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Abstract
RAID storage systems protect data from storage errors,
such as data corruption, using a set of one or more in-
tegrity techniques, such as checksums. The exact pro-
tection offered by certain techniques or a combination of
techniques is sometimes unclear. We introduce and ap-
ply a formal method of analyzing the design of data pro-
tection strategies. Specifically, we use model checking
to evaluate whether common protection techniques used
in parity-based RAID systems are sufficient in light of
the increasingly complex failure modes of modern disk
drives. We evaluate the approaches taken by a number of
real systems under single-error conditions, and find flaws
in every scheme. In particular, we identify a parity pol-
lution problem that spreads corrupt data (the result of a
single error) across multiple disks, thus leading to data
loss or corruption. We further identify which protection
measures must be used to avoid such problems. Finally,
we show how to combine real-world failure data with
the results from the model checker to estimate the actual
likelihood of data loss of different protection strategies.

1 Introduction

Data reliability and integrity is vital to storage systems.
Performance problems can be tuned, tools can be added
to cope with management issues, but data loss is seen as
catastrophic. As Keetonet al. state, data unavailability
may cost a company “... more than $1 million/hour”, but
the price of data loss is “even higher” [23].

In well-designed, high-end systems, disk-related er-
rors are still one of the main causes of potential trou-
ble and thus must be carefully considered to avoid data
loss [25]. Fortunately, with simple disk errors (e.g., an
entire disk failing in a fail-stop fashion), designing pro-
tection schemes to cope with disk errors is not overly
challenging. For example, early systems successfully
handle the failure of a single disk through the use of mir-
roring or parity-based redundancy schemes [6, 24, 29].

Although getting an implementation to work correctly
may be challenging (often involving hundreds of thou-
sands of lines of code [38]), one could feel confident that
the design properly handles the expected errors.

Unfortunately, storage systems today are confronted
with a much richer landscape of storage errors, thus
considerably complicating the construction of correctly-
designed protection strategies. For example, disks (and
other storage subsystem components) are known to ex-
hibit latent sector errors, corruption, lost writes, mis-
directed writes, and a number of other subtle problems
during otherwise normal operation [2, 3, 17, 21, 30, 37].
Thus, a fully-formed protection strategy must consider
these errors and protect data despite their occurrence.

A number of techniques have been developed over
time to cope with errors such as these. For example,
various forms of checksumming can be used to detect
corruption [4, 35]; combined with redundancy (e.g., mir-
rors or parity), checksumming enables both the detec-
tion of and recovery from certain classes of errors. How-
ever, given the broad range of techniques (including sec-
tor checksums, block checksums, parental checksums,
write-verify operations, identity information, and disk
scrubbing, to list a few), exactly which strategies protect
against which errors is sometimes unclear; worse, com-
bining different approaches in a single system may lead
to unexpected gaps in data protection.

We propose a more formal approach based on model
checking [20] to analyze the design of protection
schemes in modern storage systems. We develop and
apply a simplemodel checkerto examine different data
protection schemes. Within the system, one first imple-
ments a simple logical version of the protection strategy
under test; the model checker then applies different se-
quences of read, write, and error events to exhaustively
explore the state space of the system, either producing a
chain of events that lead to data loss or a “proof” that the
scheme works as desired.

We use the model checker to evaluate a number of dif-



ferent approaches found in real RAID systems, focus-
ing on parity-based protection and single errors. We find
holes in all of the schemes examined, where systems po-
tentially exposes data to loss or returns corrupt data to
the user. In data loss scenarios, the error is detected, but
the data cannot be recovered, while in the rest, the error
is not detected and therefore corrupt data is returned to
the user. For example, we examine a combination of two
techniques – block-level checksums (where checksums
of the data block are stored within the same disk block as
data and verified on every read) and write-verify (where
data is read back immediately after it is written to disk
and verified for correctness), and show that the scheme
could still fail to detect certain error conditions, thus re-
turning corrupt data to the user.

We discover one particularly interesting and general
problem that we callparity pollution. In this situation,
corrupt data in one block of a stripe spreads to other
blocks through various parity calculations. We find a
number of cases where parity pollution occurs, and show
how pollution can lead to data loss. Specifically, we find
that data scrubbing (which is used to reduce the chances
of double disk failures) tends to be one of the main causes
of parity pollution.

We construct a protection scheme to address all is-
sues we discover including parity pollution. The scheme
uses a version-mirroring technique in combination with
block-level checksums and physical and logical identity
information, leading to a system that is robust to a full
and realistic range of storage errors.

With analyses of each scheme in hand, we also show
how a system designer can combine real data of error
probability with our model checker’s results to arrive
upon a final estimation of data loss probability. Doing so
enables one to compare different protection approaches
and determine which is best given the current environ-
ment. An interesting observation that emerges from the
probability estimations is the trade-off between a higher
probability detected data loss versus a lower probabil-
ity of undetectable data corruption. For example, this
trade-off is relevant when one decides between storing
checksums in the data block itself versus storing them in
a parent block. Another interesting observation is that
data scrubbing actually increases the probability of data
loss significantly under a single disk error.

The rest of the paper is structured as follows. Section 2
discusses background, while Section 3 describes our ap-
proach to model checking. Section 4 presents the results
of using the model checker to deconstruct a variety of
protection schemes; Section 5 presents the results of our
probability analysis of each scheme combined with real-
world failure data. Section 6 describes related work and
Section 7 concludes.

2 Background

We provide some background first on a number of pro-
tection techniques found in real systems, and then on the
types of storage errors one might expect to see in modern
systems.

2.1 Protection Techniques

Protection techniques have evolved greatly over time.
Early multiple disk systems focused almost solely on re-
covery from entire disk failures; detection was performed
by the controller, and redundancy (e.g., mirrors or parity)
was used to reconstruct data on the failed disk [12].

Unfortunately, as disk drives became bigger, faster,
and cheaper, new and interesting failure modes began
to appear. For example, Network ApplianceTM recently
added protection against “lost writes” [37],i.e., write re-
quests that appear to have been completed by the disk,
but (for some reason) do not appear on the media. Many
other systems do not (yet) have such protections, and the
importance of such protection is difficult to gauge.

This anecdote serves to illustrate the organic nature
of data protection. While it would be optimal to simply
write down a set of assumptions about the fault model
and then design a system to handle the expected errors,
in practice such an approach is not practical. Disks (and
other storage subsystem components) provide an ever-
moving target; tomorrow’s disk errors may not be present
today. Worse, as new problems arise, they must be incor-
porated into existing schemes, rather than attacked from
first principles. This aspect of data protection motivates
the need for a formal and rigorous approach to help un-
derstand the exact protection offered by combinations of
techniques.

Table 1 shows the protection schemes employed by a
range of modern systems. Although the table may be
incomplete (e.g., a given system may use more than the
protections we list, as we only list what is readily made
public via published papers, web sites, and documen-
tation), it hints at the breadth of approaches employed
as well as the on-going development of protection tech-
niques. We discuss each of these techniques in more de-
tail in Section 4, where we use the model checker to de-
termine their efficacy in guarding against storage errors.

2.2 Storage Errors

We now discuss the different types of storage errors.
Many of these have been discussed in detail elsewhere [2,
3, 30, 37]. Here, we provide a brief overview and discuss
their frequency of occurrence (if known).

• Latent sector errors: These errors occur when data
cannot be reliably read from the disk drive medium.
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Hardware RAID card
√

(say, AdaptecTM 2200 S [1])
Linux software RAID [16, 28]

√ √

Pilot [31]
√ √

Tandem NonStopR© [4]
√ √ √

DellTM PowervaultTM [14]
√ √ √ √

Hitachi Thunder 9500TM [18, 19]
√ √ √

NetAppR© Data ONTAPR© [37]
√ √ √ √ √ √

ZFS [36] with RAID-4
√ √ √

Table 1:Protections in Real Systems. This table shows the known protections used in real-world systems. Some systems have
other protections: Pilot uses a scavenger routine to recover metadata, and Powervault uses a 1-bit “write stamp” and a timestamp
value to detect data-parity mismatches. Systems may use further protections (details not made public).

The disk drive returns an explicit error code to the
system when a latent sector error is encountered.

• Corruptions: As the name indicates, these errors
are said to occur when the data stored in a disk block
is corrupted by an element of the storage stack.

• Torn writes: Disk drives may end up writing only
a portion of the sectors in a given write request. Of-
ten, this occurs when the drive is power-cycled in
the middle of processing the write request.

• Lost writes: In rare cases, buggy firmware compo-
nents may return a success code to indicate comple-
tion of a write, but not perform the write in reality.

• Misdirected writes: In other rare cases, buggy
firmware may write the data to the wrong disk or the
wrong location within a disk. The effect of this error
is two-fold: the original disk location does not re-
ceive the write it is supposed to receive (lost write),
while the data in a different location is overwritten
(with effects similar to corruption or lost write).

Latent sector errors affect about 19% of nearline and
about 2% of enterprise class disks within 2 years of
use [2]. Corruptions or torn writes affect on average
around 0.6% of nearline and 0.06% of enterprise class
disks within 17 months of use [3]. Lost or misdirected
writes occur in about 0.04% of nearline and 0.007%
of enterprise class disks within the first 17 months of
use [3]. While the lost write numbers seem rather low,
it is important to note that when a company sells a few
million disks, at least one (and likely many more) cus-
tomers could be affected by lost writes every year.

2.3 Error Outcomes

Depending on the protection techniques in place, storage
systems errors may have one or more of the following
outcomes:

• Data recovery: The scenario where the protection
strategy detects the error, and uses parity to success-
fully recover data.

• Data loss: The scenario where the protection strat-
egy detects the error, but is unable to successfully
recover data. In this case, the storage system reports
an error to the user.

• Corrupt data: The scenario where the protection
strategy does not detect the error, and therefore re-
turns corrupt data to the user.

3 Model Checking

We have developed a simple model checker to analyze
the design of various data protection schemes. The goal
of the model checker is to identify all execution se-
quences, consisting of user-level operations, protection
operations, and disk errors, that can lead to either data
loss or corrupt data being returned to the user. The model
checker exhaustively evaluates all possible states of a sin-
gle RAID stripe by taking into account the effects of all
possible operations and disk errors for each state.

We have chosen to build our own model checker in-
stead of using an existing one since it is easier to build
a simple model checker that is highly specific to RAID
data protection; for example, the model checker assumes
that the data disks are inter-changeable, thereby reducing



the number of unique states. However, there is no funda-
mental reason why our analysis cannot be performed on
a different model checker.

Models for the model checker are built on top of some
basic primitives. A RAID stripe consists ofN disk
blocks where the contents of each disk block is defined
by the model using primitive components consisting of
user data entries and protections. Since both the choice
of components and their on-disk layout affect the data re-
liability, the model must specify each block as a series of
entries (corresponding to sectors within a block). Each
entry can be atomically read or written.

The model checker assumes that the desired unit of
consistency is one disk block. All protection schemes
are evaluated with this assumption as a basis.

3.1 Model Checker Primitives

The model checker provides the following primitives for
use by the protection scheme.

• Disk operations: The conventional operations disk
read and disk write are provided. These operations
are atomic for each entry (sector) and not over mul-
tiple entries that form a disk block.

• Data protection: The model checker and the model
in conjunction implement various protection tech-
niques. The model checker uses model-specified
knowledge of the protections to evaluate different
states. For example, the result of checksum verifi-
cation is part of the system state that is maintained
by the model checker. Protections like parity and
checksums are modeled in such a way that “colli-
sions” do not occur; we wish evaluate the spirit of
the protection, not the choice of hash function.

The model defines operations such as user read and
user write based on the model checker primitives. For
instance, a user write that writes a part of the RAID stripe
will be implemented by the model using disk read and
disk write operations, parity calculation primitives, and
protection checks.

3.2 Modeling Errors

The model checker injects exactly one error during the
analysis of the protection scheme. The different types of
storage errors discussed in Section 2.2 are supported. We
now describe how the different errors are modeled.

• Latent sector errors: These errors are modeled as
inaccessible data – an explicit error is returned
when an attempt is made to read the disk block.
Disk writes always succeed; it is assumed that if

a latent sector error occurs, the disk automatically
remaps[2] the sectors.

• Corruptions: These errors are modeled as a change
in value of a disk sector that produces a new value
(i.e., no collisions).

• Lost writes: These errors are modeled by not updat-
ing any of the sectors that form a disk block when a
subsequent disk write is issued.

• Torn writes: These errors are modeled by updating
only a portion of the sectors that form a disk block
when a subsequent disk write is issued.

• Misdirected writes: These errors manifest in two
ways: (i) they appear as a lost write for the block
the write was intended to (the target), and (ii) it
overwrites a different disk location (the victim). We
assume that the target and victim are on different
RAID stripes (otherwise, it would be a double er-
ror), and therefore can be modeled separately. Thus,
we need to model only the victim, since the effects
of a lost write on the target is an error we already
study. A further assumption we make is that the
data being written is block-aligned with the victim.
Thus, a misdirected write is modeled by performing
a write to a disk block (with valid entries) without
an actual request from the model.

3.3 Model Checker States

A state according to the model checker is defined us-
ing the following sub-states: (a) the validity of each data
item stored in the data disks as maintained by the model
checker, (b) the results of performing each of the protec-
tion checks of the model, and (c) whether valid data and
metadata items can be regenerated from parity for each
of the data disks. The data disks are considered inter-
changeable; for example, data diskD0 with corrupt data
is the same as data diskD1 with corrupt data as long as
all other data and parity items are valid in both cases. As
with any model checker, the previously explored states
are remembered to avoid re-exploration.

The output of the model checker is a state machine
that starts with the RAID stripe in the clean state and
contains state transitions to each of the unique states dis-
covered by the model checker. Table 2 contains a list of
operations and errors that cause the state transitions.

4 Analysis

We now analyze various protection schemes using the
model checker. We add protection techniques – RAID,



Operation Description Notation
User read Read for any data disk R(X)
User write Write for any combination of disks in the stripe

(the model performs any disk reads needed for
parity calculation)

W() is any write,WADD() is write with ad-
ditive parity,WSUB() is subractive; Param-
eters: X+ is “data diskX plus others”, !X is
“other than data diskX”, full is “full stripe”

Scrub Read all disks, verify protections, recompute par-
ity from data, and compare with on-disk parity

S

Latent sector
error

Disk read to a disk returns failure FLSE(X), FLSE(P) for data diskX and par-
ity disk respectively

Corruption A new value is assigned to a sector FCORRUPT(X), FCORRUPT(P) for data
diskX and parity disk respectively

Lost write Disk write issued is not performed, but success is
reported

FLOST(X), FLOST(P) for data diskX and
parity disk respectively

Torn write Only the first sector of a disk write is written, but
success is reported

FTORN(X), FTORN(P) for data diskX and
parity disk respectively

Misdirected
write

A disk block is overwritten with data following
the same layout as the block, but not meant for it

FMISDIR(X), FMISDIR(P) for data diskX
and parity disk respectively

Table 2:Model Operations. This table shows the different sources of state transitions: (a) operations that are performed on
the model, and (b) the different errors that are injected.

data scrubbing, checksums, write-verify, identity, ver-
sion mirroring – one by one, and evaluate each setup.
We restrict our analysis to the protection offered by the
different schemes against a single error. Indeed, we find
that most schemes cannot recover from even a single er-
ror (given the proper failure scenario).

4.1 Bare-bones RAID

The simplest of protection schemes is the use of parity
to recover from errors. This type of scheme is tradi-
tionally available through RAID hardware cards [1]. In
this scheme, errors are typically detected based on error
codes returned by the disk drive.

Figure 1 presents the model of bare-bones RAID,
specified using the primitives provided by the model
checker. In this model, a user read command simply calls
a RAID-level read, which in turn issues a disk read for
all disks. The disk read primitive returns the “data” suc-
cessfully unless a latent sector error is encountered. On
a latent sector error, the RAID read routine calls the re-
construct routine, which reads the rest of the disks, and
recovers data through parity calculation. At the end of a
user read, in place of returning data to the user, a valid-
ity check primitive is called. This model checker primi-
tive verifies that the data is indeed valid; if it is not valid,
then the model checker has found a hole in the protection
scheme that returns corrupt data to the user.

When one or more data disks are written, parity is
recalculated. Unless the entire stripe is written, par-
ity calculation requires disk reads. In order to optimize

the number of disk reads, parity calculation may be per-
formed in an additive or subtractive manner. In additive
parity calculation, data disks other than the disks being
written are read and the new parity is calculated as the
XOR over the read blocks and the blocks being written.
In subtractive parity calculation, the old data in the disks
being written and the old parity are first read. Then, the
new parity is the XOR of old data, old parity, and new
data. Since parity calculation uses data on disk, it should
verify the data read from disk. We shall see in the sub-
sections that follow that the absence of this verification
could violate data protection.

When the model checker is used to evaluate this model
and only one disk error is injected, we obtain the state
machine shown in Figure 2. Note that the state machine
shows only those operations that result in state transi-
tions (i.e., self-loops are omitted). The model starts in the
clean state and transitions to different states when er-
rors occur. For example, a latent sector error to data disk
X places the model in stateDiskX LSE. The model
transitions back toclean state, when one of the fol-
lowing occurs: (a) user read to data diskX i.e. R(X), (b)
user write to data diskX plus 0 or more other disks that in
turn causes a disk read to data diskX for subtractive par-
ity calculation (WSUB(X+)), and (c) user write to any
disks that result in additive parity calculation, thereby ei-
ther causing data diskX to be read or data diskX to be
overwritten (WADD()). Thus, we see that the model can
recover from a latent sector error to data disks. We also
see that the model can recover from a latent sector error
to the parity disk as well.



UserRead(Disks[]) {
data[] =RaidRead(Disks[]);
if(raid read failed)

Declare double failure and return;
else

CheckValid(Disks[], data[]);
}

RaidRead(Disks[]) {
for(x = 0 to num(Disks[])) {

data[x] =DiskRead(Disks[x]);
if(disk read failed){ // LSE

data[x] =Reconstruct(Disks[x]);
if(reconstruct failed){ // another LSE

return FAILURE;
}

}
}
return data[];

}

Reconstruct(BadDisk) {
for(x = 0 to num(AllDisks[])) {

if(Disks[x] is notBadDisk)
data[x] =DiskRead(Disks[x]);

else
data[x] =DiskRead(ParityDisk);

if(disk read fails) // LSE
return FAILURE;

}
new data =Parity(data[x]);
DiskWrite(Disks[x], new data);
return new data;

}

UserWrite(Disks[], data[]){
if(Additive parity cost is lower for num(Disks[])) {

otherdisk data[] =RaidRead(AllDisks[] - Disks[]);
if(raid read failed)

Declare double failure and return;
parity data =Parity(data[] + other disk data[]);

}
else{ // subtractive parity

old data[] =RaidRead(Disks[] + ParityDisk);
if(raid read failed)

Declare double failure and return;
parity data =Parity(data[] + old data[]);

}
for(x = 0 to num(Disks[])) {

DiskWrite(Disks[x], data[x]);
}
DiskWrite(ParityDisk, parity data)
return SUCCESS;

}

Figure 1:Model of Bare-bones RAID. The figure shows
the model of bare-bones RAID specified using the primitives
DiskRead, DiskWrite, ParityCalc, andCheckValid provided
by the model checker.CheckValid is called when returning
data to the user and the model checker verifies if the data is
actually valid.

Let us now consider the state transitions that lead to
corrupt data being returned to the user. We retain the
names of states involved in these transitions for other
data protection schemes as well, since the role they play
is similar across schemes.

Any of the errors, lost write, torn write, misdirected
write, or corruption to data diskX when inclean state,
places the model in stateDiskX Error. In this state,
data diskX contains wrong data and the (correct) parity
on the stripe is therefore inconsistent with the data disks.
A user read to data diskX will now return corrupt data
to the user (Corrupt Data), simply because there is
no means of verifying that the data is valid. If a user
write to disks other than data diskX triggers additive
parity calculation (WADD(!X)), the corrupt data in data
disk X is used for parity calculation, thereby corrupting
the parity disk as well. In this scenario, both data disk
X and the parity disk contain corrupt data, but they are
consistent. We term this process of propagating incor-
rect data to the parity disk during additive parity calcu-
lation asparity pollutionand it corresponds to the state
Polluted Parity. Parity pollution does not impact
the probability of data loss or corruption in this case since
bare-bones RAID does not detect any form of corruption.
However, as we shall see, parity pollution causes prob-
lems for many other protection schemes.

When in stateDiskX Error, if a user write in-
volving data diskX leads to subtractive parity calcula-
tion (WSUB(X+)), the corrupt data in data diskX is
used for the parity calculation. Therefore, the new par-
ity generated is corrupt (and also inconsistent with the
data disks). However, since data diskX is being written,
data diskX is no longer corrupt. This state is named as
Parity Error in the state machine. We see that the
same state can be reached fromclean state when an er-
ror occurs for the parity disk. This state does not lead
to further data loss or corruption in the absence of a sec-
ond error (if a second error is detected on one of the data
disks, the corruption will be propagated to that disk as
well). Thus, we see that, bare-bones RAID protects only
against latent sector errors and not other errors.

4.2 Data Scrubbing

In this scheme, we add data scrubbing to the bare-bones
RAID protection scheme. Data scrubbing is an extended
version of disk media scrubbing [22, 33]. Data scrubs
read all disk blocks that form the stripe and reconstruct
the data if an error is detected. The scrub also recomputes
the parity of the data blocks and compares it with the par-
ity stored on the parity disk, thereby detecting any incon-
sistencies [3]. Thus, the scrubbing mechanism can con-
vert the RAID recovery mechanism into an error detec-
tion technique. Note that if an inconsistency is detected,



A B C D E F

start clean

Disk x
Error

FLOST(x) | FMISDIR (x) | FTORN(x) | FCORRUPT(x)

Disk x
LSEFLSE(x)

Parity
LSE

FLSE(P)

Parity
Error

FLOST(P) | FMISDIR (P) | FTORN(P) | FCORRUPT(P)

WADD (x+)

WSUB(x+)

Polluted
Parity

WADD (!x)
Corrupt

Data

R(x)

R(x) | WADD () | WSUB(x+)

W()

WADD ()

W(x+)

R(x)

Figure 2:State Machine for Bare-bones RAID.
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FLOST(P) | FMISDIR (P) | FTORN(P) | FCORRUPT(P)

WADD (x+)
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S | WADD (!x)
Corrupt

Data

R(x)

S | R(x) | WADD () | WSUB(x+)

S | W()

S | WADD ()

W(x+)

R(x)

Figure 3:RAID with scrubbing.

bare-bones RAID does not offer a method to resolve it.
The scrub should fix the inconsistency (by recomputing
the contents of the parity disk) because inconsistent data
and parity lead to data corruption if a second failure oc-
curs and reconstruction is performed. In the rest of the
section, when we refer to data scrubbing, we also imply
that the scheme fixes parity inconsistencies.

When the model checker is used to examine this model
and only one error is injected, we obtain the state ma-
chine shown in Figure 3. We see that the state ma-
chine is very similar to that of bare-bones RAID, ex-
cept that some edges includeS. One such edge is the
transition from the stateDiskX Error, where data in
data diskX is wrong, toPolluted Parity, where
both the data and parity are wrong, but consistently so.
This transition during a scrub is easily explained – in
DiskX Error, the scrub detects a mismatch between
data and parity and updates the parity to match the data

moving the model to statePolluted Parity. We
see that the addition of the scrub has not improved pro-
tection when only one error is injected; scrubs are in-
tended to lower the chances of double failures, not of
loss from single errors. In fact, we shall see later that the
tendency of scrubs to pollute parity increases the chances
of data loss when only one error occurs.

4.3 Checksums

Checksumming techniques have been used in numerous
systems over the years to detect data corruption. Some
systems store the checksum along with the data that it
protects [4, 14, 37], while other systems store the check-
sum on the access path to the data [35, 36]. We will
explore both alternatives. We also distinguish between
the schemes that store per sector checksums [4, 14] and
those that use per-block checksums [37].
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S | W()

Figure 4:Sector checksums + RAID and scrubbing.
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Figure 5:Block checksums + RAID and scrubbing.

Sector checksums: Figure 4 shows the state machine
obtained for sector-level checksum protection. The ob-
vious change from the previous state machines is the
addition of two new statesDiskX Corrupted and
Parity Corrupted. The model transitions to these
states from theclean state when a corruption occurs
to data diskX or the parity disk respectively. The use
of sector checksums enables the detection of these cor-
ruptions whenever the corrupt block is read (including
scrubs), thus initiating reconstruction and thereby return-
ing the model toclean state. However, the use of
sector checksums does not protect against torn writes,
lost writes, and misdirected writes. For example, torn
writes update a single sector, but not the rest of the block.
The checksum for all sectors is therefore consistent with
the data in that sector. Therefore, sector checksums do
not detect these scenarios (R(X) from DiskX Error
leads toCorrupt Data).

Block checksums: The goal of block checksums is
to ensure that a disk block is one consistent unit, un-
like with sector checksums. Figure 5 shows the state
machine obtained for block-level checksum protection.
Again, the addition of new states that do not lead to
Corrupt Data signifies an improvement in the pro-
tection. The new states added correspond to torn writes.
Unlike sector-level protection, block-level protection can
detect torn writes (detection denoted by transitions from
statesDiskX Torn andParity Torn toclean) in
exactly the same manner as detecting corruption. How-
ever, we see that corrupt data could still be returned to the
user. A lost write or a misdirected write transitions the
model from theclean state toDiskX Error. When
a lost write occurs, the disk block retains data and check-
sum written on a previous occasion. The data and check-
sum are therefore consistent. Hence, the model does not
detect that the data on disk is wrong. A read to data disk
X now returns corrupt data to the user. The scenario is
similar for misdirected writes as well.

Parental checksums: A third option for checksumming
is to store the checksum of the disk block in a parent
block that is accessed first during user reads (e.g., an in-
ode of a file is read before its data block). Parental check-
sums can thus be used to verify data during all user reads,
but not for other operations. Figure 6 shows the state
machine for this scheme. We notice many changes to the
state machine as compared to block checksums. First, we
see that the states successfully handled by block check-
sums (such asFTORN(X)) do not exist. Instead, the tran-
sitions that led fromclean to those states now place the
model inDiskX Error. Second, none of the states re-
turn corrupt data to the user. Instead, a new node called
Data Loss has been added. This change signifies that
the model detects a double failure and reports data loss.
Third, the only transition toData Loss is due to a read
of data diskX when in thePolluted Parity state.
Thus, parity pollution now leads to data loss. As before,
the causes of parity pollution are data scrubs or addi-
tive parity calculations (transitionsS or WADD(!X) lead
from DiskX Error to Polluted Parity). Fig-
ure 7 presents a pictorial view of the transitions from
clean state to parity pollution and data loss. At the root
of the problem is the fact that parental checksums can
be verified only for user reads, not other disk reads. Any
protection technique that does not co-operate with RAID,
allows parity recalculation to use bad data, causing irre-
versible data loss.

Of the three checksums techniques evaluated, we find
that block checksumming has the fewest number of tran-
sitions to data loss or corruption. Therefore, we use
block checksums as the starting point for adding further
protection techniques.
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Figure 7:Parity Pollution Sequence. This figure shows
a sequence of operations, along with intermediate RAID states,
that lead to parity pollution and subsequent data loss. Each
horizontal set of disks (Data disks d0, d1 and d2 and Parity
disk) form the RAID stripe. The contents of the disk blocks are
shown inside the disks.a, b etc. are data values, and{a, b}
denotes the parity of valuesa and b. The protection scheme
used is parental checksums. Checksums are shown next to the
corresponding data disks. At each RAID state, user read or
write operations cause corresponding disk reads and writes,
resulting in the next state. The first write to disk d0 is lost,
while the checksum and parity are successfully updated. Next,
a user write to disks d1 and d2 uses the bad data in disk d0 to
calculate parity, thereby causing parity pollution. A subsequent
user read to disk d0 detects a checksum mismatch, but recovery
is not possible since parity is polluted.

4.4 Write-Verify

One primary problem with block checksums is that lost
writes are not detected. Lost writes are particularly dif-
ficult to handle. If the checksum is stored along with
the data and both are written as part of the same disk re-
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Figure 8:Write-verify + block checksums, RAID and
scrubbing.

quest, they are both lost, leaving the old data and check-
sum intact and valid. On later reads to disk block, check-
sum verification compares the old data and old checksum
which are consistent, thereby not detecting the lost write.

One simple method to fix this problem is to ensure
that writes are not lost in the first place. Some storage
systems perform write-verify [18, 37] (also called read-
after-write verify) for this purpose. This technique reads
the disk block back after it is written, and uses the data
contents in memory to verify that the write has indeed
completed without errors.

Figure 8 shows the state machine for write-verify with
block checksums. Comparing this figure against Fig-
ure 5, we notice two differences: First, the states repre-
senting torn data or parity do not exist anymore. Second,
the transitionsFTORN(X), FTORN(P), FLOST(X), and
FLOST(P) are now fromclean to itself, instead of to
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Figure 9: Physical identity + RAID, scrubbing, and
block checksums.

other states (self-loops shown for readability). Write-
verify detects lost writes and torn writes as and when
they occur, keeping the RAID stripe in clean state.

Unfortunately, write-verify has two negatives. First,
it does not protect against misdirected writes. When a
misdirected write occurs, Write-verify would detect that
the original target of the write suffered a lost write, and
therefore simply reissue the write. However, the victim
of the misdirected write is left consistent with consistent
checksums but wrong data. A later user read to the victim
thus returns corrupt data to the user. Second, although
write-verify improves data protection, every disk write
now incurs a disk read as well, possibly leading to a huge
loss in performance.

4.5 Identity

A different approach that is used to solve the problem of
lost or misdirected writes without the huge performance
penalty of write-verify is the use of identity information.

Different forms of identifying data (also called self-
describing data) can be stored along with data blocks.
An identity may be in one of two forms: (a) physical
identity, which typically consists of the disk number and
the disk block (or sector) number to which the data is
written [4], and (b) logical identity, which is typically an
inode number and offset within the file [31, 37].
• Physical identity: Figure 9 shows the state ma-

chine obtained when physical identity information is
used in combination with block checksums. Com-
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Figure 10: Logical identity + RAID, scrubbing and
block checksums.

pared to previous state machines, we see that there
are two new states corresponding to misdirected writes,
Misdirected Data andMisdirected Parity.
These states are detected by the model when the disk
block is read for any reason (scrub, user read, or par-
ity calculation) since even non-user operations like scrub
can verify physical identity. Thus, physical identity is a
step towards mitigating parity pollution. However, par-
ity pollution still occurs in state transitions involving lost
writes. If a lost write occurs, the disk block contains
the old data, which would still have the correct physi-
cal block number. Therefore, physical identity cannot
protect against lost writes, leading to corrupt data being
returned to the user.

• Logical identity: The logical identity of disk blocks
is defined by the block’s parent and can therefore be
verified only during user reads. Figure 10 shows the
state machine obtained when logical identity protection
is used in combination with block checksums. Un-
like physical identity, misdirected writes do not cause
new states to be created for logical identity. Both
lost and misdirected writes place the model in the
DiskX Error state. At this point, parity pollution
due to scrubs and user writes moves the system to the
Polluted Parity state since logical identity can
be verified only on user reads, thus causing data loss.
Thus, logical identity works in similar fashion to parental
checksums: (i) in both cases, there is a check that uses
data from outside the block being protected, and (ii) in
both cases, corrupt data is not returned to the user and
instead, data loss is detected.
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Figure 11:Version mirroring + Logical identity, block
checksums, RAID, and scrubbing.

4.6 Version Mirroring

The use of identity information (both physical and log-
ical) does not protect data from exactly one scenario –
parity pollution after a lost write. Version mirroring can
be used to detect lost writes during scrubs and parity cal-
culation. Herein, each data block that belongs to the
RAID stripe contains a version number. This version
number is incremented with every write to the block. The
parity block contains a list of version numbers of all of
the data blocks that it protects. Whenever a data block is
read, its version number is compared to the correspond-
ing version number stored in the parity block. If a mis-
match occurs, the newer block will have a higher version
number, and can used to reconstruct the other data block.

Note that when this approach is employed during user
reads, each disk block read would now incur an addi-
tional read of the parity block. To avoid this performance
penalty, version numbers can be used in conjunction with
logical identity. Thus, logical identity is verified during
file system reads, while version numbers are verified for
parity re-calculation reads and disk scrubbing. This ap-
proach incurs an extra disk read of the parity block only
when additive parity calculation is performed.

A primitive form of version mirroring has been used
in real systems: Dell Powervault storage arrays [14] use
a 1-bit version number called a “write stamp”. However,

since the length of the version number is restricted to 1-
bit, it can only be used todetecta mismatch between
data and parity (which we already can achieve through
parity recompute and compare). It does not provide the
power to identify the wrong data (which would enable
recovery). This example illustrates that the bit-length of
version numbers limits the number of errors that can be
detected and recovered from.

Figure 11 shows the state machine obtained when ver-
sion mirroring is added to logical identity protection. We
find that there are now states corresponding to lost writes
(Lost Data andLost Parity) for which all transi-
tions lead toclean. However,Data Loss could still
occur, and in addition,Data Loss Declared could
occur as well. The only error that causes state transitions
to any of these nodes is a misdirected write.

A misdirected write to data diskX places the model
in Misdirected Data. Now, an additive parity cal-
culation that uses data diskX will compare the version
number in data diskX against the one in the parity disk.
The misdirected write could have written a disk block
with a higher version number than the victim. Thus, the
model trusts the wrong data diskX and pollutes parity.
A subsequent read to data diskX uses logical identity to
detect the error, but the parity has already been polluted.

A misdirected write to the parity disk causes problems
as well. Interestingly, none of the protection schemes so
far face this problem. The sequence of state transitions
leading toData Loss Declared occurs in follow-
ing fashion. A misdirected write to the parity disk places
new version numbers in the entire list of version num-
bers on the disk. When any data disk’s version number
is compared against its corresponding version number on
this list (during a write or scrub), if the parity’s (wrong)
versions numbers are higher, reconstruction is initiated.
Reconstruction will detect that none of the version num-
bers of the data disks match the version numbers stored
on the parity disk. In this scenario, a multi-disk error is
detected and the model declares data loss. This state is
different fromData Loss, since this scenario is a false
positive while the other has actual data loss.

The occurrence of theData Loss Declared state
indicates that the policy used when multiple version
numbers mismatch during reconstruction is faulty. It is
indeed possible to have a policy that fixes parity instead
of data on a multiple version number mismatch. The use
of a model checker thus enables identification of policy
faults as well.

We know from the previous subsection that physical
identity protects against misdirected writes. Therefore,if
physical identity is added to version mirroring and log-
ical identity, we could potentially eliminate all problem
nodes. Figure 12 shows the state machine generated for
this protection scheme. We see that none of the state tran-
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Figure 12:Version mirroring + Logical and physical
identity, block checksums, RAID and scrubbing.

sitions lead to data loss or data corruption. The advan-
tage of using physical identity is that the physical iden-
tity can be verified (detecting any misdirected write) be-
fore comparing version numbers. Thus, we have iden-
tified a scheme that eliminates data loss or corruption
due to a realistic range of disk errors; the scheme in-
cludes version mirroring, physical and logical identity,
block checksums, and RAID.

4.7 Discussion

The analysis of multiple schemes has helped identify the
following key data protection issues.
• Parity pollution: We believe that any parity-based

system that re-uses existing data to compute parity is po-
tentially susceptible to data loss due to disk errors, in
particular lost and misdirected writes. In the absence
of techniques to perfectly verify the integrity of existing
disk blocks used for recomputing the parity, disk scrub-
bing and partial-stripe writes can cause parity pollution,
where the parity no longer reflects valid data.

In this context, it would be interesting to apply model
checking to understand schemes with double parity [7,
13]. Another interesting scheme that could be analyzed
is one with RAID-Z [8] protection (instead of RAID-4
or RAID-5), where only full-stripe writes are performed

and data is protected with parental checksums.
• Parental protection: Verifying the contents of a disk

block against any value – either identity or checksum,
written using a separate request and stored in a differ-
ent disk location, is an excellent method to detect errors
that are more difficult to handle. However, in the ab-
sence of techniques such as version mirroring, schemes
that protect data by placing checksum or identity protec-
tions on the access path should use the same access path
for disk scrubbing, parity calculation, and reconstructing
data. Note that this approach could slow down these pro-
cesses significantly, especially when the RAID is close
to full space utilization.
• Mirroring: Mirroring of any piece of data, provides

a distinct advantage: one can verify the correctness of
data through comparison without interference from other
data items (as in the case of parity). Version mirroring
utilizes this advantage in conjunction with crucial knowl-
edge about the items that are mirrored – the higher value
is more recent.
• Physical identity: Physical identity, like block

checksums, is extremely useful since it is knowledge
available at the RAID-level. We see that this knowledge
is important for perfect data protection.
• Recovery-integrity co-design: Finally, it is vital to

integrate data integrity with RAID recovery, and do so by
exhaustively exploring all possible scenarios that could
occur when the protection techniques are composed.

Thus, a model checking approach is very useful in de-
constructing the exact protection offered by a protection
scheme, thereby also identifying important data protec-
tion issues. We believe that such an exhaustive approach
would prove even more important in evaluating protec-
tions against double errors.

5 Probability of Loss or Corruption

One benefit of using a model checker is that we can
assign probabilities to various state transitions in the
state machine produced, and easily generate approximate
probabilities for data loss or corruption. These probabil-
ities help compare the different schemes quantitatively.

We use the data for nearline disks in Section 2 to de-
rive per-year probabilities for the occurrence of the dif-
ferent errors. For instance, the probability of occurrence
of FLSE (a latent sector error) for one disk is0.1. The
data does not distinguish between corruption and torn
writes; therefore, we assume an equal probability of oc-
currence ofFCORRUPT andFTORN (0.0022). We derive
the probabilities forFLOST andFMISDIR based on the
assumptions in Section 3.2 as0.0003 and1.88e − 5 re-
spectively.

We also compute the probability for each operation to
be the first to encounter the stripe with an existing er-
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Table 3: Probability of Loss or Corruption. The ta-
ble provides an approximate probability of at least 1 data loss
event and of corrupt data being returned to the user at least
once, when each of the protection schemes is used for storing
data. It is assumed that the storage system uses 4 data disks,
and 1 parity disk. A (*) indicates that the data loss is detectable
given the particular scheme (and hence can be turned into un-
availability, depending on system implementation).

ror. For this purpose, we utilize the distribution of how
often different requests detect corruption in our study
study [3]. The distribution is as follows. P(User read):
0.2, P(User write): 0.2, P(Scrub): 0.6. We assume that
partial stripe writes of varying width are equally likely.

Note that while we attempt to use as realistic probabil-
ity numbers as possible, the goal is not to provide precise
data loss probabilities, but to illustrate the advantage of
using a model checker, and discuss potential trade-offs
between different protection schemes.

Table 3 provides approximate probabilities of data loss
derived from the state machines produced by the model
checker. We consider a 4 data disk, 1 parity disk RAID
configuration for all of the protection schemes for calcu-
lating probabilities. This table enables simple compar-
isons of the different protection schemes. We can see
that generally, enabling protections causes an expected
decrease in the chance of data loss. The use of version
mirroring with logical and physical identity, block check-
sums and RAID produces a scheme with a theoretical
chance of data loss or corruption as0. The data in the

table illustrates the following trade-offs between protec-
tion schemes:
Scrub vs. No scrub: Systems employ scrubbing to de-
tect and fix errors and inconsistencies in order to reduce
the chances of double failures. However, our analysis
in the previous section shows that scrubs could poten-
tially cause data loss due to parity pollution. The data
in the table shows that it is indeed the case. In fact,
since scrubs have a higher probability of encountering
errors, the probability of data loss is significantly higher
with scrubs than without. For example, using parental
checksums with scrubs causes data loss with a proba-
bility 0.00486, while using parental checksums without
scrubs causes data loss with a 3 times lesser probability
0.00153.
Data loss vs. Corrupt data: Comparing the different
protection schemes, we see that some schemes cause data
loss whereas others return corrupt data to the user. In-
terestingly, we also see that the probability of data loss
is higher than the probability of corrupt data. For ex-
ample, using parental checksums (with RAID and scrub-
bing) causes data loss with a probability0.00486, while
using block checksums causes corrupt data to be returned
with a an order of magnitude lesser probability0.00041.
Thus, while in general it is better to detect corruption
and incur data loss than to return corrupt data, the an-
swer may not be obvious when the probability of loss is
much higher.

If the precise probability distributions of the underly-
ing errors, and read, write, and scrub relative frequencies
are known, techniques like Monte-Carlo simulation can
be used to generate actual probability estimates that take
multiple errors into consideration [15].

6 Related Work

Many research efforts have explored reliability modeling
for RAID-based storage systems, right from when the
case was made for RAID storage [29]. Most initial ef-
forts focus on complete disk failures [10, 11, 26, 27]. For
example, Burkhard and Menon [10] use Markov mod-
els to estimate the reliability provided by multiple check
(parity) disks in a RAID group.

More recent research has explored the impact of par-
tial disk failures, such as latent sector errors. Disk scrub-
bing [22] has been used for many years for proactive de-
tection of latent errors, thus reducing the probability of
double failures. Schwarzet al. use statistical models to
analyze the fault tolerance provided by different options
for disk scrubbing in archival storage systems [33]. El-
erath and Pecht use Monte Carlo simulation to explore
RAID reliability, considering different distributions for
disk failures, latent errors, disk scrubbing, and time taken
for RAID reconstruction [15]. Most of these research ef-



forts compute the reliability of RAID systems assuming
that errors are detected and fixed when encountered (say
through scrubbing), while we examine the design of the
protections that provide such an assurance.

Sivathanuet al. provide a qualitative discussion of
the assurances provided by various redundancy tech-
niques [34]. We show that when multiple techniques are
used in combination, a more exhaustive exploration of
such assurances is essential.

Most related to our work is simultaneous research by
Belluomini et al. [5]. They describe how undetected
disk errors such as silent data corruptions and lost writes
could potentially lead to a RAID returning corrupt data
to the user. They explore a general solution space involv-
ing addition of an appendix with some extra information
to each disk block or the parity block. In comparison, our
effort is a detailed analysis of the exact protection offered
by each type of extra information like block checksums,
physical identity, etc.

Research efforts have also applied fault injection, in-
stead of modeling, as a means to quantify the reliabil-
ity and availability of RAID storage. Brown and Patter-
son [9] use benchmarks and fault injection to measure
the availability of RAID.

Other research efforts that have leveraged model
checking ideas to understand the reliability properties of
actual operating system and storage system code [32,
39, 40]. For example, Yanget al. use model check-
ing to identify bugs in file system code [40], and later
they adapt model checking ideas to find bugs in many
different file system and RAID implementations [39].
Model checking has also been used to study security pro-
tocols [32].

7 Conclusion

We have presented a formal approach to analyzing the
design of data protection strategies. Whereas earlier de-
signs were simple to verify by inspection (e.g., a parity
disk successfully adds protection against full-disk fail-
ure), modern systems employ a host of techniques, and
their interactions are subtle.

With our approach, we have shown that a variety of
approaches found in past and current systems are suc-
cessful at detecting a variety of problems but that some
interesting corner-case scenarios can lead to data loss or
corruption. In particular, we found that the problem of
parity pollution can propagate errors from a single (bad)
block to other (previously good) blocks, and thus lead
to a gap in protection in many schemes. The addition
of version mirroring and proper identity information, in
addition to standard checksums, parity, and scrubbing,
leads to a solution where no single error should (by de-
sign) lead to data loss.

In the future, as protection evolves further to cope
with the next generation of disk problems, we believe
approaches such as ours will be critical. Although model
checking implementations is clearly important [40], the
first step in building any successful storage system
should begin with a correctly-specified design.
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