
The Unwritten Contract of Solid State Drives 1

Jun He Sudarsun Kannan Andrea C. Arpaci-Dusseau Remzi H. Arpaci-Dusseau
Department of Computer Sciences, University of Wisconsin–Madison

Abstract
The “unwritten contract” of SSDs is a set of rules that clients
of SSDs should follow to obtain high performance. We for-
malize the “unwritten contract” and perform a detailed verti-
cal analysis of application performance atop a range of mod-
ern file systems and SSD FTLs to uncover application and
file system designs that violate the contract. Our analysis,
which utilizes a highly detailed SSD simulation underneath
traces taken from real workloads and file systems, provides
insight into how to better construct applications, file systems,
and FTLs to realize robust and sustainable performance.

1. Introduction
In-depth performance analysis lies at the heart of systems
research. However, there exists a large and important gap
in our understanding of I/O performance across the stor-
age stack. New data-intensive applications, such as LSM-
based (Log-Structured Merge-tree) key-value stores, are in-
creasingly common; new file systems, such as F2FS, have
been created for an emerging class of flash-based Solid
State Drives (SSDs); finally, the devices themselves are
rapidly evolving, with aggressive flash-based translation lay-
ers (FTLs) consisting of a wide range of optimizations. How
well do these applications work on these modern file sys-
tems, when running on the most recent class of SSDs? What
aspects of the current stack work well, and which do not?

The goal of our work is to perform a detailed vertical
analysis of the application/file-system/SSD stack to answer
the aforementioned questions. We frame our study around
the file-system/SSD interface, as it is critical for achieving
high performance. While SSDs provide the same interface
as hard drives, how higher layers utilize said interface can
greatly affect overall throughput and latency.

Our first contribution is to formalize the “unwritten con-
tract” between file systems and SSDs, detailing how up-
per layers must treat SSDs to extract the highest instan-
taneous and long-term performance. Our work here is in-
spired by Schlosser and Ganger’s unwritten contract for hard
drives [3], which includes three rules that must be tacitly fol-
lowed in order to achieve high performance on Hard Disk
Drives (HDDs); similar rules have been suggested for SMR
(Shingled Magnetic Recording) drives. The SSD rules are
naturally more complex than their HDD counterparts, as
SSD FTLs (in their various flavors) have more subtle per-

1 The full paper of this abstract has been published in EuroSys’17,
under the same name. Link: http://pages.cs.wisc.edu/~jhe/

eurosys17-he.pdf

formance properties due to features such as wear leveling
and garbage collection.

We present five rules that are critical for users of SSDs.
First, to exploit the internal parallelism of SSDs, SSD clients
should issue large requests or many outstanding requests
(Request Scale rule). Second, to reduce translation-cache
misses in FTLs, SSDs should be accessed with locality
(Locality rule). Third, to reduce the cost of converting page-
level to block-level mappings in hybrid-mapping FTLs,
clients of SSDs should start writing at the aligned begin-
ning of a block boundary and write sequentially (Aligned
Sequentiality rule). Fourth, to reduce the cost of garbage
collection, SSD clients should group writes by the likely
death time of data (Grouping By Death Time rule). Fifth, to
reduce the cost of wear-leveling, SSD clients should create
data with similar lifetimes (Uniform Data Lifetime rule).

We utilize this contract to study application and file sys-
tem pairings atop a range of SSDs. Specifically, we study
the performance of four applications – LevelDB (a key-
value store), RocksDB (a LevelDB-based store optimized
for SSDs), SQLite (a more traditional embedded database),
and Varmail (an email server benchmark) – running atop
a range of modern file systems – Linux ext4, XFS, and
the flash-friendly F2FS. To perform the study and extract
the necessary level of detail our analysis requires, we build
WiscSee, an analysis tool, along with WiscSim, a detailed
and extensively evaluated discrete-event SSD simulator that
can model a range of page-mapped and hybrid FTL designs.
We extract traces from each application/file-system pair-
ing, and then, by applying said traces to WiscSim, study
and understand details of system performance that pre-
viously were not well understood. WiscSee and WiscSim
are available at http://research.cs.wisc.edu/adsl/
Software/wiscsee/.

Our study yields numerous results regarding how well ap-
plications and file systems adhere to the SSD contract; some
results are surprising whereas others confirm commonly-
held beliefs. For each of the five contract rules, our gen-
eral findings are as follows. For request scale, we find that
log structure techniques in both applications and file sys-
tems generally increase the scale of writes, as desired to
adhere to the contract; however, frequent barriers in both
applications and file systems limit performance and some
applications issue only a limited number of small read re-
quests. We find that locality is most strongly impacted by the
file system; specifically, locality is improved with aggressive
space reuse, but harmed by poor log structuring practices and

http://pages.cs.wisc.edu/~jhe/eurosys17-he.pdf
http://pages.cs.wisc.edu/~jhe/eurosys17-he.pdf
http://research.cs.wisc.edu/adsl/Software/wiscsee/
http://research.cs.wisc.edu/adsl/Software/wiscsee/


leveldb
rocksdb

0.000 0.025 0.050 0.075 0.100

0
2
4
6

0
2
4
6

Time (sec)

N
um

 o
f R

eq
ue

st
s

Figure 1: Number of Outstanding Requests During Com-
paction.

legacy HDD block-allocation policies. I/O alignment and se-
quentiality are not achieved as easily as expected, despite
both application and file system log structuring. For death
time, we find that although applications often appropriately
separate data by death time, file systems and FTLs do not
always maintain this separation. Finally, applications should
ensure uniform data lifetimes since in-place-update file sys-
tems preserve the lifetime of application data.

We have learned several lessons from our study. First, log
structuring is helpful for generating write requests at a high
scale, but it is not a panacea and sometimes hurts perfor-
mance (e.g., log-structured file systems fragment applica-
tion data structures, producing workloads that incur higher
overhead). Second, due to subtle interactions between work-
loads and devices, device-specific optimizations require de-
tailed understanding: some classic HDD optimizations per-
form surprisingly well on SSDs while some SSD-optimized
applications and file systems perform poorly (e.g., F2FS
delays trimming data, which subsequently increases SSD
space utilization, leading to higher garbage collection costs).
Third, simple workload classifications (e.g., random vs. se-
quential writes) are orthogonal to important rules of the
SSD unwritten contract (e.g., grouping by death time) and
are therefore not useful; irrelevant workload classifications
can lead to oversimplified myths about SSDs (e.g., random
writes considered harmful [2]).

2. Observations
We have made dozens of observations based on vertical anal-
ysis of applications, file systems, and FTLs. By analyzing
how well each workload conforms to each rule of the con-
tract, we can understand its performance characteristics.

As an example, we present one of our observations about
request scale (the sizes of I/O requests and the number of
outstanding requests) in this section. We evaluate and pin-
point request scale violations from applications and file sys-
tems by analyzing block traces, which include the type (read,
write, and discard), size, and time (issue and completion) of
each request.

We found that Linux buffered I/O may limit the sizes of
requests and the number of outstanding requtests of applica-
tions, epitomized by LevelDB and RocksDB in our evalua-
tion. Even though LevelDB and RocksDB read 2 MB files
during compactions, which are relatively large reads, their
request sizes and number of outstanding requests are still

small. The number of outstanding requests are shown in Fig-
ure 1. The periodic bursts of up to six requests are due to
writes; the requests between the bursts are from read. There
are only ever up to two outstanding read requests. The me-
dian of read request sizes is only about 128 KB (not shown
in the figure). One reason for the small request sizes and
limited number of outstanding requests is that the LevelDB
compaction, as well as the RocksDB compaction from the
first to the second level (“the only compaction running in the
system most of the time” [1]), are single-threaded and read
data by buffered read() or mmap().

The buffered read() and mmap() split and serialize re-
quests before sending to the block layer and subsequently
the SSD. If the buffered read() is used, Linux will form
requests of read ahead kb (default: 128) KB, send them to
the block layer and wait for data one at a time. If the buffered
mmap() is used, a request, which is up to read ahead kb

KB, is sent to the block layer only when the application
thread reads a memory address that triggers a page fault. In
both buffered read() and mmap(), only a small request is
sent to the SSD at a time, which cannot exploit the full ca-
pability of the SSD. To increase the size and the number of
outstanding I/O requests, direct I/O should be used. The di-
rect I/O implementation sends application requests in whole
to the block layer. Then, the block layer splits the large re-
quests into smaller ones and sends them asynchronously to
the SSD.

3. Conclusions
Due to the sophisticated nature of modern FTLs, SSD per-
formance is a complex subject. To better understand SSD
performance, we formalize the rules that SSD clients need to
follow and evaluate how well four applications (one with two
configurations) and three file systems (two traditional and
one flash-friendly) conform to these rules on a full-function
SSD simulator that we have developed. This simulation-
based analysis allows us to not only pinpoint rule violations,
but also the root causes in all layers, including the SSD itself.
We have found multiple rule violations in applications, file
systems, and from the interactions between them. We believe
our analysis here can shed light on design and optimization
across applications, file systems and FTLs, and the tool we
have developed could benefit future SSD workload analysis.

References
[1] RocksDB Tuning Guide. https://github.com/facebook/

rocksdb/wiki/RocksDB-Tuning-Guide.

[2] C. Min, K. Kim, H. Cho, S.-W. Lee, and Y. I. Eom. SFS: Ran-
dom Write Considered Harmful in Solid State Drives. In Pro-
ceedings of the 10th USENIX Symposium on File and Storage
Technologies (FAST ’12), San Jose, California, February 2012.

[3] S. W. Schlosser and G. R. Ganger. MEMS-based Storage De-
vices and Standard Disk Interfaces: A Square Peg in a Round
Hole? In Proceedings of the 3rd USENIX Symposium on File
and Storage Technologies (FAST ’04), pages 87–100, San Fran-
cisco, California, April 2004.

 https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide 
 https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide 

	Introduction
	Observations
	Conclusions 

