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Local Storage Systems Are Important
GFS, 

HDFS
vmware
docker

Local 
Storage 

Riak, 
MongoDB

ext4,  
NTFS, 
SQLite
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Data Layout of Storage Systems

Data layout is fundamental
➡ how to organize data on disks and in memory 
➡ impact both reliability and performance

Locality is the key
➡ store relevant data together 
➡ locality is pursued in various storage systems
➡ file systems, key-value stores, databases 

➡ better performance (caching and prefetching)
➡ high space utilization 
➡ optimize for hard drives 
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Problems of Data Locality

New environments 
➡ fast storage hardware (e.g., SSDs) 
➡ servers with many cores and large memory
➡ sharing infrastructure is the reality

➡ virtualization, containers, data centers

Unexpected entanglement
➡ shared failures (e.g., VMs, containers)
➡ bundled performance (e.g., apps) 
➡ lack flexibility to manage data differently 
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New Technique: Physical Separation

Redesign data layout 
➡ rethink existing data layouts
➡ key: separate data structures
➡ apply in both file systems and key-value stores

Many new benefits 
➡ IceFS: disentangle structures and transactions
➡ isolated failures, faster recovery
➡ customized performance 

➡ WiscKey: key-value separation  
➡ minimize I/O amplification
➡ leverage devices’ internal parallelism  
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Research Contributions

A study of Linux file system evolution 
➡ the first comprehensive file-system study
➡ published in FAST ’13 (best paper award)

Physical disentanglement in IceFS
➡ localized failure, localized recovery 
➡ specialized journaling performance
➡ published in OSDI ’14

Key-value separation in WiscKey 
➡ an SSD-conscious LSM-tree 
➡ over 100x performance improvement
➡ submitted to FAST ’16

1

2

3
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Introduction
Disentanglement in IceFS
➡ File system Disentanglement
➡ The Ice File System
➡ Evaluation

Key-Value Separation in WiscKey
➡ Key-value Separation Idea
➡ Challenges and Optimization 
➡ Evaluation 

Conclusion

Outline
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Isolation Is Important

Reliability
➡ independent failures and recovery

Performance 
➡ isolated performance

Isolation at various scenarios 
➡ computing: virtual machines, Linux containers
➡ security: BSD jail, sandbox
➡ cloud: multi-tenant systems
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File Systems Lack Isolation

Local file systems are core building blocks
➡ manage user data
➡ long-standing and stable
➡ foundation for distributed file systems

Existing abstractions provide logical isolation
➡ file, directory, namespace
➡ just illusion 

Physical entanglement in local file systems 
prevents isolation

➡ entangled data structures and transactions
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Metadata Entanglement

foo.txt

foo.txt 
inode

bar.c

one 4KB inode block

bar.c 
inode

I/O failure
Metadata corruption

Shared metadata for multiple files
➡ e.g., multiple files share one inode block
➡ many shared structures: bitmap, directory block

Problem: faults in shared structures lead to 
shared failures and recovery
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Transaction Entanglement

data of foo.txt data of 
bar.c

foo.txt bar.c

Disk

Mem

fsync(bar.c)

A shared transaction for all updates

Problem: shared transactions lead to 
entangled performance
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Our Solution: IceFS

Propose a data container abstraction: cube

Disentangle data structures and transactions

Provide reliability and performance isolation 

Benefits for local file systems
➡ isolated failures for data containers
➡ up to 8x faster localized recovery
➡ up to 50x higher performance

Benefits for high-level services
➡ virtualized systems: reduce the downtime over 5x
➡ HDFS: improve the recovery efficiency over 7x
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Data Container Abstraction: Cube

b1 b2

a

d1

c

c1

/

b d

b, b1, b2 d, d1/, a, c, c1Disk

cube1 cube2

An isolated directory in a file system
➡ physically disentangled on disk and in memory 
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Principles of Disentanglement

No shared physical resources
➡ no shared metadata: e.g., block groups
➡ no shared disk blocks or buffers 

No dependency
➡ partition linked lists or trees
➡ avoid directory hierarchy dependency

No entangled updates
➡ use separate transactions
➡ enable customized journaling modes
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IceFS Overview

A data container based file system
➡ isolated reliability and performance for containers

Disentanglement techniques
➡ physical resource isolation
➡ directory indirection
➡ transaction splitting

A prototype based on Ext3
➡ local file system: Ext3/JBD
➡ kernel: VFS
➡ user level tool: e2fsprogs
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Ext3 Disk Layout

One block group

block 
groupSBDisk

metadata data blocks

group descriptors 
bitmaps
inodes

block 
group

block 
group

block 
group

block 
group

block 
group

block 
group

A disk is divided into block groups
➡ physical partition for disk locality

Tuesday, December 1, 15



IceFS Disk Layout

SBDisk S0 block 
group

block 
groupS1 block 

group
block 
group

block 
group

sub super blocks

cube metadata

Each cube has isolated metadata
➡ sub-super block (Si) and isolated block groups
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Directory Indirection

b1 b2

a

d1

c

c1

/

b d

cube1 cube2

1. load cube pathnames
from sub-super blocks

/a/b/, cube1 dentry
/d/, cube2 dentry
... ...

2. pathname prefix match

read file “/a/b/b2”
match cube1
jump to cube1 top directory
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Ext3/4 Transaction

Journal

file1

Memory

dirty 
data

file2

dirty 
data

file3

dirty 
data

Disk
commit tx

fsync(file1)
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IceFS Transaction Splitting

Journal

file1

Memory

dirty 
data

file2

dirty 
data

file3

dirty 
data

Disk
commit

tx

fsync(file1)

commit
tx

commit
tx

fsync(file2) fsync(file3)
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Benefits of Disentanglement

Localized reactions to failures
➡ per-cube read-only and crash
➡ encourage more runtime checking

Localized recovery
➡ only check faulty cubes
➡ offline and online

Specialized journaling
➡ concurrent and independent transactions 
➡ diverse journal modes (e.g., no journal, no fsync)
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Evaluation

Does IceFS isolate failures ?
➡ inject around 200 faults
➡ per-cube failure (read-only or crash) in IceFS
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Evaluation

Does IceFS isolate failures ?
➡ inject around 200 faults
➡ per-cube failure (read-only or crash) in IceFS

Does IceFS have faster recovery ?
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Recovery In Ext3

Ext3: 
20 directories
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Fast Recovery In IceFS

Ext3: 
20 directories

IceFS: 
20 cubes
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Partial recovery for a cube (up to 8x)
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Evaluation

Does IceFS isolate failures ?
➡ inject around 200 faults
➡ per-cube failure (read-only or crash) for IceFS

Does IceFS have faster recovery ?
➡ independent recovery for a cube
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Evaluation

Does IceFS isolate failures ?
➡ inject around 200 faults
➡ per-cube failure (read-only or crash) for IceFS

Does IceFS have faster recovery ?
➡ independent recovery for a cube

Does IceFS have better performance ?
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Workloads

SQLite
➡ a database application
➡ sequentially write large key/value pairs
➡ asynchronous

Varmail
➡ an email server workload
➡ randomly write small blocks
➡ fsync after each write
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Ext3 Journaling
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Ext3 Journaling
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Isolated Journaling In IceFS
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Parallel transactions in IceFS provide isolated 
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Specialized Journaling In IceFS
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Specialized Journaling In IceFS
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Specialized Journaling In IceFS
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with ordered

Varmail runs 
with no journal

Specialized journaling in IceFS provide flexibility 
between consistency and performance (over 50x)
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Evaluation

Isolate failures ?
➡ inject around 200 faults
➡ per-cube failure (read-only or crash) for IceFS

Faster recovery ?
➡ independent recovery for a cube

Better journaling performance ?
➡ isolated journaling performance
➡ flexibility between consistency and performance
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Evaluation

Isolate failures ?
➡ inject around 200 faults
➡ per-cube failure (read-only or crash) for IceFS

Faster recovery ?
➡ independent recovery for a cube

Better journaling performance ?
➡ isolated journaling performance
➡ flexibility between consistency and performance

Useful for applications ?
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Server Virtualization

Shared file system

Disk virtual disk 2 virtual disk 3virtual disk 1

vm1 vm2 vm3

Failures and recovery of the shared file system 
impact all virtual machines
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Virtual Machines
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Server Virtualization with IceFS

Shared file system with cubes

Disk virtual disk 2 virtual disk 3virtual disk 1

vm1 vm2 vm3

cube1 cube2 cube3
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Server Virtualization with IceFS
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Server Virtualization with IceFS
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Evaluation

Isolate failures ?
➡ inject around 200 faults
➡ per-cube failure (read-only or crash) for IceFS

Faster recovery ?
➡ independent recovery for a cube

Better journaling performance ?
➡ isolated journaling performance for cubes
➡ flexibility between consistency and performance

Useful for applications ?
➡ significantly reduce system downtime
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Summary of IceFS

Local file systems lack physical isolation
➡ physical entanglement 
➡ reliability and performance problems

IceFS provides isolation with data containers 

Computing is becoming virtualized, shared, 
and multi-tenant 

➡ isolation is the key 

Systems need to rethink isolation 
➡ avoid entanglement
➡ provide useful abstractions for applications
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➡ Evaluation

Key-Value Separation in WiscKey
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➡ Evaluation 

Conclusion
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Key-Value Stores

Key-value stores are important
➡ web indexing, e-commerce, social networks
➡ local and distributed key-value stores 
➡ hash table, b-trees
➡ log-structured merge trees (LSM-trees)

LSM-tree based key-value stores are popular 
➡ optimize for write intensive workloads
➡ advanced features: range query, snapshot
➡ widely deployed 
➡ BigTable and LevelDB at Google
➡ HBase, Cassandra and RocksDB at FaceBook
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LSM-trees Background

Log
L0 (8MB)

L1 (10MB)

L2 (100MB)

L6 (ITB)

memory 1

KVmemTmemT
23

4

5

disk

Batch and write sequentially
Sort data for quick lookups

LevelDB
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Problems: 

large write amplification

large read amplification

Random load: 
a 100GB database

Random lookup:
100,000 lookups

I/O Amplification in LSM-trees

1
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100 GB

Write Read
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Why LSM-trees ?

Good for hard drives
➡ high write throughput
➡ sequential vs random: can be up to 1000

Not optimal for SSDs 
➡ large write/read amplification 
➡ waste device resource
➡ decrease device’s lifetime

➡ unique characteristics of SSDs
➡ fast random reads
➡ internal parallelism 

Tuesday, December 1, 15



Our Solution: WiscKey

An SSD-conscious LSM-tree store
➡ main idea: separate keys and values
➡ harness SSD’s internal parallelism for range queries
➡ online and light-weight garbage collection
➡ minimize I/O amplification and crash consistent

Performance of WiscKey
➡ 2.5x to 111x for loading, 1.6x to 14x for lookups
➡ both micro and macro benchmarks

LSM-tree

key value

Value Log
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Key-Value Separation

key

LSM-tree

value

Value Log

k, addr value

SSD device

Main idea: only keys are required to be 
sorted, values can be managed separately
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Parallel Range Query
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SSD read performance
➡ sequential, random, parallel
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Parallel Range Query

Challenge
➡ sequential reads in LevelDB
➡ read keys and values separately in WiscKey

Parallel range query
➡ leverage parallel random reads of SSDs
➡ prefetch key-value pairs in advance 
➡ range query interface: seek(), next(), prev()
➡ detect a sequential pattern 
➡ prefetch concurrently in background 

Tuesday, December 1, 15



Garbage Collection

LSM-tree Value Log

valuek, addr value value

SSD device

ksize, vsize, key, value

tail head

Online and light-weight 
➡ append (ksize, vsize, key, value) in value log
➡ tail and head pointers for the valid range 
➡ tail and head are stored in LSM-tree 
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Garbage Collection

LSM-tree Value Log

k, addr

tail head

memory

disk

addr match ?
write back

1. read from the tail
2. check the LSM-tree

3. write back valid kv pairs
4. free space and update pointers
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Optimizing LSM-tree Log

LSM-tree Value Log

k, addr ksize, vsize, 
key, value

tail head

log ksize, vsize, 
key, value

LSM-tree log 
➡ used for recovery in case of a crash 
➡ performance overhead for small kv pairs  

Remove LSM-tree log in WiscKey 
➡ store head in LSM-tree periodically
➡ scan the value log from the head to recover
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WiscKey Implementation

Based on LevelDB
➡ a separate vLog file for values 
➡ modify I/O paths to separate keys and values  
➡ straightforward to implement 

Range query 
➡ a background thread pool 
➡ detect sequential pattern with the Iterator interface 

File-system support
➡ fadvise to predeclare access patterns  
➡ hole-punching to free space  
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Experiment Setup

Testing machine
➡ 16 cores (3.3 GHz), 64 GB memory
➡ Samsung 840 EVO SSD (500 GB)
➡ maximal sequential read: 500 MB/s
➡ maximal sequential write: 400 MB/s 

Workloads 
➡ micro benchmarks (db_bench) 
➡ YCSB benchmark 
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Evaluation

How does key-value separation impact the 
performance of WiscKey ?
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Sequential Load

WiscKey is over 3x faster due to its write buffer 
and removing the LSM-tree log
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Random Load

only 2 MB/s to 4.1 MB/s

Small write amplification in WiscKey due to key-
value separation (up to 111x in throughput)
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Random Lookup

Smaller LSM-tree in WiscKey leads to better 
lookup performance (1.6x - 14x)
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GB database large read amplification 

in LevelDB

Tuesday, December 1, 15



Evaluation

How does key-value separation impact the 
performance of WiscKey ?

➡ low write and read amplification 
➡ load (2.5x to 111x), lookup (1.6x to 14x)

Is the parallel range query fast enough ?
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Range Query

Better for large kv pairs, but worse for small kv 
pairs on an unsorted database
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WiscKey can 
perform better
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Range Query

Sorted databases help WiscKey’s range query
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Evaluation

How does key-value separation impact the 
performance of WiscKey ?

➡ low write and read amplification 
➡ load (2.5x to 111x), lookup (1.6x to 14x)

Is the parallel range query fast enough ?
➡ limited by random read performance
➡ sorting helps 

How about real workloads ? What is the 
effect of garbage collection ?
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YCSB Benchmarks

A: 50% R, 50% U;   B: 95% R, 5% U;     C: 100% R; 
D: 95% R, 5% I;      E: 95% Scan, 5% I;   F: 50% R, 50% RMW
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Evaluation

How does key-value separation impact the 
performance of WiscKey ?

➡ low write and read amplification 
➡ load (2.5x to 111x), lookup (1.6x to 14x)

Is the parallel range query fast enough ?
➡ limited by random read performance
➡ sorting helps 

How about real workloads ? What is the 
effect of garbage collection ?

➡ faster on all workloads
➡ performance similar to micro benchmarks
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Summary of WiscKey

LSM-trees are not optimized for SSD devices

WiscKey separates keys from values with an 
SSD-conscious design 

Many novel storage systems have been built 
for hard drives 

Transition to new storage hardware
➡ leverage existing software 
➡ explore new ways to utilize the new hardware
➡ get the best of two worlds 
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Lessons Learned

A large-scale study is feasible and valuable

Research should match reality 

History repeats itself

Don’t settle for existing abstraction

Isolation should be a fundamental design goal

Don’t run old software on new hardware

Fundamental details matter

Work on systems extremely slow or unreliable
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Conclusion

Local storage systems are important

Physical separation is useful           
➡ improve both reliability and performance over 10x
➡ better reliability: isolated failures, localized recovery
➡ better performance: specialized journaling, minimize 
I/O amplification

Computing and storage are evolving 
➡ virtualized, shared and fast
➡ physical separation is the key
➡ IceFS and WiscKey are just a beginning
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