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Abstract

Use of stealth rootkit techniques to hide long-lived malicious pro-
cesses is a current and alarming security issue. In this paper,
we describe, implement, and evaluate a novel VMM-based hidden
process detection and identification service called Lycosid that is
based on the cross-view validation principle. Like previous VMM-
based security services, Lycosid benefits from its protected loca-
tion. In contrast to previous VMM-based hidden process detectors,
Lycosid obtains guest process information implicitly. Using im-
plicit information reduces its susceptibility to guest evasion attacks
and decouples it from specific guest operating system versions and
patch levels. The implicit information Lycosid depends on, however,
can be noisy and unreliable. Statistical inference techniques like
hypothesis testing and linear regression allow Lycosid to trade time
for accuracy. Despite low quality inputs, Lycosid provides a robust,
highly accurate service usable even in security environments where
the consequences for wrong decisions can be high.

Categories and Subject Descriptors D.4.6 [Security and Protec-
tion]

General Terms Design, Measurement, Security

Keywords Virtual Machine, Inference, Security

1. Introduction

Stealth rootkits that can hide processes are an important security
issue. According to statistics gathered from Microsoft’s Malicious
Software Removal Tool [20], a significant fraction of the malware
it encounters consists of stealth rootkits [22]. The ability to detect
and respond to malicious hidden processes is a clear advantage in
the race to defend network-attached computers.
In this paper we propose a VMM-based hidden process detec-

tion and identification service called Lycosid. Previously proposed
VMM-based security services assume that the VMM has detailed
implementation information about the guest operating systems they
protect [10, 17]. In contrast, Lycosid is based on information im-
plicitly obtained about guest operating systems. Because it does not
depend on specific guest OS implementation details, Lycosid has
two key advantages over previous approaches. First, it is more re-
silient to typical process hiding techniques, even those that manip-
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ulate and corrupt the privileged internal state of the OS kernel. Sec-
ond, a single implementation within a VMM can be portable across
very different operating systems like Windows and Linux, a fact we
demonstrate in Section 7.
Like earlier approaches, Lycosid uses a technique called cross-

view validation [30] to detect maliciously hidden OS processes.
The technique works by observing a class of objects (e.g., OS pro-
cesses) from multiple perspectives and noting inconsistencies be-
tween views. One view, known as the untrusted view, is obtained
from a high-level in the system. The other, known as the trusted
view, is obtained from a low level that is unlikely to have been sub-
verted by an attacker. If an object appears in the trusted view and
does not appear in the untrusted view, the cross-view principle con-
cludes that an object has been hidden. In this paper we follow the
cross-view convention and use “trusted” to mean “more reliable”
rather than “having formal security properties”. The deeper within
a system a trusted view can be obtained the better. Lycosid obtains
its trusted view from deep within the system at the VMM-layer.
A VMM is an attractive place to deploy security monitoring

services like anomaly detection systems [10, 13, 17]. By virtue of
their location behind the relative security of the virtual machine
interface, VMM-based services are better shielded from malicious
attacks that originate from within a guest virtual machine [19], even
if the guest operating system kernel is compromised. Though a
VMM is separated from guests by a secure barrier, it still has ready
access to the raw state of its guest virtual machines. For example,
a VMM can easily read and write guest registers and memory and
can observe guest I/O like disk and network requests.
While implicitly obtained information has the beneficial prop-

erties described above, it can be challenging to use effectively. For
example, it can be noisy and is sometimes incorrect [15, 16]. Ly-
cosid achieves accuracy by using statistical inference techniques
like hypothesis testing and linear regression that trade time for
accuracy. Despite low quality inputs, Lycosid provides a robust,
highly accurate, and portable service usable even in security envi-
ronments where the consequences for wrong decisions can be high.
Lycosid bases all of its detection and most of its identifica-

tion decisions on passively obtained information. In some cases,
however, we find that passive information is inadequate to reliably
identify which of many candidate processes has been hidden. Ly-
cosid introduces a new technique called CPU inflation that allows
a VMM to influence the runtime of specific processes by carefully
patching a process’s executable code. Using CPU inflation, Ly-
cosid can often transform a detectable, but unidentifiable, hidden
process into a hidden process that can be reliably identified.
The rest of this paper is organized as follows. We first review

process hiding techniques in Section 2. In Sections 3 and 4 we dis-
cuss the techniques used by Lycosid to detect and identify hidden
processes. Section 5 discusses the evasion problem. We describe
our implementation of Lycosid in Section 6 and Section 7 contains



a detailed evaluation of the accuracy and performance of the im-
plementation. We discuss related work in Section 8 and conclude
in Section 9.

2. Process Hiding

When a system is compromised, it is common for an attacker to
leave programs behind that advance the attacker’s goals. This ap-
proach is especially favored when the attacker accesses a machine
from a remote location over a network. For example, an attacker
will often leave behind a back door program that listens to the net-
work and allows the attacker to regain a privileged presence on a
compromised system without re-exploiting a vulnerability [27]. In
other cases, key capture or file system scanning programs are left
running to collect additional useful information like login names,
passwords, and financial records.
The presence of unexplained processes, network connections,

or files is an indicator to a system administrator or intrusion detec-
tion system that a successful attack has occurred. To avoid tipping
off a defender, an attacker will often attempt to hide their mali-
cious processes, network connections or data files [2]. Hiding is
typically accomplished by modifying some aspect of the system
using a suite of tools called a stealth rootkit. For example, some
rootkits modify program binaries like ps, netstat, and ls [21].
Other rootkits hook into the call path between a user application
and the kernel by modifying libraries, dynamic linker structures,
system call tables, or operating system functions that report system
status [12]. Finally, some rootkits manipulate kernel data structures
using so-called direct kernel object manipulation (DKOM) [9].
Rootkit hooks and modified kernel data structures lead to corrupted
results of user requests, effectively hiding the presence of malicious
resources [3, 28]. The list of techniques available to hide system re-
sources is growing.
Long lived malicious processes are the most likely candidates

for hiding. The probability of detecting a short lived malicious
process via a process introspection tool like ps is relatively small,
so an attacker rarely goes to the trouble of hiding a short-lived
process. The long-lived nature of maliciously hidden processes has
implications for the kinds of detection techniques that are feasible.

3. Detection

The Lycosid service is partitioned into detection and identification
components. We discuss the detection component in this section.
Detection consists of determining if any processes running within
a guest virtual machine have been hidden. The detection algorithm
does not identify which processes are hidden. Identification is dis-
cussed in Section 4.

3.1 Approach

If a process has been hidden using any of the methods described
in Section 2, it will not appear on a user-level process listing. It
will, however, appear on a suitably obtained, low-level process list.
Hence, to detect a hidden process we can compare the lengths of
process lists obtained at a low (trusted) and a high (untrusted) level.
If the trusted list is longer than the untrusted list we can conclude
that at least one process has been hidden.
On an idle system, simply obtaining a single instance of the two

process lists and comparing them would suffice to detect hidden
processes. On an active system, however, where processes are being
created and destroyed, the situation becomes more complicated.
For example, Lycosid cannot perfectly synchronize the times at
which it makes its two process list observations, so they may
reflect different process-related states of the system. Additionally,
the measurements taken within the VMM can be delayed, further

complicating the inference. As the system experiences higher levels
of process creation and exit activity, the problem worsens.
The Lycosid detection phase overcomes these issues by obtain-

ing many pairs of measurements over time and performing a series
of paired-sample hypothesis tests [25]. Each pair consists of a pro-
cess count obtained from within the VMM and a process count ob-
tained from within the guest. Using a hypothesis test, we can deter-
mine if the two process lists differ in length even when the system
process state is in dramatic flux. The test procedure also provides
the ability to quantitatively limit the chance that we assert one or
more processes are hidden when in fact no hiding is taking place,
i.e., the false positive rate can be explicitly controlled.
Formally, let T be the length of the trusted process list and let U

be the length of the untrusted process list. Our null and alternative
hypotheses are then:

H0 : T − U ≤ 0 (1)

H1 : T − U > 0 (2)

We use the non-parametric Wilcoxon rank-sign statistic [25] in
our tests because it makes no assumptions about the distribution of
the population from which our samples are drawn. Data analysis
indicates that the distribution of T −U is quite symmetric, but can
be slightly skewed and is not normally distributed.
If we can reject the null hypothesis H0 in favor of the alterna-

tive hypothesis H1 at an appropriate level of confidence, we can
quantitatively conclude that one or more processes is being hidden.
The hypothesis test p-value indicates the probability of a false pos-
itive, i.e., indicating hiding when the null hypothesis H0 (no pro-
cesses are hidden) is true. As with most anomaly detection systems,
the consequences for false positives in the detection performed by
Lycosid are significant. Too many false positives degrade confi-
dence in the system and render the information it provides less
valuable. Hence, we choose a conservative threshold confidence
value (α = 2 × 10

−6). If the one-sided p-value computed dur-
ing the hypothesis test falls below α, Lycosid reports that one or
more processes have been hidden.
In addition to a hidden process indicator, the average difference

observed between the two lists during the detection phase provides
an estimate of the number of processes that have been hidden. This
point estimate is used as input to the hidden process identification
algorithm described in Section 4.

3.2 Details

Lycosid obtains a trusted view of guest processes from within a
VMM. The VMM-based approach has advantages over any tech-
nique that obtains trusted information from within the guest itself
because a VMM is typically much harder to subvert than guest soft-
ware services or even the guest operating system kernel. This fact
follows from the relatively smaller and well-defined virtual ma-
chine interface that separates the guest from the VMM.
VMI [10], for example, uses this advantage to provide various

resilient security services within a VMM, one of which is hidden
process detection. Lycosid differs from VMI in the way it obtains
trusted information about the guest operating system. VMI exploits
detailed information about the location and semantics of private
Linux kernel data structures to obtain a low-level guest process
list. In contrast, Lycosid obtains its low-level guest information
implicitly. This is a key advantage of Lycosid. No detailed imple-
mentation information about the guest is required. As a result, Ly-
cosid can be deployed without taking versions and patch levels of
the target operating systems into account. Our single implementa-
tion of Lycosid within a VMM, for example, can support multiple
versions of both Windows and Linux without modification.



Lycosid uses Antfarm [15] to obtain its trusted view of guest
operating system processes. Antfarm is a VMM component that
implicitly obtains information about guest operating system events
like process creations and exits by observing closely related events
like virtual address space creation and destruction. Antfarm can
also provide estimates of other process-related quantities like CPU
time consumed, working set size, and context switch counts by
observing their virtual address space analogues.
Lycosid obtains its untrusted view of guest operating system

processes the same way that VMI does. A network connection
is made from the VMM to the guest and a user-level program
within the guest is invoked to enumerate processes. On a UNIX-
like system the ps command can provide this information. On
Windows systems, various utilities like pslist.exe [4] or the
built-in tasklist.exe can be used.
Lycosid obtains trusted and untrusted process lists at short ran-

dom intervals. A window of the most recent samples is preserved
for use in hypothesis testing. The size of the window and the sample
interval are configurable. In our implementation, samples are ob-
tained every one second on average. Up to the most recent 600 sam-
ples are used in each hypothesis test. Approximately every minute,
we test the null hypothesis that the two lists are the same length.
Given the detection threshold α = 2 × 10

−6, our configuration
corresponds to about one expected false positive per year.

4. Identification

After detecting that one or more processes have been hidden, the
natural next step is to identify which processes have been hid-
den. Identifying specific hidden processes enables a more effective
VMM response to the malicious activity.
Given only the information provided by the hiding detector,

each process visible from within the VMM is equally likely to be
the culprit. Our approach for identifying which processes have been
hidden is to select a measurable quantity associated with hidden
processes and use it to choose from the set of candidate processes.

4.1 Approach

As a process executes, it consumes CPU time. Both the operating
system and a process-aware VMM like Lycosid can account CPU
time to specific processes. Let Gi denote the CPU time for process
i as observed from within a guest. Let Vj be the CPU time accumu-
lated by process j as seen by the VMM. Then, when hiding occurs,
the quantity

H =

X

j

Vj −
X

i

Gi (3)

represents the total CPU time observed within the VMM that is not
accounted for by processes visible to the guest, i.e., it is the CPU
time used by hidden processes. We can construct a linear equation
using H and the per-process CPU times we have obtained from
within the VMM.

H = β1V1 + β2V2 + ... + βnVn (4)

Equation 4 holds if the coefficients βj take the value 1 for pro-
cesses that are hidden and 0 for non-hidden processes. We can
identify likely hidden processes by fitting a multiple variable linear
model using least-squares regression on Equation 4 and choosing
the N variables from the model that best explain the variance ob-
served inH , whereN is the estimated number of hidden processes
obtained during the detection phase. Hence, we treat hidden pro-
cess identification as a multiple linear regression variable selection
problem.

# VMM PID VMM proc runtime (s)

0x3a40 1.219

0xad3f 0.203

0xf003 0.491

...

# Guest PID Guest proc runtime (s)

30 1.103

495 0.422

933 0.001

...

Figure 1. Sample Identification Data. The figure shows a notional data
set used to identify hidden processes. There is no correlation between VMM

and guest process IDs.

There is no universal, automated technique available for vari-
able selection in multiple regression that is guaranteed to select the
best set of variables to include in a model. Stepwise procedures
attempt to refine an over-specified or under-specified model iter-
atively, but often choose bad models. All-possible-subsets regres-
sion is guaranteed to choose the best model as long as the number
of variables to include is known in advance. As the name implies,
all-possible-subsets does this by trying all possible variable com-
binations of the specified size and maximizing a provided model
statistic like the multiple R2 measure. Unfortunately the cost of
all-possible-subsets variable selection grows like

`

N

E

´

where N is
the total number of processes and E is our estimate of the number
of hidden processes. Since the number of processes to choose from
is often large in our environment, this technique is usually far too
expensive.
Lycosid uses a simple variable selection heuristic that incorpo-

rates what we know about the form of the true model. We know
that the coefficients of the variables representing hidden processes
should be close to 1.0 and we have an estimate for the total num-
ber of hidden processes. Once an initial model incorporating all
processes has been fit, those variables corresponding to processes
that are obviously not related to the extra observed CPU time
are removed from the model. Specifically, variables with negative
estimated slopes and variables whose estimated slopes are much
greater than 1.0 (e.g., greater than 5 in our implementation) are
removed. A new model is then fit using only the remaining vari-
ables. Finally, the N variables whose positive relationship to the
extra CPU time is strongest are chosen. The strength of a variable’s
relationship to the extra CPU time is represented by the p-value
that results from testing the null hypothesis that the variable’s es-
timated coefficient is zero. Note that we do not attempt to inter-
pret the resulting p-value as a probability related to our identifica-
tion task. The p-value is simply used to order the variables accord-
ing to the strength of their relationship to the extra observed CPU
time. The top N variables from the ordered list are selected. As
in the detection case, we employ a conservative threshold p-value
(α = 1 × 10

−5) to reduce the chance of false positives, i.e., of
incorrectly identifying a process as hidden when it is not. If we
do not find N variables with sufficiently small p-values, additional
samples are taken and the procedure continues until a configurable
upper limit of samples is reached.

4.2 Details

Lycosid obtains CPU time information about processes from both
the VMM and from the guest operating system. CPU times for
VMM-visible processes are obtained using Antfarm. As in the
detection phase, Lycosid invokes documented APIs to obtain and
return per-process CPU time information from within the guest.
Samples are obtained from the VMM and from the guest operat-

ing system at small random intervals. In our prototype, samples are



obtained about once per second on average. A sample consists of a
set of process identifiers and the CPU time used by each associated
process since the last measurement interval.
Figure 1 shows a notional data set used for identification pur-

poses. Note that Lycosid is unaware of the mapping from guest
process IDs to the abstract internal process IDs available within
the VMM. No simple method of inferring this mapping currently
exists. Otherwise identification would consist of a simple set sub-
traction operation.
Over time, samples are collected and stored. Once adequate

samples have been obtained, a model can be fit and evaluated for
hidden process identification. In our current implementation, an
initial model is fit once max(40, number of processes)

samples has been obtained. Up to a maximum of 1000 samples are
obtained for use in identification.

4.3 CPU Inflation

The key feature used by our identification algorithm is the CPU
time consumed by each process as observed from within the VMM
and from within the guest operating system. It is important to note
that the identification technique, unlike the detection technique,
requires that the hidden process actually runs. Lycosid can detect,
but not identify a completely idle hidden process.
Lycosid uses a new technique, called CPU inflation, that allows

it to influence the CPU time used by a process. It is an intrusive
technique used only when the passive methods already described
fail to reliably identify a hidden process. CPU inflation works by
transparently placing patches in guest program code. By forcing
processes to run more frequently and more aggressively than they
normally would, CPU inflation effectively increases the resolving
power of Lycosid’s identification techniques.

4.3.1 Details

When control is about to return from the VMM to a guest and
CPU inflation is enabled, Lycosid determines the address where
execution will resume and places a small patch containing a tight
loop at that location. The patch forces the associated process to
fully utilize its scheduling quantum until it is removed, effectively
maximizing the amount of CPU time used by a process.
Patches are only placed when control returns to user-mode. In

our VMM environment, nearly all VMM-to-guest transitions re-
turn to kernel-mode. Lycosid must therefore manufacture situations
where the VMM returns to user-mode. It accomplishes this by ar-
ranging for high-resolution timer interrupts to occur a short time
after a return to kernel-mode. The small extra interval allows the
operating system to complete its current task (e.g., interrupt pro-
cessing) and return to user-mode where the guest is ultimately in-
terrupted. An appropriate length for the timer interval can be deter-
mined automatically within the VMM by repeatedly increasing the
interval until most timer interrupts occur in user-mode. By limit-
ing patches to user-mode code, the normal guest operating system
scheduler is free to de-schedule a patched process and the system
remains stable.
In our implementation, after a patched process accumulates a

certain amount of CPU time, chosen from a configurable, uni-
formly random interval, the patch is removed and the process is
allowed to continue its normal execution. Patches are installed re-
peatedly according to a configurable patch schedule. Processes that
are patched experience reduced performance, but are still allowed
to make progress. When CPU inflation is enabled, patching is ap-
plied across all running processes. Lycosid enables CPU inflation
when the detection module indicates hiding but the identification
module is unable to identify the hidden processes.

5. Evasion

We claim that Lycosid is less vulnerable to evasion by guest soft-
ware than previously presented VMM-based security services. In
this section we describe our rationale for the claim and and describe
two potential attacks on Lycosid as well as countermeasures.

5.1 Attacking the Trusted View

If a VMM-based security service depends on the correctness of any
guest-level component, it is vulnerable to malicious corruption of
that component [8]. For example, if a VMM uses the integrity of the
guest operating system process list to determine when processes
have been hidden, it is subject to evasion when a rootkit based
on direct kernel object manipulation corrupts the list. The rootkit
leaves the list in a consistent, but incorrect state. A VMM could
use additional explicit information about other system components
(e.g., thread scheduling queues) to detect inconsistency. The same
approach has been taken by guest-level hiding detectors [26], for
which there are, unfortunately, malicious work-arounds [1]. In this
case, the VMM has no detection advantage over a guest-level tool
because the information the VMM uses is fundamentally obtained
from the guest.
Unlike previous approaches, the trusted view of operating sys-

tem processes used by Lycosid is based on implicitly obtained
information about observed guest virtual machines. The informa-
tion is derived from fundamental behaviors of the guest operating
system. For example, Lycosid uses process information provided
by Antfarm. Antfarm obtains its process information by observing
how a guest OS manages its virtual address spaces. To evade Ly-
cosid, an attacker must modify how an infected OS implements a
core subsystem (virtual memory) and must do so in a way that re-
mains consistent with its desired user-level view of processes.

5.2 Attacking the Untrusted View

Lycosid depends on an untrusted, user-level process view. One way
to attack Lycosid is to manipulate its user-level view. The attack
works by desynchronizing the untrusted, user-level view used by
Lycosid and the user-level view used by a defender to detect un-
expected processes (e.g., Windows task manager). In the desyn-
chronization attack, an adversary hides the presence of a malicious
process from a defender, but doesn’t hide it from Lycosid. In this
way Lycosid fails to detect hiding because, from its perspective, no
hiding takes place. A defender fails to detect the hidden process
because, from their perspective, the malicious process does not ex-
ist. Figure 2 shows a conceptual example of the desynchronization
attack.
To successfully mount this style of attack, an adversary must

be able to reliably identify process enumeration requests made on
behalf of Lycosid. In the general case, this task will be difficult be-
cause Lycosid uses the same standard APIs to enumerate processes
as any other process introspection tool like ps or the Windows task
manager. Additionally, Lycosid is not limited to using a single tool
with a fixed signature to obtain its user-level process view, so an
attacker cannot easily rely on a fixed signature database of known
Lycosid probe programs. In the same way, there are many different
tools that can be used by a defender to enumerate processes (e.g.,
ps, top, task manager, pslist, tasklist). For the sake of this discus-
sion, however, we will assume an attacker can reliably identify and
preferentially handle any Lycosid process enumeration request.
Lycosid is designed to be a part of a larger, comprehensive

security monitoring framework. Such a framework would include
a process monitoring component that continuously observes the
process list and generates an alert when unexpected or suspicious
processes are encountered. It is just such a security feature that an
attacker hopes to deceive by hiding their malicious processes. The
desynchronization attack described above assumes that the process



Figure 2. Desynchronization Attack. The figure demonstrates the desyn-
chronization attack concept against Lycosid hidden process detection.

view used by the process monitor component is different from
the view used by Lycosid. By integrating the process monitor and
Lycosid so that they both use the same user-level process view, the
opportunity to desynchronize is removed and the attack fails.
In summary, Lycosid is perhaps best described as “differently”

subject to gaming and evasion on the part of compromised guests.
We believe the effort required to subvert Lycosid while still main-
taining a fully consistent outward appearance exceeds that of earlier
VMM-based detectors. This is a key feature of VMM-based secu-
rity services based on implicitly obtained information and raises
the bar against malicious process hiding.

6. Implementation

Lycosid is an extension to the Xen [7] VMM. The implementation
of Lycosid is split between the Xen hypervisor and user-level pro-
grams that run in Xen’s privileged control virtual machine.
Antfarm [15] is one hypervisor component. It infers informa-

tion about guest operating system processes by observing architec-
tural events like page table updates and context switches. Antfarm
provides the basis for Lycosid’s hidden process detection and iden-
tification. CPU inflation is also implemented as a core hypervisor
feature. It interposes on Xen’s virtual CPU scheduling and shadow
page table handling to selectively and safely patch user-level pro-
gram code. Lycosid adds approximately 850 lines of C code to the
hypervisor.
The data collection and analysis components of Lycosid that im-

plement its hidden process detection and identification features are
implemented as user-level programs running in a Linux guest vir-
tual machine. They communicate with the hypervisor components
of Lycosid via private VMM interfaces that are only available in
Xen’s privileged control VM. The analysis components are writ-
ten in python and total approximately 6000 lines of code including
statistics libraries and interfaces to libR.so [24], a statistical com-
puting library.
By partitioning Lycosid, only necessary components are added

to the hypervisor itself allowing it to remain relatively small, which
is a desirable security property. The analysis components are nor-
mal user mode programs which can fail and be restarted without
compromising the integrity of the whole system. They operate in
polled batch mode which removes them from any synchronous crit-
ical path and allows them to amortize the cost of their communica-
tion with the VMM over many observations.

7. Evaluation

In this section we evaluate the performance of Lycosid’s process
detection and identification. We want to measure accuracy, timeli-
ness, and runtime overhead. Accuracy is the ability of Lycosid to
correctly detect and identify hidden processes measured in terms
of false positives and false negatives. Our timeliness experiments
measure how long it takes Lycosid to come to its conclusions.

7.1 Experimental Environment

Lycosid is an extension to the Xen [7] VMM version 3.0.3-testing.
We use Linux kernel version 2.6.16 in Xen’s privileged control vir-
tual machine. We evaluate Lycosid using two guest operating sys-
tems. The first is the retail version of Microsoft Windows 2000
Professional. The second is a default installation of Redhat En-
terprise Linux 4.3. Both guests run unmodified using Xen’s full
virtualization support enabled by the Intel virtual machine exten-
sions (VMX) [14]. Our experimental host has a 3.0 GHz Pentium
D processor and is configured with 4 GB of system memory. Both
privileged and unprivileged virtual machines are allocated 512 MB
of memory. The system contains a single Seagate 7200 RPM Bar-
racuda SATA hard disk drive.

7.2 Detection Evaluation

In Section 3 we noted that hidden process detection is complicated
by multiple factors. For example, measurements made by the VMM
cannot be perfectly synchronized, implicit information can be sub-
tly inaccurate, and unrelated process creation and exit activity make
the measurements obtained by Lycosid unstable.
The key variable affecting the ability of Lycosid to detect hidden

processes is how much unrelated process creation and exit activity
is occurring within the monitored virtual machine. Process creation
and exit activity tends to inject variability into the quantities mea-
sured by Lycosid and can magnify other, latent sources of variance
inherent in the implicit measurement process like lag time [15].
This section evaluates Lycosid’s ability to accurately detect a hid-
den process in spite of these concerns.

7.2.1 Detection with Interference

Our detection experiments evaluate the accuracy and timeliness of
Lycosid when detecting a single hidden process. When more than
one process has been hidden, the difference between the VMM
and user process lists is larger, making detection easier. Hence,
detecting a single hidden process is a worst case detection scenario.
To generate process activity we use a synthetic process gener-

ator that spawns processes randomly. Harchol-Balter and Downey
indicate in their study [11] that process arrivals are burstier than
Poisson. We use a pareto distribution with shape parameter k = 1

for process inter-arrival times. We control the average rate of pro-
cess creation by varying the pareto location parameter. This distri-
bution leads to large process creation bursts which stress the de-
tection techniques. The process lifetime distribution described by
Harchol-Balter and Downey applies to processes whose lifetime
exceeds one second. The arrival rates we use to stress Lycosid,
however, are too high to support such long lived processes. As a
result, we choose process lifetimes from the uniform distribution
on the interval from 0–1 second, which allows our test system to
remain stable.
To hide processes under Windows, we use the rootkit tool

fu.exe and its accompanying device driver msdirectx.sys [9].
This tool hides Windows processes by unlinking the target pro-
cess from the kernel process list. Under Linux we simulate hidden
processes by filtering process information in our guest process
reporting tool. Unlike fu.exe, most recent Linux rootkits hide
themselves and manipulate various logging and security features
making them inconvenient to use in a research setting.
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Figure 3. Process Count Difference and Detection Timelines. The left figure shows a timeline of the difference between the process list length obtained
within the VMM and from the guest operating system for various levels of process creation and exit activity. As process activity increases the variability in

the measured difference increases. The right figure shows a timeline of the hypothesis test p-values used in the detection process for each of several levels of

process creation/exit activity. The p-values approach the detection threshold over time.

To motivate our use of statistical techniques, the left side of Fig-
ure 3 shows how the magnitude of the difference between VMM
process count and guest process count used by Lycosid varies over
time when the system is subjected to different levels of process cre-
ation and exit activity underWindows. As process activity increases
from one to an average of 100 processes/second, the variance and
magnitude of the difference increase. This characteristic of the de-
tection problem suggests the use of statistical inference techniques
to probabilistically determine if hiding is occurring.
The right side of Figure 3 provides intuition about how the p-

value resulting from the hypothesis test used by Lycosid incremen-
tally approaches the detection threshold. The test process is hidden
immediately when each experiment begins. Detection occurs when
the p-value drops below α = 2×10

−6 , which is shown as a dashed
horizontal line. In each case an orderly progression toward detec-
tion can be seen.
Figure 3 also hints that detection time increases with process

activity. To quantify this effect, time to detection was measured for
our various process activity levels. The results for Windows and
Linux are shown in Figure 4 where the Y-axis reports the time
to detection and the X-axis indicates the process activity level.
The values shown for each level are the average of 10 trials. The
standard deviation of detection time is shown using error bars. Both
detection time and its variance increase with process creation and
exit activity. In the worst measured cases, under severe process
load, Lycosid requires several minutes to detect the hidden process.
Since hidden processes are typically long lived (on the order of
hours or days) detection times of several minutes are not a real
concern. In all of the experiments shown, Lycosid correctly detects
the hidden process.
An important output of a positive detection result is an estimate

of the number of processes that have been hidden. In the detec-
tion experiments described above, a single process was hidden, so,
in each case a good estimate will be close to one. Figure 5 shows
a summary of the estimated number of hidden processes obtained

when a single process has been hidden under both Windows and
Linux. When process load is small to moderate, the estimated num-
ber of hidden processes is good, leading to a correct identification
of one hidden process. Under extreme process creation and exit
load, the estimates begin to experience larger error and greater vari-
ance. This error may result in falsely identifying a non-hidden pro-
cess as hidden during the identification phase. However, our conser-
vative p-value identification threshold tends to reduce the chance of
false positive identifications. The direction of the error under Win-
dows and Linux is different. Under Windows, Antfarm detects pro-
cess creation before the operating system reports its creation, i.e.,
process creation lag is negative under Windows. The opposite is
true under Linux; Antfarm detects process creation after the OS re-
ports it. High interference and load levels exacerbate the lag under
both operating systems leading to larger deviations, but in opposite
directions.

7.2.2 False Positives

In addition to reliable detection, it is important that Lycosid not
report hidden processes spuriously, i.e., that its false positive rate
is small. Our statistical procedure predicts about one false positive
result per year. To explore this question empirically, an experiment
was performed using a Windows guest in which no process was
hidden in our most challenging detection environment (100 process
creations and exits/second). An 11 hour timeline from the experi-
ment is shown in Figure 6. As can be seen, no trend toward false
detection is apparent and no false detections occur. The experiment
does not prove the formal claim of few false positives, but provides
empirical support.

7.2.3 Performance Overhead

Lycosid detection is meant to run continuously, so it is important
that it impose minimal runtime overhead. To evaluate the overhead
of the detection phase of Lycosid we compare the runtimes for
three Windows benchmarks when they are run under Lycosid in
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Figure 4. Time to Detection. The figure shows how the time to detect a hidden process varies for Windows and Linux as process creation and exit activity
increases from 0 processes/second to 100 processes/second. The values shown are an average of 10 trials. Error bars show the standard deviation of detection

time.
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Figure 5. Estimating the Number of Hidden Processes. The figure shows how the estimate of the number of hidden processes obtained from the detection
phase varies for Windows and Linux as process creation and exit activity increases from 0 processes/second to 100 processes/second when a single process
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Benchmark Lycosid Xen % OH
Runtime Runtime

CreateProc 6.551 s 6.222 s 5.3%
MemAlloc 6.803 s 6.565 s 3.6%
Compile 25.386 s 25.210 s 0.7%

Table 1. Detection Runtime Overhead. The table shows runtimes and
overheads for three benchmarks run under Lycosid and under a pristine

version of Xen.

detection mode and when run under an unmodified Xen hypervisor.
Table 1 shows the results. Each value is an average of five trials. We
observed no significant variance between trials.
Lycosid primarily adds overhead to Xen’s shadow page table

handling and virtual address space switching. The first two bench-
marks spend nearly all of their time performing these two tasks
and can be considered worst case scenarios for Lycosid’s detection
performance. The CreateProc benchmark creates and then destroys
1000 processes as quickly as possible. The MemAlloc benchmark
allocates a 200 MB segment of memory, then touches each page,
causing many minor page faults and page table updates. MemAl-
loc is repeated five times in each trial. Our prototype experiences
5.3% overhead for CreateProc and 3.6% overhead for MemAlloc.

The final benchmark is representative of a more common, but still
demanding, workload. It consists of building the bash shell sources
using gnu make and gcc. In this case, Lycosid adds a tiny 0.7%
overhead.

7.3 Identification Evaluation

In this section we evaluate the ability of the identification algorithm
described in Section 4 to identify which processes have been hidden
once the detection component provides a positive hiding indicator.
As in the evaluation of the detection phase, this evaluation focuses
on Lycosid’s accuracy and timeliness. In this case, accuracy is Ly-
cosid’s ability to correctly identify hidden processes. Our timeli-
ness experiments quantify how long it takes to positively identify
the correct hidden processes.

7.3.1 Identification Among Many Running Processes

Our first experiment measures how Lycosid performs when forced
to choose among varying numbers of active processes. In the ex-
periments, a number of processes (from 1 to 50) is created. Each of
the test processes alternately runs and sleeps. The runtime is chosen
randomly from the range 0–500 ms using a uniform distribution.
Similarly, a sleep interval is chosen from the interval 0–1000 ms.
One of the test processes is hidden using the same techniques de-
scribed in Section 7.2.1. Experiments were performed with 1, 10,
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Figure 7. Time to Identification. The figure shows how the time to identify hidden processes grows as the number of total active processes increases from 1
to 50 processes for both Windows and Linux. The values shown are an average of 10 trials. Lycosid identified the correct hidden processes in all cases on both
platforms. Error bars show the standard deviation of identification time. The left bar corresponds to trials in which a single process was hidden. The right bar

shows results when 5 processes were hidden.

25, and 50 total processes. At each level, 10 identification trials
were performed. Lycosid correctly identifies the single hidden pro-
cess in all cases. The time to identify the hidden process for both
Windows and Linux guests is shown in Figure 7. The left hand bars
show how identification time and standard deviation increase as the
number of active processes grows when one process has been hid-
den. Detection time and variance grow because larger numbers of
competing processes decrease the effective runtime of the hidden
process. Hence, more samples are required to associate the runtime
of the hidden process with the regression response variable in the
face of measurement noise.
Hiding multiple processes is a common scenario when an at-

tacker has several distinct tasks to accomplish on a compromised
system. Does identification become more difficult when more than

one process has been hidden? Our second experiment is similar
to the first, but in this case 5 out of the 10, 25, or 50 total pro-
cesses have been hidden. Again, Lycosid correctly identifies all hid-
den processes correctly for both platforms. The right hand bars in
Figure 7 show that the time to identification grows for the multi-
process case, but not significantly. Hence, Lycosid identification is
accurate, portable across guest operating systems and applicable in
cases where multiple processes have been hidden.

7.3.2 Identifying Mostly Idle Hidden Processes

Our next series of experiments demonstrates that a lower runtime
bound exists beneath which Lycosid cannot identify which of sev-
eral processes is hidden. We then test the ability of CPU inflation
to overcome the issue.



Avg. Runtime (s) Avg Sleep Time (s) % True ID % False ID % No ID

0.25 0.5 100% 0% 0%
0.025 0.5 90% 0% 10%
0.0025 0.5 0% 0% 100%
0.25 5.0 100% 0% 0%
0.25 50.0 0% 0% 100%

Table 2. Identification under Reduced Runtime. The table reports the identification accuracy of Lycosid for a set of experiments in which a single hidden
process must be identified among 10 active processes when the hidden process runs exponentially less and less often. As the relative runtime decreases,

Lycosid’s ability to classify a process as hidden or benign is impaired.

We first perform two variants of an earlier experiment in which
one process is hidden among 10 total active processes under Win-
dows. In each variant we change the runtime of the hidden process
along one of two axes. The first axis is busy time, i.e., the time
between sleep intervals. The second axis is run frequency, i.e., the
length of the sleep intervals. Reducing runtime along either axis de-
creases the signal-to-noise ratio between hidden process CPU time
and the measurement error experienced by Lycosid. The effect is to
make identification more challenging.
In the first set of experiments we reduce hidden process busy

time by factors of 10 and measure the ability of Lycosid to identify
the hidden process. In the second round of experiments we increase
the sleep interval by factors of 10 and again evaluate if Lycosid can
identify the hidden process. Table 2 lists the runtime parameters
for the hidden process in each experiment and the percentage of
10 trials in which Lycosid successfully identifies the single hidden
process.
When the busy time is reduced from earlier experiments by a

factor of 10 Lycosid correctly identifies the hidden processes in
only 9 of 10 trials. After reducing the runtime by a factor of 100,
no process exceeds the identification threshold p-value before the
implementation sample limit of 1000 is reached; hence, no process
is identified as hidden. When the sleep time increases by a factor
of 10 or 100, none of 10 trials produces a positive hidden process
identification. Note that in no case do false positives occur, i.e., no
innocent processes are accused of being hidden. We see, however,
that if a hidden process runs for limited periods, even if it runs
regularly, or if a hidden process runs infrequently, Lycosid cannot
identify it properly. Even in these cases, however, Lycosid correctly
detects that process hiding is taking place.
Table 3 shows the results of applying CPU inflation to identifi-

cation tasks in which the hidden process runs for short periods of
time or rarely runs. Our evaluation shows that CPU inflation en-
ables Lycosid to identify processes whose average busy time is as
low as 250 µs. The table also shows that even when a hidden pro-
cess runs relatively rarely (e.g., once every 500 seconds on average)
CPU inflation makes the hidden process identifiable by Lycosid.
Finally, when the hidden process’s average sleep time exceeds the
amount of time over which Lycosid makes observations (once every
5000 seconds vs. approximately 1000 seconds of observation time
in this experiment) Lycosid is naturally unable to reliably identify
the hidden process. Our evaluation shows that CPU inflation is a
powerful tool that significantly extends the set of hidden processes
that Lycosid can reliably identify.

8. Related Work

Cross-view validation for hiding detection has been studied and
variously implemented in user applications [5], within the oper-
ating system kernel [30], inside a virtual machine monitor [10],
and using dedicated coprocessor hardware [23]. The key aspect of
cross-view validation that differentiates these efforts is the mecha-

nism used to obtain the low-level, trusted view of the resource of
interest.
Garfinkel et al., have shown the value of VMM-level cross-view

validation for detecting hidden processes with VMI [10]. VMI uses
explicit operating system debugging information to locate and in-
terpret private kernel data types at runtime. This insight into op-
erating system data structures is used to obtain a trusted view of
the guest operating system process list. Lycosid extends the VMI
concept by using only implicitly obtained guest information within
a VMM. No implementation details are required. This allows Ly-
cosid to be deployed in situations where version and patch-level-
specific debugging information is unavailable or inconvenient to
maintain as a system is patched and upgraded.
Instead of a guest kernel-level view of the process list as used

by VMI, Lycosid uses a true VMM-level process view. The VMM
view, which is based on observations of guest virtual address
spaces, should be more challenging for malicious software to ma-
nipulate. More fundamental aspects of the execution of a hidden
process would need to be altered to enable evasion, e.g., how a pro-
cess uses virtual memory and how the operating system accounts
runtime to processes.
Many systems employ statistical techniques to infer behavior,

to provide input to control algorithms, and to implement security
classifiers. For example, MS Manners [6] uses hypothesis testing
to regulate the scheduling of low-priority background processes
and reduce their performance impact on high priority foreground
jobs. Jung et al. [18] probabilistically determine whether remote
hosts are conducting port scanning using sequential hypothesis
testing techniques [29]. One of Lycosid’s key features is its use of
statistical inference techniques to overcome the noise fundamental
to the implicit information it uses.

9. Conclusion

Lycosid is a novel VMM-based hidden process detection and iden-
tification service. The key difference between Lycosid and previous
VMM-based hidden process detectors is Lycosid’s use of implicitly
obtained information about the guest operating systems it monitors.
Implicit information decouples Lycosid from the guest OS and al-
lows it to take better advantage of its placement within a VMM.
For example, Lycosid does not depend on the consistency of private
guest OS data structures, so it is less vulnerable to guest-initiated
evasion attacks. Similarly, Lycosid does not depend on guest OS
implementation details, so it can be portable across very different
operating systems.
Using implicitly obtained information within a VMM can be

challenging because it is often noisy or wrong. Lycosid provides
an accurate and reliable service in spite of its noisy inputs by
using statistical inference techniques like hypothesis testing and
regression to trade detection and identification time for accuracy.
In our evaluation, Lycosid correctly detected process hiding in

each of hundreds of trials. Identification is similarly robust except
in cases where a hidden process does not run long enough or fre-



Avg. Runtime (s) Avg Sleep Time (s) % True ID % False ID % No ID

0.025 0.5 100% 0% 0%
0.0025 0.5 100% 0% 0%
0.00025 0.5 100% 0% 0%
0.025 5.0 100% 0% 0%
0.025 50.0 100% 0% 0%
0.025 500.0 100% 0% 0%
0.025 5000.0 20% 0% 80%

Table 3. Effect of CPU Inflation. The table shows how CPU inflation can help make hidden processes that run relatively little identifiable by Lycosid. In
the experiments, a single hidden process must be identified among 10 active processes when the hidden process runs very little or infrequently. CPU inflation

forces the hidden process to run more, providing Lycosid with the information it needs to make a positive identification. When average sleep time exceeds the

maximum sample period, Lycosid naturally fails to reliably identify all hidden processes.

quently enough. Lycosid uses a new technique, called CPU infla-
tion, that can force some difficult to identify processes into an ex-
ecution regime in which a hidden process can be positively identi-
fied.
The detection components of Lycosid, which are designed to

run continuously, impose a very small runtime overhead. In a worst-
case performance scenario, we measured less than 6% overhead.
For a more typical, process-intensive workload, Lycosid imposes a
mere 0.7% penalty.
Research interest in VMM-based security services is already

strong [8, 10, 17] and commercial VMM-based security products
from industry leaders are coming soon [13]. This paper describes
real experiences using implicitly obtained information effectively
within VMM-based services. Our results show that, while chal-
lenging, using implicitly obtained guest information can improve
the capabilities and safety properties of such services.
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