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Abstract

Digital data is essential to our daily lives and businesses. The amount of
data generated each year grows exponentially. Various storage systems
were developed to meet different data management requirements. For
decades, researchers and practitioners have been trying to overcome a
central challenge in these storage systems: how to reliably and efficiently
access data on different storage devices.

In the first part of the dissertation, we respond to this challenge with a
comprehensive study of modern Linux file systems to understand prac-
tical reliability and performance problems in existing file systems. We
analyze eight years of Linux file-system changes across 5079 patches. We
focus on file-system bugs by studying their fine-grained patterns, conse-
quences and trends. We find that about 40% of patches are bugs, existing
in both new and mature file systems; they do not diminish despite the
stability. Most of the bugs lead to system crashes or data corruption. We
also exam performance and reliability patches. The performance tech-
niques used were relatively common and widespread. About a quarter
of performance patches reduced synchronization overheads. Reliability
techniques seemed to be added in a rather ad hoc fashion.

From the file system study, we find that file systems lack enough relia-
bility isolation: a small fault can impact the whole file system. To solve
this problem, we propose IceFS, a novel file system that separates physical
structures of the file system for better isolation. A new abstraction, the
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cube, was provided to enable the grouping of files and directories inside
a physically isolated container. We show three major benefits of cubes
within IceFS: localized reaction to faults, fast recovery, and concurrent
file-system updates. We demonstrate that IceFS is able to localize failures
that were previously global, and recover quickly using localized online or
offline fsck. IceFS can also provide specialized journaling to meet diverse
application requirements for performance and consistency. Furthermore,
we conduct two cases studies where IceFS is used to host multiple virtual
machines and is deployed as the local file system for HDFS data nodes.
IceFS achieves fault isolation and fast recovery in both scenarios, proving
its usefulness in modern storage environments.

Motivated by physical separation techniques leading to better perfor-
mance in IceFS, we continue to explore similar techniques in another impor-
tant type of storage systems: key-value stores. We present WiscKey, a per-
sistent LSM-tree-based key-value store with a novel performance-oriented
data layout that separates keys and values to minimize I/O amplification.
The data layout and I/O patterns of WiscKey are highly optimized for
SSD devices. We solve a number of reliability and performance challenges
introduced by the new key-value separation architecture. We propose a
parallel range query design to leverage the SSD’s internal parallelism for
better range query performance on unordered datasets. We also introduce
an online and light-weight garbage collector for WiscKey to reclaim the
invalid key-value pairs without affecting the foreground workloads much.
We demonstrate the advantages of WiscKey with both microbenchmarks
and YCSB workloads. Microbenchmark results show that WiscKey is 2.5×
- 111× faster than LevelDB for loading a database and 1.6× - 14× faster for
random lookups. WiscKey is faster than both LevelDB and RocksDB in all
six YCSB workloads, and follows a trend similar to the microbenchmarks.
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1
Introduction

Digital data is essential to our daily lives and businesses. Data-driven ser-
vices are universal and crucial nowadays, including communication [68,
113, 150], travel [117, 231], healthcare [66, 101, 168], finance [79, 98], en-
ergy [61, 112], and entertainment [16, 154]. Meanwhile, data is generated
at an unprecedented rate, growing 40% annually; the amount of total
data is about 4.4 Zettabytes in 2013, and it is expected to skyrocket to 44
Zettabytes by 2020 [12].

Given such big data, various storage systems have been developed
in last several decades. Typical examples include local and distributed
file systems [77, 90, 94, 138, 139, 141, 175, 183, 191, 204], persistent and in-
memory key-value stores [14, 21, 28, 48, 64, 71, 115, 152, 184] and numerous
databases [9, 67, 86, 148, 155, 196, 202]. Storage platforms also evolve from
traditional local storage servers [78, 91, 96, 160, 182, 207, 214, 220] to the
cloud [18, 19, 22, 47, 87, 174, 177, 230] and mobile devices [110, 149, 186,
192, 194].

Furthermore, the hardware landscape changes fast too. New storage
and computing hardware is at the rise. NAND-flash based solid state
disks (SSD) [46, 82] and NVM devices [45, 58, 198] provide microsecond
level latency and high internal data parallelism, which can greatly boost
application performance. On the other hand, commodity servers contain
an increasing number of computing cores. Servers with hundreds of cores
are available already [11]. Trends indicate that the number of cores within
a single machine will continue to increase in future [35]. The cache and
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memory capacity also increases with the number of cores for balanced
performance; it is not uncommon that a single server machine contains
over 100 GB of DRAM for high performance [56, 63].

For decades, researchers and practitioners have been solving two cen-
tral problems of storage systems: how to reliably and efficiently store and
retrieve data. As the workloads of the world move to the cloud and mobile
devices, as the computing moves to virtual machines and containers, we
are facing bigger challenges for high reliability and performance.

Unfortunately, reliability is hard to achieve. Data corruption and sys-
tem crashes still happen in practice, leading to painful service disruption.
Data corruption and system crashes can be caused by various hardware
defects [24, 25, 118, 166], power loss [10, 144, 221], and software bugs in
operating systems [54, 159, 200, 228], file systems [126, 165, 226, 227] and
device drivers [104, 205, 206].

Another big challenge is that existing storage software may fail to fully
utilize the (new) hardware, resulting in wasted resources and sub-optimal
performance. In the past, a wide variety of techniques were proposed for
better performance, such as data locality [44, 141, 176], request schedul-
ing [93, 97, 132, 179], and caching [62, 145, 195, 222]. However, with new
hardware (e.g., SSDs) and system abstraction (e.g., virtualization), old op-
timization techniques may not work well anymore [27, 32, 36, 45, 189, 232].

In this dissertation, our central goal is to understand and improve both
reliability and performance of modern storage systems. In the first part
of this dissertation, we conduct a comprehensive study of popular file
systems to understand the practical problems existing in modern file
systems for years. In the second part, we build on the insights gained
from our study to propose physical separation techniques for both local
file systems and persistent key-value stores that can achieve significantly
better failure behaviors, recovery speed and I/O performance.



3

1.1 File System Study

To better understand the real problems in modern storage systems, we
begin our research with a practical study of modern Linux file systems.
Open-source local file systems, such as Linux Ext4 [139], XFS [204], and
Btrfs [138, 175], remain a critical component in the world of modern storage.
Many recent distributed file systems, such as Google GFS [77] and Hadoop
DFS [191], replicate data objects (and associated metadata) across local
file systems. On smart phones, most user data is managed by a local file
system, such as Ext4 [110, 192] on Android phones and HFSX [149] on
Apple’s iOS devices. Finally, many desktop users still do not backup their
data regularly [102, 137]; in this case, the local file system clearly plays a
critical role as sole manager of user data.

Open-source local file systems remain a moving target. Developed
by different teams with different goals, these file systems evolve rapidly
to add new features, fix bugs, and improve performance and reliability,
as one might expect in the open-source community [171]. Major new
file systems are introduced every few years [34, 138, 141, 176, 204]; with
recent technology changes (e.g., Flash [33, 82] and NVM [169, 197]), we
can expect even more flux in this domain.

However, despite all the activity in local file system development, there
is little quantitative understanding of their code bases. For example, where
does the complexity of such systems lie? What types of bugs are common?
Which performance features exist? Which reliability features are utilized?
These questions are important for different communities: for developers,
so that they can improve current designs and create better systems; for
tool builders, so that they can improve their tools to match reality (e.g., by
finding the types of bugs that plague existing systems).

In the first part of this dissertation, we garner insight into these ques-
tions by studying the artifacts themselves. The fact that every version
of Linux is available online, including a detailed set of patches which
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describe how one version transforms to the next, enables us to carefully
analyze how file systems have changed over time. A new type of “systems
software archeology” is now possible. We perform the first comprehen-
sive study of the evolution of Linux file systems, focusing on six major
and important ones: Ext3 [209], Ext4 [139], XFS [204], Btrfs [138, 175],
ReiserFS [38], and JFS [30]. These file systems represent diverse features,
designs, implementations and even groups of developers. We examine
every file-system patch in the Linux 2.6 series over a period of eight years
including 5079 patches. By carefully studying each patch to understand
its intention, and then labeling the patch accordingly along numerous
important axes, we can gain deep quantitative insight into the file-system
development process. We can then answer questions such as “what are
most patches for?”, “what types of bugs are common?”, and in general
gain a new level of insight into the common approaches and issues that
underlie current file-system development and maintenance.

We make the following high-level observations. A large number of
patches (nearly 50%) are maintenance patches, reflecting the constant
refactoring work needed to keep code simple and maintainable. The
remaining dominant category is bugs (just under 40%), showing how
much effort is required to slowly inch towards a “correct” implementation.
Interestingly, the number of bugs does not die down over time (even for
stable file systems), rather ebbing and flowing.

Breaking down the bug category further, we find that semantic bugs
are the dominant bug category (over 50% of all bugs). These types of bugs
are vexing, as most of them are hard to detect via generic bug detection
tools [29, 158]; Concurrency bugs are the next most common (about 20%
of bugs), more prevalent than in user-level software [120, 181, 201]. The
remaining bugs are split evenly across memory bugs and error handling.
We also categorize bugs along other axes to gain further insight. For
example, when broken down by consequence, we find that most of the
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bugs we studied lead to crashes or corruption, and hence are quite serious.
When categorized by data structure, we find that B-trees, present in many
file systems for scalability, have relatively few bugs per line of code. When
classified by whether bugs occur on normal or failure-handling paths, we
make the following important discovery: nearly 40% of all bugs occur on
failure-handling paths. Future system designs need better tool or language
support to make these rarely-executed failure paths correct.

Finally, while bug patches comprise most of our study, performance
and reliability patches are also prevalent, accounting for 8% and 7% of
patches respectively. The performance techniques used are relatively com-
mon and widespread (e.g., removing an unnecessary I/O, or downgrading
a write lock to a read lock). About a quarter of performance patches re-
duce synchronization overheads; thus, while correctness is important,
performance likely justifies the use of more complicated and time saving
synchronization schemes. In contrast to performance techniques, reliabil-
ity techniques seem to be added in a rather ad hoc fashion (e.g., most file
systems apply sanity checks non-uniformly). Inclusion of a broader set of
reliability techniques could harden all file systems.

1.2 Physical Disentanglement in IceFS

From the file system study, we know that there are many bugs in file
systems, and most of bugs may lead to serious consequences (e.g., data
corruption or system crashes). One natural following question is that is
there enough isolation within a file system to cope with data corruption,
system crashes and performance problems.

Isolation is central to increased reliability and improved performance
of modern computer systems. Researchers and practitioners alike have
developed a host of techniques to provide isolation in various computer
subsystems: isolating performance of CPU, memory, and disk bandwidth
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in SGI’s IRIX operating system [212]; isolating the CPU across different
virtual machines [85]; sharing storage cache and I/O bandwidth [214].
Others have designed isolation schemes for device drivers [37, 205, 233],
CPU and memory resources [2, 7, 26, 156], and security [81, 99, 105].

Unfortunately, we find that one aspect of current file-system design
has remained devoid of isolation: the physical on-disk structures of file
systems. This can lead to poor reliability, poor performance, or both.
As a simple example, consider a bitmap, used in historical systems such
as FFS [141] as well as many modern file systems [44, 139, 209] to track
whether inodes or data blocks are in use or free. When blocks from dif-
ferent files are allocated from the same bitmap, aspects of their reliability
are now entangled, i.e., a failure in that bitmap block can affect otherwise
unrelated files. Similar entanglements exist at all levels of current file
systems; for example, Linux Ext3 includes all current update activity into
a single global transaction [164], leading to painful and well-documented
performance problems [4, 5, 8].

Our remedy to this problem is realized in a new file system we call
IceFS. IceFS provides users with a new basic abstraction in which to co-
locate logically similar information; we call these containers cubes. IceFS
then works to ensure that files and directories within cubes are physically
distinct from files and directories in other cubes; thus data and I/O within
each cube is disentangled from data and I/O outside of it.

To realize disentanglement, IceFS is built upon three core principles.
First, there should be no shared physical resources across cubes. Structures
used within one cube should be distinct from structures used within
another. Second, there should be no access dependencies. IceFS separates
key file system data structures to ensure that the data of a cube remains
accessible regardless of the status of other cubes; one key to doing so is a
novel directory indirection technique that ensures cube availability in the file
system hierarchy despite loss or corruption of parent directories. Third,
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there should be no bundled transactions. IceFS includes novel transaction
splitting machinery to enable concurrent updates to file system state, thus
disentangling write traffic in different cubes.

One of the primary benefits of cube disentanglement is localization. We
demonstrate three key benefits. First, we show how cubes enable localized
micro-failures; crashes and read-only remounts that normally affect the
entire system are now constrained to the faulted cube. Second, we show
how cubes permit localized micro-recovery; instead of an expensive file-
system wide repair, the disentanglement found at the core of cubes enables
IceFS to fully (and quickly) repair a subset of the file system (and even
do so online). Third, we illustrate how transaction splitting allows the
file system to commit transactions from different cubes in parallel, greatly
increasing performance (by a factor of 2x–5x) for some workloads.

Interestingly, the localization that is innate to cubes also enables a new
benefit: specialization [42]. Because cubes are independent, it is natural for
the file system to tailor the behavior of each. We realize the benefits of
specialization by allowing users to choose different journaling modes per
cube; doing so creates a performance/consistency knob that can be set as
appropriate for a particular workload, enabling higher performance.

We further show the utility of IceFS in two important modern storage
scenarios. In the first, we use IceFS as a host file system in a virtualized
VMware [213] environment, and show how it enables fine-grained fault
isolation and fast recovery as compared to the state of the art. In the
second, we use IceFS beneath HDFS [191], and demonstrate that IceFS
provides failure isolation between clients. Overall, these two case studies
demonstrate the effectiveness of IceFS as a building block for modern
virtualized and distributed storage systems.
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1.3 Key-Value Separation in WiscKey

Besides file systems, persistent key-value stores also play a critical role
in a variety of modern data-intensive applications. After demonstrating
that physical separation of structures in file systems can provide great
reliability and performance advantages, we are also curious to explore
physical separation techniques in key-value stores.

For write-intensive workloads, key-value stores based on Log Struc-
tured Merge Trees (LSM-trees) [157] have become the state of the art.
Various distributed and local stores built on LSM-trees are widely de-
ployed in large-scale production environments, such as BigTable [48] and
LevelDB [184] at Google, Cassandra [115], HBase [88] and RocksDB [71]
at Facebook, PNUTS [59] at Yahoo!, and Riak [14] at Basho.

To deliver high write performance, LSM-trees batch key-value pairs
and write them out sequentially. Subsequently, to enable efficient lookups
(for both individual keys as well as range queries), LSM-trees continuously
read, sort, and write out key-value pairs in the background, thus main-
taining keys and values in sorted order. As a result, the same data is read
and written multiple times throughout its lifetime; this I/O amplification
in typical LSM-trees can reach a factor of 50x or higher.

The success of LSM-based technology is tied closely to its usage upon
classic hard-disk drives (HDDs). In HDDs, random I/Os are over 100×
slower than sequential ones [157]; thus, performing additional sequential
reads and writes to continually sort keys and enable efficient lookups rep-
resents an excellent trade-off. However, the storage landscape is quickly
changing, and modern solid-state storage devices (SSDs) are supplanting
HDDs in many important use cases. As compared to HDDs, SSDs are
fundamentally different in their performance and reliability characteris-
tics; when considering key-value storage system design, we believe the
following three differences are of paramount importance. First, the differ-
ence between random and sequential performance is not nearly as large as
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with HDDs; thus, an LSM-tree that performs a large number of sequential
I/Os to reduce later random I/Os may be wasting bandwidth needlessly.
Second, SSDs have a large degree of internal parallelism; an LSM built
atop an SSD must be carefully designed to harness said parallelism. Third,
SSDs can wear out through repeated writes [116, 147]; the high write
amplification in LSM-trees can significantly reduce device lifetime. As
we will show in the paper (§4.3), the combination of these factors greatly
impacts LSM-tree performance on SSDs, reducing throughput by 90% and
increasing write load by a factor over 10. While replacing an HDD with
an SSD underneath an LSM-tree does improve performance, with current
LSM-tree technology, the SSD’s true potential goes largely unrealized.

We present WiscKey, an SSD-conscious persistent key-value store de-
rived from the popular LSM-tree implementation, LevelDB. The central
idea behind WiscKey is the separation of keys and values [153]; only keys
are kept sorted in the LSM-tree, while values are stored separately in a
log. This simple technique can significantly reduce write amplification
by avoiding the unnecessary movement of values while sorting. Further-
more, the size of the LSM-tree is also noticeably decreased, leading to
better caching and fewer device reads during lookups. WiscKey retains
the benefits of LSM-tree technology, including excellent insert and lookup
performance, but without excessive I/O amplification.

Separating keys from values introduces a number of challenges and
optimization opportunities. First, range query (scan) performance may be
affected because values are not stored in sorted order anymore. WiscKey
solves this challenge by using the abundant internal parallelism of SSD
devices. Second, WiscKey needs garbage collection to reclaim the free
space used by invalid values. WiscKey proposes an online and lightweight
garbage collector which only involves sequential I/Os and impacts the
foreground workload minimally. Third, separating keys and values makes
crash consistency challenging; WiscKey leverages an interesting prop-
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erty in modern file systems, that appends never result in garbage data
on a crash. WiscKey optimizes performance while providing the same
consistency guarantees as found in modern LSM-based systems.

We compare the performance of WiscKey with LevelDB [184] and
RocksDB [71], two popular LSM-tree key-value stores. For most workloads,
WiscKey performs significantly better. With LevelDB’s own microbench-
mark, WiscKey is 2.5×–111× faster than LevelDB for loading a database,
depending on the size of the key-value pairs; for random lookups, WiscKey
is 1.6×–14× faster than LevelDB. WiscKey’s performance is not always
better than standard LSM-trees; if small values are written out in random
order, and a large dataset is range-queried sequentially, WiscKey performs
worse than LevelDB. However, this workload does not reflect real-world
use cases (which primarily use shorter range queries) and can be improved
by log reorganization. Under YCSB macrobenchmarks [60] that reflect
real-world use cases, WiscKey is faster than both LevelDB and RocksDB
in all six YCSB workloads, and follows a trend similar to the load and
random lookup microbenchmarks.

1.4 Summary of Contributions and Overview

Below is a summary of our contributions, which also serves as an overview
for the rest of the dissertation.

• File System Study. In Chapter 2, we begin presenting our first
contribution, which describes a comprehensive study of Linux file
systems [126–128]. By analyzing eight years of Linux file-system
changes across over 5000 patches, we derive numerous new insights
into file systems’ reliability and performance problems. Our analysis
includes on of the largest studies of bugs to date (nearly 1800 bugs).
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• Physical Disentanglement in IceFS. In Chapter 3, we presents a so-
lution for problems we found in the file system study. We introduce
IceFS [125, 130], a novel file system that separates physical structures
of the file system. A new abstraction, the cube, is provided to enable
the grouping of files and directories inside a physically isolated con-
tainer. We show three major benefits of cubes within IceFS: localized
reaction to faults, fast recovery, and concurrent file-system updates.

• Key-Value Separation in WiscKey. We continue to explore physi-
cal structure separation technique in key-value stores in Chapter 4.
We present WiscKey [129], a persistent LSM-tree based key-value
store with key-value separation and SSD-conscious optimization.
WiscKey can achieve significantly better performance with minimal
I/O amplification.

• Related Work. In Chapter 5, we discuss various research efforts
and systems that are related to this dissertation. First, we describe
previous system studies over the years. Then, we describe reliability
isolation and performance improvement techniques in file systems
and key-value stores.

• Future Work, Lessons Learned, and Conclusions. In Chapter 6, we
first summarize our work and highlight the lessons learned from
three projects in this dissertation. Then, we discuss various direc-
tions for future work motivated by our research. We believe our
contributions will be valuable to a broad range of storage systems
running on new hardware in the future.
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2
Study of Linux File Systems

Open-source local file systems are a critical component in the world of
modern storage. Developed by different teams with different goals, lo-
cal file systems evolve rapidly to add new features, fix bugs, and im-
prove performance and reliability. Major new file systems are introduced
frequently [34, 138, 141, 176, 204]; with recent new storage hardware
(Flash [33, 82] and NVM [169, 197]), we can expect even more flux in
this domain.

However, despite all the activity in local file system development, there
is little quantitative understanding of their code bases. For example, where
does the complexity of such systems lie? What types of bugs are common?
Which performance features exist? Which reliability features are utilized?
These questions are important for different communities: for developers,
so that they can improve current designs and create better systems; for
tool builders, so that they can improve their tools to match reality (e.g., by
finding the types of bugs that plague existing systems).

In this chapter, we garner insight into these questions by studying
the artifacts themselves. The fact that every version of Linux is available
online, including a detailed set of patches which describe how one version
transforms to the next, enables us to carefully analyze how file systems
have changed over time. A new type of “systems software archeology” is
now possible. We perform the first comprehensive study of the evolution
of Linux file systems, focusing on six major and important ones: Ext3,
Ext4, XFS, Btrfs, ReiserFS, and JFS. These file systems represent diverse
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features, designs, implementations and even groups of developers. We
examine every file-system patch in the Linux 2.6 series over a period of
eight years including 5079 patches. By carefully studying each patch to
understand its intention, and then labeling the patch accordingly along
numerous important axes, we can gain deep quantitative insight into the
file-system development process. We can then answer questions such as
“what are most patches for?”, “what types of bugs are common?”, and
in general gain a new level of insight into the common approaches and
issues that underlie current file-system development and maintenance.

The rest of this chapter is organized as follows. We discuss our method-
ology (§2.1) first, followed by an overall discussion of patches (§2.2). We
then present a detailed analysis of bugs (§2.3) and performance and relia-
bility patches (§2.4.1). Finally, we conclude with a case study (§2.5) and
conclusions (§2.6).

2.1 Methodology

In this section, we first give a brief description of our target file systems.
Then, we illustrate how we analyze patches with a detailed example. Fi-
nally, we discuss the limitations of our methodology.

2.1.1 Target File Systems

Our goal in selecting a collection of disk-based file systems is to choose the
most popular and important ones. The selected file systems should include
diverse reliability features (e.g., physical journaling, logical journaling,
checksumming, copy-on-write), data structures (e.g., hash tables, indirect
blocks, extent maps, trees), performance optimizations (e.g., asynchronous
thread pools, scalable algorithms, caching, block allocation for SSD de-
vices), advanced features (e.g., pre-allocation, snapshot, resize, volumes),
and even a range of maturity (e.g., stable, under development). For these
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reasons, we selected six file systems and their related modules: Ext3 with
JBD [209], Ext4 with JBD2 [139], XFS [204], Btrfs [138, 175], ReiserFS [38],
and JFS [30].

Ext3, JFS, ReiserFS and XFS were all introduced in Linux 2.4, and were
considered as stable file systems in Linux 2.6. Ext4, as a direct successor
of Ext3, was introduced in Linux 2.6.19 and was marked as stable in Linux
2.6.28. In contrast, Btrfs was born in Linux 2.6.29, which is still under
active development. Ext3 was a popular default file system for many
Linux distributions in the last decade; recently, Ext4 has became the default
file systems in most modern Linux distributions, such as Red Hat, SUSE
and Ubuntu. JFS (by IBM), ReiserFS (by Namesys), and XFS (by Silicon
Graphics) serve as good candidates of enterprise file systems.

Btrfs is a copy-on-write (COW) file system with modern features com-
parable to ZFS [34], while the remaining file systems are all journaling
file systems. JFS and XFS only provide metadata journaling, while Ext3,
Ext4 and ReiserFS provide both metadata and file data journaling. B-tree
is widely used in JFS, ReiserFS, Btrfs and XFS to scale their metadata and
file data. Advanced features are also common in several file systems. For
example, Ext4 implements delayed allocation, pre-allocation, flexible block
group, online defragmentation and journal checksumming [165]. Btrfs
supports snapshot, volume management, data checksumming, compres-
sion, and even optimized block allocation for SSD devices. XFS is great at
scalability, and it provides guaranteed-rate I/O for realtime applications,
hierarchical storage management, and custom buffer cache.

2.1.2 Classification of File-System Patches

For each file system, we conduct a comprehensive study of its evolution
by examining all patches from Linux 2.6.0 (Dec ’03) to 2.6.39 (May ’11).
These are Linux mainline versions, which are released every three months
with aggregate changes included in change logs. Patches consist of all
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formal modifications in each new kernel version, including new features,
code maintenance, and bug fixes, and usually contain clear descriptions of
their purpose and rich diagnostic information. On the other hand, Linux
Bugzilla [41] and mailing lists [76, 124] are not as well organized as final
patches, and may only contain a subset or superset of final changes merged
in kernel.

To better understand the evolution of different file systems, we conduct
a broad study to answer three categories of fundamental questions:

• Overview: What are the common types of patches in file systems
and how do patches change as file systems evolve? Do patches of
different types have different sizes?

• Bugs: What types of bugs appear in file systems? Do some compo-
nents of file systems contain more bugs than others? What types of
consequences do different bugs have?

• Performance and Reliability: What techniques are used by file systems
to improve performance? What common reliability enhancements
are proposed in file systems?

To answer these questions, we manually analyzed each patch to un-
derstand its purpose and functionality, examining 5079 patches from the
selected Linux 2.6 file systems. Each patch contains a patch header, a
description body, and source-code changes. The patch header is a high-
level summary of the functionality of the patch (e.g., fixing a bug). The
body contains more detail, such as steps to reproduce the bug, system
configuration information, proposed solutions, and so forth. Given these
details and our knowledge of file systems, we categorize each patch along
a number of different axes, as described later.

Figure 2.1 shows a real Ext3 patch. We can infer from the header that
this patch fixes a null-pointer dereference bug. The body explains the



16

[PATCH] fix possible NULL pointer in fs/ext3/super.c.

In fs/ext3/super.c::ext3_get_journal() at line 1675
‘journal’ can be NULL, but it is not handled right
(detect by Coverity’s checker).

--- /fs/ext3/super.c
+++ /fs/ext3/super.c
@@ -1675,6 +1675,7 @@ journal_t *ext3_get_journal()

1 if (!journal){
2 printk(KERN_ERR "EXT3: Could not load ... ");
3 iput(journal_inode);
4 + return NULL;
5 }
6 journal->j_private = sb;

Figure 2.1: An Example Patch. This figure shows an Ext3 patch in Linux 2.6.7.

cause of the null-pointer dereference and the location within the code.
The patch also indicates that the bug was detected with Coverity [29].

This patch is classified as a bug (type=bug). The size is 1 (size=1) as
one line of code is added. From the related source file (super.c), we infer
the bug belongs to Ext3’s superblock management (data-structure=super).
A null-pointer access is a memory bug (pattern=memory,nullptr) and can
lead to a crash (consequence=crash).

However, some patches have less information, making our analysis
harder. In these cases, we sought out other sources of information, includ-
ing design documents, forum and mailing-list discussions, and source-
code analysis. Most patches are analyzed with high confidence given
all the available information and our domain knowledge. Examples are
shown throughout to give more insight as to how the classification is
performed.

Limitations: Our study is limited by the file systems we chose, which
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may not reflect the characteristics of other file systems, such as other non-
Linux file systems and flash-device file systems. We only examined kernel
patches included in Linux 2.6 mainline versions, thus omitting patches for
Ext3, JFS, ReiserFS, and XFS from Linux 2.4. As for bug representativeness,
we only studied the bugs reported and fixed in patches, which is a biased
subset; there may be (many) other bugs not yet reported. A similar study
may be needed for user-space utilities, such as mkfs and fsck [143].

2.2 Patch Overview

File systems evolve through patches. A large number of patches are dis-
cussed and submitted to mailing lists, bug-report websites, and forums.
Some are used to implement new features, while others fix existing bugs.
In this section, we investigate three general questions regarding file-system
patches. First, what are file-system patch types? Second, how do patches
change over time? Lastly, what is the distribution of patch sizes?

2.2.1 Patch Type

We classify patches into five categories (Table 2.2): bug fixes (bug), perfor-
mance improvements (performance), reliability enhancements (reliability),
new features (feature), and maintenance and refactoring (maintenance).
Each patch usually belongs to a single category.

Figure 2.3(a) shows the number and relative percentages of patch types
for each file system. Note that even though file systems exhibit significantly
different levels of patch activity (shown by the total number of patches),
the percentage breakdowns of patch types are relatively similar.

Maintenance patches are the largest group across all file systems (ex-
cept Btrfs, a recent and not-yet-stable file system). These patches include
changes to improve readability, simplify structure, and utilize cleaner
abstractions; in general, these patches represent the necessary costs of
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Type Description
Bug Fix existing bugs

Propose more efficient designs or implementations
Performance to improve performance (e.g., reducing

synchronization overhead or use tree structures)
Improve file-system robustness

Reliability (e.g., data integrity verification, user/kernel
pointer annotations, access-permission checking)

Feature Implement new features
Maintain the code and documentation

Maintenance (e.g., adding documentation, fix compiling
error, changing APIs)

Table 2.2: Patch Type. This table describes the classification and definition of
file-system patches. There are five categories: bug fixes (bug), performance improve-
ments (performance), reliability enhancements (reliability), new features (feature), and
maintenance and refactoring (maintenance).

keeping a complex open-source system well-maintained. Because mainte-
nance patches are relatively uninteresting, we do not examine them further
in this chapter.

Bug patches have a significant presence, comprising nearly 40% of
patches in total. Not surprisingly, the Btrfs has a larger percentage of bug
patches than others; however, stable and mature file systems (such as Ext3)
also have a sizable percentage of bug patches, indicating that bug fixing
is a constant in a file system’s lifetime (Figure 2.10). Because this class of
patch is critical for developers and tool builders, we characterize them in
detail later (§2.3).

Both performance and reliability patches occur as well, although with
less frequency than maintenance and bug patches. They reveal a variety of
techniques used by different file systems, motivating further study (§2.4.1).

Finally, feature patches account for a small percentage; as we will see,
most of feature patches contain more lines of code than other patches.

Summary: Nearly half of total patches are for code maintenance and
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Figure 2.3: Patch Type and Bug Pattern. This figure shows the distribution of
patch types and bug patterns. The total number of patches is on top of each bar.

documentation; a significant number of bugs exist in not only new file
systems, but also stable file systems; all file systems make special efforts
to improve their performance and reliability; feature patches account for a
relatively small percentage of total patches.

2.2.2 Patch Trend

File systems change over time, integrating new features, fixing bugs, and
enhancing reliability and performance. Does the percentage of different
patch types increase or decrease with time?

We studied the changes in patches over time and found few interesting
changes. While the number of patches per version increased in general,
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Figure 2.4: Patch Size. This figure shows the size distribution for different patch
types, in terms of lines of modifications. The x-axis shows the lines of code in log scale;
the y-axis shows the percentage of patches.

the percentage of maintenance, bug, reliability, performance, and feature
patches remained relatively stable. Although there were a few notable
exceptions (e.g., Btrfs had a time where a large number of performance
patches were added), the statistics shown in the previous section are
relatively good summaries of the behavior at any given time. Perhaps
most interestingly, bug patches do not decrease over time; living code
bases constantly incorporate bug fixes (see §2.3).

Summary: The patch percentages are relatively stable over time; newer
file systems (e.g., Btrfs) deviate occasionally; bug patches do not diminish
despite stability.
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Figure 2.5: Bug Patch Size. This figure shows the size distribution of bug patches
for different file systems, in terms of lines of modifications. The x-axis shows the lines of
code in log scale; the y-axis shows the percentage of patches.

2.2.3 Patch Size

Patch size is one approximate way to quantify the complexity of a patch,
and is defined here as the sum of lines of added and deleted by a patch.
Figure 2.4 displays the size distribution of bug, performance, reliability,
and feature patches. Most bug patches are small; 50% are less than 10
lines of code. However, more complex file systems tend to have larger bug
patches due to their internal complexity and large code bases. Figure 2.5
shows that XFS, Ext4 and Btrfs have larger bug patches than ReiserFS and
JFS. Interestingly, feature patches are significantly larger than other patch
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types. Over 50% of these patches have more than 100 lines of code; 5%
have over 1000 lines of code.

Summary: Bug patches are generally small; complicated file systems
have larger bug patches; reliability and performance patches are medium-
sized; feature patches are significantly larger than other patch types.

2.3 File-System Bugs

In this section, we study file-system bugs in detail to understand their
patterns and consequences comprehensively. First, we examine the code
evolution for each file system over 40 versions. Second, we show the
distribution of bugs in file-system logical components. Third, we describe
our bug pattern classification, bug trends, and bug consequences. Finally,
we analyze each type of bug with a more detailed classification and a
number of real examples.

2.3.1 Code Evolution

FFS had only 1200 lines of code [141]; modern systems are notably larger,
including Ext4, Btrfs, and XFS. How does the code of these major file
systems change across time? Do all file systems increase their code bases
over time?

Figure 2.6 displays lines of code (LOC) for six file systems. First, XFS has
the largest code base for all Linux 2.6 versions; its code size is significantly
larger than Ext4, Ext3, ReiserFS and JFS. Interestingly, the XFS code base
has been significantly reduced over time, from nearly 80K LOC to 64K
LOC. As Figure 2.3(a) in §2.2.1 shows, about 60% of XFS’s patches are
maintenance patches, which are mainly used to simplify its structures,
refactor redundant code, and utilize more generic functions.

Second, new file systems Ext4 and Btrfs continuously increase their
code sizes by adding new features, improving performance and reliability.



23

0 5 10 15 20 25 30 35 40

0

10000

20000

30000

40000

50000

60000

70000

80000

Linux Version

L
in

e
s
 o

f 
C

o
d
e

XFS Ext4 Btrfs Ext3 Reiser JFS
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Ext4 nearly doubles its size compared with the initial copy of Ext3. Btrfs
grows aggressively by implementing many modern advanced features.
Ext4 and Btrfs seem to continue to grow linearly.

Third, the remaining mature file systems (Ext3, ReiserFS and JFS) keep
relatively stable code size across versions. Changes happen occasionally
when new features are added or major structures are modified. For ex-
ample, Ext3’s code size slightly increased when the block reservation
algorithm was added at 2.6.10. On the other side, ReiserFS tried to sim-
plify its structure by removing its own custom file read/write functions at
2.6.24, which reduced its code size accordingly. JFS has fewest changes
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Name Description
balloc Data block allocation and deallocation

dir Directory management
extent Contiguous physical blocks mapping

file File read and write operations
inode Inode-related metadata management
trans Journaling or other transactional support
super Superblock-related metadata management

tree Generic tree structure procedures
other Other supporting components (e.g., xattr, ioctl, resize)

Table 2.8: Logical Components. This table shows the classification and definition
of file-system logical components. There are nine components for all file systems.

due to its smaller developer and user communities.
Summary: XFS has the most lines of code, but it has reduced its size

and complexity over time; new file systems (EXT4 and Btrfs) keep growing
by adding new features; mature file systems are relatively stable while
small changes arise due to major features or structure changes.

2.3.2 Correlation Between Code and Bugs

The code complexity of file systems is changing over time as discussed in
the previous section. Several fundamental questions are germane: How is
the code distributed among different logical components? Where are the
bugs? Does each logical component have an equal degree of complexity?

File systems generally have similar logical components, such as inodes,
superblocks, and journals. To enable fair comparison, we partition each
file system into nine logical components (Table 2.8).

Figure 2.7 shows the percentage of bugs versus the percentage of code
for each of the logical components across all file systems and versions.
Within a plot, if a point is above the y = x line, it means that a logical
component (e.g., inodes) has more than its expected share of bugs, hinting
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at its complexity; a point below said line indicates a component (e.g., a
tree) with relatively few bugs per line of code, thus hinting at its relative
ease of implementation.

We make the following observations. First, for all file systems, the file,
inode, and super components have a high bug density. The file component
is high in bug density either due to bugs on the fsync path (Ext3) or custom
file I/O routines added for higher performance (XFS, Ext4, ReiserFS, JFS),
particularly so for XFS, which has a custom buffer cache and I/O manager
for scalability [204]. The inode and superblock are core metadata structures
with rich and important information for files and file systems, which are
widely accessed and updated; thus, it is perhaps unsurprising that a large
number of bugs arise therein (e.g., forgetting to update a time field in an
inode, or not properly using a superblock configuration flag).

Second, transactional code represents a substantial percentage of each
code base (as shown by the relatively high x-axis values) and, for most file
systems, has a proportional amount of bugs. This relationship holds for
Ext3 as well, even though Ext3 uses a separate journaling module (JBD);
Ext4 (with JBD2) has a slightly lower percentage of bugs because it was
built upon a more stable JBD from Linux 2.6.19. In summary, transactions
continue to be a double-edged sword in file systems: while transactions
improve data consistency in the presence of crashes, they often add many
bugs due to their large code bases.

Third, the percentage of bugs in tree components of XFS, Btrfs, ReiserFS,
and JFS is surprisingly small compared to code size. One reason may be the
care taken to implement such trees (e.g., the tree code is the only portion
of ReiserFS filled with assertions). File systems should be encouraged to
use appropriate data structures, even if they are complex, because they do
not induce an inordinate amount of bugs.

Although bug patches also relate to feature patches, it is difficult to
correlate them precisely. Code changes partly or totally overlap each other
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Type Sub-Type Description
Se

m
an

tic
State Incorrectly update or check file-system state

Logic Wrong algorithm/assumption/implementation
Config Missed configuration

I/O Timing Wrong I/O requests order
Generic Generic semantic bugs: wrong type, typo

C
on

cu
rr

en
cy Atomicity The atomic property for accesses is violated

Order The order of multiple accesses is violated
Deadlock Deadlock due to wrong locking order

Miss unlock Miss a paired unlock
Double unlock Unlock twice

Wrong lock Use the wrong lock

M
em

or
y

Resource leak Fail to release memory resource
Null pointer Dereference null pointer
Dangling Pt Dereference freed memory
Uninit read Read uninitialized variables
Double free Free memory pointer twice

Buf overflow Overrun a buffer boundary

Er
ro

r
C

od
e Miss Error Error code is not returned or checked

Wrong Error Return or check wrong error code

Table 2.9: Bug Pattern Classification. This table shows the classification and
definition of file-system bugs. There are four big categories based on root causes and
further sub-categories for detailed analysis.

over time. A bug patch may involve code changes of both old code and
recent feature patches.

Summary: The file, inode, and superblock components contain a dis-
proportionally large number of bugs; transactional code is large and has a
proportionate number of bugs; tree structures are not particularly error-
prone, and should be used when needed without much worry.
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2.3.3 Bug Patterns

To build a more reliable file system, it is important to understand the type
of bugs that are most prevalent and the typical patterns across file systems.
Since different types of bugs require different approaches to detect and fix,
these fine-grained bug patterns provide useful information to developers
and tool builders alike.

We partition file-system bugs into four categories based on their root
causes as shown in Table 2.9. The four major categories are semantic [120,
199], concurrency [74, 131], memory [54, 120, 199], and error code bugs [84,
178].

Figure 2.3(b) (page 19) shows the total number and percentage of each
type of bug across file systems. There are about 1800 total bugs, provid-
ing a great opportunity to explore bug patterns at scale. Semantic bugs
dominate other types (except for ReiserFS). Most semantic bugs require
file-system domain knowledge to understand, detect, and fix; generic bug-
finding tools (e.g., Coverity [29]) may have a hard time finding these bugs.
Concurrency bugs account for about 20% on average across file systems (ex-
cept for ReiserFS), providing a stark contrast to user-level software where
fewer than 3% of bugs are concurrency-related [120, 181, 201]. ReiserFS
stands out along these measures because of its transition, in Linux 2.6.33,
away from the Big Kernel Lock (BKL), which introduced a large number
of concurrency bugs. There are also a fair number of memory-related
bugs in all file systems; their percentages are lower than that reported in
user-level software [120, 201]. Many research and commercial tools have
been developed to detect memory bugs [29, 158], and some are used to
detect file-system bugs. Error code bugs account for only 10% of total
bugs.

Summary: Beyond maintenance, bug fixes are the most common patch
type; over half of file-system bugs are semantic bugs, likely requiring
domain knowledge to find and fix; file systems have a higher percentage
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of concurrency bugs compared with user-level software; memory and
error code bugs arise but in smaller percentages.

2.3.4 Bug Trends

File systems mature from the initial development stage to the stable stage
over time, by applying bug-fixing, performance and reliability patches.
Various bug detection and testing tools are also proposed to improve file-
system stability. A natural question arises: do file-system bug patterns
change over time, and in what way?

Our results (Figure 2.10) show that within bugs, the relative percentage
of semantic, concurrency, memory, and error code bugs varies over time,
but does not converge; a great example is XFS, which under constant
development goes through various cycles of higher and lower numbers
of bugs. Interesting exceptions occasionally arise (e.g., the BKL removal
from ReiserFS led to a large increase in concurrency bugs in 2.6.33). JFS
does experience a decline in bug patches, perhaps due to its decreasing
usage and development [219]. JFS and ReiserFS both have relatively small
developer and user bases compared to the more active file systems XFS,
Ext4 and Btrfs.

Summary: Bug patterns do not change significantly over time, increas-
ing and decreasing cyclically; large deviations of bug patterns arise due to
major structural changes.

2.3.5 Bug Consequences

As shown in Figure 2.3(b) (on page 19), there are a significant number of
bugs in file systems. But how serious are these file-system bugs? We now
categorize each bug by impact; such bug consequences include severe ones
(data corruption, system crashes, unexpected errors, deadlocks, system
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Figure 2.10: Bug Pattern Evolution. This figure shows the bug pattern evolution
for each file system over all versions.
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Type Description

Corruption On-disk or in-memory data structures are corrupted
(e.g., file data or metadata corruption, wrong statistics)

Crash File system becomes unusable
(e.g., dereference null pointer, assertion failures, panics)

Error Operation failure or unexpected error code returned
(e.g., failed write operation due to ENOSPC error)

Deadlock Wait for resources in circular chain

Hang File system makes no progress
(e.g., infinite loop, live lock)

Leak System resources are not freed after usage
(e.g., forget to free allocated file-system objects)

Wrong Diverts from expectation, excluding the above ones
(e.g., undefined behavior, security vulnerability)

Table 2.11: Bug Consequence Classification. This table shows the definitions
of various bug consequences. There are seven categories based on impact: data corruption,
system crashes, unexpected errors, deadlocks, hangs, resource leaks, and wrong behaviors.

hangs and resource leaks), and other wrong behaviors. Table 2.11 provides
more detail on these categories.

Figure 2.12(a) shows the per-system breakdowns. Data corruption
is the most predominant consequence (40%), even for well-tested and
mature file systems. Crashes account for the second largest percentage
(20%); most crashes are caused by explicit calls to BUG() or Assert() as
well as null-pointer dereferences. If the patch mentions that the crash also
causes corruption, then we classify this bug with multiple consequences.
Unexpected errors and deadlocks occur quite frequently (just under 10%
each on average), whereas other bug consequences arise less often. For ex-
ample, exhibiting the wrong behavior without more serious consequences
accounts for only 5-10% of consequences in file systems, whereas it is
dominant in user applications [120].

Given that file-system bugs are serious bugs, we were curious: do
certain bug types (e.g., semantic, concurrency, memory, or error code)
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Figure 2.12: Bug Consequences. This figure displays the breakdown of bug
consequences for file systems and bug patterns. The total number of consequences is
shown on top of each bar. A single bug may cause multiple consequences; thus, the number
of consequences instances is slightly higher than that of bugs in Figure 2.3(b).

exhibit different levels of severity? Figure 2.12(b) shows the relationship
between consequences and bug patterns. Semantic bugs lead to a large
percentage of corruptions, crashes, errors, hangs, and wrong behaviors.
Concurrency bugs are responsible for nearly all deadlocks (almost by
definition) and a fair percentage of corruptions and hangs. Memory bugs
lead to many memory leaks (as expected) and a fair amount of crashes.
Finally, error code bugs lead to a relatively small percentage of corruptions,
crashes, and (unsurprisingly) errors.

Summary: File-system bugs cause severe consequences; corruptions
and crashes are most common; wrong behavior is uncommon; semantic
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bugs can lead to significant amounts of corruptions, crashes, errors, and
hangs; all bug types have severe consequences.

2.3.6 Bug Pattern Examples and Analysis

To gain further insight into the different classes of bugs, we now describe
each class in more detail. We present examples of each and further break
down each major class (e.g., memory bugs) into smaller sub-classes (e.g.,
leaks, null-pointer dereferences, dangling pointers, uninitialized reads,
double frees, and buffer overflows).

Semantic Bugs

Semantic bugs are dominant in file systems, as shown in Figure 2.3(b).
Understanding these bugs often requires file-system domain knowledge.
Semantic bugs usually are difficult to categorize in an informative and
general way. We are the first to identify several common types of file-
system specific semantic bugs based on extensive analysis and careful
generalization of many semantic bugs across file systems. These common
types and typical patterns provide useful guidelines for analysis and
detection of file-system semantic bugs. We partition the semantic bugs
into five categories as described in Table 2.9, including state, logic, config,
I/O timing and generic. Figure 2.13(a) shows the percentage breakdown
and total number of semantic bugs; each is explained in detail below.

File systems maintain a large amount of in-memory and on-disk state.
Generally, operations transform the file system from one consistent state
to another; a mistaken state update may lead to serious consequences.
As shown in Figure 2.13(a), these state bugs contribute to roughly 40% of
semantic bugs. An example of a state bug is shown in S1 of Table 2.14,
which misses an inode-field update. Specifically, the buggy version of
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Figure 2.13: Detailed Bug Patterns. The detailed classification for each bug
pattern; total number of bugs is shown on top of each bar.
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ext3_rename() does not update the mtime and ctime of the directory into
which the file is moved, leaving metadata in an incorrect state.

There are also numerous logic bugs, which arise via the use of wrong
algorithms, bad assumptions, and incorrect implementations. An example
of a wrong algorithm is shown in S2 of Table 2.14: find_group_other()
tries to find a block group for inode allocation, but does not check all
candidate groups; the result is a possible ENOSPC error even when the file
system has free inodes.

File-system behavior is also affected by various configuration parame-
ters, such as mount options and special hardware support. Unfortunately,
file systems often forget or misuse such configuration information (about
10% to 15% of semantic bugs are of this flavor). A semantic configuration
bug is shown in S3 of Table 2.14; when Ext4 loads the journal from disk, it
forgets to check if the device is read-only before updating the superblock.

Correct I/O request ordering is critical for crash consistency in file
systems. The I/O timing category contains bugs involving incorrect I/O
ordering. For example, in ordered journal mode, a bug may flush metadata
to disk before the related data blocks are persisted. We found that only a
small percentage of semantic bugs (3-9%) are I/O timing bugs; however,
these bugs can lead to potential data loss or corruption. An I/O timing bug
is shown in S4 of Table 2.14. ReiserFS is supposed to wait for the submitted
transaction to commit synchronously instead of returning immediately.

A fair amount of generic bugs also exist in all file systems, such as using
the wrong variable type or simple typos. These bugs are general coding
mistakes (such as comparing unsigned variable with zero [216]), and may
be fixed without much file-system knowledge. A generic semantic bug is
shown in S5 of Table 2.14. In Ext3, s_group_desc is an array of pointers to
buffer_head. However, at line 3, memcpy uses the address of buffer_head,
which will corrupt the file system.

Summary: Incorrect state update and logic mistakes dominate seman-
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ext3/namei.c, 2.6.26 State (S1)
1 ext3_rename(...){
2 + new_dir->i_ctime = CURRENT_TIME_SEC;
3 + new_dir->i_mtime = CURRENT_TIME_SEC;
4 + ext3_mark_inode_dirty(handle, new_dir);

ext3/ialloc.c, 2.6.4 Logic (S2)
1 find_group_other(...){
2 - group = parent_group + 1;
3 - for (i = 2; i < ngroups; i++) {
4 + group = parent_group;
5 + for (i = 0; i < ngroups; i++) {

ext4/super.c, 2.6.37 Configuration (S3)
1 ext4_load_journal(...){
2 - if (journal_devnum && ...)
3 + if (!read_only && journal_devnum ...)
4 es->s_journal_dev = devnum;

reiserfs/super.c, 2.6.6 I/O Timing (S4)
1 reiserfs_write_super_lockfs(...){
2 journal_mark_dirty(&th, s, ...);
3 reiserfs_block_writes(&th);
4 - journal_end(&th, s, 1);
5 + journal_end_sync(&th, s, 1);

ext3/resize.c, 2.6.17 Generic (S5)
1 setup_new_group_blocks(...){
2 lock_buffer(bh);
3 - memcpy(b_data, s_group_desc[i], b_size);
4 + memcpy(b_data, s_group_desc[i]->b_data, b_size);
5 unlock_buffer(bh);
6 ext3_journal_dirty_metadata(handle, gdb);

Table 2.14: Semantic Bug Code Examples. This table shows five code examples
of semantic bugs in different file systems. One example for each category: state, logic,
config, I/O timing and generic.
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tic bug patterns; configuration errors are also not uncommon; incorrect
I/O orderings are rare (but can have serious consequences); generic bugs
require the least file-system knowledge to understand.

Concurrency Bugs

Concurrency bugs have attracted a fair amount of attention in the research
community as of late [74, 103, 131, 217, 225]. To better understand file-
system concurrency bugs, we classify them into six types as shown in
Table 2.9 (on page 27): atomicity violations, deadlocks, order violations, missed
unlocks, double unlocks, and wrong locks.

Figure 2.13(b) shows the percentage and total number of each category
of concurrency bugs. Atomicity violation bugs are usually caused by a
lack of proper synchronization methods to ensure exclusive data access,
often leading to data corruption.

An example of an atomicity violation bug in Ext4 is shown in C1 of
Table 2.15. For this bug, when two CPUs simultaneously allocate blocks,
there is no protection for the i_cached_extent structure; this atomicity
violation could thus cause the wrong location on disk to be read or written.
A simple spin-lock resolves the bug.

There are a large number of deadlocks in file systems (about 40%). Two
typical causes are the use of the wrong kernel memory allocation flag
and calling a blocking function when holding a spin lock. These patterns
are not common in application-level deadlocks, and thus knowledge of
these patterns is useful to both developers (who should be wary of such
patterns) and tool builders (who should detect them). Many deadlocks are
found in ReiserFS, once again due to the BKL. The BKL could be acquired
recursively; replacing it introduced a multitude of locking violations, many
of which led to deadlock.

A typical memory-related deadlock is shown in C2 of Table 2.15. Btrfs
uses extent_readpages() to read free space information; however, it
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ext4/extents.c, 2.6.30 Atomicity (C1)
1 + spin_lock(i_block_reservation_lock);
2 i_cached_extent->ec_start = start;
3 + spin_unlock(i_block_reservation_lock);

btrfs/extent_io.c, 2.6.39 Deadlock (C2)
1 if (!add_to_page_cache_lru(page, mapping,
2 - page->index, GFP__KERNEL)) {
3 + page->index, GFP__NOFS)) {
4 __extent_read_full_page(...);

ext4/mballoc.c, 2.6.31 Order (C3)
1 + rcu_barrier();
2 kmem_cache_destroy(ext4_pspace_cachep);

ext3/resize.c, 2.6.17 Miss Unlock (C4)
1 lock_super(sb);
2 if (input->group != sbi->s_groups_count){
3 + unlock_super(sb);
4 goto exit_journal;

xfs/xfs_dfrag.c, 2.6.30 Double Unlock (C5)
1 xfs_iunlock(ip, ...);
2 - out_unlock:
3 - xfs_iunlock(ip, ...);
4 out:
5 return error;
6 + out_unlock:
7 + xfs_iunlock(ip, ...);
8 + goto out;

ext3/resize.c, 2.6.24 Wrong Lock (C6)
1 - lock_buffer(bh);
2 + lock_buffer(gdb);
3 memcpy(gdb->b_data, b_data, b_size);
4 - unlock_buffer(bh);
5 + unlock_buffer(gdb);

Table 2.15: Concurrency Bug Code Examples. This table shows six code
examples of concurrency bugs. One example for each category: atomicity violations,
deadlocks, order violations, missed unlocks, double unlocks, and wrong locks.
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should not use GFP_KERNEL flag to allocate memory, since the VM memory
allocator kswapd will recursively call into file-system code to free mem-
ory. The fix changes the flag to GFP_NOFS to prevent VM re-entry into
file-system code.

A noticeable percentage of order violation bugs exist in all file sys-
tems. An example of an order concurrency bug is shown in C3 of Ta-
ble 2.15. The kernel memory cache ext4_pspace_cachep may be released
by call_rcu() callbacks. Thus, Ext4 must wait for the release to complete
before destroying the structure.

Missing unlocks happen mostly in exit or failure paths (e.g., putting
resource releases at the end of functions with goto statements). C4 of
Table 2.15 shows a missing-unlock bug. ext3_group_add() locks the super
block (line 1) but forgets to unlock on an error (line 3).

The remaining two categories account for a small percentage. A double
unlock example is shown in C5 of Table 2.15. The double unlock (line 1
and line 3) of XFS inode results in a reproduced deadlock on platforms
which do not handle double unlock nicely. Using wrong locks also happens.
As shown in C6 of Table 2.15, Ext3 should lock the group descriptor lock
instead of the block bitmap’s lock when updating the group descriptor.

Summary: Concurrency bugs are much more common in file systems
than in user-level software. Atomicity and deadlock bugs represent a
significant majority of concurrency bugs; many deadlock bugs are caused
by wrong kernel memory-allocation flags; most missing unlocks happen
on exit or failure paths.

Memory Bugs

Memory-related bugs are common in many source bases, and not sur-
prisingly have been the focus of many bug detection tools [29, 158]. We
classify memory bugs into six categories, as shown in Table 2.9: resource
leaks, null pointer dereferences, dangling pointers, uninitialized reads, double
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btrfs/inode.c, 2.6.30 Resource Leak (M1)
1 inode = new_inode(...);
2 ret = btrfs_set_inode_index(...);
3 - if (ret) return ERR_PTR(ret);
4 + if (ret) {
5 + iput(inode);
6 + return ERR_PTR(ret);
7 + }

ext3/super.c, 2.6.7 Null Pointer (M2)
1 if (!journal) {
2 + return NULL;
3 }
4 journal->j_private = sb;

btrfs/volumes.c, 2.6.34 Dangling Pointer (M3)
1 - submit_bio(cur->bi_rw, cur);
2 if (bio_rw_flagged(cur, BIO_RW_SYNCIO))
3 num_sync_run++;
4 + submit_bio(cur->bi_rw, cur);

ext4/ext4.h, 2.6.38 Uninit Read (M4)
1 #define EXT4_EINODE_GET_XTIME (...){
2 if (EXT4_FITS_IN_INODE(...))
3 ext4_decode_extra_time(...);
4 + else
5 + (inode)->xtime.tv_nsec = 0;

ext4/xattr.c, 2.6.33 Double Free (M5)
1 while (...){
2 if (error)
3 goto cleanup;
4 kfree(b_entry_name);
5 + b_entry_name = NULL;
6 }
7 cleanup:
8 kfree(b_entry_name);

Table 2.16: Memory Bug Code Examples. This table shows five code exam-
ples of memory bugs. One example for each category: resource leaks, null pointer
dereferences, dangling pointers, uninitialized reads, and double frees.
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frees, and buffer overflows.
Resource leaks are the most dominant, over 40% in aggregate; in contrast,

studies of user-level programs show notably lower percentages [120, 181,
201]. We find that roughly 70% of resource leaks happen on exit or failure
paths; we investigate this further later (§2.3.7). An example of resource
leaks (M1 of Table 2.16) is found in btrfs_new_inode() which allocates
an inode but forgets to free it upon failure.

As we see in Figure 2.13(c), null-pointer dereferences are also common
in both mature and young file systems. An example is shown in M2
of Table 2.16; a return statement is missing, leading to a null-pointer
dereference at line 4 following the check.

Dangling pointers have a sizeable percentage across file systems. A Btrfs
example is shown in M3 of Table 2.16. After callling submit_bio at line 1,
the bio structure can be released at any time. Checking the bio flags at
line 2 may give a wrong answer or lead to a crash.

Uninitialized reads are popular in most file systems, accounting for about
16% of all memory bugs. An Ext4 example is shown in M4 of Table 2.16.
Ext4 should should zero out inode’s tv_nsec, otherwise stat() will return
garbage in the nanosecond component of timestamps.

Double free and buffer overflow only account for a small percentage. M5
of Table 2.16 shows a double free bug in Ext4. The while loop contains
a goto statement (line 3) to cleanup, which also frees b_entry_name at
line 8. To eliminate the potential double free on this error path, Ext4 sets
b_entry_name to NULL at line 5.

Summary: Resource leaks are the largest category of memory bug,
significantly higher than that in user-level applications; null-pointer deref-
erences are also common; failure paths contribute strongly to these bugs;
many of these bugs have simple fixes.



42

Error Code Bugs

File systems need to handle a wide range of errors, including memory-
allocation failures, disk-block allocation failures, I/O failures [24, 25], and
silent data corruption [165]. Handling such faults, and passing error codes
through a complex code base, has proven challenging [84, 178]. Here, we
further break down error-code errors.

We partition the error code bugs into missing error codes and wrong error
codes as described in Table 2.9. Figure 2.13(d) shows the breakdown of
error code bugs. Missing errors are generally twice as prevalent as wrong
errors (except for JFS, which has few of these bugs overall).

A missing error code example is shown in E1 of Table 2.17. The routine
posix_acl_from_disk() could return an error code (line 2). However,
without error checking, acl is accessed at line 3 and thus the kernel crashes.

An example of a wrong error code is shown in E2 of Table 2.17. The
return value should be -EIO. However, in line 3, the original code returns
the close (but wrong) error code EIO; callers thus fail to detect the error.

Summary: Error handling bugs occur in two flavors, missing error
handling or incorrect error handling; the bugs are relatively simple in
nature compared with other types of bugs.

2.3.7 The Failure Path

Many bugs we found arose not in common-case code paths but rather
in more unusual fault-handling cases [84, 180, 227]. This type of error
handling (i.e., reacting to disk or memory failures) is critical to robustness,
since bugs on failure paths can lead to serious consequences. We now
quantify bug occurrences on failure paths; Tables 2.18 and Tables 2.19
present our accumulated results.

As we can see from the first table, roughly a third of bugs are introduced
on failure paths across all file systems. Even mature file systems such as
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reiserfs/xattr_acl.c, 2.6.16 Miss Error (E1)
1 reiserfs_get_acl(...){
2 acl = posix_acl_from_disk(...);
3 - *p_acl = posix_acl_dup(acl);
4 + if (!IS_ERR(acl))
5 + *p_acl = posix_acl_dup(acl);

jfs/jfs_imap.c, 2.6.27 Wrong Error (E2)
1 diAlloc(...){
2 jfs_error(...);
3 - return EIO;
4 + return -EIO;

Table 2.17: Error Code Bug Code Examples. This table shows two code
examples of error code bugs. One example for each category: missing error codes and
wrong error codes.

XFS Ext4 Btrfs Ext3 ReiserFS JFS
200 149 144 88 63 28

(39.1%) (33.1%) (40.2%) (38.4%) (39.9%) (35%)

Table 2.18: Failure Related Bugs By File System. This table shows the number
and percentage of the bugs related to failures, partitioned by file systems.

Semantic Concurrency Memory Error Code
283 93 117 179

(27.7%) (25.4%) (53.4%) (100%)

Table 2.19: Failure Related Bugs By Bug Pattern. This table shows the number
and percentage of the bugs related to failures, partitioned by bug patterns.



44

ext4/resize.c, 2.6.25 Semantic (F1)
1 ext4_group_extend(...) {
2 ext4_warning(sb, "multiple resizers are running");
3 unlock_super(sb);
4 + ext4_journal_stop(handle);
5 err = -EBUSY;
6 goto exit_put;

ext4/mballoc.c, 2.6.27 Concurrency (F2)
1 mb_free_blocks(...) {
2 + ext4_unlock_group(sb, e4b->bd_group);
3 ext4_error(sb, ... "double-free of inode");
4 + ext4_lock_group(sb, e4b->bd_group);

btrfs/inode.c, 2.6.39 Memory (F3)
1 btrfs_new_inode(...) {
2 path = btrfs_alloc_path();
3 inode = new_inode(root->fs_info->sb);
4 - if (!inode)
5 + if (!inode) {
6 + btrfs_free_path(path);
7 return ERR_PTR(-ENOMEM);
8 + }

Table 2.20: Code Examples of Bugs on Failure Paths. This table shows three
bug code examples of bugs on failure paths. One example for each category: semantic,
concurrency, and memory.
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Ext3 and XFS make a significant number of mistakes on these error paths.
When broken down by bug type in the second table, we see that roughly

a quarter of semantic bugs occur on failure paths, usually in the previously-
defined state and logic categories. Once a failure happens (e.g., an I/O
fails), the file system needs to free allocated disk resources and update
related metadata properly; however, it is easy to forget these updates, or
perform them incorrectly, leading to many state bugs. In addition, wrong
algorithms (logic bugs) are common; for example, when block allocation
fails, most file systems return ENOSPC immediately instead of retrying after
committing buffered transactions.

An example of a semantic bug on failure paths is shown in F1 of Ta-
ble 2.20. When Ext4 detects that multiple resizers are running on the file
system at the same time, it forgets to stop the journal to prevent further
data corruption.

A quarter of concurrency bugs arise on failure paths. Sometimes, file
systems forget to unlock locks, resulting in deadlock. Moreover, when file
systems output errors to users, they sometimes forget to unlock before
calling blocking error-output functions (deadlock). These types of mis-
takes rarely arise in user-level code [131]. Such an example is shown in F2
of Table 2.20. ext4_error() is a blocking function, which cannot be called
with a spinlock held. A correct fix is to unlock (line 2) before the blocking
function and lock again (line 4) after that.

For memory bugs, most resource-leak bugs stem from forgetting to
release allocated resources when I/O or other failures happen. There are
also numerous null-pointer dereference bugs which incorrectly assume
certain pointers are still valid after a failure. Finally (and obviously), all
error code bugs occur on failure paths (by definition). A typical example
of memory leak bugs on failure path is shown in F3 of Table 2.20. Btrfs
forgets to release allocated memory for path (line 2) when inode memory
allocation fails. Thus, Btrfs should free path (line 6) before returning an
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error code.
It is difficult to fully test failure-handling paths to find all types of bugs.

Most previous work has focused on memory resource leaks [180, 227],
missing unlock [180, 227] and error codes [84, 178]; however, existing
work can only detect a small portion of failure-handling errors, especially
omitting a large amount of semantic bugs on failure paths. Our results
provide strong motivation for improving the quality of failure-handling
code in file systems.

Summary: A high fraction of bugs occur due to improper behavior in
the presence of failures or errors across all file systems; memory-related
errors are particularly common along these rarely-executed code paths; a
quarter of semantic bugs are found on failure paths.

2.4 Performance and Reliability

A small but important set of patches improve performance and reliability
of file systems, which are quantitatively different than bug patches (as
shown in Figure 2.4). Performance and reliability patches account for 8%
and 7% of patches respectively.

2.4.1 Performance Patches

Performance is critical for all file systems. Performance patches are pro-
posed to improve existing designs or implementations. We partition these
patches into six categories as shown in Table 2.21, including synchro-
nization (sync), access optimization (access), scheduling (sched), scalability
(scale), locality (locality), and other. Figure 2.22(a) shows the breakdown.

Synchronization-based performance improvements account for over a
quarter of all performance patches across file systems. Typical solutions
used include removing a pair of unnecessary locks, using finer-grained
locking, and replacing write locks with read/write locks. A sync patch
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Type Description
Inefficient usage of synchronization methods

Synchronization (e.g., removing unnecessary locks, using
smaller locks, using read/write locks)

Access Apply smarter access strategies
Optimization (e.g., caching metadata and statistics, avoiding

unnecessary I/O and computing)

Schedule Improve I/O operations scheduling
(e.g., batching writes, opportunistic readahead)
Scale on-disk and in-memory data structures

Scalability (e.g., using trees or hash tables, per block group
structures, reducing memory usage of inodes)

Locality Overcome sub-optimal data block allocations
(e.g., reducing file fragmentation, clustered I/Os)

Other Other performance improvement techniques
(e.g., reducing function stack usage)

Table 2.21: Performance Patch Type. This table shows the classification and
definition of performance patches. There are six categories: synchronization (sync), access
optimization (access), scheduling (sched), scalability (scale), locality (locality), and other.

is shown in P1 of Table 2.23; ext4_fiemap() uses write instead of read
semaphores, limiting concurrency.

Access patches use smarter strategies to optimize performance, includ-
ing caching and work avoidance. For example, Ext3 caches metadata stats
in memory, avoiding I/O. Figure 2.22(a) shows access patches are popular.
An example Btrfs access patch is shown in P2 of Table 2.23; before searching
for free blocks, it first checks whether there is enough free space, avoiding
unnecessary work.

Sched patches improve I/O scheduling for better performance, such
as batching writes, opportunistic readahead, and avoiding unnecessary
synchrony in I/O. As can be seen, sched has a similar percentage compared
to sync and access. An interesting example of sched patch is shown in P3 of
Table 2.23. A little mistake is making all transactions synchronous, which
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Figure 2.22: Performance and Reliability Patch Patterns. This figure shows
the performance and reliability patch patterns. The total number of patches is shown on
top of each bar.

reduces Ext3 performance to comical levels.
Scale patches utilize scalable on-disk and in-memory data structures,

such as hash tables, trees, and per block-group structures. XFS has a large
number of scale patches, as scalability was always its priority. An example
Ext4 scale patch is shown in P4 of Table 2.23. Ext4 uses ext4_lblk_t (32
bits) instead of sector_t (64 bits) for logical blocks, saving unnecessary
wasted memory in ext4_inode_info structure.

Locality patches overcome sub-optimal data locality on disk, such as re-
ducing file fragmentation, improving the data block allocation algorithm.
A locality patch of Btrfs is shown in P5 of Table 2.23. Btrfs uses larger meta-
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ext4/extents.c, 2.6.31 Synchronization (P1)
1 ext4_fiemap(...){
2 - down_write(&EXT4_I(inode)->i_data_sem);
3 + down_read(&EXT4_I(inode)->i_data_sem);
4 error = ext4_ext_walk_space(...);
5 - up_write(&EXT4_I(inode)->i_data_sem);
6 + up_read(&EXT4_I(inode)->i_data_sem);

btrfs/free-space-cache.c, 2.6.39 Access Optimization (P2)
1 + if (bg->free_space < min_bytes){
2 + spin_unlock(&bg->tree_lock);
3 + return -ENOSPC;
4 + }
5 /* start to search for blocks */

ext3/xattr.c, 2.6.21 Schedule (P3)
1 error = ext3_journal_dirty_metadata(handle, bh);
2 - handle->h_sync = 1;
3 + if (IS_SYNC(inode))
4 + handle->h_sync = 1;

ext4/ext4.h, 2.6.38 Scalability (P4)
1 struct ext4_inode_info {
2 - sector_t i_da_metadata_calc_last_lblock;
3 + ext4_lblk_t i_da_metadata_calc_last_lblock;

btrfs/extent-tree.c, 2.6.29 Locality (P5)
1 int empty_cluster = 2 * 1024 * 1024;
2 if (data & BTRFS_BLOCK_GROUP_METADATA) {
3 - empty_cluster = 64 * 1024;
4 + if (!btrfs_test_opt(root, SSD))
5 + empty_cluster = 64 * 1024;

xfs/xfs_dir2_leaf.c, 2.6.17 Other (P6)
1 - xfs_dir2_put_args_t p;
2 + xfs_dir2_put_args_t *p;

Table 2.23: Performance Patch Code Examples. This table shows the code
examples of performance patches. One example for each category: sync, access,sched,
scale, locality, and other.
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data clusters for SSD devices to improve write performance (overwrite the
whole SSD block to avoid expensive erase overhead). For spinning disks,
Btrfs uses smaller metadata clusters to get better fsck performance.

There are also other performance improvement techniques, such as
reducing function stack usage and using slab memory allocator. As shown
in P6 of Table 2.23, XFS dynamically allocates a xfs_dir2_put_args_t
structure to reduce stack pressure in function xfs_dir2_leaf_getdents.

Summary: Performance patches exist in all file systems; sync, access,
and sched each account for a quarter of the total; many of the techniques
used are fairly standard (e.g., removing locks); while studying new syn-
chronization primitives, we should not forget about performance.

2.4.2 Reliability Patches

Type Description
Enhance file-system robustness

Robust (e.g., boundary limits and access permission
checking, additional internal assertions)

Corruption Improve file systems’ ability to handle various
Defense possible corruptions

Error Improve original error handling (e.g., gracefully
Enhancement handling failures, more detailed error codes)

Annotation Add endianness, user/kernel space pointer and lock
annotations for early bug detection

Debug Add more internal debugging or tracing support

Table 2.24: Reliability Patch Type. This table shows the classification and
definition of reliability patches. There are five categories: functional robustness (robust),
corruption defense (corruption), error enhancement (error), annotation (annotation), and
debugging (debug.)

Finally we study our last class of patch, those that aim to improve file-
system reliability. Different from bug-fix patches, reliability patches are
not utilized for correctness. Rather, for example, such a patch may check
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whether the super block is corrupted before mounting the file system;
further, a reliability patch might enhance error propagation [84] or add
more debugging information. Table 2.24 presents the classification of
these reliability patches, including adding assertions and other functional
robustness (robust), corruption defense (corruption), error enhancement
(error), annotation (annotation), and debugging (debug). Figure 2.22(b)
displays the distributions.

Robust patches check permissions, enforce file-system limits, and han-
dle extreme cases in a more friendly manner. Btrfs has the largest percent-
age of these patches, likely due to its early stage of development. A robust
patch is shown in R1 of Table 2.25. JFS forbids users to change file flags on
quota files, avoiding unnecessary problems caused by users.

Corruption defense patches validate the integrity of metadata when
reading from disk. For example, a patch to Ext4 checks that a directory
entry is valid before traversing that directory. In general, many corruption
patches are found at the I/O boundary, when reading from disk. An
example of a corruption defense patch of JBD2 (used by Ext4) is shown in
R2 of Table 2.25. Since the journal may be too short due to disk corruption,
JBD2 refuses to load a journal if its length is not valid.

Error enhancement patches improve error handling in a variety of
ways, such as more detail in error codes, removing unnecessary error
messages, and improving availability, for example by remounting read-
only or returning error codes instead of crashing. This last class is common
in all file systems, which each slowly replaced unnecessary BUG() and
assertion statements with more graceful error handling. A typical example
in Btrfs is shown R3 of Table 2.25. When the memory allocation at line
2 fails, instead of calling BUG_ON(1) to crash, Btrfs releases all allocated
memory pages and returns an appropriate error code.

Annotation patches label variables with additional type information
(e.g., endianness) and locking rules to enable better static checking. Reis-
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jfs/ioctl.c, 2.6.24 Robust (R1)
1 jfs_ioctl(...) {
2 + if (IS_NOQUOTA(inode))
3 + return -EPERM;
4 fs_get_inode_flags(jfs_inode);

jbd2/journal.c, 2.6.32 Corruption Defense (R2)
1 journal_reset(...){
2 first = be32_to_cpu(sb->s_first);
3 last = be32_to_cpu(sb->s_maxlen);
4 + if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1){
5 + printk(KERN_ERR "JBD: Journal too short");
6 + journal_fail_superblock(journal);
7 + return -EINVAL;
8 + }

btrfs/file.c, 2.6.38 Error Enhancement (R3)
1 prepare_pages(...) {
2 pages[i] = grab_cache_page(...);
3 if (!pages[i]) {
4 - BUG_ON(1);
5 + for (c = i - 1; c >= 0; c--) {
6 + unlock_page(pages[c]);
7 + page_cache_release(pages[c]);
8 + }
9 + return -ENOMEM;
10 }

Table 2.25: Reliability Patch Code Examples. This table shows the code
examples of reliability patches. One example for categories: robust, corruption, and error.
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erFS uses lock annotations to help prevent deadlock, whereas XFS uses
endianness annotations for numerous variable types. Debug patches sim-
ply add more diagnostic information at failure-handling points within the
file system.

Interestingly, reliability patches appear more ad hoc than bug patches.
For bug patches, most file systems have similar pattern breakdowns. In
contrast, file systems make different choices for reliability, and do so in a
generally non-uniform manner. For example, Btrfs focuses more on Robust
patches, while Ext3 and Ext4 add more Corruption defense patches.

Summary: We find that reliability patches are added to file systems
over time as part of hardening; most add simple checks, defend against
corruption upon reading from disk, or improve availability by returning
errors instead of crashing; annotations help find problems at compile time;
debug patches add diagnostic information; reliability patch usage, across
all file systems, seems ad hoc.

2.5 Case Study Using PatchDB

The patch dataset constructed from our analysis of 5079 patches contains
fine-grained information, including characterization of bug patterns (e.g.,
which semantic bugs forget to synchronize data), detailed bug conse-
quences (e.g., crashes caused by assertion failures or null-pointer deref-
erences), incorrect bug fixes (e.g., patches that are reverted after being
accepted), performance techniques (e.g., how many performance patches
remove unnecessary locks), and reliability enhancements (e.g., the loca-
tion of metadata integrity checks). These details enable further study to
improve file-system designs, propose new system language constructs,
build custom bug-detection tools, and perform realistic fault injection.

In this section, we show the utility of PatchDB by examining which
patches are common across all file systems. Due to space concerns, we
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Patch Type Typical Cases XF
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Semantic

forget sync 17 11 6 11 5 1
forget config 43 43 23 16 8 1
early enospc 5 9 14 7

wrong log credit 6 8 1 1 1

Concurrency

lock inode update 6 5 2 4 4 2
lock sleep 8 8 1 1 8

wrong kmalloc flag 20 3 3 2 1
miss unlock 10 7 4 2 2 4

Memory leak on failure 14 21 16 11 1 3
leak on exit 1 1 4 1

Error Code
miss I/O error 10 11 8 15 4 1

miss mem error 4 2 13 1 1
bad error access 3 8 2

Performance

remove lock 17 14 14 8 5 1
avoid redun write 6 4 5 4 2
check before work 8 5 15 2 1

save struct mem 3 9 1 3

Reliability metadata validation 12 9 1 7 2 1
graceful handle 8 6 5 5 1 4

Table 2.26: Common File-System Patches. This table shows the classification
and count of common patches across all file systems.

only highlight a few interesting cases. A summary is found in Table 2.26.
We first discuss specific common bugs. Within semantic bugs is forget

sync, in which a file system forgets to force data or metadata to disk. Most
forget sync bugs relate to fsync. Even for stable file systems, there are a
noticeable number of these bugs, leading to data loss or corruption under
power failures. Another common mistake is forget config, in which mount
options, feature sets, or hardware support are overlooked. File systems
also return the ENOSPC error code despite the presence of free blocks (early
enospc); Btrfs has the largest number of these bugs, and even refers to the
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Ext3 fix strategy in its patches. Even though semantic bugs are dominant
in file systems, few tools can detect semantic bugs due to the difficulty
of specifying correct behavior [70, 119, 121]. Fortunately, we find that
many semantic bugs appear across file systems, which can be leveraged to
improve bug detection.

For concurrency bugs, forgetting to lock an inode when updating it is
common; perhaps a form of monitors [92] would help. Calling a blocking
function when holding a spin lock (lock sleep) occurs frequently (also in
drivers [54, 159]). As we saw earlier (§2.3.6), using the wrong kernel
memory allocation flag is a major source of deadlock (particularly XFS). All
file systems miss unlocks frequently, in contrast to user applications [131].

For memory bugs, leaks happen on failure or exit paths frequently. For
error code bugs, there are a large number of missed I/O error bugs. For
example, Ext3, JFS, ReiserFS and XFS all ignore write I/O errors on fsync
before Linux 2.6.9 [165]; as a result, data could be lost even when fsync
returned successfully. Memory allocation errors are also often ignored
(especially in Btrfs). Three file systems mistakenly dereference error codes.

For performance patches, removing locks (without sacrificing correct-
ness) is common. File systems also tend to write redundant data (e.g.,
fdatasync unnecessarily flushes metadata). Another common performance
improvement case is check before work, in which missing specific condition
checking costs unnecessary I/O or CPU overhead.

Finally, for reliability patches, metadata validation (i.e., inode, super
block, directory and journal) is popular. Most of these patches occur
in similar places (e.g., when mounting the file system, recovering from
the journal, or reading an inode). Also common is replacing BUG() and
Assert() calls with more graceful error handling.

Summary: Despite their diversity, file systems share many similarities
across implementations; some examples occur quite frequently; PatchDB
affords new opportunities to study such phenomena in great detail.
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2.6 Conclusions

In this chapter, we perform a comprehensive study of 5079 patches across
six Linux file systems; our analysis includes one of the largest studies
of bugs to date (nearly 1800 bugs). We make the following high-level
observations. A large number of patches (nearly 50%) are maintenance
patches, reflecting the constant refactoring work needed to keep code
simple and maintainable. The remaining dominant category is bugs (just
under 40%), showing how much effort is required to slowly inch towards a
“correct” implementation. Interestingly, the number of bugs does not die
down over time (even for stable file systems), rather ebbing and flowing.

Breaking down the bug category further, we find that semantic bugs
are the dominant bug category (over 50% of all bugs). These types of bugs
are vexing, as most of them are hard to detect via generic bug detection
tools; Concurrency bugs are the next most common (about 20% of bugs),
more prevalent than in user-level software. The remaining bugs are split
evenly across memory bugs and error handling.

We also categorize bugs along other axes to gain further insight. For
example, when broken down by consequence, we find that most of the
bugs we studied lead to crashes or corruption, and hence are quite serious.
When categorized by data structure, we find that B-trees, present in many
file systems for scalability, have relatively few bugs per line of code. When
classified by whether bugs occur on normal or failure-handling paths, we
make the following important discovery: nearly 40% of all bugs occur on
failure-handling paths. Future system designs need better tool or language
support to make these rarely-executed failure paths correct.

Finally, while bug patches comprise most of our study, performance and
reliability patches are also prevalent. The performance techniques used
are relatively common and widespread (e.g., removing an unnecessary
I/O, or downgrading a write lock to a read lock). About a quarter of
performance patches reduce synchronization overheads. In contrast to
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performance techniques, reliability techniques seem to be added in a rather
ad hoc fashion (e.g., most file systems apply sanity checks non-uniformly).

Beyond numerous interesting results, another outcome of our work is
an annotated dataset of file-system patches, which is publicly available for
further study (http://research.cs.wisc.edu/wind/Traces/fs-patch).
We hope that this dataset should be of utility to file-system developers,
systems-language designers, and tool makers; the careful study of these
results should result in a new generation of more robust, reliable, and
performant file systems.

http://research.cs.wisc.edu/wind/Traces/fs-patch
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3
Physical Disentanglement in

IceFS

From the previous chapter, we know that many bugs exist in file systems,
and most of bugs can lead to serious consequences (e.g., data corruption
or system crashes). One natural following question is that is there enough
isolation within a file system to cope with corruption, crashes and per-
formance problems. Unfortunately, we find that one aspect of current
file-system design has remained devoid of isolation: the physical on-disk
structures of file systems. Entanglement in a file system can cause shared
failures and bundled performance problems for all workloads. Isolation,
an important property of systems, is not preserved in file systems.

In this chapter, we first demonstrate the root problems caused by phys-
ical entanglement in current file systems. We then propose a new file
system we call IceFS. IceFS provides users with a new basic abstraction in
which to co-locate logically similar information; we call these containers
cubes. IceFS then works to ensure that files and directories within cubes
are physically distinct from files and directories in other cubes; thus data
and I/O within each cube is disentangled from data and I/O outside of it.

Primary benefits of cube disentanglement are localization and specializa-
tion. First, we show how cubes enable localized micro-failures; crashes and
read-only remounts that normally affect the entire system are now con-
strained to the faulted cube. Second, we show how cubes permit localized
micro-recovery; instead of an expensive file-system wide repair, the disen-
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tanglement found at the core of cubes enables IceFS to fully (and quickly)
repair a subset of the file system. Third, we illustrate how transaction
splitting allows the file system to commit transactions from different cubes
in parallel, greatly increasing performance (by a factor of 2x–5x) for some
workloads. Because cubes are independent, it is natural for the file system
to tailor the behavior of each. We realize the benefits of specialization by
allowing users to choose different journaling modes per cube; doing so
creates a performance/consistency knob that can be set as appropriate for
a particular workload, enabling higher performance.

The rest of this chapter is organized as follows. We first show in Section
3.1 that the aforementioned problems exist through experiments. Then
we introduce the three principles for building a disentangled file system
in Section 3.2, describe our prototype IceFS and its benefits in Section 3.3,
and evaluate IceFS in Section 3.4. Finally, we conclude in Section 3.5.

3.1 Motivation

Logical entities, such as directories, provided by the file system are an
illusion; the underlying physical entanglement in data structures and
transactional mechanisms does not provide true isolation. We describe
three problems that this entanglement causes: global failure, slow recovery,
and bundled performance. After discussing how current approaches fail
to address them, we describe the negative impact on modern systems.

3.1.1 Entanglement Problems

Global Failure

Ideally, in a robust system, a fault involving one file or directory should
not affect other files or directories, the remainder of the OS, or other users.
However, in current file systems, a single fault often leads to a global failure.
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Global Failures Ext3 Ext4 Btrfs
Crash 129 341 703

Read-only 64 161 89

Table 3.1: Global Failures in File Systems. This table shows the average number
of crash and read-only failures in Ext3, Ext4, and Btrfs source code across 14 versions of
Linux (3.0 to 3.13).

A common approach for handling faults in current file systems is to
either crash the entire system (e.g., by calling BUG_ON, panic, or assert) or
to mark the whole file system read-only. Crashes and read-only behavior
are not constrained to only the faulty part of the file system; instead, a
global reaction is enforced for the whole system. For example, Btrfs crashes
the entire OS when it finds an invariant is violated in its extent tree; Ext3
marks the whole file system as read-only when it detects a corruption in a
single inode bitmap. To illustrate the prevalence of these coarse reactions,
we analyzed the source code and counted the average number of such
global failure instances in Ext3 with JBD, Ext4 with JBD2, and Btrfs from
Linux 3.0 to 3.13. As shown in Table 3.1, each file system has hundreds of
invocations to these poor global reactions.

Current file systems trigger global failures to react to a wide range
of system faults. Table 3.2 shows there are many root causes: metadata
failures and corruptions, pointer faults, memory allocation faults, and
invariant faults. These types of faults exist in real systems [24, 25, 54,
126, 159, 200, 201], and they are used for fault injection experiments in
many research projects [52, 165, 167, 203, 205, 233]. Responding to these
various faults in a non-global manner is non-trivial; the table shows that a
high percentage (89% in Ext3, 65% in Ext4) of these faults are caused by
entangled data structures (e.g., bitmaps and transactions).
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Fault Type Ext3 Ext4
Metadata read failure 70 (66) 95 (90)

Metadata write failure 57 (55) 71 (69)
Metadata corruption 25 (11) 62 (28)

Pointer fault 76 (76) 123 (85)
Interface fault 8 (1) 63 (8)

Memory allocation 56 (56) 69 (68)
Synchronization fault 17 (14) 32 (27)

Logic fault 6 (0) 17 (0)
Unexpected states 42 (40) 127 (54)

Table 3.2: Failure Causes in File Systems. This table shows the number
of different failure causes for Ext3 and Ext4 in Linux 3.5, including those caused by
entangled data structures (in parentheses). Note that a single failure instance may have
multiple causes.

Slow Recovery

After a failure occurs, file systems often rely on an offline file-system
checker to recover [143]. The checker scans the whole file system to verify
the consistency of metadata and repair any observed problems. Unfortu-
nately, current file system checkers are not scalable: with increasing disk
capacities and file system sizes, the time to run the checker is unacceptably
long, decreasing availability. For example, Figure 3.3 shows that the time
to run a checker [208] on an Ext3 file system grows linearly with the size
of the file system, requiring about 1000 seconds to check an 800GB file
system with 50% utilization. Ext4 has better checking performance due to
its layout optimization [140], but the checking performance is similar to
Ext3 after aging and fragmentation [133].

Despite efforts to make checking faster [31, 133, 161], check time is still
constrained by file system size and disk bandwidth. The root problem is
that current checkers are pessimistic: even though there is only a small piece
of corrupt metadata, the entire file system is checked. The main reason
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Figure 3.3: Scalability of E2fsck on Ext3. This figure shows the fsck time
on Ext3 with different file-system capacity. We create the initial file-system image on
partitions of different capacity (x-axis). We make 20 directories in the root directory and
write the same set of files to every directory. As the capacity changes, we keep the file
system at 50% utilization by varying the amount of data in the file set.

is that due to entangled data structures, it is hard or even impossible to
determine which part of the file system needs checking.

Bundled Performance and Transactions

The previous two problems occur because file systems fail to isolate meta-
data structures; additional problems occur because the file system journal
is a shared, global data structure. For example, Ext3 uses a generic journal-
ing module, JBD, to manage updates to the file system. To achieve better
throughput, instead of creating a separate transaction for every file system
update, JBD groups all updates within a short time interval (e.g., 5s) into
a single global transaction; this transaction is then committed periodically
or when an application calls fsync().

Unfortunately, these bundled transactions cause the performance of
independent processes to be bundled. Ideally, calling fsync() on a file
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should flush only the dirty data belonging to that particular file to disk;
unfortunately, in the current implementation, calling fsync() causes un-
related data in the same transaction to be flushed as well. Therefore, the
performance of write workloads may suffer when multiple applications
are writing at the same time.
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Figure 3.4: Bundled Performance on Ext3. This figure shows the performance of
running SQLite and Varmail on Ext3 in ordered mode. The SQLite workload, configured
with write-ahead logging, asynchronously writes 40KB values in sequential key order. The
Varmail workload involves 16 threads, each of which performs a series of create-append-
sync and read-append-sync operations.

Figure 3.4 illustrates this problem by running a database application
SQLite [9] and an email server workload Varmail [3] on Ext3. SQLite se-
quentially writes large key/value pairs asynchronously, while Varmail
frequently calls fsync() after small random writes. As we can see, when
these two applications run together, both applications’ performance de-
grades significantly compared with running alone, especially for Varmail.
The main reason is that both applications share the same journaling layer
and each workload affects the other. The fsync() calls issued by Varmail
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must wait for a large amount of data written by SQLite to be flushed to-
gether in the same transaction. Thus, the single shared journal causes
performance entanglement for independent applications in the same file
system. Note that we use an SSD to back the file system, so device perfor-
mance is not a bottleneck in this experiment.

3.1.2 Limitations of Current Solutions

One popular approach for providing isolation in file systems is through
the namespace. A namespace defines a subset of files and directories
that are made visible to an application. Namespace isolation is widely
used for better security in a shared environment to constrain different
applications and users. Examples include virtual machines [40, 69], Linux
containers [2, 7], chroot, BSD jail [105], and Solaris Zones [156].

However, these abstractions fail to address the problems mentioned
above. Even though a namespace can restrict application access to a subset
of the file system, files from different namespaces still share metadata,
system states, and even transactional machinery. As a result, a fault in
any shared structure can lead to a global failure; a file-system checker still
must scan the whole file system; updates from different namespaces are
bundled together in a single transaction.

Another widely-used method for providing isolation is through static
disk partitions. Users can create multiple file systems on separate parti-
tions. Partitions are effective at isolating corrupted data or metadata such
that read-only failure can be limited to one partition, but a single panic()
or BUG_ON() within one file system may crash the whole OS, affecting all
partitions. In addition, partitions are not flexible in many ways and the
number of partitions is usually limited. Furthermore, storage space may
not be effectively utilized and disk performance may decrease due to the
lack of a global block allocation. Finally, it can be challenging to manage a
large number of partitions across different file systems and applications.
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Figure 3.5: Global Failure for Virtual Machines. This figure shows how a
fault in Ext3 affects all three virtual machines (VMs). Each VM runs a workload that
writes 4KB blocks randomly to a 1GB file and calls fsync() after every 10 writes. We
inject a fault at 50s, run e2fsck after the failure, and reboot all three VMs.

3.1.3 Usage Scenarios

Entanglement in the local file system can cause significant problems to
higher-level services like virtual machines and distributed file systems. We
now demonstrate these problems via two important cases: a virtualized
storage environment and a distributed file system.

Virtual Machines

Fault isolation within the local file system is of paramount importance
to server virtualization environments. In production deployments, to
increase machine utilization, reduce costs, centralize management, and
make migration efficient [55, 185, 210], tens of virtual machines (VMs) are
often consolidated on a single host. The virtual disk image for each VM
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is usually stored as a single or a few files within the host file system. If a
single fault triggered by one of the virtual disks causes the host file system
to become read-only (e.g., metadata corruption) or to crash (e.g., assertion
failures), then all the VMs suffer. Furthermore, recovering the file system
using fsck and redeploying all VMs require considerable downtime.

Figure 3.5 shows how VMware Workstation 9 [213] running with an
Ext3 host file system reacts to a read-only failure caused by one virtual disk
image. When a read-only fault is triggered in Ext3, all three VMs receive an
error from the host file system and are immediately shut down. There are
10 VMs in the shared file system; each VM has a preallocated 20GB virtual
disk image. Although only one VM image has a fault, the entire host file
system is scanned by e2fsck, which takes more than eight minutes. This
experiment demonstrates that a single fault can affect multiple unrelated
VMs; isolation across different VMs is not preserved.

Distributed File Systems

Physical entanglement within the local file system also negatively impacts
distributed file systems, especially in multi-tenant settings. Global failures
in local file systems manifest themselves as machine failures, which are
handled by crash recovery mechanisms. Although data is not lost, fault
isolation is still hard to achieve due to long timeouts for crash detection
and the layered architecture. We demonstrate this challenge in HDFS [191],
a popular distributed file system used by many applications.

Although HDFS provides fault-tolerant machinery such as replication
and failover, it does not provide fault isolation for applications. Thus,
applications (e.g., , HBase [1, 88]) can only rely on HDFS to prevent data
loss and must provide fault isolation themselves. For instance, in HBase
multi-tenant deployments, HBase servers can manage tables owned by
various clients. To isolate different clients, each HBase server serves a
certain number of tables [6]. However, this approach does not provide
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Figure 3.6: Impact of Machine Crashes in HDFS. This figure shows the nega-
tive impact of physical entanglement within local file systems on HDFS. A kernel panic
of a local file system leads to a machine failure, which negatively affects the throughput of
multiple clients.

complete isolation: although HBase servers are grouped based on tables,
their tables are stored in HDFS nodes, which are not aware of the data
they store. Thus, an HDFS server failure will affect multiple HBase servers
and clients. Although indirection (e.g., HBase on HDFS) simplifies system
management, it makes isolation in distributed systems challenging.

Figure 3.6 illustrates such a situation: four clients concurrently read
different files stored in HDFS when a machine crashes; the crashed ma-
chine stores data blocks for all four clients. In this experiment, only the
first client is fortunate enough to not reference this crashed node and
thus finishes early. The other three lose throughput for 60 seconds before
failing over to other nodes. Although data loss does not occur as data is
replicated on multiple nodes in HDFS, this behavior may not be acceptable
for latency-sensitive applications.
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3.2 File System Disentanglement

To avoid the problems described in the previous section, file systems need
to be redesigned to avoid artificial coupling between logical entities and
physical realization. In this section, we first discuss a key abstraction that
enables such disentanglement: the file system cube. We then discuss three
key principles that realizes disentanglement: no shared physical resources,
no access dependencies, and no bundled transactions.

3.2.1 The Cube Abstraction

We propose a new file system abstraction, the cube, that enables applica-
tions to specify which files and directories are logically related. The file
system can safely combine the performance and reliability properties of
groups of files and their metadata that belong to the same cube; each cube
is physically isolated from others and is thus completely independent at
the file system level.

The cube abstraction is easy to use, with the following operations:
Create a cube: A cube can be created on demand. A default global

cube is created when a new file system is created with the mkfs utility.
Set cube attributes: Applications can specify customized attributes

for each cube. Supported attributes include: failure policy (e.g., read-only
or crash), recovery policy (e.g., online or offline checking) and journaling
mode (e.g., high or low consistency requirement).

Add files to a cube: Users can create or move files or directories into
a cube. By default, files and directories inherit the cube of their parent
directory.

Delete files from a cube: Files and directories can be removed from
the cube via unlink, rmdir, and rename.

Remove a cube: Applications can delete a cube completely along with
all files within it. The released disk space can then be used by other cubes.
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The cube abstraction has a number of attractive properties. First, each
cube is isolated from other cubes both logically and physically; at the file
system level, each cube is independent for failure, recovery, and journaling.
Second, the use of cubes can be transparent to applications; once a cube is
created, applications can interact with the file system without modification.
Third, cubes are flexible; cubes can be created and destroyed on demand,
similar to working with directories. Fourth, cubes are elastic in storage
space usage; unlike partitions, no storage over-provision or reservation is
needed for a cube. Fifth, cubes can be customized for diverse requirements;
for example, an important cube may be set with high consistency and
immediate recovery attributes. Finally, cubes are lightweight; a cube does
not require extensive memory or disk resources.

3.2.2 Disentangled Data Structures

To support the cube abstraction, key data structures within modern file
systems must be disentangled. We discuss three principles of disentangled
data structures: no shared physical resources, no access dependencies,
and no shared transactions.

No Shared Physical Resources

For cubes to have independent performance and reliability, multiple cubes
must not share the same physical resources within the file system (e.g.,
blocks on disk or pages in memory). Unfortunately, current file systems
freely co-locate metadata from multiple files and directories into the same
unit of physical storage.

In classic Ext-style file systems, storage space is divided into fixed-size
block groups, in which each block group has its own metadata (i.e., a group
descriptor, an inode bitmap, a block bitmap, and inode tables). Files and
directories are allocated to particular block groups using heuristics to
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improve locality and to balance space. Thus, even though the disk is parti-
tioned into multiple block groups, any block group and its corresponding
metadata blocks can be shared across any set of files. For example, in Ext3,
Ext4 and Btrfs, a single block is likely to contain inodes for multiple unre-
lated files and directories; if I/O fails for one inode block, then all the files
with inodes in that block will not be accessible. As another example, to
save space, Ext3 and Ext4 store many group descriptors in one disk block,
even though these group descriptors describe unrelated block groups.

This false sharing percolates from on-disk blocks up to in-memory
data structures at runtime. Shared resources directly lead to global fail-
ures, since a single corruption or I/O failure affects multiple logically-
independent files. Therefore, to isolate cubes, a disentangled file system
must partition its various data structures into smaller independent ones.

No Access Dependency

To support independent cubes, a disentangled file system must also ensure
that one cube does not contain references to or need to access other cubes.
Current file systems often contain a number of data structures that violate
this principle. Specifically, linked lists and trees encode dependencies across
entries by design. For example, Ext3 and Ext4 maintain an orphan inode
list in the super block to record files to be deleted; Btrfs and XFS use Btrees
extensively for high performance. Unfortunately, one failed entry in a list
or tree affects all entries following or below it.

The most egregious example of access dependencies in file systems is
commonly found in the implementation of the hierarchical directory structure.
In Ext-based systems, the path for reaching a particular file in the directory
structure is implicitly encoded in the physical layout of those files and
directories on disk. Thus, to read a file, all directories up to the root must be
accessible. If a single directory along this path is corrupted or unavailable,
a file will be inaccessible.
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No Bundled Transactions

The final data structure and mechanism that must be disentangled to
provide isolation to cubes are transactions. To guarantee the consistency
of metadata and data, existing file systems typically use journaling (e.g.,
Ext3 and Ext4) or copy-on-write (e.g., Btrfs and ZFS) with transactions.
A transaction contains temporal updates from many files within a short
period of time (e.g., 5s in Ext3 and Ext4). A shared transaction batches
multiple updates and is flushed to disk as a single atomic unit in which
either all or none of the updates are successful.

Unfortunately, transaction batching artificially tangles together logi-
cally independent operations in several ways. First, if the shared trans-
action fails, updates to all of the files in this transaction will fail as well.
Second, in physical journaling file systems (e.g., , Ext3), a fsync() call
on one file will force data from other files in the same transaction to be
flushed as well; this falsely couples performance across independent files
and workloads.

3.3 The Ice File System

We now present IceFS, a file system that provides cubes as its basic new
abstraction. We begin by discussing the important internal mechanisms
of IceFS, including novel directory independence and transaction splitting
mechanisms. Disentangling data structures and mechanisms enables
the file system to provide behaviors that are localized and specialized to
each container. We describe three major benefits of a disentangled file
system (localized reactions to failures, localized recovery, and specialized
journaling performance) and how such benefits are realized in IceFS.
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3.3.1 IceFS

We implement a prototype of a disentangled file system, IceFS, as a set
of modifications to Ext3, a standard and mature journaling file system in
many Linux distributions. We disentangle Ext3 as a proof of concept; we
believe our general design can be applied to other file systems as well.

Realizing the Cube Abstraction

The cube abstraction does not require radical changes to the existing POSIX
interface. In IceFS, a cube is implemented as a special directory; all files
and sub-directories within the cube directory belong to the same cube.

To create a cube, users pass a cube flag when they call mkdir(). IceFS
creates the directory and records that this directory is a cube. When
creating a cube, customized cube attributes are also supported, such as a
specific journaling mode for different cubes. To delete a cube, only rmdir()
is needed.

IceFS provides a simple mechanism for filesystem isolation so that
users have the freedom to define their own policies. For example, an NFS
server can automatically create a cube for the home directory of each user,
while a VM server can isolate each virtual machine in its own cube. An
application can use a cube as a data container, which isolates its own data
from other applications.

Physical Resource Isolation

A straightforward approach for supporting cubes is to leverage the existing
concept of a block group in many existing file systems. To disentangle
shared resources and isolate different cubes, IceFS dictates that a block
group can be assigned to only one cube at any time, as shown in Figure 3.7;
in this way, all metadata associated with a block group (e.g., bitmaps
and inode tables) belongs to only one cube. A block group freed by one
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Figure 3.7: Disk Layout of IceFS. This figure shows the disk layout of IceFS. Each
cube has a sub-super block, stored after the global super block. Each cube also has its own
separated block groups. Si: sub-super block for cube i; bg: a block group.

cube can be allocated to any other cube. Compared with partitions, the
allocation unit of cubes is only one block group, much smaller than the
size of a typical multiple GB partition.

When allocating a new data block or an inode for a cube, the target
block group is chosen to be either an empty block group or a block group
already belonging to the cube. Enforcing the requirement that a block
group is devoted to a single cube requires changing the file and directory
allocation algorithms such that they are cube-aware without losing locality.

To identify the cube of a block group, IceFS stores a cube ID in the
group descriptor. To get the cube ID for a file, IceFS simply leverages
the static mapping of inode numbers to block groups as in the base Ext3
file system; after mapping the inode of the file to the block group, IceFS
obtains the cube ID from the corresponding group descriptor. Since all
group descriptors are loaded into memory during the mount process, no
extra I/O is required to determine the cube of a file.

IceFS trades disk and memory space for the independence of cubes.
To save memory and reduce disk I/O, Ext3 typically places multiple con-
tiguous group descriptors into a single disk block. IceFS modifies this
policy so that only group descriptors from the same cube can be placed
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Figure 3.8: An Example of Cubes and Directory Indirection. This figure
shows how the cubes are organized in a directory tree, and how the directory indirection
for a cube is achieved.

in the same block. This approach is similar to the meta-group of Ext4 for
combining several block groups into a larger block group [139].

Access Independence

To disentangle cubes, no cube can reference another cube. Thus, IceFS
partitions each global list that Ext3 maintains into per-cube lists. Specif-
ically, Ext3 stores the head of the global orphan inode list in the super
block. To isolate this shared list and the shared super block, IceFS uses
one sub-super block for each cube; these sub-super blocks are stored on
disk after the super block and each references its own orphan inode list as
shown in Figure 3.7. IceFS preallocates a fixed number of sub-super blocks
following the super block. The maximum number of sub-super blocks
is configurable at mkfs time. These sub-super blocks can be replicated
within the disk similar to the super block to avoid catastrophic damage of
sub-super blocks.

In contrast to a traditional file system, if IceFS detects a reference from
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one cube to a block in another cube, then it knows that reference is incorrect.
For example, no data block should be located in a different cube than the
inode of the file to which it belongs.

To disentangle the file namespace from its physical representation on
disk and to remove the naming dependencies across cubes, IceFS uses
directory indirection, as shown in Figure 3.8. With directory indirection,
each cube records its top directory; when the file system performs a path-
name lookup, it first finds a longest prefix match of the pathname among
the cubes’ top directory paths; if it does, then only the remaining path-
name within the cube is traversed. For example, if the user wishes to
access /home/bob/research/paper.tex and /home/bob/research/ desig-
nates the top of a cube, then IceFS will skip directly to parsing paper.tex
within the cube. As a result, any failure outside of this cube, or to the home
or bob directories, will not affect accessing paper.tex.

In IceFS, the path lookup performed by the VFS layer is modified to
provide directory indirection for cubes. The inode number and the path-
name of the top directory of a cube are stored in its sub-super block; when
the file system is mounted, IceFS pins in memory this information along
with the cube’s dentry, inode, and pathname. Later, when a pathname
lookup is performed, VFS passes the pathname to IceFS so that IceFS can
check whether the pathname is within any cube. If there is no match,
then VFS performs the lookup as usual; otherwise, VFS uses the matched
cube’s dentry as a shortcut to resolve the remaining part of the pathname.

Transaction Splitting

To disentangle transactions belonging to different cubes, we introduce
transaction splitting, as shown in Figure 3.9. With transaction splitting,
each cube has its own running transaction to buffer writes. Transactions
from different cubes are committed to disk in parallel without any waiting
or dependencies across cubes. With this approach, any failure along the
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Figure 3.9: Transaction Split Architecture. This figure shows the different
transaction architectures in Ext3/4 and IceFS. In IceFS, different colors represent different
cubes’ transactions.

transaction I/O path can be attributed to the source cube, and the related
recovery action can be triggered only for the faulty cube, while other
healthy cubes still function normally.

IceFS leverages the existing generic journaling module of Ext3, JBD. To
provide specialized journaling for different cubes, each cube has a virtual
journal managed by JBD with a potentially customized journaling mode.
When IceFS starts an atomic operation for a file or directory, it passes the
related cube ID to JBD. Since each cube has a separate virtual journal, a
commit of a running transaction will only be triggered by its own fsync()
or timeout without any entanglement with other cubes.

Different virtual journals share the physical journal space on disk. At
the beginning of a commit, IceFS will first reserve journal space for the
transaction of the cube; a separate committing thread will flush the trans-
action to the journal. Since transactions from different cubes write to
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different places on the journal, IceFS can perform multiple commits in par-
allel. Note that, the original JBD uses a shared lock to synchronize various
structures in the journaling layer, while IceFS needs only a single shared
lock to allocate transaction space; the rest of the transaction operations
can now be performed independently without limiting concurrency.

3.3.2 Localized Reactions to Failures

As shown in Section 3.1, current file systems handle serious errors by crash-
ing the whole system or marking the entire file system as read-only. Once
a disentangled file system is partitioned into multiple independent cubes,
the failure of one cube can be detected and controlled with a more precise
boundary. Therefore, failure isolation can be achieved by transforming a
global failure to a local per-cube failure.

Fault Detection

Our goal is to provide a new fault-handling primitive, which can localize
global failure behaviors to an isolated cube. This primitive is largely
orthogonal to the issue of detecting the original faults. We currently
leverage existing detection mechanism within file systems to identify
various faults.

For example, file systems tend to detect metadata corruption at the I/O
boundary by using their own semantics to verify the correctness of file
system structures; file systems check error conditions when interacting
with other subsystems (e.g., failed disk read/writes or memory alloca-
tions); file systems also check assertions and invariants that might fail due
to concurrency problems.

IceFS modifies the existing detection techniques to make them cube-
aware. For example, Ext3 calls ext3_error() to mark the file system as
read-only on an inode bitmap read I/O fault. IceFS instruments the fault-
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handling and crash-triggering functions (e.g., BUG_ON()) to include the ID
of the responsible cube; pinpointing the faulty cube is straightforward as
all metadata is isolated. Thus, IceFS has cube-aware fault detectors.

One can argue that the incentive for detecting problems in current file
systems is relatively low because many of the existing recovery techniques
(e.g., calling panic()) are highly pessimistic and intrusive, making the
entire system unusable. A disentangled file system can contain faults
within a single cube and thus provides incentive to add more checks.

Localized Read-Only

As a recovery technique, IceFS enables a single cube to be read-only. In
IceFS, only files within a faulty cube are made read-only, and other cubes
remain available for both reads and writes, improving the overall availabil-
ity of the file system. IceFS performs this per-cube reaction by adapting
the existing mechanisms within Ext3 for making all files read-only.

To guarantee read-only for all files in Ext3, two steps are needed. First,
the transaction engine is immediately shut down. Existing running trans-
actions are aborted, and attempting to create a new transaction or join
an existing transaction results in an error code. Second, the generic VFS
super block is marked as read-only; as a result, future writes are rejected.

To localize read-only failures, a disentangled file system can execute
two similar steps. First, with the transaction split framework, IceFS indi-
vidually aborts the transaction for a single cube; thus, no more transactions
are allowed for the faulty cube. Second, the faulty cube alone is marked
as read-only, instead of the whole file system. When any operation is per-
formed, IceFS now checks this per-cube state whenever it would usually
check the super block read-only state. As a result, any write to a read-only
cube receives an error code, as desired.



79

Localized Crashes

Similarly, IceFS is able to localize a crash for a failed cube, such that the
crash does not impact the entire operating system or operations of other
cubes. Again, IceFS leverages the existing mechanisms in the Linux kernel
for dealing with crashes caused by panic(), BUG(), and BUG_ON(). IceFS
performs the following steps:

• Fail the crash-triggering thread: When a thread fires an assertion failure,
IceFS identifies the cube being accessed and marks that cube as
crashed. The failed thread is directed to the failure path, during
which the failed thread will free its allocated resources (e.g., locks
and memory). IceFS adds this error path if it does not exist in the
original code.

• Prevent new threads: A crashed cube should reject any new file-system
request. IceFS identifies whether a request is related to a crashed
cube as early as possible and return appropriate error codes to ter-
minate the related system call. Preventing new accesses consists
of blocking the entry point functions and the directory indirection
functions. For example, the state of a cube is checked at all the
callbacks provided by Ext3, such as super block operations (e.g.,
ext3_write_inode()), directory operations (e.g., ext3_readdir()),
and file operations (e.g., ext3_sync_file()). One complication is
that many system calls use either a pathname or a file descriptor as
an input; VFS usually translates the pathname or file descriptor into
an inode. However, directory indirection in IceFS can be used to
quickly prevent a new thread from entering the crashed cube. When
VFS conducts the directory indirection, IceFS will see that the path-
name belongs to a crashed cube and VFS will return an appropriate
error to the application.
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• Evacuate running threads: Besides the crash-triggering thread, other
threads may be accessing the same cube when the crash happens.
IceFS waits for these threads to leave the crashed cube, so they will
free their kernel and file-system resources. Since the cube is marked
as crashed, these running threads cannot read or write to the cube
and will exit with error codes. To track the presence of on-going
threads, IceFS maintains a simple counter for each cube; the counter
is incremented when a system call is entered and decremented when
a system call returns, similar to the system-call gate [142].

• Clean up the cube: Once all the running threads are evacuated, IceFS
cleans up the memory states of the crashed cube similar to the un-
mount process. Specifically, dirty file pages and metadata buffers
belonging to the crashed are dropped without being flushed to disk;
clean states, such as cached dentries and inodes, are freed.

3.3.3 Localized Recovery

As shown in Section 3.1, current file system checkers do not scale well to
large file systems. With the cube abstraction, IceFS can solve this problem
by enabling per-cube checking. Since each cube represents an independent
fault domain with its own isolated metadata and no references to other
cubes, a cube can be viewed as a basic checking unit instead of the whole
file system.

Offline Checking

In a traditional file-system checker, the file system must be offline to avoid
conflicts with a running workload. For simplicity, we first describe a
per-cube offline checker.

Ext3 uses the utility e2fsck to check the file system in five phases [143].
IceFS changes e2fsck to make it cube-aware; we call the resulting checker
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ice-fsck. The main idea is that IceFS supports partial checking of a file
system by examining only faulty cubes. In IceFS, when a corruption is
detected at run time, the error identifying the faulty cube is recorded in
fixed locations on disk. Thus, when ice-fsck is run, erroneous cubes can
be easily identified, checked, and repaired, while ignoring the rest of the
file system. Of course, ice-fsck can still perform a full file system check
and repair, if desired.

Specifically, ice-fsck identifies faulty cubes and their corresponding
block groups by reading the error codes recorded in the journal. Before
loading the metadata from a block group, each of the five phases of ice-fsck
first ensures that this block group belongs to a faulty cube. Because the
metadata of a cube is guaranteed to be self-contained, metadata from other
cubes not need to be checked. For example, because an inode in one cube
cannot point to an indirect block stored in another cube (or block group),
ice-fsck can focus on a subset of the block groups. Similarly, checking the
directory hierarchy in ice-fsck is simplified; while e2fsck must verify that
every file can be connected back to the root directory, ice-fsck only needs
to verify that each file in a cube can be reached from the entry points of
the cube.

Online Checking

Offline checking of a file system implies that the data will be unavailable
to important workloads, which is not acceptable for many applications. A
disentangled file system enables on-line checking of faulty cubes while
other healthy cubes remain available to foreground traffic, which can
greatly improve the availability of the whole service.

Online checking is challenging in existing file systems because meta-
data is shared loosely by multiple files; if a piece of metadata must be
repaired, then all the related files should be frozen or repaired together.
Coordinating concurrent updates between the checker and the file system



82

is non-trivial. However, in a disentangled file system, the fine-grained
isolation of cubes makes online checking feasible and efficient.

We note that online checking and repair is a powerful recovery mech-
anism compared to simply crashing or marking a cube read-only. Now,
when a fault or corruption is identified at runtime with existing detection
techniques, IceFS can unmount the cube so it is no longer visible, and then
launch ice-fsck on the corrupted cube while the rest of the file system func-
tions normally. In our implementation, the on-line ice-fsck is a user-space
program that is woken up by IceFS informed of the ID of the faulty cubes.

3.3.4 Specialized Journaling

As described previously, disentangling journal transactions for different
cubes enables write operations in different cubes to proceed without im-
pacting others. Disentangling journal transactions (in conjunction with
disentangling all other metadata) also enables different cubes to have
different consistency guarantees.

Journaling protects files in case of system crashes, providing certain
consistency guarantees, such as metadata or data consistency. Modern
journaling file systems support different modes; for example, Ext3 and
Ext4 support, from lowest to highest consistency: writeback, ordered, and
data. However, the journaling mode is enforced for the entire file system,
even though users and applications may desire differentiated consistency
guarantees for their data. Transaction splitting enables a specialized jour-
naling protocol to be provided for each cube.

A disentangled file system is free to choose customized consistency
modes for each cube, since there are no dependencies across them; even
if the metadata of one cube is updated inconsistently and a crash occurs,
other cubes will not be affected. IceFS supports five consistency modes,
from lowest to highest: no fsync, no journal, writeback journal, ordered journal
and data journal. In general, there is an incentive to choose modes with
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lower consistency to achieve higher performance, and an incentive to
choose modes with higher consistency to protect data in the presence of
system crashes.

For example, a cube that stores important configuration files for the
system may use data journaling to ensure both data and metadata con-
sistency. Another cube with temporary files may be configured to use no
journal (i.e., , behave similarly to Ext2) to achieve the highest performance,
given that applications can recreate the files if a crash occurs. Going one
step further, if users do not care about the durability of data of a particular
application, the no fsync mode can be used to ignore fsync() calls from
applications. Thus, IceFS gives more control to applications and users,
allowing them to adopt a customized consistency mode for their data.

IceFS uses the existing implementations within JBD to achieve the three
journaling modes of writeback, ordered, and data. Specifically, when there
is an update for a cube, IceFS uses the specified journaling mode to handle
the update. For no journal, IceFS behaves like a non-journaled file system,
such as Ext2, and does not use the JBD layer at all. Finally, for no fsync,
IceFS ignores fsync() system calls from applications and directly returns
without flushing any related data or metadata.

3.3.5 Implementation Complexity

We added and modified around 6500 LOC to Ext3/JBD in Linux 3.5 for
the data structures and journaling isolation, 970 LOC to VFS for directory
indirection and crash localization, and 740 LOC to e2fsprogs 1.42.8 for file
system creation and checking. The most challenging part of the implemen-
tation was to isolate various data structures and transactions for cubes.
Once we carefully isolated each cube (both on disk and in memory), the
localized reactions to failures and recovery was straightforward.
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Workload Ext3 IceFS Difference
(MB/s) (MB/s)

Sequential write 98.9 98.8 0%
Sequential read 107.5 107.8 +0.3%
Random write 2.1 2.1 0%
Random read 0.7 0.7 0%
Fileserver 73.9 69.8 -5.5%
Varmail 2.2 2.3 +4.5%
Webserver 151.0 150.4 -0.4%

Table 3.10: Micro and Macro Benchmarks on Ext3 and IceFS. This table
compares the throughput of micro and macro benchmarks on Ext3 and IceFS. Sequential
write/read are writing/reading a 1GB file in 4KB requests. Random write/read are writ-
ing/reading 128MB of a 1GB file in 4KB requests. Fileserver has 50 threads performing
creates, deletes, appends, whole-file writes, and whole-file reads. Varmail emulates a
multi-threaded mail server. Webserver is a multi-threaded read-intensive workload.

3.4 Evaluation of IceFS

We present evaluation results for IceFS. We first evaluate the basic perfor-
mance of IceFS through a series of micro and macro benchmarks. Then,
we show that IceFS is able to localize many failures that were previously
global. All the experiments are performed on machines with an Intel(R)
Core(TM) i5-2500K CPU (3.30 GHz), 16GB memory, and a 1TB Hitachi
Deskstar 7K1000.B hard drive, unless otherwise specified.

3.4.1 Overall Performance

We assess the performance of IceFS with micro and macro benchmarks.
First, we mount both file systems in the default ordered journaling mode,
and run several micro benchmarks (sequential read/write and random
read/write) and three macro workloads from Filebench (Fileserver, Var-
mail, and Webserver). For IceFS, each workload uses one cube to store its
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data. Table 3.10 shows the throughput of all the benchmarks on Ext3 and
IceFS. From the table, one can see that IceFS performs similarly to Ext3,
indicating that our disentanglement techniques incur little overhead.

IceFS maintains extra structures for each cube on disk and in memory.
For each cube IceFS creates, one sub-super block (4KB) is allocated on disk.
Similar to the original super block, sub-super blocks are also cached in
memory. In addition, each cube has its own journaling structures (278 B)
and cached running states (104 B) in memory. In total, for each cube, its
disk overhead is 4 KB and memory overhead is less than 4.5 KB.

3.4.2 Localize Failures

We show that IceFS converts many global failures into local, per-cube
failures. We inject faults into core file-system structures where existing
checks are capable of detecting the problem. These faults are selected
from Table 3.2 and they cover all different fault types, including memory
allocation failures, metadata corruption, I/O failures, NULL pointers, and
unexpected states. To compare the behaviors, the faults are injected in the
same locations for both Ext3 and IceFS. Overall, we injected nearly 200
faults. With Ext3, in every case, the faults led to global failures of some
kind (such as an OS panic or crash). IceFS, in contrast, was able to localize
the triggered faults in every case.

However, we found that there are also a small number of failures
during the mount process, which are impossible to isolate. For example,
if a memory allocation failure happens when initializing the super block
during the mount process, then the mount process will exit with an error
code. In such cases, both Ext3 and IceFS will not be able to handle it
because the fault happens before the file system starts running.



86

0

200

400

600

800

1000

F
s
c
k
 T

im
e
 (

s
)

File-system Capacity

200GB 400GB 600GB 800GB

231

476

723

1007

35 64 91 122

Ext3 IceFS

Figure 3.11: Performance of IceFS Offline Fsck. This figure compares the
running time of offline fsck on ext3 and on IceFS with different file-system size.

3.4.3 Fast Recovery

With localized failure detection, IceFS is able to perform offline fsck only
on the faulted cube. To measure fsck performance on IceFS, we first create
file system images in the same way as described in Figure 3.3, except that
we make 20 cubes instead of directories. We then fail one cube randomly
and measure the fsck time. Figure 3.11 compares the offline fsck time
between IceFS and Ext3. The fsck time of IceFS increases as the capacity
of the cube grows along with the file system size; in all cases, fsck on
IceFS takes much less time than Ext3 because it only needs to check the
consistency of one cube.
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3.4.4 Specialized Journaling
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Figure 3.12: Running Two Applications on IceFS with Different Jour-
naling Mode. This figure compares the performance of simultaneously running
SQLite and Varmail on Ext3, partitions and IceFS. In Ext3, both applications run in
ordered mode (OR). In Ext3-Part, two separated Ext3 run in ordered mode (OR) on two
partitions. In IceFS, two separate cubes used different journaling modes: ordered mode
(OR) and no-journal mode (NJ).

We now demonstrate that a disentangled journal enables different
consistency modes to be used by different applications on a shared file
system. For these experiments, we use a Samsung 840 EVO SSD (500GB)
as the underlying storage device. Figure 3.12 shows the throughput of
running two applications, SQLite and Varmail, in Ext3, two separated Ext3
on partitions (Ext3-Part) and IceFS. When running with Ext3 and ordered
journaling (two leftmost bars), both applications achieve low performance
because they share the same journaling layer and both workloads affect
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the other. When the applications run with IceFS on two different cubes,
their performance increases significantly since fsync() calls to one cube
do not force out dirty data to the other cube. Compared with Ext3-Part,
we can find that IceFS achieves great isolation for cubes at the file system
level, similar to running two different file systems on partitions.

We also demonstrate that different applications can benefit from dif-
ferent journaling modes; in particular, if an application can recover from
inconsistent data after a crash, the no-journal mode can be used for much
higher performance while other applications can continue to safely use
ordered mode. As shown in Figure 3.12, when either SQLite or Varmail is
run on a cube with no journaling, that application receives significantly
better throughput than it did in ordered mode; at the same time, the com-
peting application using ordered mode continues to perform better than
with Ext3. We note that the ordered competing application may perform
slightly worse than it did when both applications used ordered mode due
to increased contention for resources outside of the file system (i.e., the I/O
queue in the block layer for the SSD); this demonstrates that isolation must
be provided at all layers for a complete solution. In summary, specialized
journaling modes can provide great flexibility for applications to make
trade-offs between their performance and consistency requirements.

3.4.5 Limitations

Although IceFS has many advantages as shown in previous sections, it may
perform worse than Ext3 in certain extreme cases. The main limitation of
our implementation is that IceFS uses a separate journal commit thread for
every cube. The thread issues a device cache flush command at the end
of every transaction commit to make sure the cached data is persistent on
device; this cache flush is usually expensive [53]. Therefore, if many active
cubes perform journal commits at the same time, the performance of IceFS
may be worse than Ext3 that only uses one journal commit thread for all
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Device Ext3 Ext3-Part IceFS
(MB/s) (MB/s) (MB/s)

SSD 40.8 30.6 35.4
Disk 2.8 2.6 2.7

Table 3.13: Limitation of IceFS On Cache Flush. This table compares the
aggregated throughput of four Varmail instances on Ext3 and IceFS. Each Varmail
instance runs in a directory of Ext3, an Ext3 partition (Ext3-Part), or a cube of IceFS.
We run the same experiment on both a SSD and hard disk.

updates. The same problem exists in separated file systems on partitions.
To show this effect, we choose Varmail as our testing workload. Varmail

utilizes multiple threads; each of these threads repeatedly issues small
writes and calls fsync() after each write. We run multiple instances of
Varmail in different directories, partitions or cubes to generate a large
number of transaction commits, stressing the file system.

Table 3.13 shows the performance of running four Varmail instances
on our quad-core machine. When running on an SSD, IceFS performs
worse than Ext3, but a little better than Ext3 partitions (Ext3-Part). When
running on a hard drive, all three setups perform similarly. The reason is
that the cache flush time accounts for a large percentage of the total I/O
time on an SSD, while the seeking time dominates the total I/O time on a
hard disk. Since IceFS and Ext3-Part issue more cache flushes than Ext3,
the performance penalty is amplified on the SSD.

Note that this style of workload is an extreme case for both IceFS and
partitions. However, compared with separated file systems on partitions,
IceFS is still a single file system that can utilize all the related semantic
information of cubes for further optimization. For example, IceFS can pass
per-cube hints to the block layer, which can optimize the cache flush cost
and provide other performance isolation for cubes.
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3.4.6 Usage Scenarios

We demonstrate that IceFS improves overall system behavior in the two
motivational scenarios initially introduced in Section 3.1.3: virtualized
environments and distributed file systems.

Virtual Machines
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Figure 3.14: Failure Handling for Virtual Machines. This figure shows how
IceFS handles failures in a shared file system which supports multiple virtual machines.

To show that IceFS enables virtualized environments to isolate failures
within a particular VM, we configure each VM to use a separate cube in
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IceFS. Each cube stores a 20GB virtual disk image, and the file system
contains 10 such cubes for 10 VMs. Then, we inject a fault to one VM
image that causes the host file system to be read-only after 50 seconds.

Figure 3.14 shows that IceFS greatly improves the availability of the
VMs compared to that in Figure 3.5 using Ext3. The top graph illustrates
IceFS with offline recovery. Here, only one cube is read-only and crashes;
the other two VMs are shut down properly so the offline cube-aware check
can be performed. The offline check of the single faulty cube requires only
35 seconds and booting the three VMs takes about 67 seconds; thus, after
only 150 seconds, the three virtual machines are running normally again.

The bottom graph illustrates IceFS with online recovery. In this case,
after the fault occurs in VM1 (at roughly 50 seconds) and VM1 crashes,
VM2 and VM3 are able to continue. At this point, the online fsck of IceFS
starts to recover the disk image file of VM1 in the host file system. Since
fsck competes for disk bandwidth with the two running VMs, checking
takes longer (about 74 seconds). Booting the single failed VM requires
only 39 seconds, but the disk activity that arises as a result of booting
competes with the I/O requests of VM2 and VM3, so the throughput of
VM2 and VM3 drops for that short time period. In summary, these two
experiments demonstrate that IceFS can isolate file system failures in a
virtualized environment and significantly reduce system recovery time.

Distributed File System

We illustrate the benefits of using IceFS to provide flexible fault isolation
in HDFS. Obtaining fault isolation in HDFS is challenging, especially in
multi-tenant settings, primarily because HDFS servers are not aware of the
data they store, as shown in Section 3.1.3. IceFS provides a natural solution
for this problem. We use separate cubes to store different applications’
data on HDFS servers. Each cube isolates the data from one application
to another; thus, a cube failure will not affect multiple applications. In
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Figure 3.15: Impact of Cube Failures in HDFS. This figure shows the throughput
of 4 different clients when a cube failure happens at time 10 second. Impact of the failure to the
clients’ throughput is negligible.

this manner, IceFS provides end-to-end isolation for applications in HDFS.
We added 161 lines to storage node code to make HDFS IceFS-compatible
and aware of application data. We do not change any recovery code of
HDFS. Instead, IceFS turns global failures (e.g., , kernel panic) into partial
failures (i.e., , cube failure) and leverages HDFS recovery code to handle
them. This facilitates and simplifies our implementation.

Figure 3.15 shows the benefits of IceFS-enabled application-level fault
isolation. Here, four clients concurrently access different files stored in
HDFS when a cube that stores data for Client 2 fails and becomes in-
accessible. Other clients are completely isolated from the cube failure.
Furthermore, the failure negligibly impacts the throughput of the client
as it does not manifest as machine failure. Instead, it results in a soft error
to HDFS, which then immediately isolates the faulty cube and returns an
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Figure 3.16: Data Block Recovery in HDFS. The figure shows the number of lost
blocks to be regenerated over time in two failure scenarios: cube and whole machine failure. Cube
failure results into less blocks to recover in less time.

error code the client. The client then quickly fails over to other healthy
copies. The overall throughput is stable for the entire workload, as op-
posed to 60-second period of losing throughput as in the case of whole
machine failure described in Section 3.1.3.

In addition to end-to-end isolation, IceFS provides scalable recovery
as shown in Figure 3.16. In particular, IceFS helps reduce network traffic
required to regenerate lost blocks, a major bandwidth consumption factor
in large clusters [170]. When a cube fails, IceFS again returns an error code
to the host server, which then immediately triggers a block scan to find out
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data blocks that are under-replicated and regenerates them. The number
of blocks to recover is proportional to the cube size. Without IceFS, a kernel
panic in local file system manifests as whole machine failure, causing a
12-minute timeout for crash detection and making the number of blocks
lost and to be regenerated during recovery much larger. In summary, IceFS
helps improve not only flexibility in fault isolation but also efficiency in
failure recovery.

3.5 Conclusion

Despite isolation of many components in existing systems, the file sys-
tem still lacks physical isolation. In this chapter, we have designed and
implemented IceFS, a file system that achieves physical disentanglement
through a new abstraction called cubes. IceFS uses cubes to group logi-
cally related files and directories, and ensures that data and metadata in
each cube are isolated. There are no shared physical resources, no access
dependencies, and no bundled transactions among cubes.

Through experiments, we demonstrate that IceFS is able to localize
failures that were previously global, and recover quickly using localized
online or offline fsck. IceFS can also provide specialized journaling to
meet diverse application requirements for performance and consistency.
Furthermore, we conduct two cases studies where IceFS is used to host
multiple virtual machines and is deployed as the local file system for
HDFS data nodes. IceFS achieves fault isolation and fast recovery in both
scenarios, proving its usefulness in modern storage environments.

The source code for IceFS and its user-level utilities (mkfs and fsck) can
be obtained at: http://cs.wisc.edu/adsl/Software/icefs. We hope
that this sharing will inspire further disentanglement techniques in other
file systems for better reliability and performance.

http://cs.wisc.edu/adsl/Software/icefs
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4
Key-Value Separation in

WiscKey

From the previous chapter, we demonstrate that physical separation of file-
system structures can provide reliability isolation and even performance
improvement. Since persistent key-value stores play a critical role in a
variety of modern data-intensive applications, we are curious to explore
similar techniques for this new type of storage systems.

For write-intensive workloads, key-value stores based on Log Struc-
tured Merge Trees (LSM-trees) [157] have become the state of the art. To
deliver high write performance, LSM-trees batch key-value pairs and write
them out sequentially. Subsequently, to enable efficient lookups (for both
individual keys as well as range queries), LSM-trees continuously read,
sort, and write out key-value pairs in the background, thus maintaining
keys and values in sorted order. As a result, the same data is read and
written multiple times throughout its lifetime; this I/O amplification in
typical LSM-trees can reach a factor of 50x or higher.

In this chapter, we present WiscKey, a persistent LSM-tree-based key-
value store with a novel performance-oriented data layout that separates
keys and values to minimize I/O amplification. The data layout and I/O
patterns of WiscKey are highly optimized for SSD devices. We solve a
number of reliability and performance challenges introduced by the new
key-value separation architecture. We propose a parallel range query
design to leverage the SSD’s internal parallelism for better range query
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performance on unordered datasets. We also introduce an online and light-
weight garbage collector for WiscKey to reclaim the invalid key-value pairs
without affecting the foreground workloads much. We demonstrate the
advantages of WiscKey with both microbenchmarks and YCSB workloads.
Microbenchmark results show that WiscKey is 2.5× - 111× faster than
LevelDB for loading a database and 1.6× - 14× faster for random lookups.
WiscKey is faster than both LevelDB and RocksDB in all six YCSB work-
loads, and follows a trend similar to the microbenchmarks.

The rest of this chapter is organized as follows. We first describe the
background and motivation in Section 4.1. Section 4.2 explains the design
of WiscKey, and Section 4.3 analyzes its performance. Finally, we conclude
in Section 4.4.

4.1 Background and Motivation

In this section, we first describe the concept of a Log-Structured Merge-
tree (LSM-tree). Then, we explain the design of LevelDB, a popular key-
value store based on LSM-tree technology. We investigate read and write
amplification in LevelDB. Finally, we describe the characteristics of modern
storage hardware.

4.1.1 Log-Structured Merge-Tree

An LSM-tree is a persistent structure that provides efficient indexing for a
key-value store with a high rate of inserts and deletes [157]. It defers and
batches data writes into large chunks to use the high sequential bandwidth
of hard drives. Since random writes are nearly two orders of magnitude
slower than sequential writes on hard drives, LSM-trees provide better
write performance than traditional B-trees, which require random accesses.

An LSM-tree consists of a number of components of exponentially
increasing sizes, C0 to Ck, as shown in Figure 4.1. The C0 component is a
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Figure 4.1: LSM-tree and LevelDB Architecture. This figure shows the
standard LSM-tree and LevelDB architecture. For LevelDB, inserting a key-value pair
goes through many steps: (1) the log file; (2) the memtable; (3) the immutable memtable;
(4) a SSTable in L0; (5) compacted to further levels.

memory-resident update-in-place sorted tree, while the other components
C1 to Ck are disk-resident append-only B-trees.

During an insert in an LSM-tree, the inserted key-value pair is ap-
pended to an on-disk sequential log file, so as to enable recovery in case of
a crash. Then, the key-value pair is added to the in-memory C0, which is
sorted by keys; C0 allows efficient lookups and scans on recently inserted
key-value pairs. Once C0 reaches its size limit, it will be merged with the
on-disk C1 in an approach similar to merge sort; this process is known as
compaction. The newly merged tree will be written to disk sequentially,
replacing the old version of C1. Compaction (i.e., merge sorting) also hap-
pens for on-disk components, when each Ci reaches its size limit. Note
that compactions are only performed between adjacent levels (Ci and
Ci+1), and they can be executed asynchronously in the background.

To serve a lookup operation, LSM-trees may need to search multiple
components. Note that C0 contains the most fresh data, followed by C1,
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and so on. Therefore, to retrieve a key-value pair, the LSM-tree searches
components starting from C0 in a cascading fashion until it locates the
desired data in the smallest component Ci. Compared with B-trees, LSM-
trees may need multiple reads for a point lookup. Hence, LSM-trees are
most useful when inserts are more common than lookups [157].

4.1.2 LevelDB

LevelDB is a widely used key-value store based on LSM-trees that is in-
spired by BigTable [48, 184]. LevelDB supports range queries, snapshots,
and other features, which are useful in modern applications. In this section,
we briefly describe the core design of LevelDB.

The overall architecture of LevelDB is shown in Figure 4.1. The main
data structures in LevelDB are an on-disk log file, two in-memory sorted
skiplists (memtable and immutable memtable), and seven levels (L0 to L6)
of on-disk Sorted String Table (SSTable) files. LevelDB initially stores
inserted key-value pairs in a log file and the in-memory memtable. Once
the memtable is full, LevelDB switches to a new memtable and log file
to handle further inserts from the user. In the background, the previous
memtable is converted into an immutable memtable, and a compaction
thread then flushes it to the disk, generating a new SSTable file (about
2 MB usually) at level 0 (L0); the previous log file is discarded.

The size of all files in each level is limited, and increases by a factor
of ten with the level number. For example, the size limit of all files at L1

is 10 MB, while the limit of L2 is 100 MB. To maintain the size limit, once
the total size of a level Li exceeds its limit, the compaction thread will
choose one file from Li, merge sort with all the overlapped files of Li+1, and
generate new Li+1 SSTable files. The compaction thread continues until
all levels are within their size limits. Also, during compaction, LevelDB
ensures that all files in a particular level, except L0, do not overlap in their
key-ranges; keys in files of L0 can overlap with each other since they are



99

directly flushed from memtable.
To serve a lookup operation, LevelDB searches the memtable first,

immutable memtable next, and then files L0 to L6 in order. The number of
file searches required to locate a random key is bounded by the maximum
number of levels, since keys do not overlap between files within a single
level, except in L0. Since files in L0 can contain overlapping keys, a lookup
may search multiple files at L0. To avoid a large lookup latency, LevelDB
slows down the foreground write traffic if the number of files at L0 is
bigger than 8, in order to wait for the compaction thread to compact some
files from L0 to L1.

4.1.3 Write and Read Amplification

Write and read amplification are major problems in LSM-trees such as
LevelDB. Write (read) amplification is defined as the ratio between the
amount of data written to (read from) the underlying storage device and
the amount of data requested by the user. In this section, we analyze the
write and read amplification in LevelDB.

To achieve mostly-sequential disk access, LevelDB writes more data
than necessary (although still sequentially), i.e., LevelDB has high write
amplification. Since the size limit of Li is 10 times that of Li−1, when
merging a file from Li−1 to Li during compaction, LevelDB may read up
to 10 files from Li in the worst case, and write back these files to Li after
sorting. Therefore, the write amplification of moving a file across two
levels can be up to 10. For a large dataset, since any newly generated table
file can eventually migrate from L0 to L6 through a series of compaction,
write amplification can be over 50 (10 for each gap between L1 to L6).

Read amplification has been a major problem for LSM-trees due to
trade-offs made in the design. There are two sources of read amplification
in LevelDB. First, to lookup a key-value pair, LevelDB may need to check
multiple levels. In the worst case, LevelDB needs to check eight files in
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Figure 4.2: Write and Read Amplification. This figure shows the write am-
plification and read amplification of LevelDB for two different database sizes, 1 GB and
100 GB. Key size is 16 B and value size is 1 KB.

L0, and one file for each of the remaining six levels: a total of 14 files.
Second, to find a key-value pair within a SSTable file, LevelDB needs to
read multiple metadata blocks within the file. Specifically, the amount
of data actually read is given by (index block + bloom-filter blocks
+ data block). For example, to lookup a 1 KB key-value pair, LevelDB
needs to read a 16 KB index block, a 4 KB bloom-filter block, and a 4 KB
data block; in total, 24 KB. Therefore, considering the 14 SSTable files in
the worst case, the read amplification of LevelDB is 24 * 14 = 336. Smaller
key-value pairs will lead to an even higher read amplification.

To measure the amount of amplification seen in practice with LevelDB,
we perform the following experiment. We first load a database with 1 KB
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key-value pairs, and then lookup 100,000 entries from the database; we use
two different database sizes for the initial load, and choose keys randomly
from a uniform distribution. Figure 4.2 shows write amplification during
the load phase and read amplification during the lookup phase. For a 1 GB
database, write amplification is 3.1, while for a 100 GB database, write
amplification increases to 14. Read amplification follows the same trend:
8.2 for the 1 GB database and 327 for the 100 GB database. The reason write
amplification increases with database size is straightforward. With more
data inserted into a database, the key-value pairs will more likely travel
further along the levels; in other words, LevelDB will write data many
times when compacting from low levels to high levels. However, write
amplification does not reach the worst-case predicted previously, since the
average number of files merged between levels is usually smaller than the
worst case of 10. Read amplification also increases with the dataset size,
since for a small database, all the index blocks and bloom filters in SSTable
files can be cached in memory. However, for a large database, each lookup
may touch a different SSTable file, paying the cost of reading index blocks
and bloom filters each time.

It should be noted that the high write and read amplifications are a
justified tradeoff for hard drives. As an example, for a given hard drive
with a 10 ms seek latency and a 100 MB/s throughput, the approximate
time required to access a random 1K of data is 10 ms, while that for the next
sequential block is about 10 us – the ratio between random and sequential
latency is 1000:1. Hence, compared to alternative data structures such
as B-Trees that require random write accesses, a sequential-write-only
scheme with write amplification less than 1000 will be faster on a hard-
drive [157, 187]. On the other hand, the read amplification for LSM-trees
is still comparable to B-Trees. For example, considering a B-Tree with a
height of 5 and a block size of 4 KB, a random lookup for a 1 KB key-value
pair would access 6 blocks, resulting in a read amplification of 24.
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Figure 4.3: Sequential and Random Reads on SSD. This figure shows the
sequential and random read performance for various request sizes on a modern SSD
device. All requests are issued to a 100 GB file on ext4.

4.1.4 Fast Storage Hardware

Many modern servers adopt SSD devices to achieve high performance.
Similar to hard drives, random writes are considered harmful also in
SSDs [110, 116, 147] due to their unique erase-write cycle and expensive
garbage collection. Although initial random-write performance for SSD
devices is good, the performance can significantly drop after the reserved
blocks are utilized. The LSM-tree characteristic of avoiding random writes
is hence a natural fit for SSDs; many SSD-optimized key-value stores are
based on LSM-trees [71, 190, 215, 224].

However, unlike hard-drives, the relative performance of random reads
(compared to sequential reads) is significantly better on SSDs; furthermore,
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when random reads are issued concurrently in an SSD, the aggregate
throughput can match sequential throughput for some workloads [49]. As
an example, Figure 4.3 shows the sequential and random read performance
of a 500 GB Samsung 840 EVO SSD, for various request sizes. For random
reads by a single thread, the throughput increases with the request size,
reaching half the sequential throughput for 256 KB. With concurrent ran-
dom reads by 32 threads, the aggregate throughput matches sequential
throughput when the size is larger than 16 KB. For more high-end SSDs,
the gap between concurrent random reads and sequential reads is much
smaller [13, 136].

As we showed in this section, LSM-trees suffer from a high write and
read amplification, which is acceptable for hard drives. Using LSM-trees on
a high-performance SSD may waste a large percentage of device resources
unnecessarily with excessive writing and reading. In this project, our goal
is to improve the performance of LSM-trees on SSD devices to efficiently
exploit device bandwidth.

4.2 WiscKey

The previous section explained how LSM-trees maintain sequential I/O
access by increasing I/O amplification. While this trade-off between se-
quential I/O access and I/O amplification is justified for traditional hard
disks, they are not optimal for modern hardware utilizing SSDs. In this
section, we present the design of WiscKey, a key-value store that minimizes
I/O amplification on SSDs.

To realize an SSD-optimized key-value store, WiscKey includes four
critical ideas. First, WiscKey separates keys from values, keeping only
keys in the LSM-tree and the values in a separate log file. Second, to
deal with unsorted values (which necessitate random access during range
queries), WiscKey uses the parallel random-read characteristic of SSD



104

devices. Third, WiscKey utilizes unique crash-consistency and garbage-
collection techniques to efficiently manage the value log. Finally, WiscKey
optimizes performance by removing the LSM-tree log without sacrificing
consistency, thus reducing system-call overhead from small writes.

4.2.1 Design Goals

WiscKey is a single-machine persistent key-value store, derived from Lev-
elDB. It can be deployed as the storage engine for a relational database
(e.g., MySQL) or a distributed key-value store (e.g., MongoDB). It pro-
vides the same API as LevelDB, including Put(key, value), Get(key),
Delete(key) and Scan(start, end). The design of WiscKey follows these
main goals.
Low write amplification. Write amplification introduces extra unneces-
sary writes to the device. Even though SSD devices have higher bandwidth
compared to hard drives, large write amplification can consume most of
the write bandwidth (over 90% is not uncommon) and decrease the SSD’s
lifetime due to limited erase cycles. Therefore, it is important for WiscKey
to minimize write amplification, so as to improve workload performance
and SSD lifetime.
Low read amplification. Large read amplification causes two problems.
First, the throughput of lookups is significantly reduced by issuing multi-
ple reads for each lookup. Second, the large amount of data loaded into
memory decreases the efficiency of the cache. WiscKey targets a small
read amplification to speedup lookups.
SSD optimized. WiscKey is optimized for SSD devices by matching its
I/O patterns with the performance characteristics of SSD devices. Specifi-
cally, sequential writes and parallel random reads are effectively utilized
in WiscKey so that applications can fully utilize the device’s bandwidth.
Feature-rich API. WiscKey aims to support modern features that have
made LSM-trees popular, such as range queries and snapshots. Range
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queries allow scanning a contiguous sequence of key-value pairs. Snap-
shots allow capturing the state of the database at a particular time and
then performing lookups on the state.
Realistic key-value sizes. Keys are usually small in modern workloads
(e.g., 16 B) [20, 21, 23, 64, 122], though value sizes can vary widely (e.g.,
100 B to larger than 4 KB) [17, 23, 64, 80, 114, 187]. WiscKey aims to provide
high performance for this realistic set of key-value sizes.

4.2.2 Key-Value Separation

The major performance cost of LSM-trees is the compaction process, which
constantly sorts SSTable files. During compaction, multiple files are read
into memory, sorted, and written back, which could significantly affect the
performance of foreground workloads. However, sorting is required for
efficient retrieval; with sorting, range queries (i.e., scan) will result mostly
in sequential access to multiple files, while point queries would require
accessing at most one file at each level.

WiscKey is motivated by a simple revelation. Compaction only needs
to sort keys, while values can be managed separately [153]. Since keys
are usually smaller than values, compacting only keys could significantly
reduce the amount of data needed during the sorting. In WiscKey, only
the location of the value is stored in the LSM-tree with the key, while
the actual values are stored elsewhere in an SSD-friendly fashion. With
this design, for a database with a given size, the size of the LSM-tree of
WiscKey is much smaller than that of LevelDB. The smaller LSM-tree can
remarkably reduce the write amplification for modern workloads that
have a moderately large value size. For example, assuming a 16 B key, a
1 KB value, and a write amplification of 10 for keys (in the LSM-tree) and
1 for values, the effective write amplification of WiscKey is only (10 *16 +
1024) / (16 + 1024) = 1.14. In addition to improving the write performance
of applications, the reduced write amplification also improves an SSD’s
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Figure 4.4: WiscKey Data Layout on SSD. This figure shows the data layout of
WiscKey on a single SSD device. Keys and value’s locations are stored in LSM-tree while
values are appended to a separate value log file.

lifetime by requiring fewer erase cycles.
WiscKey’s smaller read amplification improves lookup performance.

During lookup, WiscKey first searches the LSM-tree for the key and the
value’s location; once found, another read is issued to retrieve the value.
Readers might assume that WiscKey will be slower than LevelDB for
lookups, due to its extra I/O to retrieve the value. However, since the
LSM-tree of WiscKey is much smaller than LevelDB (for the same database
size), a significant portion of the LSM-tree can be easily cached in memory.
Hence, each lookup only requires a single random read (for retrieving
the value) and thus achieves a lookup performance better than LevelDB.
For example, assuming 16 B keys and 1 KB values, if the size of the entire
key-value dataset is 100 GB, then the size of the LSM-tree is only around
2 GB (assuming a 12 B cost for a value’s location and size), which can be
easily cached in modern servers which have over 100 GB of memory.

WiscKey’s architecture is shown in Figure 4.4. Keys are stored in a
LSM-tree while values are stored in a separate value-log file, vLog. The
artificial value stored along with the key in the LSM-tree is the address of
the actual value in the vLog.
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When the user inserts a key-value pair in WiscKey, the value is first
appended to the vLog, and the key is then inserted into the LSM tree along
with the value’s address (<vLog-offset, value-size>). Deleting a key
simply deletes it from the LSM tree, without touching the vLog. All valid
values in the vLog have corresponding keys in the LSM-tree; the other
values in the vLog are invalid and will be garbage collected later (§ 4.2.3).

When the user queries for a key, the key is first searched in the LSM-
tree, and if found, the corresponding value’s address is retrieved. Then,
WiscKey reads the value from the vLog. Note that this process is applied
to both point queries and range queries.

Although the idea behind key-value separation is simple, it leads to
many challenges and optimization opportunities described in the follow-
ing subsections.

4.2.3 Challenges

The separation of keys and values makes range queries require random
I/O. Furthermore, the separation makes both garbage collection and crash
consistency challenging. We now explain how we solve these challenges.

Parallel Range Query

Range queries are an important feature of modern key-value stores, al-
lowing users to scan a range of key-value pairs. Relational databases [72],
local file systems [100, 172, 190], and even distributed file systems [134]
use key-value stores as their storage engines, and range queries are a core
API requested in these environments.

For range queries, LevelDB provides the user with an iterator-based
interface with Seek(key), Next(), Prev(), Key() and Value() operations.
To scan a range of key-value pairs, users can first Seek() to the starting
key, then call Next() or Prev() to iterate key-value pairs one by one. To
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retrieve the key or the value of the current iterator position, users call
Key() or Value(), respectively.

In LevelDB, since keys and values are stored together and sorted, a
range query can sequentially read key-value pairs from SSTable files. How-
ever, since keys and values are stored separately in WiscKey, range queries
require random reads, and are hence not efficient. As we see in Figure 4.3,
the random read performance of a single thread on SSD cannot match
the sequential read performance. However, parallel random reads with a
fairly large request size can fully utilize the device’s internal parallelism,
getting performance similar to sequential reads.

To make range queries efficient, WiscKey leverages the parallel I/O
characteristic of SSD devices to prefetch values from the vLog during range
queries. The underlying idea is that, with SSDs, only keys require special at-
tention for efficient retrieval. So long as keys are retrieved efficiently, range
queries can use parallel random reads for efficiently retrieving values.

The prefetching framework can easily fit with the current range query
interface. In the current interface, if the user requests a range query, an
iterator is returned to the user. For each Next() or Prev() requested on
the iterator, WiscKey tracks the access pattern of the range query. Once
a contiguous sequence of key-value pairs is requested, WiscKey starts
reading a number of following keys from the LSM-tree sequentially. The
corresponding value addresses retrieved from the LSM-tree are inserted
into a queue; multiple threads will fetch these addresses from the vLog
concurrently in the background.

Garbage Collection

Key-value stores based on standard LSM-trees do not immediately reclaim
free space when a key-value pair is deleted or overwritten. Rather, during
compaction, if data relating to a deleted or overwritten key-value pair
is found, the data is discarded and space is reclaimed. In WiscKey, only
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invalid keys are reclaimed by the LSM-tree compaction. Since WiscKey
does not compact values, it needs a special garbage collector to reclaim
free space in the vLog.

Since we only store the values in the vLog file (§ 4.2.2), a naive way
to reclaim free space from the vLog is to first scan the LSM-tree to get all
the valid value addresses; then, all the values in the vLog without any
valid reference from the LSM-tree can be viewed as invalid and reclaimed.
However, this method is too heavyweight and is only usable for offline
garbage collection.

WiscKey targets a lightweight and online garbage collector. To make
this possible, we introduce a small change to WiscKey’s basic data layout:
while storing values in the vLog, we also store the corresponding key
along with the value. The new data layout is shown in Figure 4.5: the
tuple (key size, value size, key, value) is stored in the vLog.

WiscKey’s garbage collection aims to keep valid values (that do not
correspond to deleted keys) in a contiguous range of the vLog, as shown
in Figure 4.5. One end of this range, the head, always corresponds to the
end of the vLog where new values will be appended. The other end of this
range, known as the tail, is where garbage collection starts freeing space
whenever it is triggered. Only the part of the vLog between the head and
the tail contains valid values and will be searched during lookups.

During garbage collection, WiscKey first reads a chunk of key-value
pairs (e.g., several MBs) from the tail of the vLog, then finds which of those
values are valid (not yet overwritten or deleted) by querying the LSM-tree.
WiscKey then appends valid values back to the head of the vLog. Finally,
WiscKey frees the space occupied previously by the chunk, and updates
the tail pointer accordingly.

To avoid losing any data if a crash happens during garbage collection,
WiscKey has to make sure that the newly appended valid values and the
new tail are persistent on the device before actually freeing space. WiscKey
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Figure 4.5: WiscKey New Data Layout for Garbage Collection. This
figure shows the new data layout of WiscKey to support an efficient garbage collection. A
head and tail pointer are maintained in memory and stored persistently in the LSM-tree.
Only the garbage collection thread changes the tail, while all writes to the vLog are append
to the head.

achieves this using the following steps. After appending the valid values
to the vLog, the garbage collection calls a fsync() on the vLog. Then,
it adds these new value’s addresses and current tail to the LSM-tree in
a synchronous manner; the tail is stored in the LSM-tree as <‘‘tail’’,
tail-vLog-offset>. Finally, the free space in the vLog is reclaimed.

WiscKey can be configured to initiate and continue garbage collection
periodically or until a particular threshold is reached. The garbage collec-
tion can also run in offline mode for maintenance. Garbage collection can
be triggered rarely for workloads with few deletes and for environments
with overprovisioned storage space.

Crash Consistency

On a system crash, LSM-tree implementations usually guarantee atomicity
of inserted key-value pairs and in-order recovery of inserted pairs. Since
WiscKey’s architecture stores values separately from the LSM-tree, obtain-
ing the same crash guarantees can appear complicated. However, WiscKey
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provides the same crash guarantees by using an interesting property of
modern file systems (such as ext4, btrfs, and xfs). Consider a file that
contains the sequence of bytes 〈b1b2b3...bn〉, and the user appends the
sequence 〈bn+1bn+2bn+3...bn+m〉 to it. If a crash happens, after file-system
recovery in modern file systems, the file will be observed to contain the
sequence of bytes 〈b1b2b3...bnbn+1bn+2bn+3...bn+x〉 ∃ x < m, i.e., only
some prefix of the appended bytes will be added to the end of the file
during file-system recovery [163]. It is not possible for random bytes or
a non-prefix subset of the appended bytes to be added to the file. Since
values are appended sequentially to the end of the vLog file, the afore-
mentioned property conveniently translates as follows: if a value X in the
vLog is lost in a crash, all future values (inserted after X) are lost too.

When the user queries a key-value pair, if WiscKey cannot find the
key in the LSM-tree because the key had been lost during a system crash,
WiscKey behaves exactly like traditional LSM-trees: even if the value had
been written in vLog before the crash, it will be garbage collected later. If
the key could be found in the LSM tree, however, an additional step is re-
quired to maintain consistency. In this case, WiscKey first verifies whether
the value address retrieved from the LSM-tree falls within the current
valid range of the vLog, and then whether the value found corresponds to
the queried key. If the verifications fail, WiscKey assumes that the value
was lost during a system crash, deletes the key from the LSM-tree, and
informs the user that the key was not found. Since each value added to the
vLog has a header including the corresponding key, verifying whether the
key and the value match is straightforward; if necessary, a magic number
or checksum can be easily added to the header.

LSM-tree implementations also guarantee the user durability of key
value pairs after a system crash if the user requests synchronous inserts
specifically. WiscKey implements synchronous inserts by flushing the
vLog before performing a synchronous insert into its LSM-tree.



112

4.2.4 Optimizations

Separating keys and values in WiscKey provides an opportunity to rethink
how the value log is updated and the necessity of the LSM-tree log. We
now describe how these opportunities can lead to improved performance.

Value-Log Write Buffer

For each Put(), WiscKey needs to append the value to the vLog by using
a write() system call. However, for an insert-intensive workload, issuing
a large number of small writes to a file system can introduce a noticeable
overhead, especially on a fast storage device [45, 162]. Figure 4.6 shows
the total time to sequentially write and call fsync() on a 10 GB file in ext4
(Linux 3.14). When small writes are used, the overhead of each system
call aggregates significantly, leading to a long run time. With large writes
(larger than 4 KB), the device throughput is fully utilized.

To reduce overhead, WiscKey buffers values in a userspace buffer,
and flushes the buffer only when the buffer size exceeds a threshold or
when the user requests a synchronous insertion. Thus, WiscKey only
issues large writes and reduces the number of write() system calls. For a
lookup, WiscKey needs to first search the vLog buffer, and if not found
in the buffer, actually reads from the vLog. Obviously, this mechanism
might result in some data (that is buffered) to be lost during a crash; the
crash-consistency guarantee obtained is similar to LevelDB.

Optimizing LSM-tree Log

As shown in Figure 4.1, a log file is usually used in LSM-trees. The LSM-
tree tracks inserted key-value pairs in the log file so that, if the user requests
synchronous inserts and there is a crash, the log can be scanned after reboot
and the inserted key-value pairs recovered.
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Figure 4.6: Impact of Write Unit Size. This figure shows the total time to write
a 10 GB file to an ext4 file system on an SSD device, followed by a fsync() at the end.
We vary the size of each write() system call.

In WiscKey, the LSM-tree is only used for keys and value addresses.
Moreover, the vLog also records inserted keys to support garbage collec-
tion as described in the previous section. Hence, writes to the LSM-tree
log file can be avoided without affecting correctness.

If a crash happens before the keys are persistent in the LSM-tree, they
can be recovered by scanning the vLog. However, a naive algorithm
would require scanning the entire vLog for recovery. So as to require
scanning only a small portion of the vLog, WiscKey records the head
of the vLog periodically in the LSM-tree, as a key-value pair <‘‘head’’,
head-vLog-offset>. When a database is opened, WiscKey starts the vLog
scan from the most recent head position stored in the LSM-tree, and
continues scanning until the end of the vLog. Since the head is stored in
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the LSM-tree, and the LSM-tree inherently guarantees that keys inserted
into the LSM-tree will be recovered in the inserted order, this optimization
is crash consistent. Therefore, removing the LSM-tree log of WiscKey is a
safe optimization, and improves performance especially when there are
many small insertions.

4.2.5 Implementation

WiscKey is based on LevelDB 1.18. WiscKey creates a vLog when creating a
new database, and manages the keys and value addresses in the LSM-tree.
The vLog is internally accessed by multiple components with different
access patterns. For example, a lookup is served by randomly reading
the vLog, while the garbage collector sequentially reads from the tail
and appends to the head of the vLog file. We use posix_fadvise() to
predeclare access patterns for the vLog under different situations.

For range queries, WiscKey maintains a background thread pool with
32 threads. These threads sleep on a thread-safe queue, waiting for new
value addresses to arrive. When prefetching is triggered, WiscKey inserts
a fixed number of value addresses to the worker queue, and then wakes up
all the sleeping threads. These threads will start reading values in parallel,
caching them in the buffer cache automatically.

To efficiently garbage collect the free space of the vLog, we use the hole-
punching functionality of modern file systems (fallocate()). Punching
a hole in a file can free the physical space allocated, and allows WiscKey
to elastically use the storage space. In general, the maximal individual
file size on modern file systems is big enough for WiscKey to run a long
time without wrapping back to the beginning of the file; for example, the
maximal individual file size is 64 TB on ext4, 8 EB on XFS and 16 EB on
btrfs. The vLog can be trivially adapted into a circular log if necessary.
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4.3 Evaluation

In this section, we present evaluation results that demonstrate the benefits
of the design choices made in WiscKey. Specifically, we seek to answer the
following fundamental performance questions about WiscKey:

1. Does key-value separation result in lower write and read amplifica-
tion, and how does it impact the performance and endurance of the
SSD devices?

2. Does the parallel range query in WiscKey work efficiently with mod-
ern SSDs?

3. How does WiscKey perform on real workloads YCSB, compared to
other popular peers?

4. What is the effect of garbage collection on WiscKey’s performance?

5. Does WiscKey maintain crash consistency, and how long does it take
to recover after a crash?

4.3.1 Experimental Setup

All experiments are run on a testing machine with two Intel(R) Xeon(R)
CPU E5-2667 v2 @ 3.30GHz processors and 64 GB of memory. The operat-
ing system is 64-bit Linux 3.14, and the file system used is ext4. The storage
device used is a 500 GB Samsung 840 EVO SSD, which has 500 MB/s
sequential-read and 400 MB/s sequential-write maximal performance.
Random read performance of the device is shown in Figure 4.3.

4.3.2 Microbenchmarks

We use db_bench, the default set of microbenchmarks included in LevelDB,
to evaluate LevelDB and WiscKey. It contains a series of basic key-value
store benchmarks, such as loading a database and random lookups. We



116

64B 256B 1KB 4KB 16KB 64KB 256KB
0

50

100

150

200

250

300

350

400

450

500

Key: 16B, Value: 64B to 256KB

T
h
ro

u
g
h
p
u
t 
(M

B
/s

)

LevelDB WiscKey

Figure 4.7: Sequential-load Performance. This figure shows the sequential-load
throughput of LevelDB and WiscKey for different value sizes for a 100 GB dataset. Key
size is 16 B.

always use a key size of 16 B, but perform experiments for different value
sizes. We disable data compression in both key-value stores for easier
understanding and analysis of their performance.

Load Performance

We now describe the results for the sequential-load and random-load
microbenchmarks. The former benchmark constructs a 100 GB database
by inserting keys in a sequential order, while the latter inserts keys in
a uniformly distributed random order. Note that the sequential-load
benchmark does not cause compaction in either LevelDB or WiscKey,
while the random-load does.
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Figure 4.8: Sequential-load Time Breakup of LevelDB. This figure shows
the percentage of time incurred in different components during sequential load in LevelDB.

Figure 4.7 shows the sequential-load throughput of LevelDB and Wis-
cKey for a wide range of value sizes: the throughput of both stores in-
creases with the value size. But, even for the largest value size considered
(256 KB), LevelDB’s throughput is far from the device bandwidth. To
analyze this further, Figure 4.8 shows the distribution of the time spent
in different components during each run of the benchmark, for LevelDB;
time is spent in three major components: writing to the log file, insert-
ing to the memtable, and waiting for the memtable to be flushed to the
device. For small key-value pairs, writing to the log file accounts for the
most significant percentage of the total time, for the reasons explained
in Figure 4.6. For larger pairs, log writing and the memtable sorting are
more efficient, while memtable flushes are the bottleneck. Unlike LevelDB,
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Figure 4.9: Random-load Performance. This figure shows the random-load
throughput of LevelDB and WiscKey for different value sizes for a 100 GB dataset. Key
size is 16 B.

WiscKey reaches the full device bandwidth for value sizes more than 4 KB.
Since WiscKey does not write to the LSM-tree log and buffers appends to
the vLog, it is 3× faster than LevelDB even for small values.

Figure 4.9 shows the random-load throughput of LevelDB and Wis-
cKey for different value sizes. LevelDB’s throughput ranges from only
2 MB/s (64 B value size) to 4.1 MB/s (256 KB value size), while WiscKey’s
throughput increases with the value size, reaching the peak device write
throughput after the value size is bigger than 4 KB. WiscKey’s throughput
is 46× and 111× of LevelDB for the 1 KB and 4 KB value size respectively.
LevelDB has low throughput because compaction both consumes a large
percentage of the device bandwidth and also slows down foreground
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Figure 4.10: Write Amplification of Random Load. This figure shows the
write amplification of LevelDB and WiscKey for randomly loading a 100 GB database.

writes (to avoid overloading the L0 of the LSM-tree, as described in Sec-
tion 4.1.2). In WiscKey, compaction only introduces a small overhead,
leading to the full device bandwidth being effectively utilized. To analyze
this further, Figure 4.10 shows the write amplification of LevelDB and Wis-
cKey for the random-load experiment. The write amplification of LevelDB
is always more than 12, while that of WiscKey decreases quickly to nearly
1 when the value size reaches 1 KB, because the LSM-tree of WiscKey is
significantly smaller.

Query Performance

We now compare the random lookup (point query) and range query perfor-
mance of LevelDB and WiscKey. Figure 4.11 presents the random lookup
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Figure 4.11: Random Lookup Performance. This figure shows the random
lookup performance for 100,000 operations on a 100 GB database that is randomly loaded.

results of 100,000 operations on a 100 GB random-loaded database. Even
though a random lookup in WiscKey needs to check both the LSM-tree
and the vLog, the throughput of WiscKey is still much better than Lev-
elDB: for 1 KB value size, WiscKey’s throughput is 12× of that of LevelDB.
For large value sizes, the throughput of WiscKey is only limited by the
random read throughput of the device, as shown in Figure 4.3. LevelDB
has low throughput because of the high read amplification mentioned
in Section 4.1.3. WiscKey performs significantly better because the read
amplification is lower due to a smaller LSM-tree (which causes the LSM-
tree to have a higher cache hit rate). Another reason for WiscKey’s better
performance is that the compaction process in WiscKey is less intense than
LevelDB, thus avoiding many background reads and writes.
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Figure 4.12: Range Query Performance. This figure shows range query perfor-
mance. 4 GB of data is queried from a 100 GB database that is randomly (Rand) and
sequentially (Seq) loaded.

Figure 4.12 shows the range query (scan) performance of LevelDB
and WiscKey. For a randomly-loaded database, LevelDB reads multiple
files from different levels, while WiscKey requires random accesses to the
vLog (but WiscKey leverages parallel random reads). As can be seen from
Figure 4.12, the throughput of LevelDB initially increases with the value
size for both databases. However, beyond a value size of 4 KB, since an
SSTable file can store only a small number of key-value pairs, the overhead
is dominated by opening many SSTable files and reading the index blocks
and bloom filters in each file. For larger key-value pairs, WiscKey can
deliver the device’s sequential bandwidth, up to 8.4× of LevelDB. However,
WiscKey performs 12× worse than LevelDB for 64 B key-value pairs due
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to the device’s limited parallel random-read throughput for small request
sizes; WiscKey’s relative performance is better on high-end SSDs with
higher parallel random-read throughput [13]. Furthermore, this workload
represents a worst-case where the database is randomly-filled and the
data is unsorted in the vLog.

Figure 4.12 also shows the performance of range queries when the
data is sorted, which corresponds to a sequentially-loaded database; in
this case, both LevelDB and WiscKey can sequentially scan through data.
Performance for sequentially-loaded databases follows the same trend as
randomly-loaded databases; for 64 B pairs, WiscKey is 25% slower because
WiscKey reads both the keys and the values from the vLog (thus wasting
bandwidth), but WiscKey is 2.8× faster for large key-value pairs. Thus,
with small key-value pairs, log reorganization (sorting) for a random-
loaded database can make WiscKey’s range-query performance compara-
ble to LevelDB’s performance.

Garbage Collection

We now investigate WiscKey’s performance while garbage collection is
performed in the background. The performance can potentially vary
depending on the percentage of free space found during garbage collection,
since this affects the amount of data written and the amount of space freed
by the garbage collection thread. We use random-load (the workload
that is most affected by garbage collection) as the foreground workload,
and study its performance for various percentages of free space. Our
experiment specifically involves three steps: we first create a database
using random-load, then delete the required percentage of key-value pairs,
and finally, we run the random-load workload and measure its throughput
while garbage collection happens in the background. We use a key-value
size of 4 KB and vary the percentage of free space from 25% to 100%.

Figure 4.13 shows the results: if 100% of data read by the garbage
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Figure 4.13: Garbage Collection. This figure shows performance under garbage
collection for various free-space ratios.

collector is invalid, the throughput is only 10% lower. This is because
garbage collection reads from the tail of the vLog and writes only valid
key-value pairs to the head; if the data read is entirely invalid, no key-value
pairs needs to be written. For other percentages of free space, throughput
drops about 35% since the garbage collection thread performs additional
writes. Note that, in all cases, while garbage collection is happening,
WiscKey is at least 70× faster than LevelDB.

Crash Consistency

Separating keys and values necessitates additional mechanisms to main-
tain crash consistency. We verify WiscKey’s crash consistency mechanisms
by using the ALICE tool [163]; the tool chooses and simulates a compre-
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hensive set of system crashes that have a high probability of exposing
inconsistency. We use a testcase which invokes a few asynchronous and
synchronous Put() calls. When configured to run tests for ext4, xfs, and
btrfs, ALICE checks more than 3000 selectively-chosen system crashes
for the given testcase, and does not report any consistency vulnerability
introduced by WiscKey.

The new consistency mechanism also affects WiscKey’s recovery time
after a crash, and we design an experiment to measure the worst-case
recovery time of WiscKey and LevelDB. LevelDB’s recovery time is pro-
portional to the size of its log file after the crash; the log file exists at its
maximum size just before the memtable is written to disk. WiscKey, dur-
ing recovery, first retrieves the head pointer from the LSM-tree, and then
scans the vLog file from the head pointer till the end of the file. Since the
updated head pointer is persisted on disk when the memtable is written,
WiscKey’s worst-case recovery time also corresponds to a crash happening
just before then. We measured the worst-case recovery time induced by
the situation described so far; for 1 KB values, LevelDB takes 0.7 seconds
to recover the database after the crash, while WiscKey takes 2.6 seconds.
Note that WiscKey can be configured to persist the head pointer more
frequently if necessary.

Space Amplification

When evaluating a key-value store, most previous work focused only
on read and write amplification. However, space amplification is impor-
tant for flash devices because of their expensive price-per-GB compared
with hard drives. Space amplification is the ratio of the actual size of the
database on disk to the logical size of the the database [15]. For example,
if a 1-KB key-value pair takes 4 KB of space on disk, then the space am-
plification is 4. Compression decreases space amplification while extra
data (garbage, fragmentation, or metadata) increases space amplification.
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Figure 4.14: Space Amplification. This figure shows the actual database size
of LevelDB and WiscKey for a random-load workload of a 100-GB dataset. User-Data
represents the logical database size.

Compression is disabled to make the discussion simple.
For a sequential-load workload, the space amplification can be near

one, given that the extra metadata in LSM-trees is minimal. For a random-
load or overwrite workload, space amplification is usually more than one
when invalid pairs are not garbage collected fast enough.

Figure 4.14 shows the database size of LevelDB and WiscKey after
randomly loading a 100-GB dataset (the same workload as Figure 4.9). The
space overhead of LevelDB arises due to invalid key-value pairs that are
not garbage collected when the workload is finished. The space overhead
of WiscKey includes the invalid key-value pairs and the extra metadata
(pointers in the LSM-tree and the tuple in the vLog as shown in Figure 4.5).
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After garbage collection, the database size of WiscKey is close to the logical
database size when the extra metadata is small compared to the value size.

No key-value store can minimize read amplification, write amplifica-
tion, and space amplification at the same time. Tradeoffs among these
three factors are balanced differently in various systems. In LevelDB,
the sorting and garbage collection are coupled together. LevelDB trades
higher write amplification for lower space amplification; however, the
workload performance can be significantly affected. WiscKey consumes
more space to minimize I/O amplification when the workload is running;
because sorting and garbage collection are decoupled in WiscKey, garbage
collection can be done later, thus minimizing its impact on foreground
performance.

CPU Usage

We now investigate the CPU usage of LevelDB and WiscKey for various
workloads shown in previous sections. The CPU usage shown here in-
cludes both the application and operating system usage.

As shown in Table 4.15, LevelDB has higher CPU usage for sequential-
load workload. As we explained in Figure 4.8, LevelDB spends a large
amount of time writing key-value pairs to the log file. Writing to the
log file involves encoding each key-value pair, which has high CPU cost.
Since WiscKey removes the log file as an optimization, WiscKey has lower
CPU usage than LevelDB. For the range query workload, WiscKey uses
32 background threads to do the prefetch; therefore, the CPU usage of
WiscKey is much higher than LevelDB.

We find that CPU is not a bottleneck for both LevelDB and WiscKey in
our setup. The architecture of LevelDB is based on single writer protocol.
The background compaction also only uses one thread. Better concurrency
design for multiple cores is explored in RocksDB [71].
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Workloads Seq Rand Rand Range
Load Load Lookup Query

LevelDB 10.6% 6.3% 7.9% 11.2%
WiscKey 8.2% 8.9% 11.3% 30.1%

Table 4.15: CPU Usage of LevelDB and WiscKey. This table compares the
CPU usage of four workloads on LevelDB and WiscKey. Key size is 16 B and value size
is 1 KB. Seq-Load and Rand-Load sequentially and randomly load a 100-GB database
respectively. Given a 100-GB random-filled database, Rand-Lookup issues 100 K random
lookups, while Range-Query sequentially scans 4-GB data.

4.3.3 YCSB Benchmarks

The YCSB benchmark [60] provides a framework and a standard set of
six workloads for evaluating the performance of key-value stores. We
use YCSB to compare LevelDB, RocksDB [71], and WiscKey, on a 100 GB
database. In addition to measuring the usual-case performance of WiscKey,
we also run WiscKey with garbage collection always happening in the
background so as to measure its worst-case performance. RocksDB [71] is
a SSD-optimized version of LevelDB with many optimizations, including
multiple memtables and background threads for compaction. We use
RocksDB with the default configuration parameters. We evaluated the
key-value stores with two different value sizes, 1 KB and 16 KB (data
compression is disabled).

WiscKey performs significantly better than LevelDB and RocksDB, as
shown in Figure 4.16. For example, during load, for 1 KB values, WiscKey
performs at least 50× faster than the other databases in the usual case, and
at least 45× faster in the worst case (with garbage collection); with 16 KB
values, WiscKey performs 104× better, even under the worst case.

For reads, the Zipf distribution used in most workloads allows popu-
lar items to be cached and retrieved without incurring disk access, thus
reducing WiscKey’s advantage over LevelDB and RocksDB. Hence, Wis-
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Figure 4.16: YCSB Macrobenchmark Performance. This figure shows the
performance of LevelDB, RocksDB, and WiscKey for various YCSB workloads. The X-axis
corresponds to different workloads, and the Y-axis shows the performance normalized
to LevelDB’s performance. The number on top of each bar shows the actual throughput
achieved (K ops/s). (a) shows performance under 1 KB values and (b) shows performance
under 16 KB values. The load workload corresponds to constructing a 100 GB database
and is similar to the random-load microbenchmark. Workload-A has 50% reads and
50% updates, Workload-B has 95% reads and 5% updates, and Workload-C has 100%
reads; keys are chosen from a Zipf, and the updates operate on already-existing keys.
Workload-D involves 95% reads and 5% inserting new keys (temporally weighted dis-
tribution). Workload-E involves 95% range queries and 5% inserting new keys (Zipf),
while Workload-F has 50% reads and 50% read-modify-writes (Zipf).
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cKey’s relative performance (compared to the LevelDB and RocksDB) is
better in Workload-A (50% reads) than in Workload-B (95% reads) and
Workload-C (100% reads). However, RocksDB and LevelDB still do not
match WiscKey’s performance in any of these workloads.

The worst-case performance of WiscKey (with the garbage collection
turned on always, even for read-only workloads) is better than LevelDB
and RocksDB. However, the impact of garbage collection on performance
is markedly different for 1 KB and 16 KB values. Garbage collection re-
peatedly selects and cleans a 4 MB chunk of the vLog; with small values,
the chunk will include many key-value pairs, and thus garbage collection
spends more time accessing the LSM-tree to verify the validity of each
pair. For large values, garbage collection spends less time on the verifi-
cation, and hence aggressively writes out the cleaned chunk, affecting
foreground throughput more. Note that, if necessary, garbage collection
can be throttled to reduce its foreground impact.

Unlike the microbenchmark considered previously, Workload-E has
multiple small range queries, with each query retrieving between 1 and
100 key-value pairs. Since the workload involves multiple range queries,
accessing the first key in each range resolves to a random lookup – a
situation favorable for WiscKey. Hence, WiscKey performs better than
RocksDB and LevelDB even for 1 KB values.

4.4 Conclusions

Key-value stores have become a fundamental building block in data-
intensive applications. In this paper, we propose WiscKey, a novel LSM-
tree-based key-value store that separates keys and values to minimize write
and read amplification. The data layout and I/O patterns of WiscKey are
highly optimized for SSD devices.

We compare the performance of WiscKey with LevelDB and RocksDB,
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two popular LSM-tree key-value stores. For most workloads, WiscKey per-
forms significantly better. With LevelDB’s own microbenchmark, WiscKey
is 2.5×–111× faster than LevelDB for loading a database, depending on
the size of the key-value pairs; for random lookups, WiscKey is 1.6×–14×
faster than LevelDB. Under YCSB macrobenchmarks that reflect real-world
use cases, WiscKey is faster than both LevelDB and RocksDB in all six
YCSB workloads, and follows a trend similar to the load and random
lookup microbenchmarks.

Our hope is that key-value separation and various optimization tech-
niques in WiscKey will inspire the future generation of high-performance
key-value stores.
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5
Related Work

In this chapter, we discuss various research efforts and systems that are
related to this dissertation. First, we describe previous system bug related
studies over the years. Then, we describe work related to provide reliability
and performance isolation in file systems. Finally, we discuss various key-
value stores based on different structures and performance optimizations.

5.1 System Bug Study

Faults in Linux have been systematically studied in last decade [54, 159].
Static analysis tools are used to find potential bugs in Linux 1.0 to 2.4.1 [54]
and Linux 2.6.0 to 2.6.33 [159]. Most detected faults are generic memory
and concurrency bugs. Both studies find that device drivers contain the
most faults, while Palix et al. [159] also show that file-system errors are
rising. Yin et al. [228] analyze incorrect bug-fixes in several operating
systems, and find that about 20% of fixes are incorrect. We also observe
similar results in file system bugs. Our work embellishes these studies,
focusing on all file-system bugs found and fixed over eight years and
providing more detail on which bugs plague file systems.

Various aspects of modern user-level open source software bugs have
also been studied, including bug patterns, bug impacts, reproducibility,
and bug fixes [74, 120, 131, 181, 225]. As our findings show, file-systems
bugs display different characteristics compared with user-level software
bugs, both in their patterns and consequences (e.g., file-system bugs have
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more serious consequences than user-level bugs; concurrency bugs are
much more common). One other major difference is scale; the number of
bugs (about 1800) and the time span (about 8 years of development) we
study is much larger than previous efforts [74, 120, 131, 181, 225].

In addition to system bug studies, several research projects have been
proposed to detect and analyze file-system bugs. For example, Yang et
al. [226, 227] use model checking to detect file-system errors; Gunawi
et al. [84] use static analysis techniques to determine how error codes
are propagated in file systems; Rubio-Gonzalez et al. [178] utilize static
analysis to detect similar problems; Prabhakaran et al. [165] study how file
systems handle injected failures and corruptions. Our work complements
this work with insights on bug patterns and root causes. Further, our public
bug dataset provides useful hints and patterns to aid in the development
of new file-system bug-detection tools.

There are several interesting related research projects after our paper
is published. Similar to our study methodology and analysis categories,
software bug studies are also conducted for modern cloud systems [83, 95].
Both projects analyze development and deployment issues found in pop-
ular distributed systems, such as Hadoop, HDFS, and Cassandra. We
have two important findings in our study: semantic bugs dominate and
failure-handling paths are error-prone. Min et al. [146] propose a tool
that automatically infers file-system semantics directly from source code.
The tool compares and contrasts multiple existing file-system implemen-
tations to detect the semantic bugs. Yuan et al. [229] find that majority
of catastrophic failures in distributed systems could easily be prevented
by performing simple testing on error handling code. They develop a
simple static checker to locate these error-handling bugs. In addition to
bug-finding tools, another way to overcome file system bugs is to design
verifiable file systems. BilbyFS [109] uses layered domain-specific lan-
guages to generate code and proofs, while FSCQ [50] extends Hoare logic
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with crash predicates, recovery procedures and logical address spaces for
a complete file system.

5.2 File System Isolation

Isolation is an important property in modern systems. Various isolation
techniques are proposed for different parts of the system. Typical ex-
amples include virtual machines [40, 69], Linux Containers [7], isolation
kernel [218], BSD jail [105] and Solaris zones [156]. They are used to
create an independent environment for the target applications or even op-
erating systems to run in a shared platform. For the file system component,
these frameworks only provide namespace isolation for different clients by
constraining clients to only a subset of the shared file system. However, as
shown in this thesis, the failure, recovery and journaling performance are
not isolated in a shared file system. Our work is to provide a file system
level container which can be used together with the above techniques to
provide full isolation for applications.

IceFS has derived inspiration from a number of projects for improving
file system recovery and repair, and for tolerating system crashes.

Many existing systems have improved the reliability of file systems
with better recovery techniques. Fast checking of the Solaris UFS [161] has
been proposed by only checking the working-set portion of the file system
when failure happens. Changing the I/O pattern of the file system checker
to reduce random requests has been suggested [31, 133]. A background
fsck in BSD [142] checks a file system snapshot to avoid conflicts with the
foreground workload. WAFL [91] employs Wafliron [151], an online file
system checker, to perform online checking on a volume but the volume
being checked cannot be accessed by users. Our recovery idea is based
on the cube abstraction which provides isolated failure, recovery and
journaling. Under this model, we only check the faulty part of the file
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system without scanning the whole file system. The above techniques can
be utilized in one cube to further speedup the recovery process.

Several repair-driven file systems also exist. Chunkfs [89] does a par-
tial check of Ext2 by partitioning the file system into multiple chunks;
however, files and directory can still span multiple chunks, reducing the
independence of chunks. Windows ReFS [193] can automatically recover
corrupted data from mirrored storage devices when it detects checksum
mismatch. Our earlier work [125] proposes a high-level design to isolate
file system structures for fault and recovery isolation. Here, we extend that
work by addressing both reliability and performance issues with a real
prototype and demonstrations for various applications. Compared with
these file systems, IceFS disentangles the file system into both logically and
physically isolated parts. In this systematical manner, the fault detection
and recovery can be more independent and localized.

Many ideas for tolerating system crashes have been introduced at
different levels. Microrebooting [43] partitions a large application into
rebootable and stateless components; to recover a failed component, the
data state of each component is persistent in a separate store outside of
the application. Nooks [205] isolates failures of device drivers from the
rest of the kernel with separated address spaces for each target driver.
Membrane [203] handles file system crashes transparently by tracking
resource usage and the requests at runtime; after a crash, the file system
is restarted by releasing the in-use resources and replaying the failed
requests. The Rio file cache [52] protects the memory state of the file
system across a system crash, and conducts a warm reboot to recover lost
updates. Inspired by these ideas, IceFS localizes a file system crash by
microisolating the file system structures and microrebooting a cube with a
simple and light-weight design. Address space isolation technique could
be used in cubes for better memory fault isolation.

In addition to reliability isolation, performance isolation within file
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systems and SSDs also have been proposed. When running multiple
workloads on a machine with fast storage devices and many cores, the con-
tention of in-memory locks from different threads may introduce a large
overhead. Similar to cubes in IceFS, Multi-lane [107] and SpanFS [108]
propose to isolate I/O stacks (both in-memory and on-disk structures) for
different domains; in this manner, domains will not compete for shared
locks, avoiding lock scalability bottlenecks when running multiple work-
loads in a many core machine. Similar to metadata entanglement in file
systems, data with different lifetime could be stored together in the same
flash page in modern SSDs, leading to excessive garbage collection traffic.
Multi-streamed SSDs [106] propose streams for applications, mapping
data with different lifetimes to SSD streams. The multi-streamed SSD
ensures that the data in a stream are not only written together to a phys-
ically related flash space, but also separated from data in other streams;
thus, the SSD throughput and latency QoS can be significantly improved.
Mapping cubes to different streams may improve performance of IceFS
when running on such multi-streamed SSDs.

5.3 Key-Value Store Optimization

In this section, we discuss related work in both persistent and in-memory
key-value stores. We focus on different data structures and optimization
techniques used.

Various key-value stores based on hash tables have been proposed
for SSD devices. FAWN [21] keeps key-value pairs in a append-only log
on the SSD, and uses an in-memory hash table index for fast lookups.
FlashStore [64] and SkimpyStash [65] follow the same design, but optimize
the in-memory hash table; FlashStore uses cuckoo hashing and compact
key signatures, while SkimpyStash moves a part of the table to the SSD
using linear chaining. BufferHash [20] uses multiple in-memory hash
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tables, with bloom filters to choose which hash table to use for a lookup.
SILT [122] is highly optimized for memory, and uses a combination of log-
structure, hash-table, and sorted-table layouts; the lookup is served with
a hash table and a trie in memory. WiscKey shares the log-structure data
layout with these key-value stores. However, these stores use hash tables
for indexing, and thus do not support modern features that have been
built atop LSM-tree stores, such as range queries or snapshots. WiscKey
instead targets a feature-rich key-value store which can be used by various
modern applications and environments.

Much work has gone into optimizing the original LSM-tree key-value
store [157]. bLSM [187] presents a new merge scheduler to bound write
latency, thus maintaining a steady write throughput, and also uses bloom
filters to improve performance. VT-tree [190] avoids sorting any previously
sorted key-value pairs during compaction, by using a layer of indirection.
However, the performance of VT-trees depends on the key ranges of the
SSTable files. WiscKey instead directly separates values from keys, signifi-
cantly reducing write amplification regardless of the key distribution in
the workload. LOCS [215] exposes internal flash channels to the LSM-tree
key-value store, which can exploit the abundant parallelism for a more
efficient compaction. Atlas [114] is a distributed key-value store based
on ARM processors and erasure coding, and stores keys and values on
different hard drives. WiscKey is a standalone key-value store, where the
separation between keys and values is highly optimized for SSD devices to
achieve over 100× performance gains. LSM-trie [224] uses a trie structure
to organize keys, and proposes a more efficient compaction based on the
trie; however, this design sacrifices LSM-tree features such as efficient
support for range query. RocksDB, described previously, still exhibits
high write amplification due to its design being fundamentally similar to
LevelDB; RocksDB’s optimizations are orthogonal to WiscKey’s design.

Walnut [51] is a hybrid object store which stores small objects in a
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LSM-tree and writes large objects directly to the file system. IndexFS [173]
stores its metadata in a LSM-tree with the column-style schema to speed
up the throughput of insertion. Purity [57] also separates its index from
data tuples by only sorting the index and storing tuples in time order.
All three systems use similar techniques as WiscKey. However, we solve
this problem in a more generic and complete manner, and optimize both
load and lookup performance for SSD devices across a wide range of
workloads.

Key-value stores based on data structures other than the LSM-tree
and hash table have also been proposed. TokuDB [28, 39] is based on
fractal-tree indexes, which buffer updates in internal nodes; the keys are
not sorted, and a large index has to be maintained in memory for good
performance. BetrFS [100] is a file system built on top of TokuDB in the
kernel to get high performance for small updates. ForestDB [17] uses a
HB+-trie to efficiently index long keys, improving the performance and
reducing the space overhead of internal nodes. NVMKV [136] is a FTL-
aware key-value store which uses native FTL capabilities, such as sparse
addressing, and transactional supports. Since these key-value stores are
based on different data structures, they each have different trade-offs
relating to performance; instead, WiscKey proposes improving the widely
used LSM-tree structure.

Many proposed techniques seek to overcome the scalability bottlenecks
of in-memory key-value stores, such as Mastree [135], MemC3 [73], Mem-
cache [152], MICA [123] and cLSM [80]. Mastree [135] is a in-memory
key-value database designed for SMP machines. Its main data structure is
a trie-like concatenation of B+-trees, each of which handles a fixed-length
slice of a variable-length key. MemC3 [73] optimizes for read-mostly work-
loads. It proposes a new hashing scheme, optimistic cuckoo hashing,
that achieves high space occupancy and concurrency. cLSM [80] tries to
improve the scalability of LSM-tree based key-value stores on multicore
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servers. It presents an algorithm for scalable concurrency in LSM-trees,
which exploits multiprocessor-friendly data structures and non-blocking
synchronization. WiscKey focuses on improving the performance of LSM-
trees by optimizing the data layout and I/O patterns. Once WiscKey can
fully utilize the storage device bandwidth, the next step would be the
scalability of in-memory structures. These scalable techniques used in in-
memory key-value stores may be adapted for WiscKey to further improve
its performance in future.
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6
Future Work and Conclusions

Storage has becoming increasingly important to our modern world. Data
is generated in an unprecedented speed, and new storage hardware is also
on the rise. Under this situation, various storage systems and applications
have been developed to manage data more reliably and efficiently. In this
dissertation, we presented study results that help us to understand the real
problems in file systems and proposed solutions that offer better reliability
and performance than existing file systems and key-value stores.

We started by analyzing a large number of file system patches to un-
derstand what are the real problems in modern file systems (§2). We
focused on file system bugs, performance and reliability patches. We
found that there are many bugs in both new and mature file systems, and
most of bugs may lead to serious consequences (data corruption or system
crashes). However, there is not enough isolation within a file system to
cope with corruption, crashes and performance problems. Therefore, we
presented our solution IceFS, a new file system that separates physical
structures of the file system for better reliability and performance isolation
(§3). In addition to file systems, we also found that physical entanglement
of keys and values in LSM-trees can lead to large I/O amplification and
disappointed performance in fast SSDs. We proposed WiscKey, a novel
LSM-tree based key-value store with a performance-oriented data layout
that separates keys and values to minimize I/O amplification(§4).

In this chapter, we first summarize our contribution of this dissertation
(§6.1). We then describe a set of general lessons we have learned in the
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course of this dissertation work (§6.2). Finally, we discuss several possible
future research directions (§6.3).

6.1 Summary

This dissertation is mainly comprised of two parts. In the first part, we
analyzed and studied file-system patches to understand the real problems
of modern file systems. In the second part, we built a file system and a
key-value store with physical separation techniques for better reliability
and performance. We summarize each part in turn.

6.1.1 File System Study

In the first part of the dissertation, we performed the first comprehen-
sive study of the evolution of Linux file systems. First, we investigate
the overview of file-system patches. We found that nearly half of total
patches are for code maintenance and documentation. The remaining
dominant category is bugs, existing in both new and mature file systems.
Interestingly, file-system bugs do not diminish despite the stability. We
also found that bug patches are generally small while feature patches are
significantly larger.

Second, we further analyzed bugs in detail. We found that semantic
bugs are the dominant bug category (over 50% of all bugs), which are
hard to detect via generic bug detection tools. Concurrency bugs are the
next most common (about 20% of bugs), more prevalent than in user-level
software. The remaining bugs are split relatively evenly across memory
bugs and improper error-code handling. Unfortunately, most of the bugs
we studied lead to crashes or corruption, and hence are quite serious. We
also made an important discovery that nearly 40% of all bugs occur on
failure-handling paths.
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Finally, we also studied performance and reliability patches. The perfor-
mance techniques used were relatively common and widespread. About a
quarter of performance patches reduced synchronization overheads. Relia-
bility techniques seemed to be added in a rather ad hoc fashion. Inclusion
of a broader set of reliability techniques could harden all file systems.

6.1.2 Physical Separation in Storage Systems

In the second part of this dissertation, we presented our new physical sep-
aration techniques in two important types of storage systems: file systems
and key-value stores. By building IceFS and WiscKey, we demonstrated
that physical separation is a useful and practical technique, which can lead
to significantly better reliability and performance for various workloads
and environments.

First, we proposed IceFS, a novel file system that separates physical
structures of the file system for better isolation. A new abstraction, the
cube, was provided to enable the grouping of files and directories inside
a physically isolated container. To realize disentanglement, IceFS was
built upon three core principles: no shared physical resources, no access
dependencies, and no bundled transactions among cubes. IceFS ensured
that files and directories within cubes are physically distinct from files
and directories in other cubes; thus data and I/O within each cube is
disentangled from data and I/O outside of it.

We showed three major benefits of cubes within IceFS: localized re-
action to faults, fast recovery, and concurrent file-system updates. We
showed how cubes enable localized micro-failures; crashes and read-only
remounts that normally affect the entire system are now constrained to the
faulted cube. We also showed how cubes permit localized micro-recovery;
instead of an expensive file-system wide repair, the disentanglement found
at the core of cubes enables IceFS to fully (and quickly) repair a subset of
the file system (and even do so online). In addition, we illustrated how
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transaction splitting allows the file system to commit transactions from
different cubes in parallel, greatly increasing performance (by a factor
of 2× - 5×) for some workloads. Furthermore, we conducted two cases
studies where IceFS is used to host multiple virtual machines and is de-
ployed as the local file system for HDFS data nodes. IceFS achieved fault
isolation and fast recovery in both scenarios, proving its usefulness in
modern storage environments.

Second, we presented WiscKey, an SSD-conscious persistent key-value
store derived from the popular LSM-tree implementation, LevelDB. The
central idea behind WiscKey was the separation of keys and values; only
keys were kept sorted in the LSM-tree, while values were stored separately
in a log. This simple technique can significantly reduce write amplification
by avoiding the unnecessary movement of values while sorting. Further-
more, the size of the LSM-tree was also noticeably decreased, leading to
better caching and fewer device reads during lookups. WiscKey retained
the benefits of LSM-tree technology, including excellent insert and lookup
performance, but without excessive I/O amplification.

We solved a number of reliability and performance challenges intro-
duced by the new key-value separation architecture. First, range query
(scan) performance may be affected because values are not stored in sorted
order anymore. We proposed a parallel range query design to leverage
the SSD’s internal parallelism for better range query performance on un-
ordered datasets. Second, WiscKey needed garbage collection to reclaim
the free space used by invalid values. We introduced an online and light-
weight garbage collector for WiscKey to reclaim the invalid key-value pairs
without affecting the foreground workloads much. We demonstrated the
advantages of WiscKey with both microbenchmarks and YCSB workloads.
Microbenchmark results showed that WiscKey is 2.5× - 111× faster than
LevelDB for loading a database and 1.6× - 14× faster for random lookups;
similar results hold for YCSB workloads.
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6.2 Lessons Learned

In this section, we present a list of general lessons we learned while work-
ing on this dissertation.

Large-scale studies are valuable. In general, studies drive system designs.
Researchers and practitioners conducted numerous studies in the past to
help understand system behaviors, workload patterns, and various design
tradeoffs. These detailed studies can provide practical motivation and
useful design guidelines for next generation systems.

For the file system study project, we found many interesting and im-
portant details after studying a large number of patches across six file
systems. These details can inspire new research opportunities. For ex-
ample, once we understand how file systems leak their resources, we can
build a specialized tool to detect them more efficiently. Once we know
how file systems crash, we can improve current systems to tolerate them
more effectively. These vivid examples in the study really teach us what
are the important problems in file systems.

The scale of the study is also very important. More patches we studied,
more interesting patterns we found. More importantly, only after a large
number of cases are studied, we can make some observations which may
be statistically significant and insightful.

Conquer a large-scale study with small steps. Conducting a large-scale
study is definitely time consuming. The total number of patches we studied
comprehensively is about 2000 (bugs, performance and reliability patches).
If we knew in advance that we need to analyze 2000 hard patches, we may
feel overwhelmed and give up this project early on. The way we handled
this study is starting from small beginnings.

Initially, we were just curious about Ext3’s patches, since Ext3 was a
stable and popular file system. We studied 5 versions of Ext3 patches,
and classified them into different categories. We found the results very
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interesting and surprising. Then, we thought that we need to study more
patches of Ext3 to better understand the broader patterns. Once we fin-
ished all 40 versions of Ext3 in Linux 2.6 series, we wondered that whether
Ext4 has similar bugs and performance techniques as Ext3. After Ext4,
we continued to ask that what about other types of file systems, such as
Btrfs (copy-on-write) and XFS (logical journaling). In this incremental
manner, we grew our study base from one file system to six popular file
systems, and from less than 100 patches to over 5000 patches in total fi-
nally. It took us one and half year to finish the study. Thus, a large-scale
study is still feasible and manageable. Starting from small beginnings and
making consistent progress keep us interested and mentally sane in this
long journey.

Research should match reality. Most previous work of bug studies and
bug-finding tools focused on generic bugs (such as memory bugs, concur-
rency bugs and error handling bugs). However, in our study, we found
that a majority of file system bugs are semantic bugs, which require file-
system domain knowledge to understand and fix. Furthermore, we found
that none of these semantic bugs was detected by existing tools, such as
Coverity. This striking gap between research and reality demonstrates the
importance of finding and solving real problems.

In our study, we advocated that new tools are highly desired for se-
mantic bugs in file systems. We also suggested that more attention may
be required to make failure paths more correct. Fortunately, following
research papers [146, 229] proposed solutions for these two real problems.

History repeats itself. We observed that similar mistakes happened again
and again, within a single file system and across different file systems.
Developers of new file systems even borrowed bug-fixing solutions from
patches of old file systems. We also found that similar performance and
reliability techniques were used across file systems in different time when
performance bottlenecks were detected or data corruption occurred.
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System researchers and developers should not only focus on innovative
designs for future systems, but also respect the history of existing systems
widely deployed and researched. Learning from these rich history will
never be wasting of time; instead, it will provide new insights and experi-
ences of what worked and what not. More importantly, the same mistakes
can be avoided at the first place. We should pay more attention to system
histories, learn from them, and build a correct, high-performance and
robust next generation systems from the beginning.

Inspiration can come from a different area. After we finished the file
system study, we were looking for what to work next. During that period,
we occasionally read a security paper from our colleague [211], which
solved the problem of performance interference among virtual machines
co-located in the same physical machine in the cloud. Since there was
little isolation for VMs from different users, it is possible to slow down
other VMs co-located in the same machine by running a carefully design
workload from the attacker VM.

Even though this is a security paper, it immediately inspired us to
think about isolation for VMs or users on the same machine in the context
of file systems. Since we just finished the file system study, we knew
that file systems have many bugs, and bugs cause data corruption and
system crashes, which will affect all VMs or users relying on the same file
system. An interesting research question for us is that how can we isolate
reliability interference in the file system layer. This is how we started the
IceFS project. Later, we also extended IceFS to handle the performance
interference in the file system by isolating transactions.

Ideas from a different area may help you think about your research in
a new perspective. Viewing problems in a different angle is hard without
any new source of inputs. These small and random kicks from other
research areas may inspire you in unexpected ways and play an important
role for new research ideas.
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Don’t settle for existing abstraction. Files and directories are basic and
long-standing abstraction provided by file systems. However, these logi-
cal entities are an illusion; the underlying physical entanglement in file
system data structures and transactional mechanisms does not provide
true isolation. To provide true isolation within a file system, we proposed
a new abstraction, called cube. This new abstraction connects the logical
abstraction provided to users and the underlying physical structures on
disk. Based on this new abstraction, it is straightforward for us to design
an isolation file system which can provide both reliability and transaction
performance isolation.

New abstraction fosters new research. If a research problem cannot be
solved by existing abstraction, a new abstraction may be required. New
abstraction should be simple and easy to use.

Isolation should be a fundamental design goal. When we analyzed the
shared failures and bundled performance in file systems, we found the
root cause is the entanglement of on-disk structures and in-memory trans-
actions for different files. In other words, file systems were not designed
to provide isolation at the first place. To provide better data locality, meta-
data from multiple files is stored together in the same disk block. To
provide better I/O performance, updates from different files are batched
in the same transaction. Data locality and I/O performance were the main
goals when designing file systems. However, isolation was omitted as a
fundamental design goal.

Isolation is becoming more important in new environments. As the
workloads of the world move to the cloud, as the computing moves to
virtual machines and containers, as the multi-tenant world becomes the
only world we will live in, isolation is the key property to give us the
illusion that we have our own machines. We should rethink systems
underneath our applications at the very basic levels, both in terms of data
layouts and I/O patterns. We should design systems with strong isolation
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for well-defined boundaries from the beginning.

Don’t put old software in new hardware. Originally, LSM-trees were
designed for machines with hard drives and a small number of cores. As
long as the write and read amplification are smaller than 1000, LSM-trees
are good enough for a wide range of workloads. With the rise of SSDs
on modern servers, while replacing an HDD with an SSD underneath an
LSM-tree does improve performance, the SSD’s true potential goes largely
unrealized with the old LSM-trees as we demonstrated in Chapter ??.

We need to evolve old software for new hardware. There are lots of
progresses on building storage systems in last several decades. Virtually,
all of those intelligence was based on hard drives. Recently, we really
transition our storage system to flash based devices. We should re-evaluate
systems designed before, leverage things worked well, and optimize them
further to leverage the new hardware. In WiscKey, we leverage the good
parts of LSM-trees (such as sequential I/O patterns and rich features), and
further optimize it in new ways for SSDs to get the best of two worlds.

Work on systems extremely slow or unreliable. At the conference Usenix
FAST 2009, Marshall Kirk McKusick said that the reason he worked on
FFS (Fast File System) [141] was that the default UNIX file system that
time only utilized 2% of the device bandwidth. There was a huge room
to improve it. Therefore, FFS was proposed and it can reach 47% of the
device bandwidth, more than 20× of the baseline.

WiscKey is also such an example. When our experiments showed
that LevelDB has high I/O amplification, and it can only utilize about
1% of the SSD device bandwidth, we felt that it is a great opportunity
to make LevelDB significantly faster. After an array of new designs and
optimization, WiscKey can be over 100× faster than LevelDB.

We believe that when choosing what to work on, try to choose an
existing system which is extremely slow or unreliable. More opportunities
lie at these corners.
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6.3 Future Work

Non-volatile memory devices are at the rise. NAND-flash based solid state
disks (SSD) [46, 82], phase-change memory (PCM) [45, 58] and memris-
tor [198] provide microsecond level latency and high internal data paral-
lelism, which can greatly boost application performance. This revolution
of storage technologies is transforming the state-of-art of the storage hard-
ware and software.

However, the entire storage stack and many key-value stores are de-
signed for an ancient technology: the classic (and slow) hard drive [44, 97,
111, 141, 188, 223]. Various designs and architectures are based on assump-
tions of slow I/O bottleneck in the system. Simply replacing hard disks
with fast SSDs will probably not achieve the full performance benefits
with current system software.

In addition, commodity servers contain an increasing number of com-
puting cores. Servers with tens to hundreds of cores are available al-
ready [11]. Trends indicate that the number of cores within a single ma-
chine will continue to increase in future [35]. The cache and memory ca-
pacity also increases with the number of cores for balanced performance;
it is not uncommon that a single server machine contains over 100 GB of
DRAM for high performance [56, 63].

We believe these two hardware trends (fast storage devices and many
cores) will continue in foreseen future. Our vision is to build highly
scalable storage stack and applications. In this section, we discuss several
directions for such vision.

6.3.1 Scalable Virtual File System (VFS)

VFS is the entrance of all system calls. All the generic file system structures
are maintained in VFS, such as inode, super block, and dentry. VFS also
maintains metadata and file data caches for fast accesses: inode cache,
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dentry cache and page cache. When reading or writing a file, the related
cached structures also need to be updated. We are interested in exploring
several potential scalability bottlenecks in VFS.

First, VFS uses spin locks to protect the global inode hash table and
dentry LRU list. Frequent insertion and deletion of inodes or directory
entries may trigger these synchronization bottlenecks. To solve this chal-
lenge, we propose to decompose the global shared structures into multiple
smaller ones. A new partition domain (e.g., a similar abstraction as cube)
can be introduced in VFS to isolate these generic structures; thus, the big
lock can be avoided.

Second, directories in file systems are organized as a tree hierarchy both
logically and physically. To access a file /home/bob/research/paper/foo,
all the directory entries from the root to the target file must be parsed.
During the directory traversal, if multiple threads access different files in
deep directories, then all the dentries and paths along the directory path
will be frequently locked and released. This style of directory hierarchy
dependency may affect scalability across many cores. Furthermore, if each
directory contains many entries, then the traversal process may require
a fair number of I/Os. Even though efficient lookup structures, such
as Btree, are helpful to reduce the overhead of lookup, the fundamental
bottleneck still exist because of the directory hierarchy.

We should decouple the logical hierarchy and the physical layout of
directories for better scalability. We propose to build a directory hierarchy
over a object-based store. In this manner, given a pathname, the file system
only needs to lookup the corresponding object on disk, instead of parsing
all the entries along the path.

6.3.2 Scalable Local File Systems

Many popular Linux file systems, such as Ext3, Ext4 and XFS were de-
signed decades ago. The scalability of local file systems on new hardware
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is also very interesting to explore.
First, file systems use a wide range of synchronization methods to

protect their internal metadata, such as spin locks, read/write locks and
mutexes. These lock primitives are also used extensively in kernel for
shared data structures. Developers make constant efforts to optimize
existing locks for better concurrency [126], such as removing unnecessary
locks, using finer-grained locking instead of big locks, and replacing write
locks with RCU.

However, these techniques do not consider the scalability issue on
many cores. Typical locks used in Linux may not be scalable across cores
due to the cache coherence protocol [63]. It may be the worth effort to
adopt more complex and scalable locks in file systems [75]. Furthermore,
we could change current locking granularity for better concurrency. For
example, to update a file, the inode lock is required for exclusive accesses.
Two threads may update different pieces of metadata or data of the same
file concurrently. Thus, fine-grained locking may be more scalable for
certain workloads.

Second, transaction management in file systems can cause significant
performance degradation for certain workloads. For example, Ext3/4
maintain only one running transaction, and use one single thread to flush
the buffered transaction to disk periodically or as triggered by fsync().
For a multiple-thread write intensive workload, the journaling layer can
block the applications due to the serialization in the transaction layer.

We propose to parallelize the journaling layer for better scalability. First,
we need to maintain multiple running transactions in memory to buffer
independent updates. As a result, updates from applications should be
classified in some way to be independent from each other. Second, during
commit, we will use multiple threads to commit transactions in parallel.
Third, a shared physical journal or multiple physical journals should both
work, since the bottleneck is not supposed to be at the device level.
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Third, storage device locality may be irrelevant, if there is little differ-
ence between random and sequential performance on fast devices. How-
ever, most existing allocation or scheduling algorithms are optimized for
data locality, which could limit the concurrency of file systems. For exam-
ple, to allocate data blocks for a file in Ext3 or Ext4, the block group of its
parent directory is preferred. If multiple threads allocate blocks for files
under the same parent directory, a shared bitmap will be updated from
multiple cores, limiting concurrency.

We propose randomized algorithms to replace traditional locality based
algorithms in file systems. A randomized allocation design can spread the
metadata updates uniformly across the whole device. We will revisit all
the locality-based algorithms in file systems, and replace them for better
scalability if possible.

6.3.3 Scalable Block Layer

The block layer is below the local file system. It is responsible for schedul-
ing the low level I/O requests to the storage device. We are interested in
two scalability issues in the block layer.

First, I/O schedulers usually store many pending requests in queues
before dispatching them, such as CFQ and Deadline. One potential bottle-
neck is the shared request queue, which is used to buffer all the incoming
I/O requests. The shared queue lock is required when the block layer does
request insertion, request merging, fairness scheduling, I/O accounting,
and request deletion. This single point processing could be a scalability
bottleneck for fast devices [32]. We are curious to further explore other
structures and algorithms in the block layer which can slow down I/O
request processing.

Second, the block layer also sends device cache flush requests from file
systems to the underlying device drivers. For example, a fsync() request
from an application could force a device cache flush for durability of its



152

data. However, cache flush is expensive, and this could cause slowdown
for applications. For a highly parallel application, there may be many cache
flush requests from different threads. We are interested in investigating
new techniques to smartly schedule these cache flush requests for both
durability and scalability.

6.3.4 Scalable Key-Value Stores

LSM-trees were designed for machines with hard drives, and a small num-
ber of cores. In WiscKey, we optimize LSM-trees for SSDs by separating
keys and values. There are many other aspects we can further improve
WiscKey for SSDs, large memory and many cores.

In WiscKey, the garbage collection is done by a single background
thread. The thread reads a chunk of key-value pairs from the tail of the
vLog file; then for each key-value pair, it checks the LSM-tree for validity;
finally, the valid key-value pairs are written back to the head of the vLog
file. We can improve the garbage collection in two ways. First, lookups
in the LSM-tree are slow since multiple random reads may be required.
To speedup this process, we can use multiple threads to do the lookup
concurrently for different key-value pairs. Second, we can make garbage
collection more effective by maintaining a bitmap of invalid key-value
pairs in the vLog file. When the garbage collection is triggered, it will first
reclaim the chunk with the highest percentage of free space.

Another interesting direction to scale LevelDB or WiscKey is sharding
the database. Many components of LevelDB are single-threaded due to a
single shared database. As we discuss before, there is a single memtable to
buffer writes in memory. When the memtable is full, the foreground writes
will be stalled until the compaction thread flushes the memtable to disk.
In LevelDB, only a single writer can be allowed to update the database.
The database is protected by a global mutex. The background compaction
thread also needs to grab this mutex when sorting the key-value pairs,
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competing with the foreground writes. For a multiple writer workload,
this architecture can unnecessarily block concurrent writes. One solution
is to partition the database and related memory structures into multiple
smaller shards. Each shard’s keys will not overlap with others. Under this
design, writes to different key-value ranges can be done concurrently to
different shards. A random lookup can also be distributed to one target
shard, without searching all shards. This new design may make lookups
faster because of a smaller dataset to search.

6.4 Closing Words

Digital data is universal and essential in many aspects of our lives and
businesses. With the increasing amount of data generated and the rise of
new hardware, accessing data both reliably and efficiently become critical
for modern storage systems.

In this dissertation, we began our journey with a comprehensive study
of Linux file systems evolution, to better understand the reliability and
performance problems that plague existing systems for decades. Then, we
demonstrated that physical separation of fundamental data structures in
file systems and key-value stores can provide isolated reliability and signif-
icantly better performance. This is extremely important for our changing
storage world, which becomes virtualized, multi-tenant and failure-prone.
We hope that this dissertation can serve as a simple but detailed exam-
ple for researchers and system builders to rethink the fundamental data
layouts and I/O patterns of existing systems, leverage past valuable ex-
periences, and embrace new hardware and optimization for a better next
generation storage system.
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