
21

Protocol-Aware Recovery for Consensus-Based

Distributed Storage

RAMNATTHAN ALAGAPPAN and AISHWARYA GANESAN,

University of Wisconsin – Madison

ERIC LEE, University of Texas – Austin

AWS ALBARGHOUTHI, University of Wisconsin – Madison

VIJAY CHIDAMBARAM, University of Texas – Austin

ANDREA C. ARPACI-DUSSEAU and REMZI H. ARPACI-DUSSEAU,

University of Wisconsin – Madison

We introduce protocol-aware recovery (Par), a new approach that exploits protocol-specific knowledge to

correctly recover from storage faults in distributed systems. We demonstrate the efficacy of Par through the

design and implementation of corruption-tolerant replication (Ctrl), a Par mechanism specific to replicated

state machine (RSM) systems. We experimentally show that the Ctrl versions of two systems, LogCabin and

ZooKeeper, safely recover from storage faults and provide high availability, while the unmodified versions

can lose data or become unavailable. We also show that the Ctrl versions achieve this reliability with little

performance overheads.

CCS Concepts: • General and reference → Reliability; • Information systems → Distributed storage;

• Computer systems organization → Redundancy; • Software and its engineering → File systems

management;

Additional Key Words and Phrases: Storage faults, data corruption, fault tolerance, consensus

ACM Reference format:

Ramnatthan Alagappan, Aishwarya Ganesan, Eric Lee, Aws Albarghouthi, Vijay Chidambaram, Andrea C.

Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2018. Protocol-Aware Recovery for Consensus-Based Dis-

tributed Storage. ACM Trans. Storage 14, 3, Article 21 (October 2018), 30 pages.

https://doi.org/10.1145/3241062

This material was supported by funding from NSF grants CNS-1421033 and CNS-1218405, DOE grant DE-SC0014935, and

donations from EMC, Huawei, Microsoft, and VMware. Any opinions, findings, and conclusions or recommendations ex-

pressed in this material are those of the authors and may not reflect the views of NSF, DOE, or other institutions. This

article is an extended version of a FAST ’18 paper by Alagappan et al. [7]. The additional material here includes a discus-

sion on how Par can be applied to other systems, a proof of why crashes and corruptions cannot be always disentangled,

an overview diagram that summarizes the entire recovery protocol, new performance experiments, new figures explaining

leader-initiated snapshots, and many other small updates.

Authors’ addresses: R. Alagappan and A. Ganesan, 1210 W. Dayton St., Madison, WI 53706; emails: {ra, ag}@cs.wisc.edu;

E. Lee, 2317 Speedway, Austin, TX 78712; email: ericlee123@utexas.edu; A. Albarghouthi, 1210 W. Dayton St., Madison,

WI 53706; email: aws@cs.wisc.edu; V. Chidambaram, 2317 Speedway, Austin, TX 78712; email: vijay@cs.utexas.edu; A.

C. Arpaci-Dusseau and R. H. Arpaci-Dusseau, 1210 W. Dayton St., Madison, WI 53706; emails: dusseau@cs.wisc.edu,

remzi@cs.wisc.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

1553-3077/2018/10-ART21 $15.00

https://doi.org/10.1145/3241062

ACM Transactions on Storage, Vol. 14, No. 3, Article 21. Publication date: October 2018.

https://doi.org/10.1145/3241062
mailto:permissions@acm.org
https://doi.org/10.1145/3241062

21:2 R. Alagappan et al.

1 INTRODUCTION

Failure recovery using redundancy is central to improved reliability of distributed systems [15, 23,
33, 37, 65, 71]. Distributed systems recover from node crashes and network failures using copies
of data and functionality on several nodes [7, 49, 59]. Similarly, bad or corrupted data on one node
should be recovered from redundant copies.

In a static setting where all nodes always remain reachable and where clients do not actively
update data, recovering corrupted data from replicas is straightforward; in such a setting, a node
could repair its state by simply fetching the data from any other node.

In reality, however, a distributed system is a dynamic environment, constantly in a state of
flux. In such settings, orchestrating recovery correctly is surprisingly hard. As a simple example,
consider a quorum-based system, in which a piece of data is corrupted on one node. When the
node tries to recover its data, some nodes may fail and be unreachable, and some nodes may have
recently recovered from a failure and so lack the required data or hold a stale version. If enough
care is not exercised, the node could “fix” its data from a stale node, overwriting the new data,
potentially leading to a data loss.

To correctly recover corrupted data from redundant copies in a distributed system, we propose
that a recovery approach should be protocol-aware. A protocol-aware recovery (Par) approach is
carefully designed based on how the distributed system performs updates to its replicated data,
elects the leader, and so on. For instance, in the previous example, a Par mechanism would realize
that a faulty node has to query at least R (read quorum) other nodes to safely and quickly recover
its data.

In this article, we apply Par to replicated state machine (RSM) systems. We focus on RSM sys-
tems for two reasons. First, correctly implementing recovery is most challenging for RSM systems
because of the strong consistency and durability guarantees they provide [62]; a small misstep
in recovery could violate the guarantees. Second, the reliability of RSM systems is crucial: many
systems entrust RSM systems with their critical data [47]. For example, Bigtable, GFS, and other
systems [8, 28] store their metadata on RSM systems such as Chubby [17] or ZooKeeper [5]. Hence,
protecting RSM systems from storage faults such as data corruption will improve the reliability of
many dependent systems.

We first characterize the different approaches to handling storage faults by developing the RSM

recovery taxonomy, through experimental and qualitative analysis of practical systems and meth-
ods proposed by prior research (Section 2). Our analyses show that most approaches employed by
currently deployed systems do not use any protocol-level knowledge to perform recovery, leading
to disastrous outcomes such as data loss and unavailability.

Thus, to improve the resiliency of RSM systems to storage faults, we design a new protocol-
aware recovery approach that we call corruption-tolerant replication or Ctrl (Section 3). Ctrl
constitutes two components: a local storage layer and a distributed recovery protocol; while the
storage layer reliably detects faults, the distributed protocol recovers faulty data from redundant
copies. Both the components carefully exploit RSM-specific knowledge to ensure safety (e.g., no
data loss) and high availability.

Ctrl applies several novel techniques to achieve safety and high availability. For example, a
crash-corruption disentanglement technique in the storage layer distinguishes corruptions caused
by crashes from disk faults; without this technique, safety violations or unavailability could result.
Next, a global-commitment determination protocol in the distributed recovery separates committed
items from uncommitted ones; this separation is critical: while recovering faulty committed items
is necessary for safety, discarding uncommitted items quickly is crucial for availability. Finally, a
novel leader-initiated snapshotting mechanism enables identical snapshots across nodes to greatly
simplify recovery.

ACM Transactions on Storage, Vol. 14, No. 3, Article 21. Publication date: October 2018.

Protocol-Aware Recovery 21:3

We implement Ctrl in two storage systems that are based on different consensus algorithms:
LogCabin [45] (based on Raft [53]) and ZooKeeper [5] (based on ZAB [41]) (Section 4). Through
experiments, we show that Ctrl versions provide safety and high availability in the presence of
storage faults, while the original systems remain unsafe or unavailable in many cases; we also
show that Ctrl induces minimal performance overhead (Section 5).

2 BACKGROUND AND MOTIVATION

We first provide background on storage faults and RSM systems. We then present the taxonomy
of different approaches to handling storage faults in RSM systems.

2.1 Storage Faults in Distributed Systems

Disks and flash devices exhibit a subtle and complex failure model: a few blocks of data could
become inaccessible or be silently corrupted [9, 10, 34, 63]. Although such storage faults are rare
compared to whole-machine failures, in large-scale distributed systems, even rare failures become
prevalent [64, 66]. Thus, it is critical to reliably detect and recover from storage faults.

Storage faults occur due to several reasons: media errors [11], program/read disturbance [64],
and bugs in firmware [10], device drivers [70], and file systems [29, 30]. Storage faults manifest in
two ways: block errors and corruption. Block errors (or latent sector errors) arise when the device
internally detects a problem with a block and throws an error upon access. Studies of both flash [35,
64] and hard drives [11, 63] show that block errors are common. Corruption could occur due to
lost and misdirected writes that may not be detected by the device. Studies [10, 54] and anecdotal
evidence [38, 39, 61] show the prevalence of data corruption in the real world.

Many local file systems, on encountering a storage fault, simply propagate the fault to applica-
tions [12, 57, 68]. For example, ext4 silently returns corrupted data if the underlying device block
is corrupted. In contrast, a few file systems transform an underlying fault into a different one; for
example, btrfs returns an error to applications if the accessed block is corrupted on the device. In
either case, storage systems built atop local file systems should handle corrupted data and storage
errors to preserve end-to-end data integrity.

One way to tackle storage faults is to use RAID-like storage to maintain multiple copies of data
on each node. However, many distributed deployments would like to use inexpensive disks [23,
33]. Given that the data in a distributed system is inherently replicated, it is wasteful to store
multiple copies on each node. Hence, it is important for distributed systems to use the inherent
redundancy to recover from storage faults.

2.2 RSM-Based Storage Systems

Our goal is to harden RSM systems to storage faults. In an RSM system, a set of nodes compute
identical states by executing commands on a state machine (an in-memory data structure on each
node) [62]. Typically, clients interact with a single node (the leader) to execute operations on the
state machine. Upon receiving a command, the leader durably writes the command to an on-disk
log and replicates it to the followers. When a majority of nodes have durably persisted the com-
mand in their logs, the leader applies the command to its state machine and returns the result to the
client; at this point, the command is committed. The commands in the log have to be applied to the
state machine in-order. Losing or overwriting committed commands violates the safety property
of the state machine. The replicated log is kept consistent across nodes by a consensus protocol
such as Paxos [43], ZAB [41], or Raft [53].

Because the log can grow indefinitely and exhaust disk space, periodically, a snapshot of the in-
memory state machine is written to disk and the log is garbage collected. When a node restarts after
a crash, it restores the system state by reading the latest on-disk snapshot and the log. The node

ACM Transactions on Storage, Vol. 14, No. 3, Article 21. Publication date: October 2018.

21:4 R. Alagappan et al.

Fig. 1. Sample Scenarios. The figure shows sample scenarios in which current approaches fail. Faulty en-

tries are striped. Crashed and lagging nodes are shown as gray and empty boxes, respectively.

also recovers its critical metadata (e.g., log start index) from a structure called metainfo. Thus, each
node maintains three critical persistent data structures: the log, the snapshots, and the metainfo.

These persistent data structures could be corrupted due to storage faults. Practical systems try
to safely recover the data and remain available under such failures [16, 18]. However, as we will
show, none of the current approaches correctly recover from storage faults, motivating the need
for a new approach.

2.3 RSM Recovery Taxonomy

To understand the different possible ways to handle storage faults in RSM systems, we analyze
a broad range of approaches. We perform this analysis by two means: first, we analyze practical
systems including ZooKeeper, LogCabin, etcd [27], and a Paxos-based system [26] using a fault-
injection framework we developed (Section 5); second, we analyze techniques proposed by prior
research or used in proprietary systems [16, 18].

Through our analysis, we classify the approaches into two categories: protocol-oblivious and
protocol-aware. The oblivious approaches do not use any protocol-level knowledge to perform
recovery. Upon detecting a fault, these approaches take a recovery action locally on the faulty
node; such actions interact with the distributed protocols in unsafe ways, leading to data loss. The
protocol-aware approaches use some RSM-specific knowledge to recover; however, they do not
use this knowledge correctly, leading to undesirable outcomes. Our taxonomy is not complete in
that there may be other techniques; however, to the best of our knowledge, we have not observed
other approaches apart from those in our taxonomy.

To illustrate the problems, we use Figure 1. In all cases, log entries1 1, 2, and 3 are committed;
losing these items will violate safety. Table 1 shows how each approach behaves in Figure 1’s sce-
narios. As shown in the table, all current approaches lead to safety violation (e.g., data loss), low
availability, or both. A recovery mechanism that effectively uses redundancy should be safe and
available in all cases. Table 1 also compares the approaches along other axes such as performance,
maintenance overhead (intervention and extra nodes), recovery time, and complexity. Although
Figure 1 shows only faults in the log, the taxonomy applies to other structures including the snap-
shots and the metainfo.

NoDetection. The simplest reaction to storage faults is none at all: to trust every layer in the
storage stack to work reliably. For example, a few prototype Paxos-based systems [26] do not
use checksums for their on-disk data; similarly, LogCabin does not protect its snapshots with
checksums. NoDetection trivially violates safety; corrupted data can be obliviously served to
clients. However, deployed systems do use checksums and other integrity strategies for most of
their on-disk data.

1A log entry contains a state-machine command and data.

ACM Transactions on Storage, Vol. 14, No. 3, Article 21. Publication date: October 2018.

Protocol-Aware Recovery 21:5

Table 1. Recovery Taxonomy

Class Approach Sa
fe

ty

A
v
ai

la
b
il

it
y

P
er

fo
rm

an
ce

N
o

In
te

rv
en

ti
o

n

N
o

ex
tr

a
n

o
d

es

Fa
st

R
ec

o
v
er

y

L
o
w

C
o

m
p

le
x
it

y

(i
)

(i
i)

(i
ii

)

(i
v)

(v
)

(v
i)

P
ro

to
co

l
O

b
li

v
io

u
s NoDetection ×

√ √ √ √
na

√
E E E E E E

Crash
√

×
√
×
√

na
√

U C U C U U
Truncate ×

√ √ √ √
×

√
C L C L L L

DeleteRebuild ×
√ √

×
√

×
√

C L C L L L

P
ro

to
co

l
A

w
ar

e

MarkNonVoting × ×
√ √ √

×
√

U C U C U U
Reconfigure

√
×
√
× × ×

√
U C U C U U

Byzantine FT
√

× ×
√
× na × U C U U U U

Ctrl
√ √ √ √ √ √ √

C C C C C C

E- Return Corrupted, L- Data Loss, U- Unavailable, C- Correct.

The table shows how different approaches behave in Figure 1 scenarios. While all approaches are unsafe or unavail-

able, Ctrl ensures safety and high availability.

Fig. 2. Safety Violation Example. The figure shows the sequence of events which exposes a safety violation

with the Truncate approach.

Crash. A better strategy is to use checksums and handle I/O errors, and crash the node on detect-
ing a fault. Crash may seem like a good strategy because it intends to prevent any damage that
the faulty node may inflict on the system. Our experiments show that the Crash approach is com-
mon: LogCabin, ZooKeeper, and etcd crash sometimes when their logs are faulty. Also, ZooKeeper
crashes when its snapshots are corrupted.

Although Crash preserves safety, it suffers from severe unavailability. Given that nodes could be
unavailable due to other failures, even a single storage fault results in unavailability, as shown in
Figure 1(i). Similarly, a single fault even in different portions of data on a majority (e.g., Figure 1(v))
renders the system unavailable. Note that simply restarting the node does not help; storage faults,
unlike other faults, could be persistent: the node will encounter the same fault and crash again
until manual intervention, which is error-prone and may cause a data loss. Thus, it is desirable to
recover automatically.

Truncate. A more sophisticated action is to truncate (possibly faulty) portions of data and con-
tinue operating. The intuition behind Truncate is that if the faulty data is discarded, the node can
continue to operate (unlike Crash), improving availability.

However, we find that Truncate can cause a safety violation (data loss). Consider the scenario
shown in Figure 2 in which entry 1 is corrupted on S1; S4, S5 are lagging and do not have any entry.

ACM Transactions on Storage, Vol. 14, No. 3, Article 21. Publication date: October 2018.

21:6 R. Alagappan et al.

Assume S2 is the leader. When S1 reads its log, it detects the corruption; however, S1 truncates its
log, losing the corrupted entry and all subsequent entries (Figure 2(ii)). Meanwhile, S2 (leader) and
S3 crash. S1, S4, and S5 form a majority and elect S1 the leader. Now the system does not have any
knowledge of committed entries 1, 2, and 3, resulting in a silent data loss. The system also commits
new entries x , y, and z in the place of 1, 2, and 3 (Figure 2(iii)). Finally, when S2 and S3 recover,
they follow S1’s log (Figure 2(iv)), completely removing entries 1, 2, and 3.

In summary, although the faulty node detects the corruption, it truncates its log, losing the data
locally. When this node forms a majority along with other nodes that are lagging, data is silently
lost, violating safety. We find this safety violation in ZooKeeper and LogCabin.

Further, Truncate suffers from inefficient recovery. For instance, in Figure 1(i), S1 truncates its log
after a fault, losing entries 1, 2, and 3. Now to fix S1’s log, the leader needs to transfer all entries,
increasing S1’s recovery time and wasting network bandwidth. ZooKeeper and LogCabin suffer
from this slow recovery problem.

DeleteRebuild. Another commonly employed action is to manually delete all data on the faulty
node and restart the node. Unfortunately, similar to Truncate, DeleteRebuild can violate safety: a
node whose data is deleted could form a majority along with the lagging nodes, leading to a silent
data loss. Surprisingly, administrators often use this approach hoping that the faulty node will be
“simply fixed” by fetching the data from other nodes [67, 69, 77]. DeleteRebuild also suffers from
the slow recovery problem similar to Truncate.

MarkNonVoting. In this approach, used by a Paxos-based system at Google [18], a faulty node
deletes all its data on a fault and marks itself as a non-voting member; the node does not participate
in elections until it observes one round of consensus and rebuilds its data from other nodes. By
marking a faulty node as nonvoting, safety violations such as the one in Figure 2 are avoided.
However, MarkNonVoting can sometimes violate safety as noted by prior work [74]. The underlying
reason for unsafety is that a corrupted node deletes all its state including the promises2 given to
leaders. Once a faulty node has lost its promise given to a new leader, it could accept an entry from
an old leader (after observing a round of consensus on an earlier entry). The new leader, however,
still believes that it has the promise from the faulty node and so can overwrite the entry, previously
committed by the old leader.

Further, this approach suffers from unavailability. For example, when only a majority of nodes
are alive, a single fault can cause unavailability because the faulty node cannot vote; other nodes
cannot now elect a leader.

Reconfigure. In this approach, a faulty node is removed and a new node is added. However, to
change the configuration, a configuration entry needs to be committed by a majority. Hence, the
system remains unavailable in many cases (e.g., when a majority are alive but one node’s data is
corrupted). Although Reconfigure is not used in practical systems to tackle storage faults, it has
been suggested by prior research [16, 46].

BFT. An extreme approach is to use a Byzantine-fault-tolerant algorithm which should theo-
retically tolerate storage faults. However, BFT is expensive to be used in practical storage sys-
tems; specifically, BFT can achieve only half the throughput of what a crash-tolerant protocol can
achieve [22]. Moreover, BFT requires 3f + 1 nodes to tolerate f faults [1], thus remaining unavail-
able in most scenarios in Figure 1.

2In Paxos, a promise for a proposal numbered p is a guarantee given by a follower (acceptor) to the leader (proposer) that

it will not accept a proposal numbered less than p in the future [43].

ACM Transactions on Storage, Vol. 14, No. 3, Article 21. Publication date: October 2018.

Protocol-Aware Recovery 21:7

Taxonomy Summary. None of the current approaches effectively use redundancy to recover
from storage faults. Most approaches do not use any protocol-level knowledge to recover; for ex-
ample, Truncate and DeleteRebuild take actions locally on the faulty node and so interact with the
distributed protocol in unsafe ways, causing a global data loss. Although some approaches (e.g.,
MarkNonVoting) use some RSM-specific knowledge, they do not do so correctly, causing data loss
or unavailability. Thus, to ensure safety and high availability, a recovery approach should effec-
tively use redundancy by exploiting protocol-specific knowledge. Further, it is beneficial to avoid
other problems such as manual intervention and slow recovery. Our protocol-aware approach,
Ctrl, aims to achieve these goals.

3 CORRUPTION-TOLERANT REPLICATION

Designing a correct recovery mechanism needs a careful understanding of the underlying pro-
tocols of the system. For example, the recovery mechanism should be cognizant of how updates
are performed on the replicated data and how the leader is elected. We base Ctrl’s design on the
following protocol-level observations common to most RSM systems.

Leader-Based. A single node acts as the leader; all data updates to the replicated data flow only
through the leader.

Epochs. RSM systems partition time into logical units called epochs. For any given epoch, only
one leader is guaranteed to exist. Every data item is associated with the epoch in which it was
appended and its index in the log. Since the entries could only be proposed by the leader and only
one leader could exist for an epoch, an 〈epoch, index〉 pair uniquely identifies a log entry.

Leader Completeness. A node will not vote for a candidate if it has more up-to-date data than
the candidate. Since committed data is present at least in a majority of nodes and a majority vote
is required to win the election, the leader is guaranteed to have all the committed data. Although
not explicitly specified in some protocols, this property is satisfied by most systems as confirmed
by prior research [3, 53].

The above-listed attributes are common to most RSM system implementations. Ctrl exploits
these common protocol-level attributes to correctly recover from storage faults. However, Ctrl
cannot be readily applied to a few consensus approaches. For example, a few implementations of
Paxos [50] allow updates to flow through multiple leaders at the same time. We believe Ctrl can
be extended to work with such RSM variants as well. We leave this extension as an avenue for
future work.

Ctrl divides the recovery responsibility between two components: the local storage layer and
the distributed recovery protocol; while the storage layer reliably detects faulty data on a node,
the distributed protocol recovers the data from redundant copies. Both the components use RSM-
specific knowledge to perform their functions.

In this section, we first describe Ctrl’s fault model (Section 3.1) and safety and availability
guarantees (Section 3.2). We then describe the local storage layer (Section 3.3). Finally, we describe
Ctrl’s distributed recovery in two parts: first, we show how faulty logs are recovered (Section 3.4)
and then we explain how faulty snapshots are recovered (Section 3.5).

3.1 Fault Model

Our fault model includes the standard failure assumptions made by crash-tolerant RSM systems:
nodes could crash at any time and recover later, and nodes could be unreachable due to network
failures [22, 44, 53]. Our model adds another realistic failure scenario where persistent data on the
individual nodes could be corrupted or inaccessible. Table 2 shows a summary of our storage fault
model. Our model includes faults in both user data and the file-system metadata blocks.

ACM Transactions on Storage, Vol. 14, No. 3, Article 21. Publication date: October 2018.

21:8 R. Alagappan et al.

Table 2. Storage Fault Model

Fault Outcome Possible Causes

D
at

a corrupted data misdirected and lost writes in ext
inaccessible data LSE, corruptions in ZFS and btrfs

FS
M

et
ad

at
a missing files/directories directory entry corrupted, fsck may remove a faulty inode

unopenable files/directories
sanity check fails after inode corruption, permission bits
corrupted

files with more or fewer bytes i_size field in the inode corrupted
file system read-only journal corrupted; fsck not run
file system unmountable superblock corrupted; fsck not run

The table shows storage faults included in our model and possible causes that lead to a fault outcome.

User data blocks in the files that implement the system’s persistent structures could be affected
by errors or corruption. A number of (possibly contiguous) data blocks could be faulty as shown
by studies [13, 63]. Also, a few bits/bytes of a block could be corrupted. Depending on the local
file system in use, corrupted data may be returned obliviously or transformed into errors.

File-system metadata blocks can also be affected by faults; for example, the inode of a log file
could be corrupted. Our fault model considers the following outcomes that can be caused by file-
system metadata faults: files/directories may go missing, files/directories may be unopenable, a
file may appear with fewer or more bytes, the file system may be mounted read-only, and in the
worst case, the file system may be unmountable. Some file systems such as ZFS may mask most
of the above outcomes from applications [76]; however, our model includes these faulty outcomes
because they could realistically occur on other file systems that provide weak protection against
corruption (e.g., ext2/3/4). Through fault-injection tests, we have verified that the metadata fault
outcomes shown in Table 2 do occur on ext4.

3.2 Safety and Availability Guarantees

Ctrl guarantees that if there exists at least one correct copy of a committed data item, it will be
recovered or the system will wait for that item to be fixed; committed data will never be lost. In
unlikely cases where all copies of a committed item are faulty, the system will correctly remain
unavailable. Ctrl also guarantees that the system will make a decision about an uncommitted

faulty item as early as possible, ensuring high availability.

3.3 CTRL Local Storage Layer

To reliably recover, the storage layer (Clstore) needs to satisfy three key requirements. First,
Clstore must be able to reliably detect a storage fault. Second, Clstore must correctly distin-
guish crashes from corruptions; safety can be violated otherwise. Third, Clstore must identify
which pieces of data are faulty; only if Clstore identifies which pieces have been affected, can the
distributed protocol recover those pieces.

3.3.1 Persistent Structures Overview. As we discussed, RSM systems maintain three persistent
structures: the log, the snapshots, and the metainfo. Clstore uses RSM-specific knowledge of how
these structures are used and updated, to perform its functions. For example, Clstore detects faults
at a different granularity depending on the RSM data structure: faults in the log are detected at
the granularity of individual entries, while faults in the snapshot are detected at the granularity of
chunks. Similarly, Clstore uses the RSM-specific knowledge that a log entry is uniquely qualified
by its 〈epoch, index〉 pair to identify faulty log entries.

ACM Transactions on Storage, Vol. 14, No. 3, Article 21. Publication date: October 2018.

Protocol-Aware Recovery 21:9

Fig. 3. Log Format. (a) shows the format of the log in a typical RSM system and the protocol used to update

the log; (b) shows the same for Clstore.

Log. The log is a set of files containing a sequence of entries. The format of a typical RSM log is
shown in Figure 3(a). The log is updated synchronously in the critical path; hence, changes made
to the log format should not affect its update performance. Clstore uses a modified format as
shown in Figure 3(b) which achieves this goal. A corrupted log is recovered at the granularity of
individual entries.

Snapshots. The in-memory state machine is periodically written to a snapshot. Since snapshots
can be huge, Clstore splits them into chunks; a faulty snapshot is recovered at the granularity of
individual chunks.

Metainfo. The metainfo is special in that faulty metainfo cannot be recovered from other nodes.
This is because the metainfo contains information unique to a node (e.g., its current epoch,
votes given to candidates); recovering metainfo obliviously from other nodes could violate safety.
Clstore uses this knowledge correctly and so maintains two copies of the metainfo locally; if
one copy is faulty, the other copy is used. Fortunately, the metainfo is only a few tens of bytes
in size and is updated infrequently; therefore, maintaining two copies does not incur significant
overheads.

3.3.2 Detecting Faulty Data. Clstore uses well-known techniques for detection: inaccessible

data is detected by catching return codes (e.g., EIO) and corrupted data is detected by a checksum
mismatch. Clstore assumes that if an item and its checksum agree, then the item is not faulty. In
the log, each entry is protected by a checksum; similarly, each chunk in a snapshot and the entire
metainfo are checksummed.

Clstore also handles file-system metadata faults. Missing and unopenable files/directories are
detected by handling error codes upon open. Log and metainfo files with fewer or more bytes
are detected easily because these files are preallocated and are of a fixed size; snapshot sizes are
stored separately, and Clstore cross-checks the stored size with the file-system reported size to
detect discrepancies. A read-only/unmountable file system is equivalent to a missing data direc-
tory. In most cases of file-system metadata faults, Clstore crashes the nodes. Crashing reliably on
a metadata fault preserves safety but compromises on availability. However, we believe this is an
acceptable behavior because there are far more data blocks than metadata blocks; therefore, the
probability of faults is significantly less for metadata than data blocks.

3.3.3 Disentangling Crashes and Corruption in Log. An interesting challenge arises when de-
tecting corruptions in the log. A checksum mismatch for a log entry could occur due to two dif-
ferent situations. First, the system could have crashed in the middle of an update; in this case, the
entry would be partially written and hence cause a mismatch. Second, the entry could be safely
persisted but corrupted at a later point. Most log-based systems conflate these two cases: they treat

ACM Transactions on Storage, Vol. 14, No. 3, Article 21. Publication date: October 2018.

21:10 R. Alagappan et al.

a mismatch as a crash [32]. On a mismatch, they discard the corrupted entry and all subsequent
entries, losing the data. Discarding entries due to such conflation introduces the possibility of a
global data loss (as shown earlier in Figure 2).

Note that if the mismatch were really due to a crash, it is safe to discard the partially written
entry. It is safe because the node would not have acknowledged to any external entity that it has
written the entry. However, if an entry is corrupted, the entry cannot be simply discarded since it
could be globally committed. Further, if a mismatch can be correctly attributed to a crash, the faulty
entry can be quickly discarded locally, avoiding the distributed recovery. Hence, it is important for
the local storage layer to distinguish the two cases.

To denote the completion of an operation, many systems write a commit record [14, 19]. Sim-
ilarly, Clstore writes a persist record, pi , after writing an entry ei . For now, assume that ei is
ordered before pi , i.e., the sequence of steps to append an entry ei is write (ei), f sync (), write (pi),
f sync (). On a checksum mismatch for ei , if pi is not present, we can conclude that the system
crashed during the update. Conversely, if pi is present, we can conclude that the mismatch was
caused due to a corruption and not due to a crash. pi is checksummed and is very small; it can be
atomically written and thus cannot be “corrupted” due to a crash. If pi is corrupted in addition to
ei , we can conclude that it is a corruption and not a crash.

The above logic works when ei is ordered before pi . However, such ordering requires an
(additional) expensive fsync in the critical path, affecting log-update performance. For this rea-
son, Clstore does not order ei before pi ; thus, the append protocol is t1:write (ei), t2:write (pi),
t3:f sync ().3 Given this update sequence, assume a checksum mismatch occurs for ei . If pi is not

present, Clstore can conclude that it is a crash (before t2) and discard ei . Contrarily, if pi is present,
there are two possibilities: either ei could be affected by a corruption after t3 or a crash could have
occurred between t2 and t3 in which pi hit the disk while ei was only partially written. The second
case is possible because file systems can reorder writes between two fsync operations and ei could
span multiple sectors [3, 20, 55, 56]. Clstore can still conclude that it is a corruption if ei+1 or pi+1

is present. However, if ei is the last entry, then we cannot determine whether it was a crash or a
corruption. A proof of this claim can be found in Appendix A.

The inability to disentangle the last entry when its persist record is present is not specific to
Clstore, but rather a fundamental limitation in log-based systems. For instance, in ext4’s jour-
nal_async_commit mode (where a transaction is not ordered before its commit record), a corrupted
last transaction is assumed to be caused due to a crash, possibly losing data [40, 73]. Even if crashes
and corruptions can be disentangled, there is little a single-machine system can do to recover the
corrupted data. However, in a distributed system, redundant copies can be used to recover. Thus,
when the last entry cannot be disentangled, Clstore safely marks the entry as corrupted and leaves
it to the distributed recovery to fix or discard the entry based on the global commitment.

The entanglement problem does not arise for snapshots or metainfo. These files are first writ-
ten to a temporary file and then atomically renamed. If a crash happens before the rename, the
partially written temporary file is discarded. Thus, the system will never see a corrupted snap-
shot or metainfo due to a crash; if these structures are corrupted, it is because of a storage
corruption.

3.3.4 Identifying Faulty Data. Once a faulty item is detected, it has to be identified; only if
Clstore can identify a faulty item, the distributed layer can recover the item. For this purpose,
Clstore redundantly stores an identifier of an item apart from the item itself; duplicating only the
identifier instead of the whole item obviates the (2×) storage and performance overhead. However,

3The final fsync is required for durability.

ACM Transactions on Storage, Vol. 14, No. 3, Article 21. Publication date: October 2018.

Protocol-Aware Recovery 21:11

Fig. 4. Distributed Log Recovery. The figure shows how Ctrl’s log recovery operates. All entries are

appended in epoch 1 unless explicitly mentioned. For entries appended in other epochs, the epoch number

is shown in the superscript. Entries shown as striped boxes are faulty. A gray box around a node denotes

that it is down or extremely slow. The leader is marked with L on the left. Log indexes are shown at the top.

storing the identifier near the item is less useful; a misdirected write can corrupt both the item and
its identifier [10, 11]. Hence, identifiers are physically separated from the items they identify.

The 〈epoch, index〉 pair serves as the identifier for a log entry and is stored separately at the head
of the log, as shown in Figure 3(b). The offset of an entry is also stored as part of the identifier to
enable traversal of subsequent entries on a fault. The identifier of a log entry also conveniently
serves as its persist record. Similarly, for a snapshot chunk, the 〈snap-index, chunk#〉 pair serves as
the identifier; the snap-index and the snapshot size are stored in a separate file than the snapshot
file. The identifiers have a nominal storage overhead (32 bytes for log entries and 12 bytes for
snapshots), can be atomically written, and are also protected by a checksum.

It is highly unlikely an item and its identifier will both be faulty since they are physically sepa-
rated [10, 11, 13, 63]. In such unlikely and unfortunate cases, Clstore crashes the node to preserve
safety. Table 3 (second column) summarizes Clstore’s key techniques.

3.4 CTRL Distributed Log Recovery

The local storage layer detects faulty data items and passes on their identifiers to the distributed
recovery layer. We now describe how the distributed layer recovers the identified faulty items from
redundant copies using RSM-specific knowledge. We first describe how log entries are recovered
and subsequently describe snapshot recovery. As we discussed, metainfo files are recovered locally
and so we do not discuss them any further. We use Figure 4 to illustrate how log recovery works.

Naive Approach: Leader Restriction. RSM systems do not allow a node with an incomplete
log to become the leader. A naive approach to recovering from storage faults could be to impose
an additional constraint on the election: a node cannot be elected the leader if its log contains a

faulty entry. The intuition behind the naive approach is as follows: since the leader is guaranteed
to have all committed data and our new restriction ensures that the leader is not faulty, faulty log
entries on other nodes could be fixed using the corresponding entries on the leader. Cases (a)(i)

ACM Transactions on Storage, Vol. 14, No. 3, Article 21. Publication date: October 2018.

21:12 R. Alagappan et al.

and (a)(ii) in Figure 4 show scenarios where the naive approach could elect a leader. In (a)(i), only
S1 can become the leader because other nodes are either lagging or have at least one faulty entry.
Assume S1 is the leader also in case (a)(ii).

Fixing Followers’ Logs. When the leader has no faulty entries, fixing the followers is straight-
forward. For example, in case (a)(i), the followers inform S1 of their faulty entries; S1 then supplies
the correct entries. However, sometimes the leader might not have any knowledge of an entry that
a follower is querying for. For instance, in case (a)(ii), S5 has a faulty entry at index 3 but with a
different epoch. This situation is possible because S5 could have been the leader for epoch 2 and
crashed immediately after appending an entry. As discussed earlier, an entry is uniquely identified
by its 〈epoch, index〉; thus, when querying for faulty entries, a node needs to specify the epoch of
the entry in addition to its index. Thus, S5 informs the leader that its entry 〈epoch:2, index:3〉 is
faulty. However, S1 does not have such an entry in its log. If the leader does not have an entry that
the follower has, then the entry must be an uncommitted entry because the leader is guaranteed to
have all committed data; thus, the leader instructs S5 to truncate the faulty entry and also replicates
the correct entry.

Although the naive approach guarantees safety, it has availability problems. The system will be
unavailable in cases such as the ones shown in (b): a leader cannot be elected because the logs
of the alive nodes are either faulty or lagging. Note that even a single storage fault can cause an
unavailability as shown in (b)(i). It is possible for a carefully designed recovery protocol to provide
better availability in these cases. Specifically, since at least one intact copy of all committed entries
exists, it is possible to collectively reconstruct the log.

3.4.1 Removing the Restriction Safely. To recover from scenarios such as those in Figure 4(b),
we remove the additional constraint on the election. Specifically, any node that has a more up-
to-date log can now be elected the leader even if it has faulty entries. This relaxation improves
availability; however, two key questions arise: first, when can the faulty leader proceed to accept
new commands? Second, and more importantly, is it safe to elect a faulty node as the leader?

To accept a new command, the leader has to append the command to its log, replicate it, and
apply it to the state machine. However, before applying the new command, all previous commands
must be applied. Specifically, faulty commands cannot be skipped and later applied when they are
fixed; such out-of-order application would violate safety. Hence, it is required for the leader to fix
its faulty entries before it can accept new commands. Thus, for improved availability, the leader
needs to fix its faulty entries as early as possible.

The crucial part of the recovery to ensure safety is to fix the leader’s log using the redundant
copies on the followers. In simple cases such as (b)(i) and (b)(ii), the leader S1 could fix its faulty
entry 〈epoch:1, index:1〉 using the correct entries from the followers and proceed to normal oper-
ation. However, in several scenarios, the leader cannot immediately recover its faulty entries; for
example, none of the reachable followers might have any knowledge of the entry to be recovered
or the entry to be recovered could also be faulty on the followers.

3.4.2 Determining Commitment. The main insight to fix the leader’s faulty log safely and
quickly is to distinguish uncommitted entries from possibly committed ones; while recovering the
committed entries is necessary for safety, uncommitted entries can be safely discarded. Further,
discarding uncommitted faulty entries immediately is crucial for availability. For instance, in case
(c)(i), the faulty entry on S1 cannot be fixed since there are no copies of it; waiting to fix that entry
results in indefinite unavailability. Sometimes, an entry could be partially replicated but remain
uncommitted; for example, in case (c)(ii), the faulty entry on S1 is partially replicated but is not

ACM Transactions on Storage, Vol. 14, No. 3, Article 21. Publication date: October 2018.

Protocol-Aware Recovery 21:13

committed. Although there is a possibility of recovering this entry from the other node (S2), this
is not necessary for safety; it is completely safe for the leader to discard this uncommitted entry.

To determine the commitment of a faulty entry, the leader queries the followers. If a majority of
the followers respond that they do not have the entry (negative acknowledgment), then the leader
concludes that the entry is uncommitted. In this case, the leader safely discards that entry and all
subsequent entries; it is safe to discard the subsequent entries because entries are committed only
in order (i.e., if an entry at index i is an uncommitted entry, then all entries after i must also be
uncommitted entries). Conversely, if the entry were committed, at least one node in this majority
would have that entry and inform the leader of it; in this case, the leader can fix its faulty entry
using that response.

Waiting to Determine Commitment. Sometimes, it may be impossible for the leader to quickly
determine commitment. For instance, consider the cases in Figure 4(d) in which S4 and S5 are down
or slow. S1 queries the followers to recover its entry 〈epoch:1, index:3〉. S2 and S3 respond that they
do not have such an entry (negative acknowledgment). S4 and S5 do not respond because they are
down or slow. The leader, in this case, has to wait for either S4 or S5 to respond; discarding the
entry without waiting for S4 or S5 could violate safety. However, once S4 or S5 responds, the leader
will make a decision immediately. In (d)(i), S4 or S5 would respond with the correct entry, fixing
the leader. In (d)(ii), S4 or S5 would respond that it does not have the entry, accumulating three (a
majority out of five) negative acknowledgments; hence, the leader can conclude that the entry is
uncommitted, discard it, and continue to normal operation. In (d)(iii), S4 would respond that it has
the entry but is faulty in its log too. In this case, the leader has to wait for the response from S5

to determine commitment. In the unfortunate and unlikely case where all copies of an entry are
faulty, the system will remain unavailable.

3.4.3 The Complete Log Recovery Protocol. We now assemble the pieces of the log recovery
protocol. First, fixing faulty followers is straightforward; the committed faulty entries on the fol-
lowers can be eventually fixed by the leader because the leader is guaranteed to have all committed
data. Faulty entries on followers that the leader does not know about are uncommitted; hence, the
leader instructs the followers to discard such entries.

The main challenge is thus fixing the leader’s log. The leader queries the followers to recover
its entry 〈epoch:e, index:i〉. Three types of responses are possible:

Response 1: have – a follower could respond that it has the entry 〈epoch:e, index:i〉 and is not faulty
in its log.
Response 2: dontHave – a follower could respond that it does not have the entry 〈epoch:e, index:i〉
in its log.
Response 3: haveFaulty – a follower could respond that it has 〈epoch:e, index:i〉 but is faulty in its
log too.

Once the leader collects these responses, it takes the following possible actions:

Case 1: if it gets a have response from at least one follower, it fixes the entry in its log.
Case 2: if it gets a dontHave response from a majority of followers, it confirms that the entry is
uncommitted, discards that entry and all subsequent entries.
Case 3: if it gets a haveFaulty response from a follower, it waits for either Case 1 or Case 2 to
happen.

Case 1 and Case 2 can happen in any order; both orderings are safe. Specifically, if the leader
decides to discard the faulty entry (after collecting a majority dontHave responses), it is safe since
the entry was uncommitted anyways. Conversely, there is no harm in accepting a correct entry

ACM Transactions on Storage, Vol. 14, No. 3, Article 21. Publication date: October 2018.

21:14 R. Alagappan et al.

(at least one have response) and replicating it. The first to happen out of these two cases will take
precedence over the other.

The leader proceeds to normal operation only after its faulty data is discarded or recovered.
However, Ctrl discards uncommitted data as early as possible and minimizes the recovery latency
by recovering faulty data at a fine granularity (as we show in Section 5.2), ensuring that the leader
proceeds to normal operation quickly.

The leader could crash or be partitioned while recovering its log. On a leader failure, the fol-
lowers will elect a new leader and make progress. The partial repair done by the failed leader is
harmless: it could have either fixed committed faulty entries or discarded uncommitted ones, both
of which are safe.

3.5 CTRL Distributed Snapshot Recovery

Because the logs can grow indefinitely, periodically, the in-memory state machine is written to
disk and the logs are garbage collected. Current systems including ZooKeeper and LogCabin do
not handle faulty snapshots correctly (Section 2.3): they either crash or load corrupted snapshots
obliviously. Ctrl aims to recover faulty snapshots from redundant copies. Snapshot recovery is
different from log recovery in that all data in a snapshot is committed and already applied to the
state machine; hence, faulty snapshots cannot be discarded in any case (unlike uncommitted log
entries which can be discarded safely).

3.5.1 Leader-Initiated Identical Snapshots. Current systems [45] have two properties with re-
spect to snapshots. First, they allow new commands to be applied to the state machine while a
snapshot is in progress. Second, they take index-consistent snapshots: a snapshot Si represents
the state machine in which log entries exactly up to i have been applied. One of the mechanisms
used in current systems to realize the above two properties is to take snapshots in a fork-ed child
process; while the child can write an index-consistent image to the disk, the parent can keep ap-
plying new commands to its copy of the state machine. Ctrl should enable snapshot recovery
while preserving the above two properties.

In current systems, every node runs the snapshot procedure independently, taking snapshots at
different log indexes. Because the snapshots are taken at different indexes, snapshot recovery can
be complex: a faulty snapshot on one node cannot be simply fetched from other nodes. Further,
snapshots cannot be recovered at the granularity of chunks because they will be byte-wise non-
identical; entire snapshots have to be transferred across nodes, slowing down recovery.

This complexity can be significantly alleviated if the nodes take the snapshot at the same index;
identical snapshots also enable chunk-based recovery.

However, coordinating a snapshot operation across nodes can, in general, affect the common-
case performance. For example, one naive way to realize identical snapshots is for the leader to
produce the snapshot, insert it into the log as yet another entry, and replicate it. However, such an
approach will affect update performance since the snapshot could be huge and all client commands
must wait while the snapshot commits [52]. Moreover, transferring the snapshot to the followers
wastes network bandwidth.

Ctrl takes a different approach to identical snapshots that preserves common-case perfor-
mance. The leader initiates the snapshot procedure by first deciding the index at which a snapshot
will be taken and informing the followers of the index. Once a majority agree on the index, all
nodes independently take a snapshot at the index. When the leader learns that a majority (includ-
ing itself) have taken a snapshot at an index i , it garbage collects its log up to i and instructs the
followers to do the same.

ACM Transactions on Storage, Vol. 14, No. 3, Article 21. Publication date: October 2018.

Protocol-Aware Recovery 21:15

Fig. 5. Leader-Initiated Identical Snapshots. The figure shows how leader-initiated identical snapshots

is implemented in Ctrl. The figure only shows the various states of the leader; the followers’ states are not

shown. Time flows from left to right. (a) At first, the leader decides to take a snapshot after entry 1; hence, it

inserts the snap marker (denoted by S). When the snap marker commits, and consequently when the nodes

apply the marker, they take a snapshot at that moment. As shown, the snapshot operation is initiated and

performed in the background. (b) While the nodes take the snapshot in the background, the leader commits

entries 2 and 3 and so the in-memory state machine moves to a different state. (c) When the leader learns

that a majority of nodes have taken the snapshot, it inserts the gc marker (denoted by G). (d) Finally, when

the gc marker is applied, the nodes garbage collect the log entries that are part of the persisted snapshot.

Ctrl implements the above procedure using the log. When the leader decides to take a snap-
shot, it inserts a special marker called snap into the log. When the snap marker commits, and thus
when a node applies the marker to the state machine, it takes a snapshot (i.e., the snapshot cor-
responds to the state where commands exactly up to the marker have been applied). Within each
node, we reuse the same mechanism used by the original system (e.g., a fork-ed child) to allow
new commands to be applied while a snapshot is in progress. Notice that the snapshot operation
happens independently on all nodes but the operation will produce identical snapshots because
the marker will be seen at the same log index by all nodes when it is committed. When the leader
learns that a majority of nodes (including itself) have taken a snapshot at an index i , it appends
another marker called gc for i; when the gc marker is committed and applied, the nodes garbage
collect their log entries up to i . Figure 5 illustrates how leader-initiated identical snapshots works.

3.5.2 Recovering Snapshot Chunks. With the identical-snapshot mechanism, snapshot recovery
becomes easier. Once a faulty snapshot is detected, the local storage layer provides the distributed
protocol the snapshot index and the chunk that is faulty. The distributed protocol recovers the
faulty chunk from other nodes. First, the leader recovers its faulty chunks from the followers and
then fixes the faulty snapshots on followers. Three cases arise during snapshot recovery.

First, the log entries for a faulty snapshot may not be garbage collected yet; in this case, the
snapshot is recovered locally from the log (after fixing the log if needed).

Second, if the log is garbage collected, then a faulty snapshot has to be recovered from other
nodes. However, if the log entries for a snapshot are garbage collected, then at least a majority of
the nodes must have taken the same snapshot. This is true because the gc marker is inserted only
after a majority of nodes have taken the snapshot. Thus, faulty garbage-collected snapshots are
recovered from those redundant copies.

Third, sometimes, the leader may not know a snapshot that a follower is querying for (e.g., if
a follower took a snapshot and went offline for a long time and the leader replaced that snapshot
with an advanced one); in this case, the leader supplies the full advanced snapshot.

ACM Transactions on Storage, Vol. 14, No. 3, Article 21. Publication date: October 2018.

21:16 R. Alagappan et al.

3.6 CTRL Summary

Ctrl’s storage layer detects faulty data using checksums and handling errors. It also disentangles
crashes and corruptions in the log. Finally, it identifies which portions of the data are faulty and
passes on the identifiers to the distributed recovery layer.

The distributed protocol recovers the faulty data from the redundant copies. Figure 6 summa-
rizes the distributed recovery protocol. Ctrl decouples the recovery of followers from that of the
leader. In all cases, fixing the followers is straightforward: the leader supplies the correct data be-
cause the leader is guaranteed to have all the committed data. Ctrl couples the fixing of followers
with common-case operations such as replication of entries. Actions taken by the leader and the
followers to fix the followers’ data are shown in boxes C and D of Figure 6. The leader can fix
its faulty snapshots from its local log if the log is not garbage collected yet. If the log is garbage
collected, the leader recovers the snapshot from the followers (a majority of nodes are guaranteed
to have the snapshot). The leader fixes its log by determining commitment of the faulty entries.
Actions taken by the leader and the followers during leader recovery are shown in boxes A and B
of Figure 6.

Ctrl’s storage and distributed recovery layers exploit RSM-specific knowledge to perform their
functions. Table 3 shows a summary of techniques employed in both the layers.

4 IMPLEMENTATION

We implement Ctrl in two different RSM systems, LogCabin (v1.0) and ZooKeeper (v3.4.8); while
LogCabin is based on Raft, ZooKeeper is based on ZAB. Implementing Ctrl’s storage layer and
distributed recovery took only a moderate developer effort; Ctrl adds about 1,500 lines of code to
each of the base systems.

4.1 Local Storage Layer

We implemented Clstore by modifying the storage engines of LogCabin and ZooKeeper. In both
systems, the log is a set of files, each of a fixed size and preallocated with zeros. The header of
each file is reserved for the log-entry identifiers. The size of the reserved header is proportional to
the file size. Clstore ensures that a log entry and its identifier are at least a few megabytes phys-
ically apart. Both systems batch many log entries to improve update performance. With batching,
Clstore performs crash-corruption disentanglement as follows: the first faulty entry without an
identifier and its subsequent entries are discarded; faulty entries preceding that point are marked
as corrupted and passed on to the distributed layer.

In both systems, the state machine is a data tree. We modified both the systems to take index-
consistent identical snapshots: when a snap marker is applied, the state machine (i.e., the tree)
is serialized to the disk. The snap-index and snapshot size are stored separately. Clstore uses a
chunk size of 4K, enabling fine-grained recovery.

In LogCabin, the metainfo contains the currentTerm and votedFor structures. Similarly,
in ZooKeeper, structures such as acceptedEpoch and currentEpoch constitute the metainfo.
Clstore stores redundant copies of metainfo and protects them using checksums.

Log entries, snapshot chunks, and metainfo are protected by a CRC32 checksum. Clstore de-
tects inaccessible data items by catching errors (EIO); it then populates the item’s in-memory buffer
with zeros, causing a checksum mismatch. Thus, Clstore deals with both corruptions and errors
as checksum mismatches. Lost log writes result in checksum mismatches because the log is preallo-
cated with zeros. Misdirected writes can overwrite previously written log entries. Such misdirected
writes typically occur at the block or sector granularity, causing a checksum mismatch for the log
entries in most cases. In rare cases, the entries could be block aligned, and a misdirected write may

ACM Transactions on Storage, Vol. 14, No. 3, Article 21. Publication date: October 2018.

Protocol-Aware Recovery 21:17

Fig. 6. Ctrl Recovery Protocol Summary. The figure shows the summary of the protocol. Ctrl’s recovery

code is shown in thick boxes and original consensus operations are shown in dashed boxes.

ACM Transactions on Storage, Vol. 14, No. 3, Article 21. Publication date: October 2018.

21:18 R. Alagappan et al.

Table 3. Techniques Summary

Local Storage Distributed Recovery

Log

granularity: entry
identifier:〈epoch, index〉
crash-corruption disentanglement

global-commitment determination
to fix leader,
leader fixes followers

Snapshot

granularity: chunk
identifier:〈snap-index, chunk#〉
no entanglement

leader-initiated identical snapshots,
chunk-based recovery

Metainfo

granularity: file
identifier: n/a
no entanglement

none (only internal redundancy)

The table shows a summary of techniques employed by Ctrl’s storage layer and distributed recovery.

not cause a checksum mismatch. However, the storage layer catches such cases through a sanity
check that verifies that the index of the log entries are in order and are monotonically increasing.

4.2 Distributed Recovery

LogCabin. In Raft, terms are equivalent to epochs. Thus, a log entry is uniquely identified by its
〈term, index〉 pair. To fix the followers, we modified the AppendEntries RPC used by the leader
to replicate entries [53]. The followers inform the leader of their faulty log entries and snapshot
chunks in the responses of this RPC; the leader sends the correct entries and chunks in a subsequent
RPC. A follower starts applying commands to its state machine once its faulty data is fixed. To fix
the leader, we added a new RPC which the leader issues to the followers. The leader does not
proceed to normal operation until its faulty data is fixed. After a configurable recovery timeout,
the leader steps down if it is unable to recover its faulty data (e.g., due to a partition), allowing other
nodes to become the leader. Several entries and chunks are batched in a single request/response,
avoiding multiple round trips.

ZooKeeper. In ZAB, the epoch and index are packed into the zxid which uniquely identifies a
log entry [6]. Followers discover and connect to the leader in Phase 1. We modified Phase 1 to
send information about the followers’ faulty data. The followers are synchronized with the leader
in Phase 2. We modified Phase 2 so that the leader sends the correct data to the followers. The
leader waits to hear from a majority during Phase 1 after which it sends a newEpoch message;
we modified this message to send information about the leader’s faulty data. The leader does not
proceed to Phase 2 until its data is fixed.

5 EVALUATION

We evaluate the correctness and performance of Ctrl versions of LogCabin and ZooKeeper. We
conducted our performance experiments on a three-node cluster on a 1-Gb network; each node is a
40-core Intel Xeon CPU E5-2660 machine with 128GB memory running Linux 3.13, with a 500-GB
SSD and a 1-TB HDD managed by ext4.

5.1 Correctness

To verify Ctrl’s safety and availability guarantees, we built a fault-injection framework that can
inject storage faults (targeted corruptions and random block corruptions and errors). The frame-
work can also inject crashes. By injecting crashes at different points in time, the framework sim-
ulates lagging nodes. After injecting faults, we issue reads from clients to determine whether the
target system remains available and preserves safety.

ACM Transactions on Storage, Vol. 14, No. 3, Article 21. Publication date: October 2018.

Protocol-Aware Recovery 21:19

Table 4. Targeted Corruptions

Original CTRL

Outcomes Outcomes

S
y

st
e
m

Recovery

Scenario T
o

ta
l

T
e
st

C
a

se
s

Original

Approach U
n

av
ai

la
b
le

U
n

sa
fe

C
o

rr
ec

t

U
n

av
ai

la
b
le

U
n

sa
fe

C
o

rr
ec

t

L
o

g
C

a
b

in Possible 2401
truncate 0 2,355 46 0 0 2,401

crash 2,355 0 46 0 0 2,401

Not

possible
1695

truncate 0 1,695 0 1,695 0 0

crash 1,695 0 0 1,695 0 0

Z
o

o
K

e
e
p

e
r

Possible 2401
truncate 0 2,355 46 0 0 2,401

crash 2,355 0 46 0 0 2,401

Not

possible
1695

truncate 0 1,695 0 1,695 0 0

crash 1,695 0 0 1,695 0 0

The table shows results for targeted corruptions in log; we trigger two policies (truncate and crash) in the original

systems. Recovery is possible when at least one intact copy exists; recovery is not possible when no intact copy

exists.

We first exercise different log-recovery scenarios. Then, we test snapshot recovery, and finally
file-system metadata fault recovery.

5.1.1 Log Recovery. We perform three different experiments to test log-recovery: targeted log-
entry corruptions, random block corruptions and errors, and faults with crashed and lagging nodes.

Targeted Corruptions. We initialize the cluster by inserting four log entries and ensuring that
the entries are replicated to all three nodes in the cluster. We exercise all combinations of entry
corruptions across the three nodes ((24)3 = 4096 combinations). Out of the 4,096 cases, a correct
recovery is possible in 2,401 cases (at least one non-faulty copy of each entry exists). In the re-
maining 1,695 cases, recovery is not possible because one or more entries are corrupted on all the
nodes. We inject targeted corruptions into two different sets of on-disk structures. In the first set,
on a corruption, the original systems invoke the truncate action (i.e., they truncate faulty data and
continue). In the second set, the original systems invoke the crash action (i.e., node crashes on
detection). For example, while ZooKeeper truncates when the tail of a transaction is corrupted, it
crashes the node if the transaction header is corrupted. Ctrl always recovers the corrupted data
from other replicas.

Table 4 shows the results. When recovery is possible, the original systems recover only in
46/2,401 cases. In those 46 cases, no node or only one node is corrupted. In the remaining 2,355
cases, the original systems are either unsafe (for truncate) or unavailable (for crash). In contrast,
Ctrl correctly recovers in all 2,401 cases. When a recovery is not possible (all copies corrupted),
the original systems are either unsafe or unavailable in all cases. Ctrl, by design, correctly remains
unavailable since continuing would violate safety.

ACM Transactions on Storage, Vol. 14, No. 3, Article 21. Publication date: October 2018.

21:20 R. Alagappan et al.

Table 5. Log Recovery

T
o

ta
l

T
e
st

C
a

se
s Outcomes

Original CTRL

System Experiment U
n

av
ai

la
b
le

U
n

sa
fe

C
o

rr
ec

t

U
n

av
ai

la
b
le

U
n

sa
fe

C
o

rr
ec

t

LogCabin
Corruptions 5,000 738 793 3,469 0 0 5,000

Errors 5,000 2,497 0 2,503 0 0 5,000

ZooKeeper
Corruptions 5,000 807 656 3,537 0 0 5,000

Errors 5,000 2,469 0 2,531 0 0 5,000
(a) Random Block Corruptions and Errors

T
o

ta
l

T
e
st

C
a

se
s Outcomes

Original CTRL

System U
n

av
ai

la
b
le

U
n

sa
fe

C
o

rr
ec

t

U
n

av
ai

la
b
le

U
n

sa
fe

C
o

rr
ec

t

LogCabin 5,000 4,194 141 665 0 0 5,000
ZooKeeper 5,000 1,306 1,806 1,888 0 0 5,000

(b) Corruptions with Lagging Nodes

(a) shows results for random block corruptions and errors in the log. (b) shows results for random corruptions

in the log with crashed and lagging nodes.

Random Block Corruptions and Errors. We initialize the cluster by replicating a few entries to
all nodes. We first choose a random set of nodes. In each such node, we then corrupt a randomly
selected file-system block (from the files implementing the log). We repeat this process, producing
5,000 test cases. We similarly inject block errors. Since we inject a fault into a block, several entries
and their checksums within the block will be faulty.

Table 5(a) shows the results. For block corruptions, original LogCabin is unsafe or unavailable
in about 30% ((738 + 793)/5,000) of cases. Similarly, original ZooKeeper is incorrect in about 30%
of cases. On a block error, original LogCabin and ZooKeeper simply crash the node, leading to
unavailability in about 50% of cases. In contrast, Ctrl correctly recovers in all cases.

Faults with Crashed and Lagging Nodes. In the previous experiments, all entries were commit-
ted and present on all nodes. In this experiment, we inject crashes at different points on a random
set of nodes while inserting entries. Thus, in the resultant log states, nodes could be lagging, entries
could be uncommitted, and have different epochs on different nodes for the same log index.
〈S1 : [a1, _, _], S2 : [b2, c3, _], S3 : [b2, _, _]〉 is an example state where S1 appends a at index 1 in

epoch 1 (shown in superscript) and crashes, S2 appends b at index 1 in epoch 2, replicates to S3,
then S2, S3 crash and recover, S2 appends c in epoch 3 and crashes. From each such state, we corrupt
different entries, generating 5,000 test cases. For example, from the above state, we corrupt a on
S1 and b, c on S2. If S2 is elected the leader, S2 needs to fix b from S3 (since b is committed), discard

ACM Transactions on Storage, Vol. 14, No. 3, Article 21. Publication date: October 2018.

Protocol-Aware Recovery 21:21

Table 6. Snapshot and FS Metadata Faults

T
o

ta
l

T
e
st

C
a

se
s

Outcomes

Original CTRL

System U
n

av
ai

la
b
le

U
n

sa
fe

C
o

rr
ec

t

U
n

av
ai

la
b
le

U
n

sa
fe

C
o

rr
ec

t

LogCabin 1,000 297 257 446 0 0 1,000

ZooKeeper 1,000 417 200 383 0 0 1,000

(a) Snapshot Recovery

T
o

ta
l

T
e
st

C
a

se
s

Outcomes

Original CTRL

System U
n

av
ai

la
b
le

U
n

sa
fe

C
o

rr
ec

t

U
n

av
ai

la
b
le

U
n

sa
fe

C
o

rr
ec

t

LogCabin 1,000 405 36 559 434 0 566

ZooKeeper 1,000 329 192 479 502 0 498

(b) FS Metadata Faults

(a) and (b) show How Ctrl recovers from snapshot and FS metadata faults, respectively.

c (c is uncommitted and cannot be recovered), and also instruct S1 to discard a (a is uncommitted)
and replicate correct entry b. As shown in Table 5(b), Ctrl correctly recovers from all such cases,
while the original versions are unsafe or unavailable in many cases.

Model Checking. We also model checked Ctrl’s log recovery since it involves many corner
cases, using a Python-based model that we developed. We explored over 2.5M log states all of
in which Ctrl correctly recovered. Also, when key decisions are tweaked, the checker finds a
violation immediately: for example, the leader concludes that a faulty entry is uncommitted only
after gathering �N /2� + 1 dontHave responses; if this number is reduced, then the checker finds a
safety violation. We have also added the specification of Ctrl’s log recovery to the TLA+ speci-
fication of Raft [25] and confirmed that it correctly recovers from corruptions, while the original
specification violates safety.

5.1.2 Snapshot Recovery. In this experiment, we insert a few entries and trigger the nodes to
take a snapshot. We crash the nodes at different points, producing three possible states for each
node: l , t , and д, where l is a state where the node has only the log (it has not taken a snapshot), t is
a snapshot for which garbage collection has not been performed yet, and д is a snapshot which has
been garbage collected. We produce all possible combinations of states across three nodes. On each
such state, we randomly pick a set of nodes to inject faults, and corrupt a random combination of
snapshots and log entries, generating 1,000 test cases. For example, 〈S1 : t , S2 : д, S3 : l〉 is a base
state on which we corrupt snapshot t and a few preceding log entries on S1 and д on S2. In such a
state, if S1 becomes the leader, it has to fix its log from S3, then has to locally recover its t snapshot,
after which it has to fix д on S2. S1 also needs to install the snapshot on S3.

As shown in Table 6(a), Ctrl correctly recovers from all such cases. Original LogCabin is incor-
rect in about half of the cases because it obliviously loads faulty snapshots sometimes and crashes
sometimes. Original ZooKeeper crashes the node if it is unable to locally construct the data from
the snapshot and the log, leading to unavailability; unsafety results because a faulty log is trun-
cated in some cases.

5.1.3 File-System Metadata Faults. To test how Ctrl recovers from file-system metadata faults,
we corrupt file-system metadata structures (such as inodes and directory blocks) resulting in un-
openable files, missing files, and files with fewer or more bytes. We inject such faults in a randomly
chosen file on one or two nodes at a time, creating 1,000 test cases. Table 6(b) shows the results. In
some cases, the faulty nodes in original versions crash because of a failed deserialization or asser-
tion. However, sometimes original LogCabin and ZooKeeper do not detect the fault and continue

ACM Transactions on Storage, Vol. 14, No. 3, Article 21. Publication date: October 2018.

21:22 R. Alagappan et al.

Fig. 7. Write Performance. (a) and (c) show the write throughput in original and Ctrl versions of LogCabin

and ZooKeeper on an HDD. (b) and (d) show the same for SSD. The number on top of each bar shows the

performance of Ctrl normalized to that of original.

operating, violating safety in 36 and 192 cases, respectively. In contrast, Ctrl reliably crashes the
node on a file-system metadata fault, preserving safety always.

5.2 Performance

We now compare the common-case performance of the Ctrl versions against the original versions.
During writes, the entries are first written to the on-disk log; snapshots are taken periodically in the
background. Both LogCabin and ZooKeeper batch several log entries to improve write throughput.
In addition to the above steps, Ctrl writes an identifier for each log entry at the head of the
log. First, we run a write-only workload that exposes the worst-case overheads (caused by the
additional writes) introduced by Ctrl. The workload runs for 300 seconds, inserting entries each
of size 1K. Numbers reported are the average over five runs.

Figure 7(a) and (c) show the throughput on an HDD for varying number of clients in LogCabin
and ZooKeeper, respectively. Ctrl writes the identifiers in a physically separate location compared
to that of the entries; this separation induces a seek on disks in the update path. However, the seek
cost is amortized when more requests are batched; Ctrl has an overhead of 8%–10% for 32 clients
on disks. Figure 7(b) and (d) show throughput on an SSD; Ctrl adds very minimal overhead on
SSDs (4% in the worst case). Note that this workload performs only writes and therefore shows
Ctrl’s overheads in the worst case.

In both LogCabin and ZooKeeper, reads are served from memory; thus, the read paths should
ideally not be affected by Ctrl. To confirm this, we run a read-only workload. Figure 8(a) and
(b) show the throughput on an SSD for varying number of clients in LogCabin and ZooKeeper,
respectively. As shown in the figure, Ctrl does not introduce any overheads and maintains the
same performance as the original systems. We see similar results on HDDs (not shown in the
figure).

Fast Log Recovery. We now show how Ctrl can recover a faulty log quickly. To show the po-
tential reduction in log-recovery time, we insert 30K log entries (each of size 1K) and corrupt the

ACM Transactions on Storage, Vol. 14, No. 3, Article 21. Publication date: October 2018.

Protocol-Aware Recovery 21:23

Fig. 8. Read Performance. (a) and (b) show the read throughput in original and Ctrl versions of LogCabin

and ZooKeeper on a SSD. The number on top of each bar shows the performance of Ctrl normalized to that

of original.

first entry on one node. In original LogCabin, the faulty node detects the corruption but truncates
all entries; hence, the leader transfers all entries to bring the node up-to-date. Ctrl fixes only the
faulty entry, reducing recovery time. The faulty node is fixed in 1.24 seconds (32MB transferred)
in the original system, while Ctrl takes only 1.2 ms (7KB transferred). We see a similar reduction
in log-recovery time in ZooKeeper.

6 PROTOCOL-AWARE RECOVERY FOR OTHER CLASSES OF SYSTEMS

So far, we have described Ctrl, a protocol-aware recovery mechanism specific to RSM systems.
We now discuss how a protocol-aware recovery approach can be adapted to other classes of sys-
tems; we consider two classes in our discussion: primary backup and Dynamo-style quorums. Our
previous work [31, 32] shows that, in the presence of storage faults, many systems in these two
classes can lose data, spread corruption, or become unavailable. A Par-based approach to handling
storage faults can improve the reliability of these systems.

Primary-Backup. The primary-backup class includes systems such as Redis [58] and Kafka [4].
The individual systems vary in the degree of how well they handle storage faults. For example,
Redis entirely relies on the local file system to protect the data against storage faults; consequently,
it does not employ checksums or handle storage errors. Fixing such a system would require several
changes to its storage layer. In contrast, Kafka already uses checksums and handles errors carefully;
however, it does not use protocol-specific knowledge to recover from storage faults correctly. We
thus use Kafka as an example to describe how Par can be applied to a primary backup system.

Kafka implements a distributed persistent message queue in which clients can publish and sub-
scribe to different message topics. The nodes persistently store streams of messages in a log. Kafka
and most primary-backup systems are similar to RSM systems in many aspects. For instance, all
message updates flow through a primary (similar to an RSM leader), which then replicates the
messages to a set of backup servers (similar to RSM followers). During a message append, the
Kafka leader replicates the message to a number of nodes specified in the min.insync.replicas op-
tion. A message is considered committed if the message is persisted successfully on at least a
min.insync.replicas number of replicas. In its default (and strongly consistent) configuration, in
which dirty election is disabled, Kafka ensures the leader completeness property by only allowing
a node which is part of the in-sync replicas (i.e., nodes that contain all committed data) to become
the leader.

Given that the messages are grouped under different topics, each message is uniquely identi-
fied by combination of its topic_id and message_id; the local storage layer can redundantly store
the 〈topic_id, message_id〉 pair and use it as the message identifier. During distributed recovery,
the leader queries the followers (using the identifiers) to fix its faulty messages. The leader can

ACM Transactions on Storage, Vol. 14, No. 3, Article 21. Publication date: October 2018.

21:24 R. Alagappan et al.

determine the commitment of a message as follows. If (N −min.insync .replicas), where N is the
replication factor, nodes reply that they do not have the message, the leader can conclude that the
message is uncommitted and discard such a message. Committed messages can be fixed from any
one correct response from the followers. Similar to RSM systems, follower recovery is simple; the
followers follow the leader’s log and simply fix their faulty messages by querying the leader.

Dynamo-Style Quorums. Next, we consider Dynamo-style quorum-based systems such as Cas-
sandra [24]. Cassandra and other dynamo-style quorum systems are significantly different from
RSM and primary-backup systems: they do not have a dedicated leader or a set of followers. In-
stead, the nodes form a ring in a circular keyspace. In Cassandra, data is stored in column families;
a column family contains multiple rows, and each row is uniquely identified by a primary key K .
A write request for a key K specifies the write quorum value,W : the update needs to be persisted
on W nodes before acknowledging the client. Similarly, a read request for K specifies the read
quorum value, R: the read will be served after contacting R nodes. Each request (based on the key
it accesses) is assigned to a coordinator; the coordinator is responsible for assigning a timestamp
for the request and replicating the update toW nodes specified in the request. If a coordinator has
failed, then the next node in the ring acts as the coordinator for the request. The system supports
different read and write consistency levels (i.e., values ofW and R) for each request.

The primary key K and the timestamp associated with the write request that modified K acts as
the identifier, which the local storage layer can redundantly store. Because there is no dedicated
leader, each faulty node has to fix its data by querying the other nodes in the system. During dis-
tributed recovery, a node with a corrupted data item associated with keyK queries the other nodes
responsible for K . A faulty node has to wait for at least N −W + 1 other nodes to determine com-
mitment, where N is the replication factor, andW is the write quorum with which K was updated.
If a node responds with the correct data for K and the timestamp, the faulty node can fix its data.

7 RELATED WORK

Our work builds upon prior work from two bodies of research: fault-injection studies and tolerating
practical faults in distributed systems. Our analysis of how RSM-based systems react to storage
faults (Section 2.3) draws inspiration from many past fault-injection studies. Our design of Ctrl
(Section 3) builds upon several recent efforts on tolerating practical faults other than crashes in
distributed systems.

Storage Faults. Several studies have shown the prevalence of storage faults in hard disk drives [63]
and SSDs [36, 48, 51, 64]. Further, studies have shown that cheap and near-line storage devices are
more likely to be affected by storage faults [10, 11]. Given that many distributed deployments tend
to use cheap storage hardware [23, 33], analyzing the effects of storage faults is important. These
prior studies motivated us to analyze how RSM systems behave in the presence of storage faults.

Our previous work [31, 32] studied how many popular distributed systems behave in the pres-
ence of storage faults. This work discovered fundamental reasons why distributed systems are not
resilient to storage faults. At a high level, similar to our analysis in Section 2.3, the prior work also
found that distributed systems do not effectively use redundancy to recover from storage faults.
However, the study did not uncover any safety or availability violations reported in Section 2.3;
this is because the fault model in our previous study considers injecting only storage faults (pre-
cisely, a single storage fault on a single node at a time). In contrast, our fault model in this work
considers crashes and network failures in addition to storage faults, exposing previously unknown
safety and availability violations in RSM systems.

Targeted Approaches. Prior research describes two approaches [16, 18] to tackle storage
faults in RSM systems. However, these approaches suffer from unavailability. Furthermore, the

ACM Transactions on Storage, Vol. 14, No. 3, Article 21. Publication date: October 2018.

Protocol-Aware Recovery 21:25

MarkNonVoting approach [18] can violate safety because important metainfo such as promises
can be lost on a storage fault [74]. Ctrl avoids such safety violations by storing two copies of
metainfo on each node. Approaches that improve the reliability of other specific systems have
also been proposed [72, 75].

Generic Approaches. Many generic approaches to handling practical faults other than crashes
have been proposed. PASC [22] hardens systems to tolerate corruptions by maintaining two copies
of the entire state on each node and assumes that both the copies will not be faulty at the same
time. This approach does not work well for storage faults; having two copies of on-disk state
incurs 2× space overhead. Furthermore, in most cases, PASC crashes the node on a fault, causing
unavailability. XFT [44] is designed to tolerate non-crash faults. However, it can tolerate only a
total of �(N − 1)/2� crash and non-crash faults. Similarly, UpRight [21] has an upper bound on the
total faults to remain safe and available.

Ctrl differs from the generic approaches through its special focus on storage faults. This focus
brings two main advantages. First, Ctrl attributes faults at a fine granularity: while the generic
approaches consider a node as faulty if any of its data is corrupted, Ctrl considers faults at the
granularity of individual data items. Second, because of such fine-granular fault treatment, Ctrl
can be available as long as a majority of nodes are up and at least one non-faulty copy of a data item
exists even though portions of data on all nodes could be corrupted. Ctrl cannot tolerate arbitrary
non-crash faults [42] (e.g., memory errors). However, Ctrl can augment the generic approaches:
for example, a system can be hardened against memory faults using PASC while making it robust
to storage faults using Ctrl.

8 CONCLUSIONS

Recovering from storage faults in distributed systems is surprisingly hard. We introduce protocol-

aware recovery (Par), a new approach that exploits protocol-specific knowledge of the underlying
distributed system to correctly recover from storage faults. We design Ctrl, a protocol-aware
recovery approach for RSM systems. We experimentally show that Ctrl correctly recovers from
a range of storage faults with little performance overhead.

Our work is only a first step in hardening distributed systems to storage faults: while we have
successfully applied the Par approach to RSM systems, other classes of systems (e.g., primary-
backup, Dynamo-style quorums) still remain vulnerable. We believe the Par approach can be
applied to such classes as well. We hope our work will lead to more work on building reliable
distributed storage systems that are robust to storage faults.

ACKNOWLEDGMENTS

We thank Mahesh Balakrishnan (our FAST’18 shepherd), the anonymous FAST’18 reviewers, and
the members of ADSL for their excellent feedback and valuable suggestions. We also thank Cloud-
Lab [60] for providing a great environment to run our experiments.

APPENDIX A IMPOSSIBILITY OF LAST-ENTRY DISENTANGLEMENT

In any log-based storage system, if the last entry in the log is corrupted, it is impossible to de-
termine whether the corruption was due to a crash or a disk corruption (as we discussed in Sec-
tion 3.3). We now present a proof of this claim; we first define the various elements necessary for
the proof and then present the proof.

Log. We model the log L as two disjoint lists: one list Le that stores entries and one list Lid that
stores identifiers.

ACM Transactions on Storage, Vol. 14, No. 3, Article 21. Publication date: October 2018.

21:26 R. Alagappan et al.

Identifiers. The identifier of a log entry contains vital information about that entry; this infor-
mation helps Ctrl’s distributed protocol to recover corrupted entries from copies on other nodes.

Operations. Two kinds of operations update the log:

—write (v), which updates Le or Lid (depending on if v is an entry or identifier).
— f sync () flushes all previous writes to disk.

Sequences. A disentangled sequence of transactions σ = t1, . . . , tn , where n > 1 is one where each
ti is a subsequence of three operations: a1

i ,a
2
i ,a

3
i , where

—a1
i is of the form write (ei),

—a2
i is of the form write (idi),

—a3
i is of the form f sync (),

where ei is the entry to be written and idi is its respective identifier. For simplicity, we assume a
single log.

Log Appends. Suppose we are given a disentangled sequence σ = t1, . . . , tn . We use LI to denote
the initial state of the log. We use σLI to denote the state of the log after executing the sequence
σ beginning from state LI .

Corruption and Crash. We distinguish two bad events: corruptions co and crashes cr .

—A corruption coi changes element ei in Le to some new e ′i where e ′i � ei .
—We assume identifiers (idi) cannot be affected by a corruption.
—We assume the identifiers can be atomically written to the disk because an identifier is much

smaller than a single sector (i.e., write (idi) is atomic).
—We assume a crash cr i can only happen between a2

i and a3
i , that is, right before the f sync ,

for a sequence t1, . . . , tn , as defined above.

Given sequence σ , we use σcr i
to denote σ with a crash in ti . If the system crashes during ti ,

then no entries tj would appear in the log for any j > i . Given σ , we use σcoi
to denote σ with a

corruption event coi appended at the end.

Theorem A.1 (Disentanglement). Suppose we are given the disentangled sequence σ and log L.

—Case 1: Let L1 = σcrn
LI , and let L2 = σcon

LI . Suppose we are provided LI , σ , and one of the

logs L1 and L2. We cannot detect whether σcrn
or σcon

is the one that executed resulting in L1

or L2.

—Case 2: Let Lcoi = σcoi
LI , where i ∈ [1,n). Provided LI ,σ , and Lcoi , we can conclude that σcrj

did not execute, where j ∈ [1,n].

Proof. First, we note that by being able to detect whether a crash or corruption happened, we
mean that there exists a deterministic algorithm that will return whether a crash or corruption
happened.

Case 1: We prove the first case with a simple construction. Let σ = t1, where

t1 = write (e1),write (id1), f sync ().

Let LI be the empty log. Let L1 = σcr 1L
I and L2 = σco1L

I .
Assume that when the crash cr 1 happened, only a strict subset of e1 was written in addition

to id1. Let the strict subset of e1 that was written be e ′1. The above condition can arise because
write (e1) need not be atomic and writes can be reordered by the underlying file system on a crash.
Now, assume that the corruption co1 turns e1 to e ′1.

ACM Transactions on Storage, Vol. 14, No. 3, Article 21. Publication date: October 2018.

Protocol-Aware Recovery 21:27

We can now prove the first case by contradiction: Suppose there is an algorithm M that can take
(i) the initial state of the log, (ii) the current state of the log, and (iii) the sequence of transactions
σ that lead to the current state (minus co and cr events), and deterministically returns whether a
crash or corruption happened. In the above example, L1 = L2 by construction. So, M (LI ,L1,σ) =
M (LI ,L2,σ). Therefore, no such M exists.

Case 2: Fix i, j as in theorem statement. Let Lcr j = σcr j
LI . Assume Lcr j = Lcoi . If j � i , then entry

ei cannot be affected by the crash, and therefore the Lcr j � Lcoi . If j = i , since i < n, then ei is fixed
by recovery. Therefore, Lcr j � Lcoi . �

REFERENCES

[1] Ittai Abraham, Gregory Chockler, Idit Keidar, and Dahlia Malkhi. 2006. Byzantine disk paxos: Optimal resilience with

byzantine shared memory. Distributed Computing 18, 5 (2006), 387–408.

[2] Ramnatthan Alagappan, Aishwarya Ganesan, Eric Lee, Aws Albarghouthi, Vijay Chidambaram, Andrea Arpaci-

Dusseau, and Remzi Arpaci-Dusseau. 2018. Protocol-aware recovery for consensus-based storage. In Proceedings of

the 16th USENIX Conference on File and Storage Technologies (FAST’18).

[3] Ramnatthan Alagappan, Aishwarya Ganesan, Yuvraj Patel, Thanumalayan Sankaranarayana Pillai, Andrea C. Arpaci-

Dusseau, and Remzi H. Arpaci-Dusseau. 2016. Correlated crash vulnerabilities. In Proceedings of the 12th USENIX

Conference on Operating Systems Design and Implementation (OSDI’16).

[4] Apache. 2017. Kakfa. Retrieved April 21, 2017 from http://kafka.apache.org/.

[5] Apache. 2008. ZooKeeper. Retrieved April 21, 2017 from https://zookeeper.apache.org/.

[6] Apache. 2008. ZooKeeper Guarantees, Properties, and Definitions. Retrieved April 21, 2017 from https://zookeeper.

apache.org/doc/r3.2.2/zookeeperInternals.html#sc_guaranteesPropertiesDefinitions.

[7] Apache Cassandra. 2017. Cassandra Replication. Retrieved April 21, 2017 from http://docs.datastax.com/en/

cassandra/2.0/cassandra/architecture/architectureDataDistributeReplication_c.html.

[8] Apache ZooKeeper. 2014. Applications and Organizations using ZooKeeper. Retrieved April 21, 2017 from https:

//cwiki.apache.org/confluence/display/ZOOKEEPER/PoweredBy.

[9] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau. 2015. Operating Systems: Three Easy Pieces (0.91 ed.).

Arpaci-Dusseau Books.

[10] Lakshmi N. Bairavasundaram, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, Garth R. Goodson, and Bianca

Schroeder. 2008. An analysis of data corruption in the storage stack. In Proceedings of the 6th USENIX Symposium on

File and Storage Technologies (FAST’08).

[11] Lakshmi N. Bairavasundaram, Garth R. Goodson, Shankar Pasupathy, and Jiri Schindler. 2007. An analysis of latent

sector errors in disk drives. In Proceedings of the 2007 ACM SIGMETRICS Conference on Measurement and Modeling of

Computer Systems (SIGMETRICS’07).

[12] Lakshmi N. Bairavasundaram, Meenali Rungta, Nitin Agrawal, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau,

and Michael M. Swift. 2008. Analyzing the effects of disk-pointer corruption. In Proceedings of the International Con-

ference on Dependable Systems and Networks (DSN’08).

[13] Lakshmi Narayanan Bairavasundaram. 2008. Characteristics, Impact, and Tolerance of Partial Disk Failures. Ph.D. dis-

sertation. University of Wisconsin, Madison.

[14] Mahesh Balakrishnan, Dahlia Malkhi, Vijayan Prabhakaran, Ted Wobber, Michael Wei, and John D. Davis. 2012.

CORFU: A shared log design for flash clusters. In Proceedings of the 9th Symposium on Networked Systems Design and

Implementation (NSDI’12).

[15] Andrew D. Birrell, Roy Levin, Michael D. Schroeder, and Roger M. Needham. 1982. Grapevine: An exercise

in distributed computing. Communications of the ACM 25, 4 (April 1982), 260–274. http://dx.doi.org/10.1145/

358468.358487

[16] William J. Bolosky, Dexter Bradshaw, Randolph B. Haagens, Norbert P. Kusters, and Peng Li. 2011. Paxos replicated

state machines as the basis of a high-performance data store. In Proceedings of the 8th Symposium on Networked

Systems Design and Implementation (NSDI’11).

[17] Mike Burrows. 2006. The chubby lock service for loosely-coupled distributed systems. In Proceedings of the 7th Sym-

posium on Operating Systems Design and Implementation (OSDI’06).

[18] Tushar D. Chandra, Robert Griesemer, and Joshua Redstone. 2007. Paxos made live: An engineering perspective. In

Proceedings of the 26th ACM Symposium on Principles of Distributed Computing.

[19] Vijay Chidambaram, Thanumalayan Sankaranarayana Pillai, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-

Dusseau. 2013. Optimistic crash consistency. In Proceedings of the 24th ACM Symposium on Operating Systems Prin-

ciples (SOSP’13).

ACM Transactions on Storage, Vol. 14, No. 3, Article 21. Publication date: October 2018.

http://kafka.apache.org/
https://zookeeper.apache.org/
https://zookeeper.apache.org/doc/r3.2.2/zookeeperInternals.html#sc_guaranteesPropertiesDefinitions
http://docs.datastax.com/en/cassandra/2.0/cassandra/architecture/architectureDataDistributeReplication_c.html
https://cwiki.apache.org/confluence/display/ZOOKEEPER/PoweredBy
http://dx.doi.org/10.1145/358468.358487

21:28 R. Alagappan et al.

[20] Vijay Chidambaram, Tushar Sharma, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2012. Consistency

without ordering. In Proceedings of the 10th USENIX Symposium on File and Storage Technologies (FAST’12).

[21] Allen Clement, Manos Kapritsos, Sangmin Lee, Yang Wang, Lorenzo Alvisi, Mike Dahlin, and Taylor Riche. 2009.

Upright cluster services. In Proceedings of the 22nd ACM Symposium on Operating Systems Principles (SOSP’09).

[22] Miguel Correia, Daniel Gómez Ferro, Flavio P. Junqueira, and Marco Serafini. 2012. Practical hardening of crash-

tolerant systems. In 2012 USENIX Annual Technical Conference (USENIX ATC’12).

[23] Jeff Dean. 2010. Building Large-Scale Internet Services. Retrieved April 21, 2017 from http://static.googleusercontent.

com/media/research.google.com/en//people/jeff/SOCC2010-keynote-slides.pdf.

[24] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash Lakshman, Alex Pilchin,

Swaminathan Sivasubramanian, Peter Vosshall, and Werner Vogels. 2007. Dynamo: Amazon’s highly available key-

value store. In Proceedings of the 21st ACM Symposium on Operating Systems Principles (SOSP’07).

[25] Diego Ongaro. 2014. Raft TLA+ Specification. Retrieved April 21, 2017 from https://github.com/ongardie/raft.tla.

[26] epaxos. 2012. epaxos Source Code. Retrieved April 21, 2017 from https://github.com/efficient/epaxos.

[27] etcd. 2014. etcd. Retrieved April 21, 2017 from https://coreos.com/etcd.

[28] etcd. 2014. etcd: Production Users. Retrieved April 21, 2017 from https://coreos.com/etcd/docs/latest/production-

users.html.

[29] Daniel Fryer, Dai Qin, Jack Sun, Kah Wai Lee, Angela Demke Brown, and Ashvin Goel. 2014. Checking the integrity

of transactional mechanisms. In Proceedings of the 12th USENIX Symposium on File and Storage Technologies (FAST’14).

[30] Daniel Fryer, Kuei Sun, Rahat Mahmood, TingHao Cheng, Shaun Benjamin, Ashvin Goel, and Angela Demke Brown.

2012. Recon: Verifying file system consistency at runtime. In Proceedings of the 10th USENIX Symposium on File and

Storage Technologies (FAST’12).

[31] Aishwarya Ganesan, Ramnatthan Alagappan, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2017. Re-

dundancy does not imply fault tolerance: Analysis of distributed storage reactions to file-system faults. ACM Trans-

actions on Storage 13, 3 (Sept. 2017), 20:1–20:33.

[32] Aishwarya Ganesan, Ramnatthan Alagappan, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2017. Re-

dundancy does not imply fault tolerance: Analysis of distributed storage reactions to single errors and corruptions.

In Proceedings of the 15th USENIX Conference on File and Storage Technologies (FAST’17).

[33] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. 2003. The Google file system. In Proceedings of the 19th

ACM Symposium on Operating Systems Principles (SOSP’03).

[34] Matthias Grawinkel, Thorsten Schafer, Andre Brinkmann, Jens Hagemeyer, and Mario Porrmann. 2011. Evaluation of

applied intra-disk redundancy schemes to improve single disk reliability. In Proceedings of the 19th Annual Meeting of

the IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems

(MASCOTS).

[35] Kevin M. Greenan, Darrell D. E. Long, Ethan L. Miller, Thomas Schwarz, and Avani Wildani. 2009. Building flexible,

fault-tolerant flash-based storage systems. In Proceedings of the 5th Workshop on Hot Topics in System Dependability

(HotDep’09).

[36] Laura M. Grupp, Adrian M. Caulfield, Joel Coburn, Steven Swanson, Eitan Yaakobi, Paul H. Siegel, and Jack K. Wolf.

2009. Characterizing flash memory: Anomalies, observations, and applications. In Proceedings of the 42nd Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO’09).

[37] James Hamilton. 2007. On designing and deploying internet-scale services. In Proceedings of the 21st Annual Large

Installation System Administration Conference (LISA’07).

[38] James Myers. 2014. Data Integrity in Solid State Drives. Retrieved April 21, 2017 from http://intel.ly/2cF0dTT.

[39] John Goerzen. 2017. Silent Data Corruption Is Real. Retrieved April 21, 2017 from http://changelog.complete.org/

archives/9769-silent-data-corruption-is-real.

[40] Jonathan Corbet. 2008. Responding to ext4 Journal Corruption. Retrieved April 21, 2017 from https://lwn.net/Articles/

284037/.

[41] Flavio P. Junqueira, Benjamin C. Reed, and Marco Serafini. 2011. Zab: High-performance broadcast for primary-

backup systems. In Proceedings of the International Conference on Dependable Systems and Networks (DSN’11).

[42] Dmitrii Kuvaiskii, Rasha Faqeh, Pramod Bhatotia, Pascal Felber, and Christof Fetzer. 2016. HAFT: Hardware-assisted

fault tolerance. In Proceedings of the EuroSys Conference (EuroSys’16).

[43] Leslie Lamport. 2001. Paxos made simple. ACM SIGACT News 32, 4 (2001), 18–25.

[44] Shengyun Liu, Paolo Viotti, Christian Cachin, Vivien Quéma, and Marko Vukolic. 2016. XFT: Practical fault toler-

ance beyond crashes. In Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation

(OSDI’16).

[45] LogCabin. 2014. LogCabin. Retrieved April 21, 2017 from https://github.com/logcabin/logcabin.

[46] Jacob R. Lorch, Atul Adya, William J. Bolosky, Ronnie Chaiken, John R. Douceur, and Jon Howell. 2006. The SMART

way to migrate replicated stateful services. In Proceedings of the EuroSys Conference (EuroSys’06).

ACM Transactions on Storage, Vol. 14, No. 3, Article 21. Publication date: October 2018.

http://static.googleusercontent.com/media/research.google.com/en//people/jeff/SOCC2010-keynote-slides.pdf
https://github.com/ongardie/raft.tla
https://github.com/efficient/epaxos
https://coreos.com/etcd
https://coreos.com/etcd/docs/latest/production-users.html
http://intel.ly/2cF0dTT
http://changelog.complete.org/archives/9769-silent-data-corruption-is-real
https://lwn.net/Articles/284037/
https://github.com/logcabin/logcabin

Protocol-Aware Recovery 21:29

[47] Parisa Jalili Marandi, Christos Gkantsidis, Flavio Junqueira, and Dushyanth Narayanan. 2016. Filo: Consolidated con-

sensus as a cloud service. In 2016 USENIX Annual Technical Conference (USENIX ATC’16).

[48] Justin Meza, Qiang Wu, Sanjev Kumar, and Onur Mutlu. 2015. A large-scale study of flash memory failures in the

field. In Proceedings of the 2015 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer

Systems (SIGMETRICS’15).

[49] MongoDB. 2017. MongoDB Replication. Retrieved April 21, 2017 from https://docs.mongodb.org/manual/replication/.

[50] Iulian Moraru, David G. Andersen, and Michael Kaminsky. 2013. There is more consensus in egalitarian parliaments.

In Proceedings of the 24th ACM Symposium on Operating Systems Principles (SOSP’13).

[51] Iyswarya Narayanan, Di Wang, Myeongjae Jeon, Bikash Sharma, Laura Caulfield, Anand Sivasubramaniam, Ben

Cutler, Jie Liu, Badriddine Khessib, and Kushagra Vaid. 2016. SSD failures in datacenters: What? When? and Why?.

In Proceedings of the 9th ACM International on Systems and Storage Conference (SYSTOR’16).

[52] Diego Ongaro. 2014. Consensus: Bridging Theory and Practice. Ph.D. dissertation. Stanford University.

[53] Diego Ongaro and John Ousterhout. 2014. In search of an understandable consensus algorithm. In 2014 USENIX

Annual Technical Conference (USENIX ATC’14).

[54] Bernd Panzer-Steindel. 2007. Data integrity. CERN/IT.

[55] Thanumalayan Sankaranarayana Pillai, Ramnatthan Alagappan, Lanyue Lu, Vijay Chidambaram, Andrea C. Arpaci-

Dusseau, and Remzi H. Arpaci-Dusseau. 2017. Application crash consistency and performance with CCFS. In Pro-

ceedings of the 15th USENIX Conference on File and Storage Technologies (FAST’17).

[56] Thanumalayan Sankaranarayana Pillai, Vijay Chidambaram, Ramnatthan Alagappan, Samer Al-Kiswany, Andrea

C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2014. All file systems are not created equal: On the complexity

of crafting crash-consistent applications. In Proceedings of the 11th Symposium on Operating Systems Design and

Implementation (OSDI’14).

[57] Vijayan Prabhakaran, Lakshmi N. Bairavasundaram, Nitin Agrawal, Haryadi S. Gunawi, Andrea C. Arpaci-Dusseau,

and Remzi H. Arpaci-Dusseau. 2005. IRON file systems. In Proceedings of the 20th ACM Symposium on Operating

Systems Principles (SOSP’05).

[58] Redis. 2015. Redis. Retrieved April 21, 2017 from http://redis.io/.

[59] Redis. 2015. Redis Replication. Retrieved April 21, 2017 from http://redis.io/topics/replication.

[60] Robert Ricci, Eric Eide, and CloudLab Team. 2014. Introducing CloudLab: Scientific infrastructure for advancing cloud

architectures and applications. USENIX ;login: 39, 6 (2014).

[61] Robert Harris. 2007. Data Corruption Is Worse than You Know. Retrieved April 21, 2017 from http://www.zdnet.com/

article/data-corruption-is-worse-than-you-know/.

[62] Fred B. Schneider. 1990. Implementing fault-tolerant services using the state machine approach: A tutorial. ACM

Computing Surveys 22, 4 (Dec. 1990), 299–319. http://dx.doi.org/10.1145/98163.98167

[63] Bianca Schroeder, Sotirios Damouras, and Phillipa Gill. 2010. Understanding latent sector errors and how to protect

against them. In Proceedings of the 8th USENIX Symposium on File and Storage Technologies (FAST’10).

[64] Bianca Schroeder, Raghav Lagisetty, and Arif Merchant. 2016. Flash reliability in production: The expected and the

unexpected. In Proceedings of the 14th USENIX Conference on File and Storage Technologies (FAST’16).

[65] Michael D. Schroeder, Andrew D. Birrell, and Roger M. Needham. 1984. Experience with grapevine: The growth of a

distributed system. ACM Transactions on Computer Systems 2, 1 (Feb. 1984), 3–23. http://dx.doi.org/10.1145/2080.2081

[66] Thomas Schwarz, Ahmed Amer, Thomas Kroeger, Ethan L. Miller, Darrell D. E. Long, and Jehan-François Pâris.

2016. RESAR: Reliable storage at exabyte scale. In Proceedings of the 24th Annual Meeting of the IEEE International

Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS).

[67] Romain Slootmaekers and Nicolas Trangez. 2012. Arakoon: A distributed consistent key-value store. In SIGPLAN

OCaml Users and Developers Workshop, Vol. 62.

[68] Stackoverflow. 2015. Can ext4 Detect Corrupted File Contents? Retrieved April 21, 2017 from http://stackoverflow.

com/questions/31345097/can-ext4-detect-corrupted-file-contents.

[69] Stackoverflow. 2013. ZooKeeper Clear State. Retrieved April 21, 2017 from http://stackoverflow.com/questions/

17038957/org-apache-hadoop-hbase-pleaseholdexception-master-is-initializing.

[70] Michael M. Swift, Brian N. Bershad, and Henry M. Levy. 2003. Improving the reliability of commodity operating

systems. In Proceedings of the 19th ACM Symposium on Operating Systems Principles (SOSP’03).

[71] D. B. Terry, M. M. Theimer, Karin Petersen, A. J. Demers, M. J. Spreitzer, and C. H. Hauser. 1995. Managing update

conflicts in Bayou, a weakly connected replicated storage system. In Proceedings of the 15th ACM Symposium on

Operating Systems Principles (SOSP’95).

[72] Thanh Do, Tyler Harter, Yingchao Liu, Haryadi S. Gunawi, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau.

2013. HARDFS: Hardening HDFS with selective and lightweight versioning. In Proceedings of the 11th Conference on

File and Storage Technologies (FAST’13).

ACM Transactions on Storage, Vol. 14, No. 3, Article 21. Publication date: October 2018.

https://docs.mongodb.org/manual/replication/
http://redis.io/
http://redis.io/topics/replication
http://www.zdnet.com/article/data-corruption-is-worse-than-you-know/
http://dx.doi.org/10.1145/98163.98167
http://dx.doi.org/10.1145/2080.2081
http://stackoverflow.com/questions/31345097/can-ext4-detect-corrupted-file-contents
http://stackoverflow.com/questions/17038957/org-apache-hadoop-hbase-pleaseholdexception-master-is-initializing

21:30 R. Alagappan et al.

[73] Theodore Ts’o. 2008. What to Do when the Journal Checksum is Incorrect. Retrieved April 21, 2017 from https://

lwn.net/Articles/284038/.

[74] Robbert Van Renesse, Nicolas Schiper, and Fred B. Schneider. 2015. Vive la différence: Paxos vs. viewstamped repli-

cation vs. zab. IEEE Transactions on Dependable and Secure Computing 12, 4 (2015), 472–484.

[75] Yang Wang, Manos Kapritsos, Zuocheng Ren, Prince Mahajan, Jeevitha Kirubanandam, Lorenzo Alvisi, and Mike

Dahlin. 2013. Robustness in the Salus scalable block store. In Proceedings of the 10th Symposium on Networked Systems

Design and Implementation (NSDI’13).

[76] Yupu Zhang, Abhishek Rajimwale, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2010. End-to-end data

integrity for file systems: A ZFS case study. In Proceedings of the 8th USENIX Symposium on File and Storage Technolo-

gies (FAST’10).

[77] ZooKeeper Jira Issues. 2012. Unable to Load Database on Disk when Restarting after Node Freeze. Retrieved April

21, 2017 from https://issues.apache.org/jira/browse/ZOOKEEPER-1546.

Received May 2018; accepted July 2018

ACM Transactions on Storage, Vol. 14, No. 3, Article 21. Publication date: October 2018.

https://lwn.net/Articles/284038/
https://issues.apache.org/jira/browse/ZOOKEEPER-1546

