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Crash Consistency Problem

Single file-system operation updates multiple 
on-disk data structures

System may crash in middle of updates

File-system is partially (incorrectly) updated

2



SOSP 13

Performance OR Consistency
Crash-consistency solutions degrade performance

Users forced to choose between high 
performance and strong consistency

- Performance differs by 10x for some workloads 

Many users choose performance

- ext3 default configuration did not guarantee crash 
consistency for many years

- Mac OSX fsync() does not ensure data is safe
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“The Fast drives out the Slow even if the Fast is wrong”
 - Kahan 
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Ordering and Durability

Crash consistency is built upon ordered writes

File systems conflate ordering and durability

- Ideal: {A, B} -> {C} (made durable later)

- Current scenario

• {A, B} durable

• {C} durable

Inefficient when only ordering is required
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Can a file system provide
 both

high performance
 and strong consistency?
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Is there a middle ground between:
high performance but no consistency

strong consistency but low performance?
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Our solution
Optimistic File System (OptFS)
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Journaling file system that provides 
performance and consistency

 by decoupling ordering and durability

Such decoupling allows OptFS to trade 
freshness for performance while 

maintaining crash consistency



SOSP 13

Results

Techniques: checksums, delayed writes, etc.

OptFS provides strong consistency

- Equivalent to ext4 data journaling

OptFS improves performance significantly

- 10x better than ext4 on some workloads

New primitive osync() provides ordering among 
writes at high performance
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Journaling Overview

Before updating file system, write note 
describing update

Make sure note is safely on disk

Once note is safe, update file system

- If interrupted, read note and redo updates
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How Writes are Ordered

13

Disk

BA

A B

BA

A B

Disk
 Cache

Disk
 Platter

BA

A

B

Flush

Original
 Disks

Disks with
 Write Buffers



SOSP 13 Journal

Journaling with Flushes

14

FILE SYSTEM

DISK CACHE

APPLICATION
METADATADATA

DISK PLATTER

Journaling protocol
- Data write (D)



SOSP 13 Journal

Journaling with Flushes

14

FILE SYSTEM

DISK CACHE

APPLICATION

D

METADATADATA

DISK PLATTER

Journaling protocol
- Data write (D)



SOSP 13 Journal

Journaling with Flushes

14

FILE SYSTEM

DISK CACHE

APPLICATION

D

METADATADATA

DISK PLATTER

Journaling protocol
- Data write (D)



SOSP 13 Journal

Journaling with Flushes

14

FILE SYSTEM

DISK CACHE

APPLICATION

D

JM

METADATADATA

DISK PLATTER

Journaling protocol
- Data write (D)

- Logging Metadata (JM)



SOSP 13 Journal

Journaling with Flushes

14

FILE SYSTEM

DISK CACHE

APPLICATION

D JM

METADATADATA

DISK PLATTER

Journaling protocol
- Data write (D)

- Logging Metadata (JM)



SOSP 13 Journal

Journaling with Flushes

14

FILE SYSTEM

DISK CACHE

APPLICATION

D JM

METADATADATA

DISK PLATTER

FLUSH

Journaling protocol
- Data write (D)

- Logging Metadata (JM)



SOSP 13 Journal

Journaling with Flushes

14

FILE SYSTEM

DISK CACHE

APPLICATION

D JM

METADATADATA

DISK PLATTER

FLUSH

Journaling protocol
- Data write (D)

- Logging Metadata (JM)



SOSP 13 Journal

Journaling with Flushes

14

FILE SYSTEM

DISK CACHE

APPLICATION

D JM

JC

METADATADATA

DISK PLATTER

FLUSH

Journaling protocol
- Data write (D)

- Logging Metadata (JM)

- Logging Commit (JC)



SOSP 13 Journal

Journaling with Flushes

14

FILE SYSTEM

DISK CACHE

APPLICATION

D JM

JC

METADATADATA

DISK PLATTER

FLUSH

Journaling protocol
- Data write (D)

- Logging Metadata (JM)

- Logging Commit (JC)



SOSP 13 Journal

Journaling with Flushes

14

FILE SYSTEM

DISK CACHE

APPLICATION

D JM

JC

METADATADATA

DISK PLATTER

FLUSH FLUSH

Journaling protocol
- Data write (D)

- Logging Metadata (JM)

- Logging Commit (JC)



SOSP 13 Journal

Journaling with Flushes

14

FILE SYSTEM

DISK CACHE

APPLICATION

D JM JC

METADATADATA

DISK PLATTER

FLUSH FLUSH

Journaling protocol
- Data write (D)

- Logging Metadata (JM)

- Logging Commit (JC)



SOSP 13 Journal

Journaling with Flushes

14

FILE SYSTEM

DISK CACHE

APPLICATION

D JM JC

M

METADATADATA

DISK PLATTER

FLUSH FLUSH

Journaling protocol
- Data write (D)

- Logging Metadata (JM)

- Logging Commit (JC)

- Checkpointing (M)



SOSP 13

Outline
Introduction

Ordering and Durability in Journaling
- Journaling Overview

- Realizing Ordering on Disks

- Journaling without Ordering

Optimistic File System

Results

Conclusion
15



SOSP 13

Journaling without Ordering

Practitioners turn off flushes due to 
performance degradation
- Ex: ext3 by default did not enable flushes for 

many years

Observe crashes do not cause inconsistency 
for some workloads

We term this probabilistic crash consistency
- Studied in detail
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Probabilistic Crash Consistency
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Probabilistic Crash Consistency

Re-ordering leads to windows of vulnerability
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Probabilistic Crash Consistency
p-inconsistency for different workloads
- Read-heavy workloads have low p-inconsistency

- Database workloads have high p-inconsistency

See paper for detailed study
- Factors that affect p-inconsistency 

Turning off flushing provides performance, but 
does not ensure consistency

Additional techniques required to obtain 
both performance and consistency
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Optimistic File System
Achieves both performance and consistency 
by trading on new axis

Freshness indicates how up-to-date state is 
after a crash

OptFS provides strong consistency while 
trading freshness for increased performance

21

State 1 State 2 State 3 State 4X
ext4OptFS
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Optimistic File System

Eliminates flushes in the common case

Blocks may be re-ordered without flushes

Optimistic Crash Consistency handles         
re-orderings with different techniques
- Some re-orderings are detected after crash

- Some re-orderings are prevented from occurring
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Modified Disk Interface
Asynchronous Durability Notifications (ADN) 
signal when block is made durable
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Modified Disk Interface

ADNs increase disk freedom
- Blocks can be destaged in any order

- Blocks can be destaged at any time

- Only requirement is to inform upper layer

OptFS uses ADNs to control what blocks are 
dirty at the same time in disk cache

- Re-ordering can only happen among these blocks 
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Handling Re-Ordering: Removing Flush #1
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Technique #1: Checksums

JC could be re-ordered before D or JM

27

D JM JC M

Re-ordering detected using checksums
- Computed over data and metadata

- Checked during recovery

- Mismatch indicates blocks were lost during crash

FLUSH
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Handling Re-Ordering: Removing Flush #2
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Technique #2: Delayed Writes

M could be re-ordered before D or JM or JC 
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D JM JC M

Re-ordering prevented using delayed writes
- Wait until ADN arrive for D, JM, and JC

- Then issue M to disk cache

- Invariant: D/JM/JC and M never dirty in cache together

D JM JC
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Optimistic Journaling
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Optimistic Techniques

Other Techniques 
- In-order journal recovery and release

- Reuse after notification

- Selective data journaling

See paper for more details
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File-system Primitives
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write(log)

write(header)

fsync(log)

fsync(header)

write(log)

write(header)

osync(log)

dsync(header)

fsync() provides ordering and durability

OptFS splits fsync()
- osync() for only ordering and high performance

- dsync() for durability

Primitives can increase performance
- Ex: SQLite
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Implementation
OptFS based on ext4 code

- Around 3000 lines of modified/added code

Required modifications to
- Journaling layer

- Virtual Memory subsystem

ADNs were emulated using timeouts
- Block received by disk at time T

- Block durable at time T+D

- D = 30 s in our implementation (conservative)
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Evaluation

Does OptFS preserve file-system consistency 
after crashes?
- OptFS consistent after 400 random crashes

How does OptFS perform?
- OptFS 4-10x better than ext4 with flushes 

Can meaningful application-level consistency 
be built on top of OptFS?
- Studied gedit and SQLite on OptFS

36



SOSP 13

Testing Application-Level Consistency

Methodology
- Start from initial disk image

- Run application 

• Replace fsync() with osync()

• Trace writes

- Re-order writes

- Drop writes after random point

- Replay writes on initial disk image

- Examine application state on new image
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SQLite Consistency
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SQLite is able to provide ACI semantics with osync(), 
at 10x performance 
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Summary
Problem: providing both performance 
and consistency

Solution: decoupling ordering and 
durability in OptFS 

Eventual Durability maintains 
consistency while trading freshness for 
increased performance

osync() provides a cheap primitive to 
order application writes
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Conclusion

Storage-stack layers are increasing
- 18 layers between application and storage [Thereska13]

- Interfaces that provide freedom to each layer are the 
way forward

First impulse: trade consistency for performance
- Trade-off not required in distributed systems [Escriva12]

- By trading freshness, we can obtain both consistency 
and high performance
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Thank You

Source code
 http://research.cs.wisc.edu/adsl/Software/optfs/

http://github.com/vijay03/optfs

Questions?


