
Redesigning LSMs for Nonvolatile Memory with NoveLSM
Sudarsun Kannan∗, Nitish Bhat+, Ada Gavrilovska+, Andrea Arpaci-Dusseau∗∗, Remzi Arpaci-Dusseau∗∗

Rutgers University∗, Georgia Tech+, UW-Madison∗∗

Abstract
We present NoveLSM, a persistent LSM-based key-value
storage system designed to exploit non-volatile memories and
deliver low latency and high throughput to applications. We
utilize three key techniques – a byte-addressable skip list, di-
rect mutability of persistent state, and opportunistic read par-
allelism – to deliver high performance across a range of work-
load scenarios. Our analysis with popular benchmarks and
real-world workload reveal up to a 3.8x and 2x reduction in
write and read access latency compared to LevelDB. Stor-
ing all the data in a persistent skip list and avoiding block
I/O provides more than 5x and 1.9x higher write throughput
over LevelDB and RocksDB. Recovery time improves sub-
stantially with NoveLSM’s persistent skip list.

1. Introduction
Persistent key-value stores based on log-structured merged
trees (LSM), such as RocksDB, BigTable, LevelDB, HBase,
and Cassandra play a crucial role in modern systems for ap-
plications ranging from web-indexing, e-commerce, social
networks, down to mobile applications. LSMs achieve high
throughput by providing in-memory data accesses, buffering
and batching writes to disk, and enforcing sequential disk ac-
cess. These techniques improve LSM’s I/O throughput but
are accompanied with additional storage and software-level
overheads in the critical path related to logging and com-
paction costs. While logging updates to storage are necessary
for crash-recovery, compaction is required to restrict LSM’s
DRAM buffer size and to commit data to storage. Most re-
cent proposals have mostly focused on redesigning LSMs for
SSDs to improve throughput [2].

Adding byte-addressable, persistent, and fast nonvolatile
memory (NVM) technologies such as PCM in the storage
stack creates opportunities to improve latency, throughput,
and reduce failure-recovery cost. NVMs are expected to
have near-DRAM read latency, 50x-100x faster writes, and
5x higher bandwidth compared to SSDs. With storage bot-
tlenecks shifting from the hardware to the software stack, it
is becoming critical to reduce and eliminate software storage
overheads. When contrasting NVMs to current storage tech-
nologies, such as flash memory and hard-disks, NVMs exhibit
the following properties: (1) random access to persistent stor-
age can deliver high performance; (2) in-place update is low
cost; and (3) the combination of low-latency and high band-
width leads to new opportunities for improving application-
level parallelism.

Given the characteristics of these new technologies, one
might consider designing a new data structure from scratch.
We believe it worthwhile to explore how to redesign LSMs to
work well with NVM for the following reasons. In addition
to providing backward compatibility, NVMs are expected to
co-exist with large-capacity SSDs for the next few years sim-
ilar to the co-existence of SSDs and hard disks, making the
redesign of LSMs for heterogeneous storage important with-
out losing their SSD and hard disk optimizations. Importantly,
the benefits of batched, sequential writes is important even for
NVMs, given the 5x-10x higher-than-DRAM write latency.
Hence, we focus on redesign existing LSM implementations.

Our redesign of LSM technology for NVM focuses on the
following three critical problems. First, existing LSMs main-
tain different data representation in-memory (called memta-
bles) and on persistent storage (called String Sorted Tables).
As a result, moving data across storage and memory incurs

significant serialization and deserialization cost, limiting the
benefits of low latency NVM. Second, LSMs and other mod-
ern applications only allow changes to in-memory data struc-
tures and make the data in persistent storage immutable. How-
ever, memory buffers are limited in their capacity and must be
frequently compacted, which increases stall time. Buffering
data in memory can result in loss of data after a system fail-
ure, and hence updates must be logged; this increases latency
and leads to I/O read and write amplification. Finally, adding
NVM to the LSM hierarchy increases the number of levels in
the storage hierarchy which can increase read-access latency.

To address these limitations, we design NoveLSM [1], a
persistent LSM-based key-value store that exploits the byte-
addressability of NVMs to reduce read and write latency and
consequently achieve higher throughput. NoveLSM achieves
these performance gains through three key innovations. First,
NoveLSM introduces a persistent NVM-based memtable, sig-
nificantly reducing the serialization and deserialization costs
which plague standard LSM designs. Second, NoveLSM
makes the persistent NVM memtables mutable, thus allowing
direct updates; this significantly reduces application stalls due
to compaction. Further, direct updates to NVM memtable are
committed in-place, avoiding the need to log updates; as a re-
sult, recovery after a failure only involves mapping back the
persistent NVM memtable, making it three orders of magni-
tude faster than LevelDB. Third, NoveLSM introduces opti-
mistic parallel reads to simultaneously access multiple levels
of the LSM that can exist in NVM or SSD, thus reducing the
latency of read requests and improving the throughput.

We build NoveLSM by redesigning LevelDB, a widely-
used LSM-based key-value store. NoveLSM’s design prin-
ciples can be easily extended to other LSM implementa-
tions such as RocksDB. Our analysis reveals that NoveLSM
significantly outperforms traditional LSMs when running on
an emulated NVM device. Evaluation of NoveLSM with
the popular DBbench shows up to 3.8x improvement in
write and up to 2x improvement in read latency compared
to a vanilla LevelDB running on an NVM. Against state-
of-the-art RocksDB, NoveLSM reduces write latency by up
to 36%. When storing all the data in a persistent skip list
and avoiding block I/O to SSTable, NoveLSM provides more
than 5xand 1.9xgains over LevelDB and RocksDB. For the
real-world YCSB workload, NoveLSM shows a maximum
of 54% throughput gain for scan workload and an average
of 15.6% across all workloads over RocksDB. Finally, the re-
covery time after a failure reduces significantly.

The full paper of this abstract appeared at USENIX
ATC 2018 [1]. The source code is available at htt ps :
//github.com/SudarsunKannan/lsm_nvm

2. NoveLSM Design Principles
NoveLSM exploits NVMs byte addressability, persistence,
and large capacity to reduce (1) serialization and deserializa-
tion overheads, (2) high compaction cost, (3) logging over-
heads, and exploits NVM’s low latency and higher band-
width (4) to parallelize search operations and reduce response
time. As we briefly describe our design insights, we also
demonstrate their performance benefits in Figure 2, by com-
paring NoveLSM against vanilla LevelDB (LevelDB-NVM)
and RocksDB (RocksDB-NVM) that use NVM to store on-
disk data structures (SSTables). We emulate NVM on a DAX
file system, and emulate read and write latency of 100ns and
500ns respectively, with NVM bandwidth set to 2GB/sec.



Principle 1: NVM’s byte-addressability to reduce
(de)serialization cost. NVMs provide byte-addressable
persistence; therefore, in-memory structures can be stored
in NVM as-is without the need to serialize them to disk-
compatible format or deserialize them to memory format dur-
ing retrieval. To exploit this, in NoveLSM, we first design
a large persistent immutable NVM memtable by designing a
persistent skip list (a multi-dimensional linked-list with prob-
abilistic insert and search). To provide crash-consistency and
recover after a system/power failure, updates to the immutable
persistent skip list are committed in-place with the aid of
hardware memory barriers and cacheline flush instructions.
When the DRAM memtable (which is smaller) is full, data
is compacted directly to the NVM memtable without serializ-
ing them. We design persistent skip list by memory-mapping
a large file in NVM; the skip list nodes (that store key-value
pairs) are linked by their relative offsets in a memory-mapped
region, instead of virtual address pointers, and are updated
and committed in-place. Figure 1 (a) shows the high-level
design of an LSM with large NVM memtable placed behind
DRAM memtable. As shown in Figure 2, the immutable
NVM memtable (NoveLSM [immut-large]) improves LSM
write and read performance compared to LevelDB by avoid-
ing serialization but does not solve the problem of high com-
paction cost, as the compaction frequency is dominated by
DRAM memtable size.
Principle 2: Persistence mutability to reduce compaction.
Traditionally, software designs treat data in storage as im-
mutable due to high storage access latency; as a result, to up-
date data in storage, data must be read into a memory buffer
before making changes and compacting them back to stor-
age. In the NVM immutable design, the frequency of com-
paction is dominated by how fast the DRAM memtables fill
and fails to utilize the NVM’s large byte addressable capacity.
While increasing the DRAM memtable capacity can reduce
compactions, updates to volatile DRAM must be logged to
recover from a failure and the recovery cost increases with
DRAM memtable size. To overcome these challenges, we de-
sign a mutable NVM memtable (NoveLSM [mutable]) that
provides an opportunity to directly update data on the storage
without the need to read them to a memory buffer or write
them in batches. NoveLSM designs a large mutable persistent
memtable to which applications can directly add or update
new key-value pairs as shown in Figure 1 (b). As a result,
applications can alternate between a small DRAM and a large
NVM memtable without stalling for background compaction
to complete. To breifly summarize the working, during ini-
tialization, NoveLSM creates a volatile DRAM memtable and
a large mutable persistent NVM (large because NVMs can
scale 4x larger than DRAM). Applications first insert key-
value pairs to the DRAM memtable (and also write to a log);
when the DRAM memtable is full, a background compaction
thread is notified to move data to the SSTable and instead of
stalling for compaction, the NVM memtable is made active,
to which inserts continue. The large capacity of the NVM
provides sufficient time for background compaction without
impacting correctness. As shown in Figure 2, NoveLSM [mu-
table] significantly improves read and write performance com-
pared to LevelDB-NVM. Although, for smaller value sizes,
RocksDB-NVM marginally reduces write latency with fea-
tures such as Cuckoo hash-based storage for on-disk struc-
ture optimized for random access (but significantly slow on
range queries) and parallel compaction, for large values, such
features are not beneficial, resulting in NoveLSM outperform-
ing RocksDB by 36%. Finally, NoveLSM+mutable+NoSST,
an idealistic design, avoids disk-structures (SSTable) using
a very large NVM memtable, and outperforms all the ap-
proaches by up to 1.9x.
Principle 3: Reduce logging and accelerate recovery with
in-place durability. Current LSM designs must first write

NVM immutable memtable
Background 
compaction

Level 2

Level 0 Merge

Merge

NVM memtableDRAM memtable

NVM immutable

Application Put() to both 
DRAM & NVMParallel Get()

ApplicationPut() and Get()
to DRAM

(a) NoveLSM immutable NVM (b) NoveLSM mutable NVM

DRAM immutable

Level 1 Merge

Level 2

Level 0 Merge

Merge

Level 1 Merge

DRAM memtable

DRAM immutable

Figure 1: NoveLSM’s (a) immutable and (b) mutable NVM
memtable design. (a) shows the immutable memtable design, where
NVM memtable is placed below DRAM memtable to only store compaction
data. (b) shows mutable memtable design where inserts can be directly up-
dated to NVMs persistent skip list.

0
100
200
300
400
500

1 KB 4 KB 16 KB 64 KBLa
te

nc
y 

 (
m

ic
ro

s/
o
p)

(a) Write latency

LevelDB-NVM RocksDB-NVM
NoveLSM [immut-large] NoveLSM [mutable]
NoveLSM [mutable +para] NoveLSM [mutable +para +NoSST]

0

10

20

30

40

1 KB 4 KB 16 KB 64 KB
(b) Read latency

Figure 2: NoveLSM Write and Read latency.
updates to a log, compute the checksum and append them,
before inserting them into the memtable. In fact, popular
LSMs implementations such as LevelDB and RocksDB do
not force log commits, and trade crash consistency for bet-
ter performance. Increasing the log size also increases re-
covery cost. To reduce logging cost and accelerate recov-
ery, NoveLSM avoids logging by committing updates to the
NVM memtable in-place. This also provides stronger dura-
bility. Recovery is fast and only requires memory mapping
the entire NVM memtable without deserialization cost. Only
updates to the DRAM memtable are logged. To preserve ver-
sion correctness of key-value pairs across DRAM logs and the
NVM memtable, NoveLSM treats the memory-mapped NVM
memtable also as a log file and starts recovery from the lat-
est version of the log which could be either the DRAM log or
NVM memtable (more details about recovery in the full paper
[1]). NoveLSM substantially reduces log writes and improves
recovery by more than 100x.
Principle 4: Read parallelism by exploiting NVM’s low la-
tency and high bandwidth. LSM stores data in a hierarchy
with top in-memory levels containing new updates, and older
updates in the lower SSTables levels. With an increase in the
number of key-value pairs in a database, the number of storage
levels (i.e., SSTables) increases. Adding NVM memtables to
the LSM hierarchy further increases the cost of search because
layers must be sequentially searched to preserve version cor-
rectness. NoveLSM addresses this problem by taking inspira-
tion from the processor design to parallelize cache and TLB
lookup. NoveLSM parallelizes each read operation by using
a pool of dedicated worker threads to search across the mem-
ory hierarchy (DRAM and NVM memtables) and SSTables.
To guarantee version correctness, NoveLSM always considers
the value of a key returned by a thread accessing the highest
level of LSM (e.g., key in memory table over SSTable) as the
correct version. As shown in Figure 2 (b), this significantly
reduces read latency.
References
[1] S. Kannan, N. Bhat, A. Gavrilovska, A. Arpaci-Dusseau, and R.
Arpaci-Dusseau, "Redesigning lsms for nonvolatile memory with novelsm,"
USENIX ATC 2018.
[2] L.Lu, T.S.Pillai, A.C.Arpaci-Dusseau,and R.H.Arpaci-Dusseau, "Wis-
cKey: Separating Keys from Values in SSD-conscious Storage,", USENIX



FAST 2018


