
Optimistic
Crash Consistency

Vijay Chidambaram
Thanumalayan Sankaranarayana Pillai

Andrea Arpaci-Dusseau
Remzi Arpaci-Dusseau

SOSP 13

Crash Consistency Problem

Single file-system operation updates multiple
on-disk data structures

System may crash in middle of updates

File-system is partially (incorrectly) updated

2

SOSP 13

Performance OR Consistency
Crash-consistency solutions degrade performance

Users forced to choose between high
performance and strong consistency

- Performance differs by 10x for some workloads

Many users choose performance

- ext3 default configuration did not guarantee crash
consistency for many years

- Mac OSX fsync() does not ensure data is safe

3

“The Fast drives out the Slow even if the Fast is wrong”
 - Kahan

SOSP 13

Ordering and Durability

Crash consistency is built upon ordered writes

File systems conflate ordering and durability

- Ideal: {A, B} -> {C} (made durable later)

- Current scenario

• {A, B} durable

• {C} durable

Inefficient when only ordering is required

4

SOSP 13

Can a file system provide
 both

high performance
 and strong consistency?

5

Is there a middle ground between:
high performance but no consistency

strong consistency but low performance?

SOSP 13

Our solution
Optimistic File System (OptFS)

6

Journaling file system that provides
performance and consistency

 by decoupling ordering and durability

Such decoupling allows OptFS to trade
freshness for performance while

maintaining crash consistency

SOSP 13

Results

Techniques: checksums, delayed writes, etc.

OptFS provides strong consistency

- Equivalent to ext4 data journaling

OptFS improves performance significantly

- 10x better than ext4 on some workloads

New primitive osync() provides ordering among
writes at high performance

7

SOSP 13

Outline

Introduction

Ordering and Durability in Journaling

Optimistic File System

Results

Conclusion

8

SOSP 13

Outline
Introduction

Ordering and Durability in Journaling
- Journaling Overview

- Realizing Ordering on Disks

- Journaling without Ordering

Optimistic File System

Results

Conclusion
9

SOSP 13

Journaling Overview

Before updating file system, write note
describing update

Make sure note is safely on disk

Once note is safe, update file system

- If interrupted, read note and redo updates

10

SOSP 13 Journal

Workload: Creating and writing to a file
Journaling protocol (ordered journaling)

Journaling Overview

11

FILE SYSTEM

DISK

APPLICATION
METADATADATA

SOSP 13 Journal

Workload: Creating and writing to a file
Journaling protocol (ordered journaling)
- Data write (D)

Journaling Overview

11

FILE SYSTEM

DISK

APPLICATION

D

METADATADATA

SOSP 13 Journal

Workload: Creating and writing to a file
Journaling protocol (ordered journaling)
- Data write (D)

Journaling Overview

11

FILE SYSTEM

DISK

APPLICATION

D

METADATADATA

SOSP 13 Journal

Workload: Creating and writing to a file
Journaling protocol (ordered journaling)
- Data write (D)

- Logging Metadata (JM)

Journaling Overview

11

FILE SYSTEM

DISK

APPLICATION

D

JM

METADATADATA

SOSP 13 Journal

Workload: Creating and writing to a file
Journaling protocol (ordered journaling)
- Data write (D)

- Logging Metadata (JM)

Journaling Overview

11

FILE SYSTEM

DISK

APPLICATION

D JM

METADATADATA

SOSP 13 Journal

Workload: Creating and writing to a file
Journaling protocol (ordered journaling)
- Data write (D)

- Logging Metadata (JM)

- Logging Commit (JC)

Journaling Overview

11

FILE SYSTEM

DISK

APPLICATION

D JM

JC

METADATADATA

SOSP 13 Journal

Workload: Creating and writing to a file
Journaling protocol (ordered journaling)
- Data write (D)

- Logging Metadata (JM)

- Logging Commit (JC)

Journaling Overview

11

FILE SYSTEM

DISK

APPLICATION

D JM JC

METADATADATA

SOSP 13 Journal

Workload: Creating and writing to a file
Journaling protocol (ordered journaling)
- Data write (D)

- Logging Metadata (JM)

- Logging Commit (JC)

- Checkpointing (M)

Journaling Overview

11

FILE SYSTEM

DISK

APPLICATION

D JM JC

M

METADATADATA

SOSP 13 Journal

Workload: Creating and writing to a file
Journaling protocol (ordered journaling)
- Data write (D)

- Logging Metadata (JM)

- Logging Commit (JC)

- Checkpointing (M)

Journaling Overview

11

FILE SYSTEM

DISK

APPLICATION

D JM JCM

METADATADATA

SOSP 13

Outline
Introduction

Ordering and Durability in Journaling
- Journaling Overview

- Realizing Ordering on Disks

- Journaling without Ordering

Optimistic File System

Results

Conclusion
12

SOSP 13

How Writes are Ordered

13

Disk

BA

A B

BA

A B

Disk
 Cache

Disk
 Platter

BA

A

B

Flush

Original
 Disks

Disks with
 Write Buffers

SOSP 13 Journal

Journaling with Flushes

14

FILE SYSTEM

DISK CACHE

APPLICATION
METADATADATA

DISK PLATTER

Journaling protocol
- Data write (D)

SOSP 13 Journal

Journaling with Flushes

14

FILE SYSTEM

DISK CACHE

APPLICATION

D

METADATADATA

DISK PLATTER

Journaling protocol
- Data write (D)

SOSP 13 Journal

Journaling with Flushes

14

FILE SYSTEM

DISK CACHE

APPLICATION

D

METADATADATA

DISK PLATTER

Journaling protocol
- Data write (D)

SOSP 13 Journal

Journaling with Flushes

14

FILE SYSTEM

DISK CACHE

APPLICATION

D

JM

METADATADATA

DISK PLATTER

Journaling protocol
- Data write (D)

- Logging Metadata (JM)

SOSP 13 Journal

Journaling with Flushes

14

FILE SYSTEM

DISK CACHE

APPLICATION

D JM

METADATADATA

DISK PLATTER

Journaling protocol
- Data write (D)

- Logging Metadata (JM)

SOSP 13 Journal

Journaling with Flushes

14

FILE SYSTEM

DISK CACHE

APPLICATION

D JM

METADATADATA

DISK PLATTER

FLUSH

Journaling protocol
- Data write (D)

- Logging Metadata (JM)

SOSP 13 Journal

Journaling with Flushes

14

FILE SYSTEM

DISK CACHE

APPLICATION

D JM

METADATADATA

DISK PLATTER

FLUSH

Journaling protocol
- Data write (D)

- Logging Metadata (JM)

SOSP 13 Journal

Journaling with Flushes

14

FILE SYSTEM

DISK CACHE

APPLICATION

D JM

JC

METADATADATA

DISK PLATTER

FLUSH

Journaling protocol
- Data write (D)

- Logging Metadata (JM)

- Logging Commit (JC)

SOSP 13 Journal

Journaling with Flushes

14

FILE SYSTEM

DISK CACHE

APPLICATION

D JM

JC

METADATADATA

DISK PLATTER

FLUSH

Journaling protocol
- Data write (D)

- Logging Metadata (JM)

- Logging Commit (JC)

SOSP 13 Journal

Journaling with Flushes

14

FILE SYSTEM

DISK CACHE

APPLICATION

D JM

JC

METADATADATA

DISK PLATTER

FLUSH FLUSH

Journaling protocol
- Data write (D)

- Logging Metadata (JM)

- Logging Commit (JC)

SOSP 13 Journal

Journaling with Flushes

14

FILE SYSTEM

DISK CACHE

APPLICATION

D JM JC

METADATADATA

DISK PLATTER

FLUSH FLUSH

Journaling protocol
- Data write (D)

- Logging Metadata (JM)

- Logging Commit (JC)

SOSP 13 Journal

Journaling with Flushes

14

FILE SYSTEM

DISK CACHE

APPLICATION

D JM JC

M

METADATADATA

DISK PLATTER

FLUSH FLUSH

Journaling protocol
- Data write (D)

- Logging Metadata (JM)

- Logging Commit (JC)

- Checkpointing (M)

SOSP 13

Outline
Introduction

Ordering and Durability in Journaling
- Journaling Overview

- Realizing Ordering on Disks

- Journaling without Ordering

Optimistic File System

Results

Conclusion
15

SOSP 13

Journaling without Ordering

Practitioners turn off flushes due to
performance degradation
- Ex: ext3 by default did not enable flushes for

many years

Observe crashes do not cause inconsistency
for some workloads

We term this probabilistic crash consistency
- Studied in detail

16

SOSP 13 Journal

Journaling without Ordering

17

FILE SYSTEM

DISK CACHE

APPLICATION

D JM JC M

METADATADATA

DISK PLATTER

FLUSH FLUSH

SOSP 13 Journal

Journaling without Ordering

17

FILE SYSTEM

DISK CACHE

APPLICATION

D JM JC M

METADATADATA

DISK PLATTER

SOSP 13 Journal

Journaling without Ordering

17

FILE SYSTEM

DISK CACHE

APPLICATION

D JM JC M

METADATADATA

DISK PLATTER

Without flushes, blocks may be reordered

SOSP 13 Journal

Journaling without Ordering

17

FILE SYSTEM

DISK CACHE

APPLICATION

D

JM JC

M

METADATADATA

DISK PLATTER

Without flushes, blocks may be reordered
- Ex: JC and JM written first as disk head near journal

SOSP 13 Journal

Journaling without Ordering

17

FILE SYSTEM

DISK CACHE

APPLICATION

D JM JCM

METADATADATA

DISK PLATTER

Without flushes, blocks may be reordered
- Ex: JC and JM written first as disk head near journal

SOSP 13

Probabilistic Crash Consistency

18

D JM JC M TimeMEMORY

DISK

SOSP 13

Probabilistic Crash Consistency

18

D JM JC M TimeMEMORY

DISK JC

SOSP 13

Probabilistic Crash Consistency

18

D JM JC M TimeMEMORY

DISK D JMJC M

SOSP 13

Probabilistic Crash Consistency

Re-ordering leads to windows of vulnerability

18

D JM JC M Time

Window

Total I/O Time

P-inconsistency = Time in window(s) / Total I/O Time

MEMORY

DISK D JMJC M

SOSP 13

Probabilistic Crash Consistency
p-inconsistency for different workloads
- Read-heavy workloads have low p-inconsistency

- Database workloads have high p-inconsistency

See paper for detailed study
- Factors that affect p-inconsistency

Turning off flushing provides performance, but
does not ensure consistency

Additional techniques required to obtain
both performance and consistency

19

SOSP 13

Outline
Introduction

Ordering and Durability in Journaling

Optimistic File System
- Overview

- Handling Re-Ordering

- New File-system Primitives

Results

Conclusion
20

SOSP 13

Optimistic File System
Achieves both performance and consistency
by trading on new axis

Freshness indicates how up-to-date state is
after a crash

OptFS provides strong consistency while
trading freshness for increased performance

21

State 1 State 2 State 3 State 4X
ext4OptFS

SOSP 13

Optimistic File System

Eliminates flushes in the common case

Blocks may be re-ordered without flushes

Optimistic Crash Consistency handles
re-orderings with different techniques
- Some re-orderings are detected after crash

- Some re-orderings are prevented from occurring

22

SOSP 13

Modified Disk Interface
Asynchronous Durability Notifications (ADN)
signal when block is made durable

23

BA

A B

Disk
 Cache

Disk
 Platter

SOSP 13

Modified Disk Interface

ADNs increase disk freedom
- Blocks can be destaged in any order

- Blocks can be destaged at any time

- Only requirement is to inform upper layer

OptFS uses ADNs to control what blocks are
dirty at the same time in disk cache

- Re-ordering can only happen among these blocks

24

SOSP 13

Outline
Introduction

Ordering and Durability in Journaling

Optimistic File System
- Overview

- Handling Re-Ordering

- New File-system Primitives

Results

Conclusion
25

SOSP 13 Journal

Handling Re-Ordering: Removing Flush #1

26

FILE SYSTEM

DISK CACHE

APPLICATION

D JM JC M

METADATADATA

DISK PLATTER

FLUSH

Flush after JM is removed
- Checksums used to handle reordering

SOSP 13

Technique #1: Checksums

JC could be re-ordered before D or JM

27

D JM JC M

Re-ordering detected using checksums
- Computed over data and metadata

- Checked during recovery

- Mismatch indicates blocks were lost during crash

FLUSH

SOSP 13

Handling Re-Ordering: Removing Flush #2

28

FILE SYSTEM

DISK CACHE

APPLICATION

D JM JC M

METADATADATA

DISK PLATTER

Flush after JC is removed
- Delayed writes used to prevent reordering

Journal

SOSP 13

Technique #2: Delayed Writes

M could be re-ordered before D or JM or JC

29

D JM JC M

Re-ordering prevented using delayed writes
- Wait until ADN arrive for D, JM, and JC

- Then issue M to disk cache

- Invariant: D/JM/JC and M never dirty in cache together

D JM JC

SOSP 13 Journal

Optimistic Journaling

30

FILE SYSTEM

DISK CACHE

APPLICATION

D JM JC M

METADATADATA

DISK PLATTER

FLUSH

Checksums and Delayed Writes handle
reordering from removing flushes

SOSP 13 Journal

Optimistic Journaling

30

FILE SYSTEM

DISK CACHE

APPLICATION

D JM JC M

METADATADATA

DISK PLATTER

FLUSH

Checksums and Delayed Writes handle
reordering from removing flushes

SOSP 13 Journal

Optimistic Journaling

30

FILE SYSTEM

DISK CACHE

APPLICATION

D JM JC M

METADATADATA

DISK PLATTER

FLUSH

Checksums and Delayed Writes handle
reordering from removing flushes

SOSP 13 Journal

Optimistic Journaling

30

FILE SYSTEM

DISK CACHE

APPLICATION

D JM JC

M

METADATADATA

DISK PLATTER

FLUSH

Checksums and Delayed Writes handle
reordering from removing flushes

SOSP 13 Journal

Optimistic Journaling

30

FILE SYSTEM

DISK CACHE

APPLICATION

D JM JC

M

METADATADATA

DISK PLATTER

Checksums and Delayed Writes handle
reordering from removing flushes

SOSP 13 Journal

Optimistic Journaling

30

FILE SYSTEM

DISK CACHE

APPLICATION

D JM JC

M

METADATADATA

DISK PLATTER

Checksums and Delayed Writes handle
reordering from removing flushes

D JM JC

SOSP 13 Journal

Optimistic Journaling

30

FILE SYSTEM

DISK CACHE

APPLICATION

D JM JC

M

METADATADATA

DISK PLATTER

Checksums and Delayed Writes handle
reordering from removing flushes

D JM JC

SOSP 13

Optimistic Techniques

Other Techniques
- In-order journal recovery and release

- Reuse after notification

- Selective data journaling

See paper for more details

31

SOSP 13

Outline
Introduction

Ordering and Durability in Journaling

Optimistic File System
- Overview

- Handling Re-Ordering

- New File-system Primitives

Results

Conclusion
32

SOSP 13

File-system Primitives

33

write(log)

write(header)

fsync(log)

fsync(header)

write(log)

write(header)

osync(log)

dsync(header)

fsync() provides ordering and durability

OptFS splits fsync()
- osync() for only ordering and high performance

- dsync() for durability

Primitives can increase performance
- Ex: SQLite

SOSP 13

Implementation
OptFS based on ext4 code

- Around 3000 lines of modified/added code

Required modifications to
- Journaling layer

- Virtual Memory subsystem

ADNs were emulated using timeouts
- Block received by disk at time T

- Block durable at time T+D

- D = 30 s in our implementation (conservative)
34

SOSP 13

Outline

Introduction

Ordering and Durability in Journaling

Optimistic File System

Results

Conclusion

35

SOSP 13

Evaluation

Does OptFS preserve file-system consistency
after crashes?
- OptFS consistent after 400 random crashes

How does OptFS perform?
- OptFS 4-10x better than ext4 with flushes

Can meaningful application-level consistency
be built on top of OptFS?
- Studied gedit and SQLite on OptFS

36

SOSP 13

Testing Application-Level Consistency

Methodology
- Start from initial disk image

- Run application

• Replace fsync() with osync()

• Trace writes

- Re-order writes

- Drop writes after random point

- Replay writes on initial disk image

- Examine application state on new image

37

SOSP 13

SQLite Consistency

38

Initial Image Final Image
W1 W2 W3 W4

SOSP 13

SQLite Consistency

38

Initial Image
W1 W2 W3 W4

SOSP 13

SQLite Consistency

38

Initial Image

W1 W2W3 W4

SOSP 13

SQLite Consistency

38

Initial Image

W1 W2W3 W4

SOSP 13

SQLite Consistency

38

Initial Image

W1 W2W3

Crashed Image

ext4 without flushes 73%

SOSP 13

SQLite Consistency

38

Initial Image

W1 W2W3

Zero inconsistencies with
 OptFS

 or
 ext4 with flushes

SOSP 13

SQLite Consistency

38

Initial Image

W1 W2W3

Final Image

ext4 with flushes 50%50%

SOSP 13

SQLite Consistency

38

Initial Image

W1 W2W3

Final Image

ext4 with flushes 50%50%
OptFS 24%76%

osync() changes semantics from ACID to
 ACI-(Eventual Durability)

SOSP 13

SQLite Consistency

38

Initial Image

W1 W2W3

Final Image

ext4 with flushes 50%50%
OptFS 24%76%

Time
150 ms
15 ms

osync() changes semantics from ACID to
 ACI-(Eventual Durability)

SOSP 13

SQLite Consistency

38

Initial Image

W1 W2W3

Final Image

ext4 with flushes 50%50%
OptFS 24%76%

Time
150 ms
15 ms

osync() changes semantics from ACID to
 ACI-(Eventual Durability)

SQLite is able to provide ACI semantics with osync(),
at 10x performance

SOSP 13

Outline

Introduction

Ordering and Durability in Journaling

Optimistic File System

Results

Conclusion

39

SOSP 13

Summary
Problem: providing both performance
and consistency

Solution: decoupling ordering and
durability in OptFS

Eventual Durability maintains
consistency while trading freshness for
increased performance

osync() provides a cheap primitive to
order application writes

40

SOSP 13

Conclusion

Storage-stack layers are increasing
- 18 layers between application and storage [Thereska13]

- Interfaces that provide freedom to each layer are the
way forward

First impulse: trade consistency for performance
- Trade-off not required in distributed systems [Escriva12]

- By trading freshness, we can obtain both consistency
and high performance

41

SOSP 13

Thank You

Source code
 http://research.cs.wisc.edu/adsl/Software/optfs/

http://github.com/vijay03/optfs

Questions?

