we use the model checker to de-
data scrubbing actually increases the probability of datd€rmine their efficacy in guarding against storage errors.
loss significantly under a single disk error.

The rest of the paper is structured as follows. Section 2-2 Storage Errors

discusses background, while Section 3 describes our aRye now discuss the different types of storage errors.

proach to model checking. Section 4 presents the resuligy,ny of these have been discussed in detail elsewhere [2,
of using the model checker to deconstruct a variety of3' 30, 37]. Here, we provide a brief overview and discuss
protection schemes; Section 5 presents the results of oygq;y frequency of occurrence (if known).

probability analysis of each scheme combined with real-
world failure data. Section 6 describes related work and e Latent sector errors. These errors occur when data
Section 7 concludes. cannot be reliably read from the disk drive medium.

2| £| | £]2
NERTIM *gﬁ o> §-5 8= .§§ -
< |5 82|88 |58|S5 (28|28 |p=|S
System z | 3(85|55 86|28 |&2(22|835 |5
Hardware RAID card vV
(say, Adapte€™ 2200 S [1])
Linux software RAID [16, 28] NARY
Pilot [31] v v
Tandem NonSto@) [4] vV Vv Vv
Dell™ Powervault™ [14] VIiv] Vv Vv
Hitachi Thunder 9500™ [18, 19] | |/ v Vi
NetAppR Data ONTARR) [37] NARY v/ ViV Y
ZFS [36] with RAID-4 VARV, Vi

Table 1:Protectionsin Real Systems. This table shows the known protections used in real-wordtesys. Some systems have
other protections: Pilot uses a scavenger routine to recovetadata, and Powervault uses a 1-bit “write stamp” andragstamp
value to detect data-parity mismatches. Systems may ukeifyrotections (details not made public).

The disk drive returns an explicit error code to the 2.3 Error Outcomes

system when a latent sector error is encountered. .) . .
Depending on the protection techniques in place, storage

systems errors may have one or more of the following

e Corruptions. As the name indicates, these errors
jputcomes:

are said to occur when the data stored in a disk bloc

is corrupted by an element of the storage stack.))
e Datarecovery: The scenario where the protection

strategy detects the error, and uses parity to success-

e Torn writes: Disk drives may end up writing only fully recover data

a portion of the sectors in a given write request. Of-
ten, this occurs when the drive is power-cycled in

the middle of processing the write request e Dataloss: The scenario where the protection strat-

egy detects the error, but is unable to successfully
recover data. In this case, the storage system reports

e Lost writes: In rare cases, buggy firmware compo-
an error to the user.

nents may return a success code to indicate comple-

tion of a write, but not perform the write in reality. e Corrupt data: The scenario where the protection

strategy does not detect the error, and therefore re-

e Misdirected writes: In other rare cases, buggy turns corrupt data to the user.

firmware may write the data to the wrong disk or the

wrong location within a disk. The effect of this error

is two-fold: the original disk location does notre- 3 Model Checking
ceive the write it is supposed to receive (lost write),

while the data in a different location is overwritten \ve have developed a simple model checker to analyze
(with effects similar to corruption or lost write). the design of various data protection schemes. The goal
of the model checker is to identify all execution se-
Latent sector errors affect about 19% of nearline andjuences, consisting of user-level operations, protection
about 2% of enterprise class disks within 2 years ofoperations, and disk errors, that can lead to either data
use [2]. Corruptions or torn writes affect on averageloss or corrupt data being returned to the user. The model
around 0.6% of nearline and 0.06% of enterprise classhecker exhaustively evaluates all possible states of a sin
disks within 17 months of use [3]. Lost or misdirected gle RAID stripe by taking into account the effects of all
writes occur in about 0.04% of nearline and 0.007%possible operations and disk errors for each state.
of enterprise class disks within the first 17 months of We have chosen to build our own model checker in-
use [3]. While the lost write numbers seem rather low,stead of using an existing one since it is easier to build
it is important to note that when a company sells a fewa simple model checker that is highly specific to RAID
million disks, at least one (and likely many more) cus- data protection; for example, the model checker assumes
tomers could be affected by lost writes every year. that the data disks are inter-changeable, thereby reducing

the number of unique states. However, there is no funda-
mental reason why our analysis cannot be performed on
a different model checker.

Models for the model checker are built on top of some
basic primitives. A RAID stripe consists aV disk
blocks where the contents of each disk block is defined
by the model using primitive components consisting of
user data entries and protections. Since both the choice
of components and their on-disk layout affect the data re-
liability, the model must specify each block as a series of
entries (corresponding to sectors within a block). Each
entry can be atomically read or written.

The model checker assumes that the desired unit of
consistency is one disk block. All protection schemes
are evaluated with this assumption as a basis. .

3.1 Modd Checker Primitives

The model checker provides the following primitives for
use by the protection scheme.

e Disk operations: The conventional operations disk
read and disk write are provided. These operations
are atomic for each entry (sector) and not over mul-
tiple entries that form a disk block.

a latent sector error occurs, the disk automatically
remapqy?2] the sectors.

Corruptions: These errors are modeled as a change
in value of a disk sector that produces a new value
(i.e., no collisions).

e Lostwrites: These errors are modeled by not updat-

ing any of the sectors that form a disk block when a
subsequent disk write is issued.

Torn writes: These errors are modeled by updating
only a portion of the sectors that form a disk block
when a subsequent disk write is issued.

Misdirected writes: These errors manifest in two
ways: (i) they appear as a lost write for the block
the write was intended to (the target), and (ii) it
overwrites a different disk location (the victim). We
assume that the target and victim are on different
RAID stripes (otherwise, it would be a double er-
ror), and therefore can be modeled separately. Thus,
we need to model only the victim, since the effects
of a lost write on the target is an error we already
study. A further assumption we make is that the
data being written is block-aligned with the victim.

Thus, a misdirected write is modeled by performing
a write to a disk block (with valid entries) without
an actual request from the model.

e Data protection: The model checker and the model
in conjunction implement various protection tech-
nigues. The model checker uses model-specified
knowledge of the protections to evaluate different
states. For example, the result of checksum verifi-
cation is part of the system state that is maintaine03'3 Model Checker States

by the model checker. Protections like parity and p state according to the model checker is defined us-
checksums are modeled in such a way that “colli-jng the following sub-states: (a) the validity of each data
sions” do not occur; we wish evaluate the spirit of jlom stored in the data disks as maintained by the model
the protection, not the choice of hash function. checker, (b) the results of performing each of the protec-

h del defi) h q '{ﬁifn checks of the model, and (c) whether valid data and
e model defines operations such as user read ange,yata items can be regenerated from parity for each
user write based on the model checker primitives. Fo

. ite th . fthe RAID stri 'of the data disks. The data disks are considered inter-
Instance, a user write that writes a part of the Strlpechangeable; for example, data di&K with corrupt data
will be implemented by the model using disk read and

disk writ " i lculati it d is the same as data digkl with corrupt data as long as
ISk write operations, parity caicuiation primitives, and | other data and parity items are valid in both cases. As
protection checks.

with any model checker, the previously explored states
are remembered to avoid re-exploration.
The output of the model checker is a state machine

3.2 ModéingErrors
- . that starts with the RAID stripe in the clean state and
The model checker injects exactly one error during the

vsis of th ! h The diff ﬁontains state transitions to each of the unique states dis-
analysis ot t e(;:).rotectlo;.scs eme. 5 § ierent typeds Otovered by the model checker. Table 2 contains a list of
storage erfors |scusse. In Section 2.2 are supported. erations and errors that cause the state transitions.
now describe how the different errors are modeled.

e Latent sector errors: These errors are modeled a4 Analysis
inaccessible data — an explicit error is returned
when an attempt is made to read the disk block We now analyze various protection schemes using the
Disk writes always succeed; it is assumed that ifmodel checker. We add protection techniques — RAID,

Operation Description Notation

User read Read for any data disk R(X)

User write Write for any combination of disks in the stripeW() is any write, Wapp () is write with ad-
(the model performs any disk reads needed |faitive parity, Wsup() is subractive; Param-
parity calculation) eters: X+ is “data disK plus others”, IX is

“other than data disK”, full is “full stripe”

Scrub Read all disks, verify protections, recompute pas
ity from data, and compare with on-disk parity

Latent sector| Disk read to a disk returns failure Frse(X), FLsr(P) for data diskX and par-

error ity disk respectively

Corruption A new value is assigned to a sector Fcorrupr(X), Fecorrupr(P) for data

disk X and parity disk respectively

Lost write Disk write issued is not performed, but success By,osT(X), FLosT(P) for data diskX and
reported parity disk respectively

Torn write Only the first sector of a disk write is written, butFrorn (X), Frorn (P) for data diskX and
success is reported parity disk respectively

Misdirected A disk block is overwritten with data following Fiispir (X), Fumispir(P) for data diskX

write the same layout as the block, but not meant far @nd parity disk respectively

Table 2:Model Operations. This table shows the different sources of state transiti¢asoperations that are performed on
the model, and (b) the different errors that are injected.

data scrubbing, checksums, write-verify, identity, ver-the number of disk reads, parity calculation may be per-
sion mirroring — one by one, and evaluate each setupformed in an additive or subtractive manner. In additive
We restrict our analysis to the protection offered by theparity calculation, data disks other than the disks being
different schemes against a single error. Indeed, we finavritten are read and the new parity is calculated as the
that most schemes cannot recover from even a single eXOR over the read blocks and the blocks being written.
ror (given the proper failure scenario). In subtractive parity calculation, the old data in the disks
being written and the old parity are first read. Then, the
new parity is the XOR of old data, old parity, and new
4.1 Bare-bonesRAID data. Since parity calculation uses data on disk, it should
The simplest of protection schemes is the use of parity®ify the data read from disk. We shall see in the sub-
to recover from errors. This type of scheme is tradi-S€ctions that follow that t_he absence of this verification
tionally available through RAID hardware cards [1]. In could violate data protection.
this scheme, errors are typically detected based on error When the model checker is used to evaluate this model
codes returned by the disk drive. and only one disk error is injected, we obtain the state
Figure 1 presents the model of bare-bones RAID,machine shown in Figure 2. Note that the state machine
specified using the primitives provided by the modelshows only those operations that result in state transi-
checker. In this model, a user read command simply callsions (.e., self-loops are omitted). The model starts in the
a RAID-level read, which in turn issues a disk read forcl ean state and transitions to different states when er-
all disks. The disk read primitive returns the “data” suc-rors occur. For example, a latent sector error to data disk
cessfully unless a latent sector error is encountered. OK places the model in statei skx LSE. The model
a latent sector error, the RAID read routine calls the retransitions back tal ean state, when one of the fol-
construct routine, which reads the rest of the disks, andowing occurs: (a) user read to data disk.e. R(X), (b)
recovers data through parity calculation. At the end of auser write to data disK plus 0 or more other disks thatin
user read, in place of returning data to the user, a validturn causes a disk read to data diskor subtractive par-
ity check primitive is called. This model checker primi- ity calculation Wsyg(X+)), and (c) user write to any
tive verifies that the data is indeed valid; if it is not valid, disks that result in additive parity calculation, thereby e
then the model checker has found a hole in the protectiorther causing data disk to be read or data diskK to be
scheme that returns corrupt data to the user. overwritten Wapp()). Thus, we see that the model can
When one or more data disks are written, parity isrecover from a latent sector error to data disks. We also
recalculated. Unless the entire stripe is written, parsee that the model can recover from a latent sector error
ity calculation requires disk reads. In order to optimizeto the parity disk as well.

User Read(Disks[]) {
data[] =RaidRead(Disks[]);
if(raid read failed)
Declare double failure and return;
ese
CheckValid(Disks[], data[]);
}
RaidRead(Disksl[]) {
for (x = 0 to numpisks[])) {
data[x] =DiskRead(Disks[x]);
if(disk read failed) // LSE
data[x] =Reconstruct(Disks[x]);
if(reconstruct failed) // another LSE
return FAILURE;
}

}

return data[];
}

Reconstruct(BadDish {
for (x = 0 to numAlIDisks[])) {

if(Disks[x] is notBadDisRk

data[x] =DiskRead(Disks[x]);
else

data[x] =DiskRead(ParityDisK);
if(disk read fails) // LSE

return FAILURE;

new_data =Parity(data[x]);
DiskWrite(Disks[x], new data);
return new.data;

}

User Write(Disks[], data[]) {
if(Additive parity cost is lower for nunifisks[])) {

otherdisk data[] =RaidRead(AlIDisks]] - Disks][]);

if(raid read failed)
Declare double failure and return;
parity_data =Parity(data[] + other _disk_data[]);

}
else{ // subtractive parity
old_data[] =RaidRead(Disks[] + ParityDiskK);
if(raid read failed)
Declare double failure and return;
parity_data =Parity(data[] + old_data[]);
}
for(x = 0 to numpPisks[])) {
DiskWrite(Disks[x], data[x]);
}

DiskWrite(ParityDisk parity_data)
return SUCCESS;
}

Figure 1:Model of Bare-bones RAID. The figure shows

Let us now consider the state transitions that lead to
corrupt data being returned to the user. We retain the
names of states involved in these transitions for other
data protection schemes as well, since the role they play
is similar across schemes.

Any of the errors, lost write, torn write, misdirected
write, or corruption to data disK when incl ean state,
places the model in stafé skx Error. In this state,
data diskX contains wrong data and the (correct) parity
on the stripe is therefore inconsistent with the data disks.
A user read to data disK will now return corrupt data
to the user Cor r upt Dat a), simply because there is
no means of verifying that the data is valid. If a user
write to disks other than data disk triggers additive
parity calculation W app (!X)), the corrupt data in data
disk X is used for parity calculation, thereby corrupting
the parity disk as well. In this scenario, both data disk
X and the parity disk contain corrupt data, but they are
consistent. We term this process of propagating incor-
rect data to the parity disk during additive parity calcu-
lation asparity pollutionand it corresponds to the state
Pol | ut ed Pari ty. Parity pollution does not impact
the probability of data loss or corruption in this case since
bare-bones RAID does not detect any form of corruption.
However, as we shall see, parity pollution causes prob-
lems for many other protection schemes.

When in stateDi skx Error, if a user write in-
volving data diskX leads to subtractive parity calcula-
tion (Wsup(X+)), the corrupt data in data diskK is
used for the parity calculation. Therefore, the new par-
ity generated is corrupt (and also inconsistent with the
data disks). However, since data disks being written,
data diskX is no longer corrupt. This state is named as
Parity Error inthe state machine. We see that the
same state can be reached frohean state when an er-
ror occurs for the parity disk. This state does not lead
to further data loss or corruption in the absence of a sec-
ond error (if a second error is detected on one of the data
disks, the corruption will be propagated to that disk as
well). Thus, we see that, bare-bones RAID protects only
against latent sector errors and not other errors.

4.2 Data Scrubbing

In this scheme, we add data scrubbing to the bare-bones
RAID protection scheme. Data scrubbing is an extended
version of disk media scrubbing [22, 33]. Data scrubs
read all disk blocks that form the stripe and reconstruct
the dataif an error is detected. The scrub also recomputes

the model of bare-bones RAID specified using the primitiveshe parity of the data blocks and compares it with the par-

DiskRead, DiskWrite, ParityCalc, andCheckValid provided

ity stored on the parity disk, thereby detecting any incon-

by the model checkerCheckValid is called when returning sistencies [3] ThUS, the Scrubbing mechanism can con-
data to the user and the model checker verifies if the data isvert the RAID recovery mechanism into an error detec-

actually valid.

tion technique. Note that if an inconsistency is detected,

FLost(P) | Fuispir(P) | Frorn(P) | Feorrupt(P)

FrLost®) | Fuispir %) | Frorn®) | Fcorrupt(X)

R(x) -)
Error orrup
! R(X
Wapp (+) Waoo (%) Polluted (at
Parity T

start @- W)

R(X) | Wapp 0 | Wsyg(x+)

Fise(®) @

W0

Figure 2:State Machine for Bare-bones RAID.

FLost(P) | Ruispir (P) | Frorn(P) | Feorrupt(P)

S| Wapp ()

FrLost(®) | Fuispir) | Frorn(®) | Fcorrupt(X) Wsyg(x+)

Disk x R(x) G)
Error - corrup
S| W, IX R(x),
W app (X+) | Wapp (%) bolluted \ Data
Parity

start @’ W)
h

S|RX) | Wapp () | Wsyp(x+)
Fise(®) @

S|WQ

Figure 3:RAID with scrubbing.

bare-bones RAID does not offer a method to resolve itmoving the model to statBol | uted Parity. We
The scrub should fix the inconsistency (by recomputingsee that the addition of the scrub has not improved pro-
the contents of the parity disk) because inconsistent datection when only one error is injected; scrubs are in-
and parity lead to data corruption if a second failure oc-tended to lower the chances of double failures, not of
curs and reconstruction is performed. In the rest of thdoss from single errors. In fact, we shall see later that the
section, when we refer to data scrubbing, we also implytendency of scrubs to pollute parity increases the chances
that the scheme fixes parity inconsistencies. of data loss when only one error occurs.

When the model checker is used to examine this model
an_d only one error is injected, we obtain the state mayz 3 Checksums
chine shown in Figure 3. We see that the state ma-
chine is very similar to that of bare-bones RAID, ex- Checksumming techniques have been used in numerous
cept that some edges inclu8e One such edge is the systems over the years to detect data corruption. Some
transition from the statBi skx Error, where datain systems store the checksum along with the data that it
data diskX is wrong, toPol | ut ed Parity, where protects [4, 14, 37], while other systems store the check-
both the data and parity are wrong, but consistently sosum on the access path to the data [35, 36]. We will
This transition during a scrub is easily explained — inexplore both alternatives. We also distinguish between
Di skx Error, the scrub detects a mismatch betweenthe schemes that store per sector checksums [4, 14] and
data and parity and updates the parity to match the datthose that use per-block checksums [37].

FLosr(®) | o (®) | Foun(P) Block checksums: The goal of block checksums is

S ool to ensure that a disk block is one consistent unit, un-
like with sector checksums. Figure 5 shows the state
machine obtained for block-level checksum protection.
Again, the addition of new states that do not lead to
Cor rupt Dat a signifies an improvement in the pro-
tection. The new states added correspond to torn writes.
Unlike sector-level protection, block-level protecticanc
detect torn writes (detection denoted by transitions from
statedi skx TornandParity Torntocl ean)in
exactly the same manner as detecting corruption. How-
ever, we see that corrupt data could still be returned to the
user. A lost write or a misdirected write transitions the
Figure 4:Sector checksums + RAID and scrubbing. model from thec| ean state toDi sky Error. When

a lost write occurs, the disk block retains data and check-
sum written on a previous occasion. The data and check-
sum are therefore consistent. Hence, the model does not
detect that the data on disk is wrong. A read to data disk
X now returns corrupt data to the user. The scenario is
similar for misdirected writes as well.

R
./ Polluted
Parity
Feorrupi¥)
S| R(x) W, (X+) Corrupted
(G IRO) | Whoo () | Waus(x+) p

‘: s120 paiy
Feorrupt(P) Corrupted

LSE(x)
SIRM) | Wapp 0 | Wsup(x+)

Frost(®) | Fuisoir @) | Frorn() S| Wapp (%)

Frost(P) | Awsoir (P)

Wsyp(x+)

FLost(®) | Fuisoir)

S | Wapp (%)

Frorn(x)

STRE) | Wapp O | Wsyg(x+)

Parental checksums: A third option for checksumming
is to store the checksum of the disk block in a parent
block that is accessed first during user readg,(an in-
ode of afile is read before its data block). Parental check-
sums can thus be used to verify data during all user reads,
but not for other operations. Figure 6 shows the state
machine for this scheme. We notice many changes to the
state machine as compared to block checksums. First, we
see that the states successfully handled by block check-
sums (such aBrorn (X)) do not exist. Instead, the tran-
sitions that led front| ean to those states now place the
model inDi sk x Error. Second, none of the states re-
. . turn corrupt data to the user. Instead, a new node called
Figure 5:Block checksums + RAID and scrubbing. Dat a Loss has been added. This change signifies that
the model detects a double failure and reports data loss.
) _ Third, the only transition tat a Loss is dueto aread
Sector checksums: Figure 4 shows the state machine st gata diskX when in thePol | ut ed Parity state.
obtained for sector-level checksum protection. The ob-rpg parity pollution now leads to data loss. As before,
vious change from the previous state machines is théhe causes of parity pollution are data scrubs or addi-
addition of two new statebi skx Corrupted and e parity calculations (transitiorfsor W opp (1X) lead
Parity Corrupted. The model transitions to these ¢om D skyx Error toPolluted Parity). Fig-
states from the| ean state when a corruption 0Ccurs ;e 7 presents a pictorial view of the transitions from
to data diskX or the parity disk respectively. The use cjean state to parity pollution and data loss. At the root
of sector checksums enables the detection of these cogz 1he problem is the fact that parental checksums can
ruptions whenever the corrupt block is read (includingpe yerified only for user reads, not other disk reads. Any
scrubs), thus initiating reconstruction and thereby retur protection technique that does not co-operate with RAID,

ing the model tocl ean state. However, the use of o5 parity recalculation to use bad data, causing irre-
sector checksums does not protect against torn Write§,ersible data loss.

lost writes, and misdirected writes. For example, torn

writes update a single sector, but not the rest of the block. Of the three checksums techniques evaluated, we find
The checksum for all sectors is therefore consistent withthat block checksumming has the fewest number of tran-
the data in that sector. Therefore, sector checksums dsitions to data loss or corruption. Therefore, we use
not detect these scenarid3(X) from Di skx Error block checksums as the starting point for adding further
leads toCor r upt Dat a). protection techniques.

Frorn(P)
S|WQ
10

start>(clean

Feorrupt(X)
SIRM) | Wapp 0 | Wsys(x+)

Feorrupt(P)

Parity
Corrupted

LSE(DX)

S |R(X) | Wapp () | Wsys(x+)
LSE(P)

FLost(P) | Fuispir(P) | Frorn(P) | Feorrupt(P)

S| Wapp () Parity

Error
Frost®) | Fwisoir (%) | Frorn(X) | Fcorrupt(X) @ Wsyp(x+)
R(X) | Wapp (x+) S | Wapp ('x) —
start>(clean W(x+) Polluted\ R(x) / Data
1 Fise(®) Parity Loss
S|RX) | Wapp) | Wsyg(x+) @

Fise(P) Parity
S|W(LSE

Figure 6:Parental checksums + RAID and scrubbing.

Disk dO Disk d1 Disk d2 Parity

Fusoir (P)

— —
Write a>d0: @\ ck@] | b [[ck(d)] \ ck(c)] S [Waoo 0
Subtractive Parity:
1) Disk reads: a {a,b,c}
2) Disk writes: ck(a’) {a’,b,c}

/

S— — i
Write b’,c'>d1,d2: ck(@ ckb ck(c o3 Disk x
Additive Pariy: @‘ @] b [ck®)] | ¢ [cke)] wn oz SR | Waon 0 | Wsus(c+) Corrupted
1) Disk reads: a X SIW(Q
Parity
Feorrurt(P)

e
[Lost]

2) Disk writes: b" ck(b) ¢ ck(c) {ab’,c}

[Polluted]

LSE(Dx)
— —— SR | Waop 0| Weg(x+)
ck(@ o |lck(b’ || ck(c
NP Y -l e Ca o
1) Disk reads: a ck(@)
[Checksum mismatch; attempt reconstruct]

2) Disk reads: b’ c {a,b',c’}

[Reconstructed data (a) does not match checksum; data
loss detected.]

Figure 8:Write-verify + block checksums, RAID and

Figure 7:Parity Pollution Sequence. This figure shows scrubbing.

a sequence of operations, along with intermediate RAICestat
that lead to parity pollution and subsequent data loss. Each

horizontal set of disks (Data disks dO, d1 and d2 and Parity .
disk) form the RAID stripe. The contents of the disk blocks ar quest, they are both lost, leaving the old data and check-

shown inside the diskss, b etc. are data values, anfla, b}~ SUM intgqt ar)d valid. On later reads to disk block, check-
denotes the parity of valuesand b. The protection scheme SUM verlflcatlor.] compares the old data Qnd old CheCkSUm
used is parental checksums. Checksums are shown next to th¢hich are consistent, thereby not detecting the lost write.
corresponding data disks. At each RAID state, user read or QOne simple method to fix this problem is to ensure
write operations cause corresponding disk reads and writesthat writes are not lost in the first place. Some storage
res_ultlng in the next state. _The first write to disk dO is lost, systems perform write-verify [18, 37] (also called read-
while the checksum and parity are successfully updatedt, Nex

after-write verify) for this purpose. This technique reads

a user write to disks d1 and d2 uses the bad data in disk dO toh disk block back after it i . d he d
calculate parity, thereby causing parity pollution. A safaent the disk block back after it Is written, and uses the data

user read to disk dO detects a checksum mismatch, but rgcovefOntents in memory to verify that the write has indeed

is not possible since parity is polluted. completed without errors.

4.4 Write-Verify Figure 8 shows the state machine for write-verify with
block checksums. Comparing this figure against Fig-

One primary problem with block checksums is that losture 5, we notice two differences: First, the states repre-

writes are not detected. Lost writes are particularly dif-senting torn data or parity do not exist anymore. Second,

ficult to handle. If the checksum is stored along with the transitionFrorn(X), Frorn(P), FLosT(X), and

the data and both are written as part of the same disk reé;,og1(P) are now fromcl ean to itself, instead of to

Fuost®) Fuost(P) | Fusorm (P)
S| Wapn ()
Wguyg(x+) R(X) | Wapp (X+) ® Wsyg(x+) @
R(X o y
@ ! f \ Frost(X) | Fuispir (X) S | Wapp (%)
S | Wapp (X) RO pata) Polluted) R(x) _ (‘Data)
/Polluted Parity \ Loss/

Parity
Disk x

Torn
Write

STRX) | WAoo 0 | Wsus(x+)
Fumisoir ()

S|1RX) | Wapp O | Wsyg(X+)
Frorn(P)

/ F P » Parity
y wasorr () i start=(cleang S|WQ Torn
start S| W0 iedi 3 S| R(X) | Wapp () | Wsys(x+) Write
‘; Feorrupt(X)
1 | Corrupted
I K ‘ Fcorrupt(P)

Disk x
Corrupted
Parity
Corrupted

Fise(P) @

STRM) | Waop 0 | Wsyg(x+)

S| RX) | Wapp O | Wsys(x+)

Figure 10: Logical identity + RAID, scrubbing and

Figure 9: Physical identity + RAID, scrubbing, and block checksums.
block checksums.

- . pared to previous state machines, we see that there
other states (self-loops shown for readability). Write- 516 two new states corresponding to misdirected writes,
verify detects lost writes and torn writes as and wheny sdi r ect ed Dat a andM sdi r ect ed Par i ty.
they occur, keeping the RAID stripe in clean state. These states are detected by the model when the disk
_ Unfortunately, write-verify has two negatives. First, pjock is read for any reason (scrub, user read, or par-
it does not protect against misdirected writes. When gty calculation) since even non-user operations like scrub
misdirected write occurs, Write-verify would detect that can verify physical identity. Thus, physical identity is a
the original target of the write suffered a lost write, and step towards mitigating parity pollution. However, par-
therefore simply reissue the write. However, the victimity pollution still occurs in state transitions involvingst
of the misdirected write is left consistent with consistentyyrites. I a lost write occurs, the disk block contains
checksums butwrong data. A later user read to the victimpe old data, which would still have the correct physi-
thus returns corrupt data to the user. Second, althoughg| plock number. Therefore, physical identity cannot

write-verify improves data protection, every disk write protect against lost writes, leading to corrupt data being
now incurs a disk read as well, possibly leading to a hug&etyrned to the user.

loss in performance. e Logical identity: The logical identity of disk blocks

is defined by the block’s parent and can therefore be
4.5 Identity verified only during user reads. Figure 10 shows the
state machine obtained when logical identity protection
A different approach that is used to solve the problem ofis used in combination with block checksums. Un-
lost or misdirected writes without the huge performancelike physical identity, misdirected writes do not cause
penalty of write-verify is the use of identity information. new states to be created for logical identity. Both
Different forms of identifying data (also called self- lost and misdirected writes place the model in the
describing data) can be stored along with data blocksDi sky Error state. At this point, parity pollution
An identity may be in one of two forms: (a) physical due to scrubs and user writes moves the system to the
identity, which typically consists of the disk number and Pol | ut ed Parity state since logical identity can
the disk block (or sector) number to which the data isbe verified only on user reads, thus causing data loss.
written [4], and (b) logical identity, which is typically an Thus, logical identity works in similar fashion to parental
inode number and offset within the file [31, 37]. checksums: (i) in both cases, there is a check that uses
e Physical identity: Figure 9 shows the state ma- data from outside the block being protected, and (ii) in
chine obtained when physical identity information is both cases, corrupt data is not returned to the user and
used in combination with block checksums. Com-instead, data loss is detected.

Wapp () | Wsug(x+) since the length of the version number is restricted to 1-
S| Waop (%) ; bit, it can only be used tdetecta mismatch between

data and parity (which we already can achieve through
parity recompute and compare). It does not provide the
power to identify the wrong data (which would enable
recovery). This example illustrates that the bit-length of
version numbers limits the number of errors that can be
detected and recovered from.

Figure 11 shows the state machine obtained when ver-

sion mirroring is added to logical identity protection. We

@ find that there are now states corresponding to lost writes
(Lost Dat aandLost Parity)forwhich all transi-
tions lead tacl ean. HoweverDat a Loss could still
occur, and in additiorDat a Loss Decl ar ed could
occur as well. The only error that causes state transitions
to any of these nodes is a misdirected write.

A misdirected write to data diskK places the model
in M sdi rect ed Dat a. Now, an additive parity cal-
culation that uses data disk will compare the version
number in data disk against the one in the parity disk.
The misdirected write could have written a disk block

‘ Fuisoir (P)
“ with a higher version number than the victim. Thus, the
model trusts the wrong data disk and pollutes parity.

Figure 11:Version mirroring + Logical identity, block A subsequent read to data diXkuses logical identity to
checksums, RAID, and scrubbing. detect the error, but the parity has already been polluted.

A misdirected write to the parity disk causes problems
as well. Interestingly, none of the protection schemes so
4.6 Version Mirroring far face this problem. The sequence of state transitions
leading toDat a Loss Decl ar ed occurs in follow-
The use of identity information (both physical and log- ing fashion. A misdirected write to the parity disk places
ical) does not protect data from exactly one scenario -hew version numbers in the entire list of version num-
parity pollution after a lost write. Version mirroring can bers on the disk. When any data disk’s version number
be used to detect lost writes during scrubs and parity calis compared against its corresponding version number on
culation. Herein, each data block that belongs to thethis list (during a write or scrub), if the parity’s (wrong)
RAID stripe contains a version number. This versionversions numbers are higher, reconstruction is initiated.
number is incremented with every write to the block. TheReconstruction will detect that none of the version num-
parity block contains a list of version numbers of all of bers of the data disks match the version numbers stored
the data blocks that it protects. Whenever a data block isn the parity disk. In this scenario, a multi-disk error is
read, its version number is compared to the correspondietected and the model declares data loss. This state is
ing version number stored in the parity block. If a mis- differentfromDat a Loss, since this scenariois a false
match occurs, the newer block will have a higher versiorpositive while the other has actual data loss.
number, and can used to reconstruct the other data block. The occurrence ofthBat a Loss Decl ar ed state
Note that when this approach is employed during useindicates that the policy used when multiple version
reads, each disk block read would now incur an addihumbers mismatch during reconstruction is faulty. It is
tional read of the parity block. To avoid this performanceindeed possible to have a policy that fixes parity instead
penalty, version numbers can be used in conjunction wittof data on a multiple version number mismatch. The use
logical identity. Thus, logical identity is verified during of a model checker thus enables identification of policy
file system reads, while version numbers are verified fofaults as well.
parity re-calculation reads and disk scrubbing. This ap- We know from the previous subsection that physical
proach incurs an extra disk read of the parity block onlyidentity protects against misdirected writes. Therefifre,
when additive parity calculation is performed. physical identity is added to version mirroring and log-
A primitive form of version mirroring has been used ical identity, we could potentially eliminate all problem
in real systems: Dell Powervault storage arrays [14] usenodes. Figure 12 shows the state machine generated for
a 1-bit version number called a “write stamp”. However, this protection scheme. We see that none of the state tran-

FLse®)
S TR() | Wapp 0 | Wsug(x+)
FLost(P)
S| Wapp)

Frorn(P)

Feorrupt(P)

Fise(P)

Misdir
Write

and data is protected with parental checksums.

e Parental protection: Verifying the contents of a disk
block against any value — either identity or checksum,
Parity written using a separate request and stored in a differ-
Lost ent disk location, is an excellent method to detect errors
write that are more difficult to handle. However, in the ab-
sence of techniques such as version mirroring, schemes
that protect data by placing checksum or identity protec-
tions on the access path should use the same access path
for disk scrubbing, parity calculation, and reconstrugtin

FLost®) | Fmispir (X)

S| RX) | Wapp () | Wsyg(x+)

FLost(P) | Fmispir (P)

Frorn(X)

S| RX) | Wapp () | Wsyg(x+)

Parity

‘ Tom data. Note that this approach could slow down these pro-
start @ Feomup®) Write cesses significantly, especially when the RAID is close
A to full space utilization.
‘ SIRX) | Voo 0 | Wsys(x+) e Mirroring: Mirroring of any piece of data, provides
S| W(Q P a distinct advantage: one can verify the correctness of
FeorruptP) Parity data through comparison without interference from other
Fioat) Corrupteg da_lt_a item§ (as in the case o_f par_ity). Yersion_ mirroring
utilizes this advantage in conjunction with crucial knowl-
STRMX) | Wapp 0 | Weug(x+) @ edge about the items that are mirrored — the higher value

is more recent.
@ e Physical identity: Physical identity, like block
checksums, is extremely useful since it is knowledge
available at the RAID-level. We see that this knowledge
is important for perfect data protection.

e Recovery-integrity co-design: Finally, it is vital to
integrate data integrity with RAID recovery, and do so by
exhaustively exploring all possible scenarios that could
occur when the protection techniques are composed.
sitions lead to data loss or data corruption. The advan- Thys, a model checking approach is very useful in de-
tage of using physical identity is that the physical iden-constructing the exact protection offered by a protection
tity can be verified (detecting any misdirected write) be-scheme, thereby also identifying important data protec-
fore comparing version numbers. Thus, we have identjon issues. We believe that such an exhaustive approach

tified a scheme that eliminates data loss or corruptioRyould prove even more important in evaluating protec-
due to a realistic range of disk errors; the scheme injons against double errors.

cludes version mirroring, physical and logical identity,
block checksums, and RAID.

Figure 12:Version mirroring + Logical and physical
identity, block checksums, RAID and scrubbing.

5 Probability of Lossor Corruption

4.7 Discussion One benefit of using a model checker is that we can
assign probabilities to various state transitions in the
The analysis of multiple schemes has helped identify th&tate machine produced, and easily generate approximate
following key data protection issues. probabilities for data loss or corruption. These probabil-
e Parity pollution: We believe that any parity-based ities help compare the different schemes quantitatively.
system that re-uses existing data to compute parity is po- We use the data for nearline disks in Section 2 to de-
tentially susceptible to data loss due to disk errors, inrive per-year probabilities for the occurrence of the dif-
particular lost and misdirected writes. In the absenceerent errors. For instance, the probability of occurrence
of techniques to perfectly verify the integrity of existing of Fysg (a latent sector error) for one disk@sl. The
disk blocks used for recomputing the parity, disk scrub-data does not distinguish between corruption and torn
bing and partial-stripe writes can cause parity pollution,writes; therefore, we assume an equal probability of oc-
where the parity no longer reflects valid data. currence oF corrupT @andFrorn (0.0022). We derive
In this context, it would be interesting to apply model the probabilities fof'ost and Fyispir based on the
checking to understand schemes with double parity [7assumptions in Section 3.2 89003 and1.88¢ — 5 re-
13]. Another interesting scheme that could be analyzedpectively.
is one with RAID-Z [8] protection (instead of RAID-4 We also compute the probability for each operation to
or RAID-5), where only full-stripe writes are performed be the first to encounter the stripe with an existing er-

E € 5 table illustrates the following trade-offs between pretec
3 E x| s S tion schemes:
§ 3 E “a:j s ; ch Scrub vs. No scrub: Systems employ scrubbing to de-
o695 |w|=|2 afnce tect and fix errors and inconsistencies in order to reduce
o|le|s5|x |52 |5 S S 0 the chances of double failures. However, our analysis
- |5|g|Q |2 | =9 |5|D Data . - .
< |5 (&g 2 18| |E|0o|b in the previous section shows that scrubs could poten-
@ |3 Do |2|T|2|>]| Los : . .
0.603% fually cause data loss dug t[O _panty pollution. The data
v B in the table shows that it is indeed the case. In fact,
: since scrubs have a higher probability of encountering
VAl 0.602% bs h higher probability of i
: errors, the probability of data loss is significantly higher
VI VIV 0.322% he probability of data loss is significantly high
VIV v *0'041A’ with scrubs than without. For example, using parental
VARY v *0-486% checksums with scrubs causes data loss with a proba-
v v 0.153% pility 0.00486, while using parental checksums without
ViV v v 0.002% scrubs causes data loss with a 3 times lesser probability
VAR v v 0.038% (.00153.
NVARY v v *0.033% Datalossvs. Corrupt data: Comparing the different
Vv Vv Vv *0.010% protection schemes, we see that some schemes cause data
NARY; vV NARYA *0.031% loss whereas others return corrupt data to the user. In-
vV vV NA RV *0.010% terestingly, we also see that the probability of data loss
NARY; vV Vv | v/ | *0.004% s higher than the probability of corrupt data. For ex-
v v v | v/ | ¥0.002% ample, using parental checksums (with RAID and scrub-
NARY Vv vV 1+v |+]| 0.0006 bing) causes data loss with a probabilitp0486, while

using block checksums causes corrupt data to be returned
Table 3: Probability of Loss or Corruption. Theta- with a an order of magnitude lesser probabilit§0041.
ble provides an approximate probability of at least 1 datssio Thus, while in general it is better to detect corruption
event and of corrupt data being returned to the user at leastang incur data loss than to return corrupt data, the an-

once, when each of the protection schemes is used for storingWer may not be obvious when the probability of loss is
data. Itis assumed that the storage system uses 4 data disks

and 1 parity disk. A (*) indicates that the data loss is detbte mufcf;]hlgher._ bability distributi fth derl
given the particular scheme (and hence can be turned into un- It the precise probability distributions of the underly-

availability, depending on system implementation). ing errors, and read, write, and scrub relative frequencies
are known, techniques like Monte-Carlo simulation can
be used to generate actual probability estimates that take
multiple errors into consideration [15].

ror. For this purpose, we utilize the distribution of how

often different requests detect corruption in our study

study [3]. The distribution is as follows. P(User read):

0.2, P(User write): 0.2, P(Scrub): 0.6. We assume tha

partial stripe writes of varying width are equally likely.

6 Redated Work

Many research efforts have explored reliability modeling
for RAID-based storage systems, right from when the

Note that while we attempt to use as realistic probabil-c3se was made for RAID storage [29]. Most initial ef-
ity numbers as possible, the goal is not to provide precisgorts focus on complete disk failures [10, 11, 26, 27]. For
data loss probabilities, but to illustrate the advantage ogxamme, Burkhard and Menon [10] use Markov mod-
using a model checker, and discuss potential trade-offg|s to estimate the reliability provided by multiple check
between different protection schemes. (parity) disks in a RAID group.

Table 3 provides approximate probabilities of dataloss More recent research has explored the impact of par-
derived from the state machines produced by the modeial disk failures, such as latent sector errors. Disk scrub
checker. We consider a 4 data disk, 1 parity disk RAIDbing [22] has been used for many years for proactive de-
configuration for all of the protection schemes for calcu-tection of latent errors, thus reducing the probability of
lating probabilities. This table enables simple compar-double failures. Schwaret al. use statistical models to
isons of the different protection schemes. We can seanalyze the fault tolerance provided by different options
that generally, enabling protections causes an expectddr disk scrubbing in archival storage systems [33]. El-
decrease in the chance of data loss. The use of versicgrath and Pecht use Monte Carlo simulation to explore
mirroring with logical and physical identity, block check- RAID reliability, considering different distributions fo
sums and RAID produces a scheme with a theoreticatlisk failures, latent errors, disk scrubbing, and time take
chance of data loss or corruption @s The data in the for RAID reconstruction [15]. Most of these research ef-

forts compute the reliability of RAID systems assuming In the future, as protection evolves further to cope

that errors are detected and fixed when encountered (sayith the next generation of disk problems, we believe

through scrubbing), while we examine the design of theapproaches such as ours will be critical. Although model

protections that provide such an assurance. checking implementations is clearly important [40], the
Sivathanuet al. provide a qualitative discussion of first step in building any successful storage system

the assurances provided by various redundancy tectshould begin with a correctly-specified design.

nigues [34]. We show that when multiple techniques are

used in combination, a more exhaustive exploration of

such assurances is essential. Acknowledgments

Most related to our work is simultaneous research by._ . -
Belluomini et al. [5]. They describe how undetected Thls material is based upon work supported by the Na-

disk errors such as silent data corruptions and lost write |cg1§_l 02;'162;? E?“ug_%astézrll?:dg élt?hg fggi\géngsgragis
could potentially lead to a RAID returning corrupt data ’ ' S W

to the user. They explore a general solution space involvpy generous donations from Network Appliance.
) y We thank members of the RAID group at NetApp in-

ing addition of an appendix with some extra information) . :
to each disk block or the parity block. In comparison, ourC!Udlng Atul Goel, Tomislav Greanac, Ra_Jes_h Sundaram,
Jim Taylor, and Tom Theaker for their insightful com-

effortis a detailed analysis of the exact protection offere : ;
y P ments on data protection schemes. David Ford, Stephen

g%;saifgl ti)c/iztralt(i)tfyezg:a information like block CheCI(Sums’Harpster, Steve Kleiman, Brian Pawlowski and members
L of the Advanced Technology Group at NetApp provided

Research efforts have also applied fault injection, in- X .
stead of modeling, as a means to quantify the reliabil£xcellent feedback on the work. Finally, we would like to

ity and availability of RAID storage. Brown and Patter- thank our shepherd Darrell Long and the anonymous re-

son [9] use benchmarks and fault injection to measuré/ieWerS for_the_ir_ detailed comments that helped improve
the availability of RAID. thipaper_s'gn'f'c?_mg' 4 conclus
Other research efforts that have leveraged model ng/ t(?p|n|ons, in ugjg_s, tﬁ'ﬁ cotnc_u|5|onstﬁr recofn:;]
checking ideas to understand the reliability properties ofnenaations expressed in this material are those of the
actual operating system and storage system code Bﬂuthors gnd_dq not necessarily reflect the views of NSF
39, 40]. For example, Yangt al. use model check- or other institutions.
ing to identify bugs in file system code [40], and later
they adapt model checking ideas to find bugs in manyReferences
S/Ilﬁzr?mhmek.sysﬁem ?ndbRAID |n:jp:err1ter(;tatlons .[t39]' [1] Adaptec, Inc. Adaptec SCSI RAID 2200S.
odelchecking has also been used 1o study Security pro- = pip:/mww.adaptec.com/en-US/support/raid/sest/ASR-
tocols [32]. 22008/, 2007.
[2] L. N. Bairavasundaram, G. R. Goodson, S. Pasupathy, and
J. Schindler. An Analysis of Latent Sector Errors in DiskJes.
In Proceedings of the 2007 ACM SIGMETRICS Conference on

) Measurement and Modeling of Computer Systems (SIGMETRICS
We have presented a formal approach to analyzing the '07), San Diego, CA, June 2007.

d.e5ign of dat.a prOteCtion_ strategies. V_/hereas ear."er der3) L. N. Bairavasundaram, G. R. Goodson, B. Schroeder, A. C.

signs were simple to verify by inspectioa.§, a parity Arpaci-Dusseau, and R. H. Arpaci-Dusseau. An Analysis of

disk successfully adds protection against full-disk fail- E_)’t?]t% chgll;(ms'on in the 5t0f§_|ge S;ag:- WOCTee?]'”gIS of ﬂZEAST
. ymposium on ke an orage lecnnologles

ure_), _moderr_l systems employ a host of techniques, and '08), San Jose. California, February 2008,

their interactions are subtle.

- . [4] W. Bartlett and L. Spainhower. Commercial Fault TolerenA
With our approaqh, we have shown that a variety of Tale of Two Systems.IEEE Transactions on Dependable and
approaches found in past and current systems are SUC- secure ComputingL(1):87—96, January 2004.
pessful _at detecting a variety qf problems but that some s, Belluomini, V. Deenadhayalan, J. L. Hafner, and K. Relo-
interesting corner-case scenarios can lead to data 0SS or detected Disk Errors in RAID Arraydo appear in the IBM Jour-
corruption. In particular, we found that the problem of nal of Research and Development
parity pollution can propagate errors from a single (bad) [6] D. Bitton and J. Gray. Disk shadowing. Proceedings of the
block to other (previou3|y gOOd) blocks, and thus lead 14th International Conference on Very‘Larg_e Data Bases (BLD
to a gap in protection in many schemes. The addition 14), pages 331-338, Los Angeles, California, August 1988.
of version mirroring and proper identity information, in [71 M. Blaum, J. Brady, J. Bruck, and J. Menon. EVENODD: An op-
addition to standard checksums, parity, and scrubbing, timal schemefor_toleratmg double disk failures in RAIDHitec- '

. . tures. InProceedings of the 21st Annual International Symposium
|e_ad5 to a solution where no single error should (by de- 4, Computer Architecture (ISCA '94)ages 245—254, Chicago,
sign) lead to data loss. llinois, April 1994.

7 Conclusion

(8]

El

[20]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]
[21]

[22]

(23]

[24]

[25]

[26]

J. Bonwick. RAID-Z. http://blogs.sun.com/bonwickieyrraid_z,
Nov. 2005.

A. Brown and D. A. Patterson. Towards Availability Bemashrks:

A Case Study of Software RAID Systems. Rroceedings of
the USENIX Annual Technical Conference (USENIX, @@ges
263-276, San Diego, California, June 2000.

W. Burkhard and J. Menon. Disk Array Storage Systemdeli

bility. In Proceedings of the 23rd International Symposium on [29]
Fault-Tolerant Computing (FTCS-23)ages 432—-441, Toulouse,
France, June 1993.

P. Chen and E. K. Lee. Striping in a RAID Level 5 Disk Array

In Proceedings of the 1995 ACM SIGMETRICS Conference on[3q]
Measurement and Modeling of Computer Systems (SIGMETRICS
'95), pages 136-145, Ottawa, Canada, May 1995.

P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A.-Pat
terson. RAID: High-performance, Reliable Secondary Sfera
ACM Computing Survey26(2):145-185, June 1994.

P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleimari,eong,
and S. Sankar. Row-Diagonal Parity for Double Disk Failuoe-C
rection. InProceedings of the 3rd USENIX Symposium on File
and Storage Technologies (FAST 'Ogxges 1-14, San Francisco,
California, April 2004.

M. H. Darden. Data Integrity: The Dell—EMC Dis-
tinction. http://www.dell.com/content/topics/glokagpx/power/
en/ps2q02darden?c=us&cs=555&I=en&s=hiz, May 2002.

J. Elerath and M. Pecht. Enhanced Reliability Modelifi(RAID
Storage Systems. Rroceedings of the International Conference
on Dependable Systems and Networks (DSN-2@dnburgh,
United Kingdom, June 2007.

Gentoo HOWTO. HOWTO Install on Software RAID.
http://gentoo-wiki.com/HOWTOGentoalnstalLon
_SoftwareRAID, Sept. 2007.

R. Green. EIDE Controller Flaws Version
http://mindprod.com/jgloss/eideflaw.html, February 200

Hitachi Data Systems. Hitachi Thunder 9500 V Serie$\8iérial
ATA: Revolutionizing Low-cost Archival Storage.
www.hds.com/assets/pdfiwjb7_sata.pdf, May 2004.

Hitachi Data Systems. Data Security Solutions.
http://www.hds.com/solutions/storage-strategiesidat
security/solutions.html, Sept. 2007.

E. M. C. Jr., O. Grumberg, and D. A. Pelet#lodel Checking
MIT Press, 1999.

H. H. Kari. Latent Sector Faults and Reliability of Disk Arrays
PhD thesis, Helsinki University of Technology, Septem@97L

H. H. Kari, H. Saikkonen, and F. Lombardi. Detection c#fBc-
tive Media in Disks. InThe IEEE International Workshop on De-
fect and Fault Tolerance in VLSI Systemages 49-55, Venice,
Italy, October 1993.

K. Keeton, C. Santos, D. Beyer, J. Chase, and J. Wilkesidh-
ing for disasters. IiProceedings of the 3rd USENIX Symposium
on File and Storage Technologies (FAST '08an Francisco, Cal-
ifornia, April 2004.

M. Y. Kim. Synchronized disk interleavinglEEE Transactions
on ComputersC-35(11):978-988, November 1986.

L. Lancaster and A. Rowe. Measuring Real World Data Avai
ability. In Proceedings of the LISA 2001 15th Systems Admin-
istration Conferencepages 93-100, San Diego, California, De-
cember 2001.

J. Menon and D. Mattson. Comparison of Sparing Altdévest
for Disk Arrays. InProceedings of the 19th Annual International
Symposium on Computer Architecture (ISCA ;923ges 318—
329, Gold Coast, Australia, May 1992.

[27]

(28]

(31]

(32]

(33]

(34]
24.

(35]

(36]

(37]

(38]

(39]

[40]

C. U. Orjiand J. A. Solworth. Doubly Distorted Mirrorin Pro-
ceedings of the 1993 ACM SIGMOD International Conference
on Management of Data (SIGMOD ’'93)Vashington, DC, May
1993.

J. Ostergaard and E. Bueso. The Software-RAID HOWTO.
http://tldp.org/HOWTO/htmisingle/Software-RAID-HOWTO/,
June 2004.

D. Patterson, G. Gibson, and R. Katz. A Case for Redunélan
rays of Inexpensive Disks (RAID). IRroceedings of the 1988
ACM SIGMOD Conference on the Management of Data (SIG-
MOD ’88), pages 109-116, Chicago, lllinois, June 1988.

V. Prabhakaran, L. N. Bairavasundaram, N. Agrawal, HGS-
nawi, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. IRON
File Systems. IfProceedings of the 20th ACM Symposium on Op-
erating Systems Principles (SOSP '0gages 206220, Brighton,
United Kingdom, October 2005.

D. D. Redell, Y. K. Dalal, T. R. Horsley, H. C. Lauer, W. C.
Lynch, P. R. McJones, H. G. Murray, and S. C.Purcell. Pilot:
An Operating System for a Personal Compu@ommunications
of the ACM 23(2):81-92, February 1980.

B. Schwarz, H. Chen, D. Wagner, G. Morrison, J. West,id, L
and W. Tu. Model Checking An Entire Linux Distribution for
Security Violations. IrProceedings of the Annual Computer Se-
curity Applications Conferengducson, Arizona, Dec. 2005.

T. J. Schwarz, Q. Xin, E. L. Miller, D. D. Long, A. Hospodo
and S. Ng. Disk Scrubbing in Large Archival Storage Systems.
In Proceedings of the 12th Annual Meeting of the IEEE Inter-
national Symposium on Modeling, Analysis, and Simulatibn o
Computer and Telecommunication Systems (MASCO/B&n-
dam, Netherlands, October 2004.

G. Sivathanu, C. P. Wright, and E. Zadok. Ensuring Datedrity

in Storage: Technigues and ApplicationsTime 1st International
Workshop on Storage Security and Survivability (StorageSs

FairFax County, Virginia, November 2005.

C. A. Stein, J. H. Howard, and M. I. Seltzer. Unifying &iBys-
tem Protection. IfProceedings of the USENIX Annual Technical
Conference (USENIX '01Boston, Massachusetts, June 2001.

Sun Microsystems. ZFS: The last word in file systems.
www.sun.com/2004-0914/feature/, 2006.

R. Sundaram. The Private Lives of Disk Drives.
http://www.netapp.com/go/techontap/matl/sample/
0206totresiliency.html, February 2006.

J. Wilkes, R. Golding, C. Staelin, and T. Sullivan. Th& H
AutoRAID Hierarchical Storage SystenACM Transactions on
Computer System&4(1):108-136, February 1996.

J. Yang, C. Sar, and D. Engler. EXPLODE: A Lightweight,
General System for Finding Serious Storage System Errars. |
Proceedings of the 7th Symposium on Operating SystemsrDesig
and Implementation (OSDI '0p¥eattle, Washington, November
2006.

J. Yang, P. Twohey, D. Engler, and M. Musuvathi. Usingddb
Checking to Find Serious File System Errors.Piroceedings of
the 6th Symposium on Operating Systems Design and Implemen-
tation (OSDI '04) San Francisco, California, December 2004.

