Generating Realisticl mpressions for File-System Benchmarking

Nitin Agrawal, Andrea C. Arpaci-Dusseau and Remzi H. Arpaadisseau
Department of Computer Sciences, University of Wiscoltdison
{nitina, dusseau, remg@cs.wisc.edu

Abstract of the target usage scenario. Several factors contribute
to file-system state, important amongst them areithe

The performance of file systems and related software defnemorystate (contents of the buffer cache), thredisk

pends on (_:haracterlsncs of the underl_ylng file-system 'Mstate (disk layout and fragmentation) and the characteris-
age (.e, file-system metadata and file contents). Un

fortunately, rather than benchmarking with realistic file- FICS of thefile-system |mag€f|.les and directories belong-
ing to the namespace and file contents).

system images, most system designers and evaluators . .
y g Y 9 One well understood contributor to state is time

rely onad hocassumptions and (often inaccurate) rules wate of the fil ¢ Previ K h
of thumb. Furthermore, the lack of standardization andnemorystate ot the file system. Frevious work has

reproducibility makes file system benchmarking ineffec-Snown that the contents of the cache can have signifi-

tive. To remedy these problems, we devdimpressions cant |mr_)a_c_t on the perf_ormance result_s [11]._Therefore,
peystem initialization during benchmarking typically con-

glsts of a cache “warm-up” phase wherein the workload
Is run for some time prior to the actual measurement
hase. Another important factor is tlo@-diskstate of
dhe file system, or the degree fshgmentation it is a
jneasure of how the disk blocks belonging to the file sys-

of Impressions, and demonstrate its utility using deskto em are laid out on disk. Previous work has shown that

search as a case study. We believe Impressions will provéagmentatlon can ad_/ersely affect performan_ce of a file
to be useful for system developers and users alike. system [44]. Thus, prior to benchmarking, a file system
should undergagingby replaying a workload similar to

that experienced by a real file system over a period of
1 Introduction time [44].
Surprisingly, one key contributor to file-system state
File system benchmarking is in a state of disarray. Inhas been largely ignored — the characteristics offilee
spite of tremendous advances in file system design, theystem image The properties of file-system metadata
approaches for benchmarking still lag far behind. Theand the actual content within the files are key contrib-
goal of benchmarking is to understand how the sys-utors to file-system state, and can have a significant im-
tem under evaluation will perform under real-world con- pact on the performance of a system. Properties of file-
ditions and how it compares to other systems; how-system metadata includes information on how directories
ever, recreating real-world conditions for the purposes ofare organized in the file-system namespace, how files are
benchmarking file systems has proven challenging. Th@rganized into directories, and the distributions for vari
two main challenges in achieving this goal are generatous file attributes such as size, depth, and extension type.
ing representativevorkloads and creating realistifile- Consider a simple example: the time taken fdriand
system state operation to traverse a file system while searching for a
While creating representative workloads is not an enile name depends on a number of attributes of the file-
tirely solved problem, significant steps have been takersystem image, including the depth of the file-system tree
towards this goal. Empirical studies of file-system accessind the total number of files. Similarly, the time taken
patterns [4, 19, 33] and file-system activity traces [38,for a gr ep operation to search for a keyword also de-
45] have led to work on synthetic workload genera-pends on the type of files.€., binary vs. others) and the
tors [2, 14] and methods for trace replay [3, 26]. file content.
The second, and perhaps more difficult challenge, isto File-system benchmarking frequently requires this
recreate the file-systestatesuch that it is representative sort of information on file systems, much of which is

images with realistic metadata and content. Impression
is flexible, supporting user-specified constraints on vari-
ous file-system parameters using a number of statistic
techniques to generate consistent images. In this pap
we present the design, implementation and evaluatio

Paper | Description | Used to measure |
HAC [17] File system with 17000 files totaling 150 MB Time and space needed to create a Glimpse index
IRON [36] None provided Checksum and metadata replication overhead;
parity block overhead for user files
LBFS [30] 10702 files from /usr/local, total size 354 MB Performance of LBFS chunking algorithm
LISFS [34] 633 MP3 files, 860 program files, 11502 man pages| Disk space overhead; performance of search-like
activities: UNIX find and LISFS lookup
PAST [40] 2 million files, mean size 86 KB, median 4 KB, larggstile insertion, global storage utilization in a P2P
file size 2.7 GB, smallest 0 Bytes, total size 166.6 GB system
Pastiche [9] File system with 1641 files, 109 dirs, 13.4 MB total sizePerformance of backup and restore utilities
Pergamum [47] Randomly generated files of “several” megabytes Data transfer performance
Samsara [10] | File system with 1676 files and 13 MB total size Data transfer and querying performance, load dur-
ing querying
Segank [46] | 5-deep directory tree, 5 subdirs and 10 8 KB files paPerformance of Segank: volume update, creation
directory of read-only snapshot, read from new snapshot
SFS read-| 1000 files distributed evenly across 10 directories an8lingle client/single server read performance
only [15] contain random data
TFS[7] Files taken from /usr to get “realistic” mix of file sizegs Performance with varying contribution of space
from local file systems
WAFL 188 GB and 129 GB volumes taken from the EngineeiPerformance of physical and logical backup, and
backup [20] ing department recovery strategies
yFS [49] Avg. file size 16 KB, avg. number of files per directofyPerformance under various benchmarks (file dre-
64, random file names ation, deletion)

Table 1:Choice of file system parameters in prior research.

available in the form of empirical studies of file-system parameters are specified in greater detail [40], but not
contents [1, 12, 21, 29, 41, 42]. These studies focus oenough to recreate the original file system.

measuring and modeling different aspects of file-system The important lesson to be learnt here is that there
metadata by collecting snapshots of file-system imagegs no standard technique to systematically include infor-
from real machines. The studies range from a few mamation on file-system images for experimentation. For
chines to tens of thousands of machines across differenjs reason, we find that more often than not, the choices
operating systems and usage environments. Collectinghade are arbitrary, suited for ease-of-use more than ac-
and analyzing this data provides useful information oncyracy and completeness. Furthermore, the lack of stan-
how file systems are used in real operating conditions. gardization and reproducibility of these choices makes it
In spite of the wealth of information available in file- near-impossible to compare results with other systems.
system studies, system designers and evaluators continueTo address these problems and improve one important
to rely onad hocassumptions and often inaccurate rulesaspect of file system benchmarking, we devdlopres-
of thumb. Table 1 presents evidence to confirm this hy-sions a framework to generate representative and statis-
pothesis; it contains a (partial) list of publications from tically accurate file-system images. Impressions gives
top-tier systems conferences in the last ten years that rahe user flexibility to specify one or more parameters
quired a test file-system image for evaluation. We presenfrom a detailed list of file system parameters (file-system
both the description of the file-system image provided insize, number of files, distribution of file sizes, etc.). Im-
the paper and the intended goal of the evaluation. pressions incorporates statistical techniques (autemati

In the table, there are several examples where a newurve-fitting, resolving multiple constraints, interpela
file System or app”cation design is evaluated on the evamon and eXtrapOIation, etC.) and uses statistical tests fo
uator’s personal file system without describing its prop-9oodness-of-fitto ensure the accuracy of the image.
erties in sufficient detail for it to be reproduced [7, 20, We believe Impressions will be of great use to sys-
36]. In others, the descriptionis limited to coarse-grdine tem designers, evaluators, and users alike. A casual user
measures such as the total file-system size and the nurteoking to create a representative file-system image with-
ber of files, even though other file-system attributeg(out worrying about carefully selecting parameters can
tree depth) are relevant to measuring performance osimply run Impressions with its default settings; Impres-
storage space overheads [9, 10, 17, 30]. File systems astons will use pre-specified distributions from file-system
also sometimes generated with parameters chosen rastudies to create a representative image. A more sophisti-
domly [47, 49], or chosen without explanation of the sig- cated user has the power to individually control the knobs
nificance of the values [15, 34, 46]. Occasionally, thefor a comprehensive set of file-system parameters; Im-

Time taken for "find" operation find. Figure 1 shows the relative time taken to run

16 “find /" searching for a file name on a test file sys-
T 14 tem as we vary some parameters of file-system state.

% 1-i i The first bar represents the time taken for the run on
3 osl the original test file system. Subsequent bars are normal-
2 o6} ized to this time and show performance for a run with the
§ 8-‘2‘ I file-system contents in buffer cache, a fragmented ver-
0 sion of the same file system, a file system created by flat-

> > & & «& tening the original directory tree, and finally one by deep-

& &£ & &L ing the original directory tree. The graph ech
& & &Q@ & & ening the original directory tree. The graph echoes our
< understanding of caching and fragmentation, and brings

Figure 1:Impact of directory tree structure. Shows Out one aspect that is often overlooked: structure really
impact of tree depth on time taken fiyd. The file systems are created matters. From this graph we can see that even for a sim-

by Impress_ions using default distributions (_Table 2). Tdwe effects pIe workload, the impact of tree depth on performance
of the on-disk layout, we ensure a perfect disk layout (lagoarel.0)

for all cases except the one with fragmentation (layout sco$5). can be as large as that_W"Fh fragmentation, and v_arylng
Theflat treecontains all100 directories at deptii; the deep trecnas tree depths can have significant performance variations
directories successively nested to create a tree of dipih (300% between the flat and deep trees in this example).

pressions will carefully work out the statistical detais t _Assump'uor_]s about f|Ie—system structure have _often
trickled into file system design, but no means exist to

produce a consistent and accurate image. In both cases, A . .
Impressions ensures complete reproducibility of the im_mcorporate the effects of realistic file-system images in

age, by reporting the used distributions, parameter val& systematic fashion. As a community, we well under-

ues, and seeds for random number generators. §tand that cachmg matters, and have begun tp pay atten-

. - . . tion to fragmentation, but when it comes to file-system
In this paper we present the design, |mplementat|onStructure our approach is surprisingiyssez faire

and evaluation of the Impressions framewdj&)(which ' P P

we intend to release for public use in the near future. Im-2.2 Goals for Generating FS Images
pressions is built with the following design goals: We believe that the file-system image used for an evalua-
e Accuracy: in generating various statistical con- fuon should bereahst!cwnh rgs_pect to the Wor_kload; the
structs to ensure a high degree of statistical rigor. Mage should contain a sufficient degreelefailto real-
S . . istically exercise the workload under consideration. An
e Flexibility: in allowing users to specify a number of . . IR .
increasing degree of detail will likely require more effort

file-system distributions and constraints on parame- e
. . and slow down the process. Thus it is useful to know
ter values, or in choosing default values.

))) .~ the degree sufficient for a given evaluation. For exam-

* Representativenesby incorporating known distri- hje if the performance of an application simply depends
butions from file-system studies. on the size of files in the file system, the chosen file-

e Ease of useby providing a simple, yet powerful, system image should reflect that. On the other hand, if
command-line interface. the performance is also sensitive to the fraction of binary

Usina deskt h wud d rat tiles amongst all filesd.g, to evaluate desktop search in-
sing desklop search as a case study, we demonstrate Sxing),then the file-system image also needs to contain

usefulness and ease of use of Impressions in quantifyinpealistic distributions of file extensions

application performance, and in finding application poli- We walk through some examples that illustrate the dif-

cies and bugst§@). To bring the paper to a close, we - . -
discuss related worki§), and finally concludesg). ferent degrees of detail needed in file-system images.

e At one extreme, a system could be completely

> Extended Motivati oblivious to both metadata and content. An exam-

xtenae otivation ple of such a system is a mirroring scheme (RAID-

1 [35]) underneath a file system, or a backup util-

ity taking whole-disk backups. The performance of
such schemes depends solely on the block traffic.

We begin this section by asking a basic question: does
file-system structure really matter? We then describe the
goals for generating realistic file-system images and dis-

cuss existing approaches to do so. Alternately, systems could depend on the attributes of the

2.1 Does File-System Structure Matter? file-system image with different degrees of detail:

Structure and organization of file-system metadata mat- e The performance of a system can depend on the
ters for workload performance. Let us take a look at amount of file data (humber of files and directories,
the simple example of a frequently used UNIX utility: or the size of files and directories, or both) in any

given file systemé.g, a backup utility taking whole | Parameter Default Model & Parameters
file-system snapshots). Directory count w/ depth| Generative model
. Directory size (subdirs) | Generative model
e Systems can depend on the_structure of thg file SYS- File size by count Lognormal-body
tem namespace and how files are organized in it (01=0.99994, £:=9.48, 5=2.46)
(e.g, a version control system for a source-code Pareto-tail (k®.91,X,,=512MB)
repository). File size by containing | Mixture-of-lognormals
e Finally, many systems also depend on the actual bytes (al_:0'76’ “1_:14'83’ 01_22'35
data stored within the fil deskt h 02=0.24, 412=20.93, 03=1.48)
a a.l store WI in the file(g, a desktop searc Extension popularity Percentile values
engine for a file system, or a spell-checker). File count w/ depth Poisson §=6.49)
))))) o Bytes with depth Mean file size values
Impressions is designed with this goal of flexibility | pirectory size (files) Inverse-polynomial
from the outset. The user is given complete control (degree=, offset=2.36)
of a number of file-system parameters, and is provided File count w/ depth Conditional probabilities
with an easy to use interface. Transparently, Impressions(w/ special directories) | (biases for special dirs)
seamlessly ensures accuracy and representativeness. | Degree of Fragmentation Layout score (1.0)
or Pre-specified workload

2.3 Existing Approaches Table 2: Parameters and default values in Impres-
One alternate approach to generating realistic file-systerﬁggjt' mlc_)ljé of distributions and their parameter values used in the

images is to randomly select a set of actual images from
a corpus, an approach popular in other fields of computeB.1 Modes of Operation
science such as Information Retrieval, Machine Learningy system evaluator can use Impressions in different
and Natural Language Processing [32]. In the case of filgnodes of operation, with varying degree of user input.
SyStemS the corpus would consist of a set of known file- SometimeS, an evaluator just wants to create a repre-
system imagese(g, tarballs). This approach arguably sentative file-system image without worrying about the
has several limitations which make it difficult and un- need to Carefu”y select parameters_ Hence’ inatie -
suitable for file systems research. First, there are tOQnatedmode’ |mpressions is Capab]e of generating a file-
many parameters required to accurately describe a filesystem image with minimal input required from the user
system image that need to be captured in a corpus. Sege g, the size of the desired file-system image), relying
ond, without precise control in varying these parametersn default settings of known empirical distributions to
according to experimental needs, the evaluation can bgenerate representative file-system images. We refer to
blind to the actual performance dependencies. Finallythese distributions asriginal distributions.
the cost of maintaining and sharing any realistic corpus At other times, users want more control over the im-
of file-system images would be prohibitive. The size of ages, for example, to analyze the sensitivity of perfor-
the corpus itself would severely restrict its usefulness esmance to a given file-system parameter, or to describe a
pecially as file systems continue to grow larger. completely different file-system usage scenario. Hence,
Unfortunately, these limitations have not deterred re-impressions supports aser-specifiednode, where a
searchers from using their personal file systems as a (trivmore sophisticated user has the power to individually
ial) substitute for a file-system corpus. control the knobs for a comprehensive set of file-system
parameters; we refer to these as user-specified distribu-
tions. Impressions carefully works out the statistical de-
3 The Impressions Framework tails to produce a consistent and accurate image.
In both the cases, Impressions ensures complete repro-
In this section we describe the design, implementatiorducibility of the file-system image by reporting the used
and evaluation of Impressions: a framework for gener-distributions, their parameter values, and seeds for ran-
ating file-system images with realistic and statistically dom number generators.
accurate metadata and content . Impressions is flexible Impressions can use any dataset or set of parameter-
enough to create file-system images with varying configized curves for theoriginal distributions, leveraging a
urations, guaranteeing the accuracy of images by incorarge body of research on analyzing file-system proper-
porating a number of statistical tests and techniques. ties [1, 12, 21, 29, 41, 42]. For illustration, in this pa-
We first present a summary of the different modes ofper we use a recent static file-system snapshot dataset
operation of Impressions, and then describe the individmade publicly available [1]. The snapshots of file-system
ual statistical constructs in greater detail. Wherever apmetadata were collected over a five-year period repre-
plicable, we evaluate their accuracy and performance. senting ove60, 000 Windows PC file systems in a large

corporation. These snapshots were used to study diser (e.g, Confidence Intervals, MDCC, and Standard Er-
tributions and temporal changes in file size, file ageror). Where applicable, these tests ensure that all curve-
file-type frequency, directory size, namespace structurefjt approximations and internal statistical transformasio
file-system population, storage capacity, and degree oddhere to the highest degree of statistical rigor desired.
file modification. The study also proposed a generative . .
model explaining the creation of file-system namespaces3-3 Creating Valid Metadata

Impressions provides a comprehensive set of individ-The simplest use of Impressions is to generate file-
ually controllable file system parameters. Table 2 listsSystem images with realistic metadata. This process is
these parameters along with their default selections. Foperformed in two phases: first, the skeletal file-system
example, a user may specify the size of the file-systenf@mespace is created; and second, the namespace is pop-
image, the number of files in the file system, and the dile'ated with files Conforming to a number of file and di-
tribution of file sizes, while selecting default settings fo rectory distributions.
all other distributions. In this case, Impressions will en-
sure that the resulting file-system image adheres to th
default distributions while maintaining the user-spedifie
invariants.

3.3.1 Creating File-System Namespace

The first phase in creating a file system is to create the

namespace structure or tldrectory tree We assume

that the user specifies the size of the file-system image.

3.2 Basic Techniques The count of files and directories is then selected based
on the file system size (if not specified by the user). De-

The goal of Impressions is to generate realistic file- . ; .
systengn images pgiving the user (?omplete flexibility andpendlng on the degree qf detail desired by the user,.each
! file or directory attribute is selected step by step until all

control to decide the extent of accuracy and detail. To

. . . . - :ixttributes have been assigned values. We now describe
achieve this, Impressions relies onanumberofstaUstlca}h. ing the highest d detail
technigues. is process assuming the highest degree of detail.

; : To create directory trees, Impressions uses the gener-
In the simplest case, Impressions needs to create St%fti "y P 9

- ! . . . ve model proposed by Agrawet al.[1] to perform a
tlst|_cally accurate flle-sy_stem 'mages with dgfault distri Monte Carlo simulation. According to this model, new
butions. Hence, a basic functionality required by Im-

. is t t th terized distributi directories are added to a file system one at a time, and
pressions 1S 1o convert h€ parameterized distnbutions, probability of choosing each extant directory as a par-
into real sample values used to create an instance of

&ntis proportional t@ (d) + 2, whereC(d) is the count of

file-system Image. Impressions uses ran_dom sampling Qytant subdirectories of directory The model explains
take a number of independent observations from the re;,

spective probability distributions. Wherever aoplicable the creation of the file system namespace, accounting
P h Ve p t .” yd (; tl'tl)J It) » v h'pEII a0I€ 1oth for the size and count of directories by depth, and
S:(C:t Er?(;a;naesertlsere rltfolrlljcuelcr)gsrs;z\r/wlta?i:n (')?c Oybgg:;'tae size of parent directories. The input to this model is
Sistributions)Ilzor cazes where Fs)tandard robabilit diset € total number of directories in the file system. Direc-
- " : P DIty tory names are generated using a simple iterative counter.
tributions are infeasible, a Monte Carlo method is used. .
) To ensure the accuracy of generated images, we com-
A user may want to use file system datasets other tha%

the default choice. T ble this. | _ i are the generated distributionse(created using the
€ defauft choice. 10 enabie this, IMPressIons providey ;s meters listed in Table 2), with the desired distribu-
automatic curve-fitting of empirical data.

) :) ... tions (.e, ones obtained from the dataset discussed pre-
, ImpreSS|_ons _alsp prowdes the user ‘,N'th the ﬂex'b'l'viously in §3.1). Figure 2 shows in detail the accuracy

ity to specify distributions and cpnstramts On parame-c, aach step in the namespace and file creation process.
ter values. One challenge thus is to ensure that mUIt'For almost all the graphs, the y-axis represents the per-

ple co?stralrr:.ts specified by the lljserhar_e resolved CONaniage of files, directories, or bytes belonging to the cat-
sistently. This requires statistical techniques to ensur& o ie<’or hins shown on the x-axis, as the case may be.

that the generated file-system images are accurate wit Figures 2(a) and 2(b) show the distribution of directo-

respect to both the user-specified constraints and the d?l'es by depth, and directories by subdirectory count, re-

fault d|str|put|0ns. . spectively. The y-axis in this case is the percentage of di-
In addition, the user may want to explore values of file ooy ries at each level of depth in the namespace, shown

system parameters, not captured in any dataset. For thi, e x-axis. The two curves representing the generated

purpose, Impressions provides support for interpolation g the desired distributions match quite well, indicating
and. extrapolation of new curves from existing dataset-s. good accuracy and reaffirming prior results [1].

Finally, to ensure the accuracy of the generated im-
age, Impressions contains a number of built-in statisti-3.3.2 Creating Files
cal tests, for goodness-of-fit.g, Kolmogorov-Smirnov, The next phase is to populate the directory tree with files.
Chi-Square, and Anderson-Darling), and to estimate erfmpressions spends most of the total runtime and effort

(@) (b) (c)

Directories by Namespace Depth a Directories by Subdirectory Count Files by Size
0.18 — S 100 ———— 0.12
@ 016 S D 3 01 A D
£ 014 U £ 90] . G e
[=] 0
g 0.01% 5 80t 8 0.08
2 0 68 /) © 5 0.06
kel . =) 70 L
< 0.06 o L 0.04
s 3% § o0 D] 002
o= = g 50 e 0 »==
0 2 46 810121416 3 0 2 4 6 8 10 12 14 16 0 8 2K 512K 512M 64G
Namespace depth (bin size 1) Count of subdirectories File Size (bytes, log scale, power-of-2 bins)
(d) (e) ®
Files by Containing Bytes Top Extensions by Count Files by Namespace Depth
0.12 1 0.16 :
01 0.14 t 2
n o 08 " 012+ /N © T
2 008 = Q 0.1t
> = = :
2 0.06 © o6 < 008}
° 2 o 0.06 ¢
X ggg § 0.4 > 0.04 |
-0 02 0.0(2)—‘ DY
0 8 2K 512K 512M128G 0 it 0 2 4 6 8 10 12 14 16
File Size (bytes, log scale, power-of-2 bins) Desired Generated Namespace depth (bin size 1)
9) (h)
Bytes by Namespace Depth Files by Namespace Depth
(with Special Directories)
o D ——
= 0.25)
=~ 2MBt e
(] L
o2 768KB | g 02 G
29 = 015
29 256KB | = :
88 © 0.1 y M
=< 64KB X o
g 005 7 RN
2 kB[] 0 L
0 2 4 6 8 10121416 0 2 4 6 8 10 12 14 16
Namespace depth (bin size 1) Namespace depth (bin size 1)

Figure 2: Accuracy of Impressions in recreating file system propertis. Shows the accuracy of the entire set of file system
distributions modeled by Impressions. D: the desired itiistion; G: the generated distribution. Impressions istguaccurate in creating realistic
file system state for all parameters of interest shown heesindfude a special abscissa for the zero value on graphsigeviogarithmic scale.

during this phase, as the bulk of its statistical machineryused a simpler model for file sizes represented solely by
is exercised in creating files. Each file has a number of lognormal distribution. While the results were accept-
attributes such as its size, depth in the directory tree, parable for files by size (Figure 2(c)), the simpler model
ent directory, and file extension. Similarly, the choice of failed to account for the distribution of bytes by contain-
the parent directory is governed by directory attributesing file size; coming up with a model to accurately cap-
such as the count of contained subdirectories, the courtire the bimodal distribution of bytes proved harder than
of contained files, and the depth of the parent directorywe had anticipated. Figure 2(d) shows the accuracy of
Analytical approximations for file system distributions the hybrid model in Impressions in generating the distri-
proposed previously [12] guided our own models. bution of bytes. The pronounced double mode observed
_)) o in the distribution of bytes is a result of the presence of
First, for each file, the size of the file is sampled 5 few |arge files; an important detail that is otherwise
from a hybrid distribution describing file sizes. The mjssed if the heavy-tail of file sizes is not accurately ac-
body of this hybrid curve is approximated by a lognor- ¢ounted for.
mal distribution, with a Pareto tail distribution (R=#1,
X,,=512MB) accounting for the heavy tail of files with ~ Once the file size is selected, we assign the file name
size greater than 512 MB. The exact parameter valueand extension. Impressions keeps a list of percentile val-
used for these distributions are listed in Table 2. Theseaies for popular file extensionsd., top 20 extensions by
parameters were obtained by fitting the respective curvesount, and by bytes). These extensions together account
to file sizes obtained from the file-system dataset previfor roughly 50% of files and bytes in a file system ensur-
ously discussed§B8.1). Figure 2(c) shows the accuracy ing adequate coverage for the important extensions. The
of generating the distribution of files by size. We initially remainder of files are given randomly generated three-

Parameter MDCC system parameters produce fairly accurate distributions

Directory count with depth. 0.03 in all the above cases. While we have demonstrated the
Directory size (subdirectories) 0.004 accuracy of Impressions for the Windows dataset, there
E!:e size Ey cou?t_ ina b 8'33’ is no fundamental restriction limiting it to this dataset.
E;?eilzin)gggzlg:rgyg ytes 0'03 We believe that with little effort, the same level of accu-
File count with depth 0.05 racy can be achieved for any other dataset.

Bytes with depth 0.12 MB* . . .

File count w/ depth w/ special dirs 0.06 3.4 Resolvmg Arbltrary Constraints

Table 3: Statistical accuracy of generated images. One of the primary requirements for Impressions is to al-

Shows average accuracy of generated file-system imagesms & 10W flexibility i_n_specifying file SYStem parameters with-
the MDCC (Maximum Displacement of the Cumulative Curvggere ~ OUt COMpromising accuracy. This means that users are al-

senting the maximum difference between cumulative cufvgsrer- — |owed to specify somewhat arbitrary constraints on these
ﬁ;erdb;r:i ‘ﬁfﬁ‘ip‘iﬁ”&gggi rf‘gf;igisp?;fjgéwﬂfﬂf@ ega) y Pparameters, and it is the task of Impressions to resolve
report the average difference in mean bytes per file (MB).itmebers them. One example of such a set of constraints would be
correspond to the set of graphs shown in Figure 2 and reflédyfa to specify a large number of files for a small file system,
accurate images. or vice versa, given a file size distribution. Impressions
will try to come up with a sample of file sizes that best

character extensions. Currently filenames are generat%’\bproximates the desired distribution, while still main-
by a simple numeric counter incremented on each filgaining the invariants supplied by the user, namely the
creation. Figure 2(e) shows the accuracy of Impressiongumbper of files in the file system and the sum of all file
in Creating files with popular extensions by count. sizes being equa| to the file System used space.

Next, we assign file deptth which requires satisfying Multiple constraints can also be implicit.€., arise
two criteria: the distribution of files with depth, and the even in the absence of user-specified distributions). Due
distribution of bytes with depth. The former is modeled to random sampling, different sample sets of the same
by a Poisson distribution, and the latter is representediistribution are not guaranteed to produce exactly the
by the mean file sizes at a given depth. Impressionsame result, and consequently, the sum of the elements
uses a multiplicative model combining the two criteria, can also differ across samples. Consider the previous ex-
to produce appropriate file depths. Figures 2(f) and 2(gample of file sizes again: the sum of all file sizes drawn
show the accuracy in generating the distribution of filesfrom a given distribution need not add up to the desired
by depth, and the distribution of bytes by depth, respecfile system size (total used space) each time. More for-
tively. mally, this example is represented by the following set of

The final step is to select a parent directory for theconstraints:
file, located at depthd — 1, according to the distribution
of directories with file count, modeled using an inverse-
polynomial of degre€. As an added feature, Impres-
sions supports the notion of “Special” directories con-
taining a disproportionate number of files or bytesy(N
“Program Files” folder in the Windows environment). If + = {22 € Da(z;4,0)}; | Z]:i —S|=pxS
required, during the selection of the parent directory, a =0
selection bias is given to these special directories. Figwhere\ is the number of files in the file systens, is
ure 2(h) shows the accuracy in supporting special directhe desired file system used spade;is the set of file
tories with an example of typical Windows file system sizes; and3 is the maximum relative error allowed. The
having files in the web cache at depthin W ndows first two constraints specify that” and S can be user
andPr ogr am Fi | es folders at dept2, andSyst em specified constants or sampled from their corresponding
files at deptts. distributionsD; andDs. Similarly, F is sampled from

Table 3 shows the average difference between the geﬁhe file size distributio.ng. These attributes are furthe(
erated and desired images from Figure 2 fortrials. subject to the copstra!nt that the sum of all file sizes dif-
The difference is measured in terms of the MDCC (Max_fers from the desired file syste_m size by no more than the
imum Displacement of the Cumulative Curves). Forall_owed error tolerance, speC|f_|ed by the user. To solve
instance, an MDCC value of 0.03 for directories with this problem, we use the following two techniques:
depth, implies amaximumdifference of 3% on an av- e If the initial sample does not produce a result satisfy-
erage, between the desired and the generated cumulativeg all the constraints, weversampleadditional values
distributions. Overall, we find that the models createdof F from D, one at a time, until a solution is found, or
and used by Impressions for representing various filethe oversampling factat /A reaches\ (the maximum

N = {Constant; V z : x € Di(z)}

S = {Constanta V x : © € Da(x)}

(@) (b) (c)

Process of Convergence Accuracy of Constrained Distribution Accuracy of Constrained Distribution
" 0.15 0 0.2
¢ 90K C -
%) T " o 0.15
) 0.1 2
2 = 2z
& 60K [5 s o
o L 0.05 <
5 Desired Sum —— 005
n 5% error ling - g <
30K 20 : : 0 - : 0
0 200 400 600 800 1000 8 2K 512K 8M 8 2K 512K 8M
Number of Oversamples File Size (bytes, log scale, power-of-2 bins) File Size (bytes, log scale, power-of-2 bins)

Figure 3: Resolving Multiple Constraints. (a) Shows the process of convergence of a set of 1000 filetsizhs desired file
system size of 90000 bytes. Each line represents an individal. A successful trial is one that converges to the 5%oeline in less than 1000
oversamples. (b) Shows the difference between the oridis@ibution of files by size, and the constrained distribuitafter resolution of multiple
constraints in (a). O: Original; C: Constrained. (c) Same(&$, but for distribution of files by bytes instead.

Num. files | Sum of file sizes| File size distribution| Avg. 3 | Avg. 8 | Avg. o | Avg. D | Avg. D | Success|
N S (bytes) Ds Initial Final Count | Bytes
1000 30000 (1=8.16, 0=2.46) | 21.55% | 2.04% | 5.74% | 0.043 | 0.050 | 100%
1000 60000 (1=8.16, 0=2.46) | 20.01% | 3.11% | 4.89% | 0.032 | 0.033 100%
1000 90000 (1=8.16, 0=2.46) 34.35% | 4.00% | 41.2% | 0.067 0.084 90%

Table 4:Summary of resolving multiple constraints. Shows average rate and accuracy of convergence after iagainultiple
constraints for different values of desired file system g3zé6 error between the desired and generated sum? of oversamples required) is
the test statistic for the K-S test representing the maxirdiffierence between generated and desired empirical cuiveldistributions. Averages
are for 20 trials. Success is the number of trials having figak 5%, and D passing the K-S test.

oversampling factor).« is the count of extra samples with the next element, until all elements are compared.
drawn fromDs. Upon reaching\ without finding a so- Our problem definition and the modified algorithm
lution, we discard the current sample set and start over. differ from the original in the following ways:

e The number of elements ifi during the oversampling o First, in the original problem, there is no restriction on
stage is\' + «. For every oversampling, we need to find the number of elements in the solution subet,;,. In

if there EXiStS7:5ub, a subset ofF with A/ elements, such our caseFg,, can have exactw elements. We m0d|fy
that the sum of all elements ¢fs,;, (file sizes) differs the first phase of the algorithm to set the initi&lk.,

from the desired file system size by no more than theas the first random permutation 4f elements selected
allowed error. More formally stated, we find if: from F such that their sum is less th&n

FFsup ={X : X CP(F), |X|=N, |[F|=N+a, o Second, the original algorithm either finds a solution
or terminates without success. We use an increasing
sample size after each oversampling to reduce the error,
and allow the solution to converge.
))) e Third, it is not sufficient for the elements ifig,,; to

The problem qf resolylng multiple constraints as for- have a numerical sum close to the desired sEinbut
mulated abov?, is a variant of the more general “Subsef, gistribution of the elements must also be close to the
Sum Problem” which is NP-complete [8]. Our solution qiging| distribution in. A goodness-of-fit test at the
is thus an approximation algorithm based on an existingg,j of each oversampling step enforces this requirement.
O(nlogn) solution [37] for the Subset Sum Problem. £q¢ ¢ example, this ensures that the set of file sizes
egenerated after resolving multiple constraints stilldall
the original distribution of file sizes.

N
| > X -S|<BxS, aeNA
=0

(%

NSA}

The existing algorithm has two phases. The first phas
randomly chooses a solution vector which is valid (the
sum of elements is less than the desired sum), and maxiFhe algorithm terminates successfully when the differ-
mal (adding any element not already in the solution vecence between the sums, and between the distributions,
tor will cause the sum to exceed the desired sum). Théalls below the desired error levels. The success of the
second phase perforniscal improvementfor each el- algorithm depends on the choice of the desired sum, and
ement in the solution, it searches for the largest elemerihe expectedsum (the sum due to the choice of parame-
notin the current solution which, if replaced with the cur- ters,e.g, p ando); the farther the desired sum is from
rent element, would reduce the difference between théhe expected sum, the lesser are the chances of success.
desired and current sums. The solution vector is updated Consider an example where a user has specified a de-
if such an element is found, and the algorithm proceedsired file system size dd0000 bytes, a lognormal file

Piecewise Interpolation

size distribution (=8.16, 0=2.46), and1000 files. Fig- 0147
ure 3(a) shows the convergence of the sum of file sizes "]
in a sample set obtained with this distribution. Eachline g | J \‘\
in the graph represents an independent trial, starting ata 3 ;4 | ©
y-axis value equal to the sum of its initially sampled file 004 | e
sizes. Note that in this example, the initial sum differs 002
from the desired sum by more than a 100% in several 0
cases. The x-axis represents the number of extra itera-

File Size (bytes, log scale, power-of-2 bins)

tions (oversamplesperformed by the algorithm. Fora . . lati ¢t File Si _

trial to succeed, the sum of file sizes in the sample musf'9Ure 4:Piecewise Interpolation of File Sizes. Piece-

ithin 5% of the desired fil t . Wi wise interpolation for the distribution of files with bytesing f_||e sys-
(fonvergef to within 5% of the desired file system S.|Ze- €tems of 10 GB, 50 GB and 100 GB. Each power-of-two bin on the x-
find that in most cases ranges betweef and0.1 (i.e., axis is treated as an individualegmenfor interpolation (inset). Final
less than10% oversampling); and in almost all cases, curve is the composite of all individual interpolated segtae
A< Distribution FS Region D K-S Test

The distribution of file sizes s, must be close (/E) Statistic | (0.05)

to the original distribution inF. Figure 3(b) and 3(c) File sizes by count 75GB (1) 0.054 | passed
show the difference between the original and constrained File sizes by countf 125GB (E) | 0.081 passed
distributions for file sizes (for files by size, and files | File sizes by bytes 75GB (I) | 0.105 | passed
by bytes), for one successful trial from Figure 3(a). | _File sizes by bytes 125GB (E) | 0.105 | passed
We choose these particular distributions as example3able 5:Accuracy of interpolation and extrapolation.
throughout this paper for two reasons. First, file size isimpressions produces accurate curves for file systemseo?SiGB and
an important parameter, so we want to be particularly125 GB, using interpolation (I) and extrapolation (E), resfively.

thorough in its accuracy. Second, getting an accuratgerfect knowledge about the nature of these distributions
shape for the bimodal curve of files by bytes presentsoy a1 possible values and combinations of individual pa-
a challenge for Impressions; once we get our techniquegameters, it is often impossible.
to work for this curve, we are fairly confident of its ac- First, the empirical data is limited to what is observed
curacy on simpler distributions. in any given dataset and may not cover the entire range
We find that Impressions resolves multiple constraintsof possible values for all parameters. Second, even with
to satisfy the requirement on the sum, while respectingan exhaustive dataset, the user may want to explore re-
the original distributions. Table 4 gives the summary for gjons of parameter values for which no data point exists,
the above example of file sizes for different values of thegspecially for “what if” style of analysis. Third, from an
desired file system size. The expected sum@f0 file jmplementation perspective, it is more efficient to main-
sizes, sampled as specified in the table, is clos€@00. tain compact representations of distributions for a few
Impressions successfully converges the initial sample se§ample points, instead of large sets of data. Finally, if
to the desired sum with an average oversamplingdate the empirical data is statistically insignificant, esplgia
less than 5%. The average difference between the deSirQGr Ouﬂying regionsy it may not serve as an accurate rep-
and achieved surfi is close to 3%. The constrained dis- resentation. Impressions thus provides the capability for

Interpolation: Segment 19 100 GB

—50 GB
%10 GB

0.1 1

tes

% of b

2G]
8G

T
N o o s s
° 83 &3

8
2
128K]
512K
32M
128M]
512M
32G
128G

tribution passes the two-sample K-S test atH sig- interpolation and extrapolation from available data and
nificance level, with the difference between the two dis-djstributions.

test is around 003, which represents the maximum d|f'from existing ones. To illustrate our procedure, we de-
ference between two empirical cumulative distributions).scribe an example of creating an interpolated curve; ex-
We repeat the above experiment for two more choicesensions to extrapolation are straightforward. Figure 4
of file system sizes, one lower than the expected meashows how Impressions usgiece-wise interpolatiofor
(30K), and one higher (90K); we find that even when thethe distribution of files with containing bytes. In this ex-
desired sum is quite different from the expected sum, ouample, we start with the distribution of file sizes for file
algorithm performs well. Only foz of the20 trialsinthe systems of size 10 GB, 50 GB and 100 GB, shown in the
90K case, did the algorithm fail to converge. For thesefigure. Each power-of-two bin on the x-axis is treated
extreme cases, we drop the initial sample and start overas an individuasegmentand the available data points
within each segment are used as input for piece-wise in-
3.5 Interpolation and Extrapolation terpolation; the process is repeated for all segments of the
Impressions requires knowledge of the distribution ofcurve. Impressions combines the individual interpolated
file system parameters necessary to create a valid imsegments to obtain the complete interpolated curve.
age. While it is tempting to imagine that Impressions has To demonstrate the accuracy of our approach, we in-

(@) (b) (© (d)

Interpolation (75 GB) Interpolation (75 GB) Extrapolation (125 GB) Extrapolation (125 GB)
0.12 R 0.12 % R 0.12 R
0.1 | " 0.1 E w O01|E
1% 1%
© 008 9;" © 0.08 ‘GSJ. 0.08
- 0.06 ° - 0.06 L 0.06
) 5] 5
3 0.04 - ° 0.04 - 0.04
8 < 8 N
0.02 0.02 0.02
0 - 0 0
8 2K 512K 128M 32G 8 2K 512K 128M 32G 8 2K 512K 128M 32G 8 2K 512K 128M 32G

File Size (bytes, log scale, power-of-2 bins) File Size (bytes, log scale, power-of-2 bins) File Size (bytes, log scale, power-of-2 bins) File Size (bytes, log scale, power-of-2 bins)

Figure 5: Accuracy of Interpolation and Extrapolation. Shows results of applying piece-wise interpolation to gatesfile size
distributions (by count and by bytes), for file systems &f 82GB (a and b, respectively), and 125 GB (c and d, respégtive

terpolate and extrapolate file size distributions for file quency model [43] to generate the long tail of words, and
systems of sizes 75 GB and 125 GB, respectively. Figuse the word-popularity model for the body alone. The
ure 5 shows the results of applying our technique, comuser has the flexibility to select either one of the mod-
paring the generated distributions with actual distribu-els in entirety, or a specific combination of the two. It
tions for the file system sizes (we removed this data fromis also relatively straightforward to add extensions in the
the dataset used for interpolation). We find that the simfuture to generate more nuanced file content. An exam-
pler curves such as Figure 5(a) and (c) are interpolategle of such an extension is one that carefully controls the
and extrapolated with good accuracy. Even for moredegree of content similarity across files.
challenging curves such as Figure 5(b) and (d), the re- In order to generate content for typed files, Impres-
sults are accurate enough to be useful. Table 5 consions either contains enough information to generate
tains the results of conducting K-S tests to measure thealid file headers and footers itself, or calls into a third-
goodness-of-fit of the generated curves. All the generparty library or software such as 1d3v2 [31] fop3;
ated distributions passed the K-S test at@o® signifi- GraphApp [18] forgi f, j peg and other image files;
cance level. Mplayer [28] for npeg and other video files; asciidoc
for ht ml ; and ascii2pdf foPDF files.
3.6 File Content . .
Actual file content can have substantial impact on the3-7 Disk Layout and Fragmentation
performance of an application. For example, Post-To isolate the effects of file system content, Impressions
mark [24], one of the most popular file system bench-can measure the degree of on-disk fragmentation, and
marks, tries to simulate an email workload, yet it payscreate file systems with user-defined degree of fragmen-
scant attention to the organization of the file system, andation. The extent of fragmentation is measured in terms
is completely oblivious of the file data. Postmark fills of layout scorg44]. A layout score ofl means all files
all the “email” files with the same data, generated usingin the file system are laid out optimally on diske(, all
the same random seed. The evaluation results can randgdocks of any given file are laid out consecutively one
from misleading to completely inaccurate, for instanceafter the other), while a layout score @imeans that no
in the case of content-addressable storage (CAS). Whetwo blocks of any file are adjacent to each other on disk.
evaluating a CAS-based system, the disk-block traffic Impressions achieves the desired degree of fragmenta-
and the corresponding performance will depend only ortion by issuing pairs of temporary file create and delete
the unique content — in this case belonging to the largestperations, during creation of regular files. When ex-
file in the file system. Similarly, performance of Desktop perimenting with a file-system image, Impressions gives
Search and Word Processing applications is sensitive tthe user complete control to specify the overall layout
file content. score. In order to determine the on-disk layout of files,
In order to generate representative file content, Im-we rely on the information provided by debugfs. Thus
pressions supports a number of options. For humaneurrently we support layout measurement only for Ext2
readable files such ag xt ,. ht ni files, it can populate and Ext3. In future work, we will consider several al-
file content with random permutations of symbols andternatives for retrieving file layout information across a
words, or with more sophisticated word-popularity mod- wider range of file systems. On Linux, the FIBMAP
els. Impressions maintains a list of the relative popuarit and FIEMAPi oct | () s are available to map a logical
of the most popular words in the English language, anddlock to a physical block [23]. Other file system-specific
a Monte Carlo simulation generates words for file con-methods exist, such as the X#FSC_GETBMAP iocitl
tent according to this model. However, the distributionfor XFS.
of word popularity is heavy-tailed; hence, maintaining The previous approach however does not account for
an exhaustive list of words slows down content generadifferences in fragmentation strategies across file sys-
tion. To improve performance, we use a word-length fre-tems. Impressions supports an alternate specification

S Time taken (seconds type of files and the actual content within the files. We
FS distribution (Default) | I'mage, Image: evaluate two desktop search applications: open-source
Directory structure 118 1.26 Beagle [5] and Google’s Desktop for Linux (GDL) [16].
File sizes d|stnput|on 0.10 0.28 Beagle supports a large number of file types usigg
Popular extensions 0.05 0.13

S search-filters; it provides several indexing options, trad
File with depth 0.064 0.29) f d ind . ith th lit d
File and bytes with depth 0.25 0.70 Ing performance and Index size wi € quallty an
File content (Single-word) 0.53 1.44 featu_re—nchness of t_he index. G_oogle Desktop does not
On-disk file/dir creation 437.80 | 1394.84 provide as many options: a web interface allows users to
Total time 473.20 | 1826.12 select or exclude types of files and folder locations for

(8 mins) | (30 mins) searching, but does not provide any control over the type
File content (Hybrid model) 791.20 - and quality of indexing.
Layout score ({.98) 133.96 -

Table 6:Performance of Impressions. Shows ime taken 4-1 ~RE€presentative Images

to create file-system images with break down for individeatdres. ~ Developers of data-intensive applications frequently

Images: 4.55 GB,20000 files, 4000 dirs. Images: 12.0 GB,52000 need to make assumptions about the properties of file-
files, 4000 dirs. Other parameters are default. The two entries for system images. For example, file systems and applica-

additional parameters are shown only fbimage; and represent times i o0 . .
in addition to default times. tions can often be optimized if they know properties such

for the degree of fragmentation wherein it runs a pre-as the relative proportion of meta-data to data in repre-
specified workload and reports the resulting layout scoresentative file systems. Previously, developers could infer
Thus if a file system employs better strategies to avoicthese numbers from published papers [1, 12, 41, 42], but
fragmentation, it is reflected in the final layout score af-0nly with considerable effort. With Impressions, devel-
ter running the fragmentation workload. opers can simply create a sample of representative im-
There are several alternate techniques for inducingiges and directly measure the properties of interest.
more realistic fragmentation in file systems. Factors such Table 6 lists assumptions we found in GDL and Beagle
as burstiness of 1/0 traffic, out-of-order writes and inter- limiting the search indexing to partial regions of the file
file layout are currently not accounted for; a companionsystem. However, for the representative file systems in
tool to Impressions for carefully creating fragmented file our data set, these assumptions omit large portions of the
systems will thus be a good candidate for future researcHile system. For example, GDL limits its index to only
those files less than ten directories deep; our analysis of
3.8 Performance typical file systems indicates that this restriction causes
In building Impressions, our primary objective was t0 1094 of all files to be missed. We believe that instead of
generate realistic file-system images, giving top priority arhitrarily specifying hard values, application designer

to accuracy, instead of performance. Nonetheless, Imshould experiment with Impressions to find acceptable
pressions does perform reasonably well. Table 6 showghgjces.

the breakdown of time taken to create a default file- \\e note that Impressions is useful for discovering
system image of 4.55 GB. We also show time taken folinese application assumptions and for isolating perfor-
some additional features such as using better file contentyance anomalies that depend on the file-system image.
and creating a fragmented file system. Overall, we findiso|ating the impact of different file systems feature is
that Impressions creates highly accurate file-system img 55y ysing Impressions: evaluators can use Impressions
ages in a reasonable amount of time and thus is useful iy create file-system images in which only a single pa-

practice. rameter is varied, while all other characteristics are care
fully controlled.
4 Case Study: Desktop Search This type of discovery is clearly useful when one is

using closed-source code, such as GDL. For example,
In this section, we use Impressions to evaluate desktopve discovered the GDL limitations by constructing file-
searching applications. Our goals for this case study argystem images across which a single parameter is var-
two-fold. First, we show how simple it is to use Impres- ied (e.g, file depth and file size), measuring the percent-
sions to create either representative images or imagesge of indexed files, and noticing precipitous drops in
across which a single parameter is varied. Second, wéhis percentage. This type of controlled experimenta-
show how future evaluations should report the settinggion is also useful for finding non-obvious performance
of Impressions so that results can be easily reproduced.interactions in open-source code. For instance, Beagle

We choose desktop search for our case study becaussses thanotify mechanism [22] to track each directory

its performance and storage requirements depend ndor change; since the default Linux kernel providd$2
only on the file system size and structure, but also on thevatches, Beagle resorts to manually crawling the directo-

App Parameter & Value Comment on Validity

GDL File content< 10 deep | 10% of files and 5% of bytes 10 deep
(content in deeper namespace is growing)
GDL Text file sizes< 200 KB | 13% of files and 90% of bytes 200 KB
Beagle | Text file cutoff< 5MB | 0.13% of files and 71% of bytes 5 MB
Beagle | Archive files< 10 MB | 4% of files and 84% of bytes 10 MB
Beagle | Shell scripts< 20 KB | 20% of files and 89% of bytes 20 KB

Figure 6: Debunking Application Assumptions. Examples of assumptions made by Beagle and GDL, along wigiidef the
amount of file-system content that is not indexed as a corsegqu

Index Size Comparison T Beagle: Time to Index Beagle: Index Size
1 [
Text (1 Word) s £ 35 s 35
= Text (Model) —— 5 3 De_fl_aeuXI: — | & 3 De_fl_zuxlz — |
5’) Binary 6 25 | — 3 25 | —
01 o 2 mage mmmmm o 2 mage mmmm |
% £ 15 Binary === | £ 15 Binary =1 |
N [= © .
n © 1 2 1
$ oo1 z %3 ‘ sl @ O3 ‘ m m
= ﬁ ’ > s o 5 =0 > &* S 5
& +\o’° &° & & +\o’° &° ¥
Beagle GDL & <@ &F & <& &

Figure 7:Impact of file content. com- Figure 8:Reproducible images: impact of content. Using Impressions to make
pares Beagle and GDL index time and spadesults reproducible for benchmarking search. Verticalsbapresent file systems created with
for wordmodels and binary files. Google has #le content as labeled. Tligefaultfile system is created using Impressions default settimgs, a
smaller index for wordmodels, but larger for bifile system size 4.55 GB, 20000 files, 4000 dirs. Index opt{original — default Beagle index.
nary. Uses Impressions default settings, with A8xtCache — build text-cache of documents used for snipp&Bir — don't add directories to
size 4.55 GB, 20000 files, 4000 dirs. the index. DisFilter — disable all filtering of files, only iexl attributes.

ries once their count excee8$92. This deteriorationin icantly affects the index size; if two systems are com-
performance can be easily found by creating file-systenpared using different file content, obviously the results

images with varying numbers of directories. are meaningless. Specifically, different file types change
even the relative ordering of index size between Beagle
4.2 Reproducible Images and GDL: given text files, Beagle creates a larger index;

The time spent by desktop search applications to craw@Ven binary files, GDL creates a larger index.

a file-system image is significanid., hours to days); Figures 8 gives an additional example of reporting Im-
therefore, it is likely that different developers will inno pressions parameters to make results reproducible. In
vate in this area. In order for developers to be able tothese experiments, we discuss a scenario in which differ-
compare their results, they must be able to ensure thegnt developers have optimized Beagle and wish to mean-
are using the same file-system images. Impressions alngfully compare their results. In this scenario, the orig-
lows one to precisely control the image and report theinal Beagle developers reported results for four different
parameters so that the exact same image can be reprinages: the default, one with only text files, one with
duced. only image files, and one with only binary files. Other
For desktop search, the type of filés(their exten- ~ developers later create variants of BeaglextCacheo
sions) and the content of files has a significant impact orflisplay a small portion of every file alongside a search
the time to build the index and its size. We imagine ahit, DisDir to disable directory indexing, aridisFilter
scenario in which the Beag|e and GDL deve|0pers wishto index onIy attributes. Given the reported Impressions
to compare index sizes. To make a meaningful comparparameters, the variants of Beagle can be meaningfully
ison, the developers must clearly specify the file-systenfompared to one another.
image used,; this can be done easily with Impressions by In summary, Impressions makes it extremely easy to
reporting the size of the image, the distributions listedcreate both controlled and representative file-system im-
in Table 2, the word model, disk layout, and the randomages. Through this brief case study evaluating desktop
seed. We anticipate that most benchmarking will be dongearch applications, we have shown some of the advan-
using mostly default values, reducing the number of Im-tages of using Impressions. First, Impressions enables
pressions parameters that must be specified. developers to tune their systems to the file system char-
An example of the reporting needed for reproducibleacteristics likely to be found in their target user popu-
results is shown in Figure 7. In these experiments, all dislations. Second, it enables developers to easily create
tributions of the file system are kept constant, but only ei-images where one parameter is varied and all others are
ther text files (containing either a single word or with the carefully controlled; this allows one to assess the impact
default word model) or binary files are created. Theseof a single parameter. Finally, Impressions enables dif-
experiments illustrate the point that file content signif- ferent developers to ensure they are all comparing the

same image; by reporting Impressions parameters, onments and studied file system access behavior [39]. Re-
can ensure that benchmarking results are reproducible. cent work on file system workloads includes a study of
network file system usage at NetApp [25].

5 Related Work

. _ . 6 Conclusion
We discuss previous research in four areas related to file

system benchmarking and usage of file system metadatgile system benchmarking is in a state of disarray. One

First, Impressions enables file system measuremerkey aspect of this problem is generating realistic file-
studies to be put into practice. Besides the metadatgystem state, with due emphasis given to file-system
studies on Windows workstations [1, 12], previous work metadata and file content. To address this problem, we
in non-Windows environmentincludes Satyanarayanan'glevelop Impressions, a statistical framework to generate
study of a Digital PDP-10 [41], Irlam’s and Mullender’s realistic and configurable file-system images. Impres-
studies of Unix systems [21, 29], and the study of HP-UXsions provides the user flexibility in selecting a compre-
systems at Hewlett-Packard [42]. These studies provid@ensive set of file system parameters, while seamlessly
valuable data for designers of file systems and relate@nsuring accuracy of the underlying images, serving as a
software, and can be easily incorporated in Impressionsuseful platform for benchmarking.

Second, several models have been proposed to ex- In our experience, we find Impressions easy to use
plain observed file-system phenomena. Mitzenmacheand well suited for a number of tasks. It enables ap-
proposed a generative model, called the Recursive Folplication developers to tune their systems to the file
est File model [27] to explain the behavior of file size system characteristics likely found in their target users.
distributions. The model accounts for the hybrid distri- Impressions also makes it feasible to compare perfor-
bution of file sizes with a lognormal body and Pareto tail. mance of systems by standardizing and reporting all
Downey'’s Multiplicative File Size model [13]is based on used parameters, a requirement necessary for bench-
the assumption that new files are created by using oldemarking. We believe Impressions will prove to be a
files as templates e.g., by copying, editing or filtering anvaluable tool for system developers and users alike; we
old file. The size of the new file in this model is given by intend to release it for public use in the near future.
the size of the old file multiplied by an independent fac-Please checht t p: / / www. cs. wi sc. edu/ adsl /
tor. These models provide an intuitive understanding ofSof t war e/ | npr essi ons/ to obtain a copy.
the underlying phenomena, and are also easier for com-
puter simulation. In future, Impressions can be enhance(}
by incorporating more such models. Acknowledgments

Third, a number of tools and techniques have beer{N teful to Bill Bolosky f idi ith
proposed to improve the state of the art of benchmark- € are gratetulto Bill bolosky for providing us with a
opy of the five-year metadata dataset from Microsoft.

ing. Chen and Patterson proposed a “self-scaling” bench®

mark that scales with the 1/0 system being evaluated, té‘.akShm' Bairavasundaram provided many u;eful discus-
stress the system in meaningful ways [6]. TBBT is g Sions and gave valuable comments on earlier drafts of

NFS trace replay tool that derives the file-system imag this paper. Finally, we would like to thank Valerie Aurora

underlying a trace [50]. It extracts the file system hiﬁﬂenson (our shepherd) and the anonymous reviewers for
gheir excellent feedback and comments.

erarchy from a given trace in depth-first order and use Thi terial is based K ted by the N
that during initialization for a subsequent trace replay. . IS matenatis based upon work supported by the Iva-
tional Science Foundation under the following grants:

While this ensures a consistent file-system image for re
play, it does not solve the more general problem of cre-CCF'0621487’ CNS-0509474, as well as by generous

ating accurately controlled images for all types of file donations from Network Appliance and Sun Microsys-

system benchmarking. The Auto-Pilot tool [48] providestems' Any opinions, findings, and conclusions or rec-

an infrastructure for running tests and analysis tools toommendaﬂons expressed in this material are those of the

automate the benchmarking process authors and do not necessarily reflect the views of NSF
Finally, workload is an important piece of the bench- or other institutions.
marking puzzle. The SynRGen file reference genera-
tor by Ebling and Satyanarayan [14] generates synthetic
equivalents for real file system users. Tvaumesor ~ References
images in their work make use of simplistic assumptions] N. Agrawal, W. J. Bolosky, J. R. Douceur, and J. R. Lorch. A
about the file system distributions as their focusis on user ~ Five-Year Study of File-System Metadata.AAST '07 San Jose,
. . CA, February 2007.
access patterns. Rosadlial. collected dynamic file sys-

N X 4 [2] D.Anderson and J. Chase. Fstress: A flexible network éteise
tem usage patterns in UNIX and Windows NT environ- benchmark. ITR, Duke University, May 2002.

(3]

(4]

(5]

(6]

(7]

(8]

El

[10]

(11]

[12]

(23]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]
[22]
(23]
[24]

[25]

[26]

[27]

E. Anderson, M. Kallahalla, M. Uysal, and R. SwaminathBot-
tress: A toolkit for flexible and high fidelity 1/0 benchmarnig.
In FAST '04 San Francisco, CA, April 2004.

M. Baker, J. Hartman, M. Kupfer, K. Shirriff, and J. Ousteut.
Measurements of a Distributed File System.SIQSP '91 pages
198-212, Pacific Grove, CA, October 1991.

Beagle Project. Beagle Desktop Searchhtt p:// www.
beagl e- proj ect.org/.

P. M. Chen and D. A. Patterson. A New Approach to I/O Perfor
mance Evaluation—Self-Scaling 1/0 Benchmarks, Prediti®d
Performance. ISIGMETRICS '93pages 1-12, Santa Clara, CA,
May 1993.

J. Cipar, M. D. Corner, and E. D. Berger. Tfs: a transparen
file system for contributory storage. FAST '07 pages 28-28,
Berkeley, CA, USA, 2007. USENIX Association.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stelin-
troduction to Algorithms MIT Press and McGraw-Hill, second
edition, 2001. 35.5: The subset-sum problem.

L. P. Cox, C. D. Murray, and B. D. Noble. Pastiche: making [35]
backup cheap and easyIGOPS Oper. Syst. Re86, 2002.

L. P. Cox and B. D. Noble. Samsara: honor among thieves in
peer-to-peer storage. BOSP '03: Proceedings of the nineteenth [36]
ACM symposium on Operating systems principjesges 120—
132, New York, NY, USA, 2003. ACM.

M. D. Dahlin, R. Y. Wang, T. E. Anderson, and D. A. Patters
Cooperative Caching: Using Remote Client Memory to Improve
File System Performance. @SDI '94, Monterey, CA, Novem-
ber 1994.

J. R. Douceur and W. J. Bolosky. A large-scale study @&-fil
system contents. IRroceedings of the 1999 Joint International
Conference on Measurement and Modeling of Computer Systems
(SIGMETRICS)pages 59-70, Atlanta, GA, May 1999. [39]

A. B. Downey. The structural cause of file size distribos. In
Ninth MASCOTS’01Los Alamitos, CA, USA, 2001.

M. R. Ebling and M. Satyanarayanan. Synrgen: an exémsi
file reference generator. IBIGMETRICS '94: Proceedings of
the 1994 ACM SIGMETRICS conference on Measurement and
modeling of computer systeniéew York, NY, 1994. [41]
K. Fu, M. F. Kaashoek, and D. Maziéres. Fast and secure
distributed read-only file systemACM Trans. Comput. Syst.
20(1):1-24, 2002.

Google Corp. Google Desktop for Linukt t p: / / deskt op.
googl e. com | i nux/index. htm .

B. Gopal and U. Manber. Integrating content-based sxogech-
anisms with hierarchical file systems. @SDI '99: Third sym-
posium on Operating Systems Design and Implementati@®o.
GraphApp. GraphApp Toolkitht t p: // enchanti a. comf

sof t war e/ gr aphapp!/ .

S. D. Gribble, G. S. Manku, D. S. Roselli, E. A. Brewer, JI.
Gibson, and E. L. Miller. Self-similarity in file systems. Rro-
ceedings of the 1998 Joint International Conference on Mesas
ment and Modeling of Computer Systems (SIGMETRI@®)es
141-150, Madison, WI, June 1998.

N. C. Hutchinson, S. Manley, M. Federwisch, G. Harris Hitz,

S. Kleiman, and S. O'Malley. Logical vs. Physical File Syste
Backup. InOSDI '99, New Orleans, LA, February 1999.

G. Irflam. Unix file size survey — 1993. Available at
http://www.base.com/gordoni/ufs93.html.

John McCutchan and Robert Love. inotify for linwht t p:

/1 www. | i nuxj ournal .confarticle/8478.

Jonathan Corbet. LWN Article: SEEKOLE or FIEMAP?
http://1wn. net/Articles/260795/.

J. Katcher. PostMark: A New File System Benchmark. Técd
Report TR-3022, Network Appliance Inc., October 1997.

A. W. Leung, S. Pasupathy, G. Goodson, and E. L. Miller.
Measurement and Analysis of Large-Scale Network File Syste
Workloads. InProceedings of the USENIX Annual Technical
ConferenceBoston, MA, June 2008.

M. P. Mesnier, M. Wachs, R. R. Sambasivan, J. Lopez, &-He
dricks, G. R. Ganger, and D. O’Hallaron. trace: paralleté¢ra
replay with approximate causal events. HAST '07 San Jose,
CA, February 2007.

M. Mitzenmacher. Dynamic models for file sizes and deubl
pareto distributions. linternet Mathematics2002.

(28]
[29]
(30]
(31]
(32]

(33]

(34]

(37]

(38]

[40]

[42]

[43]

[44]
[45]

[46]

[47]

(48]

[49]

(50]

Mplayer. The MPlayer movie player. http://ww.

nmpl ayer hg. hu/ .

S. J. Mullender and A. S. Tanenbaum. Immediate files.
Software—Practice and Experiendel(4):365—-368, April 1984.

A. Muthitacharoen, B. Chen, and D. Mazieres. A Low-
Bandwidth Network File System. IRroceedings of the 18th
ACM Symposium on Operating Systems Principles (SOSP-01)
pages 174-187, Banff, Canada, October 2001.

Myers Carpenter. 1d3v2: A command line editor for id3e®s.
http://id3v2. sourceforge. net/.
NIST. Text retrieval conference
http://trec.nist.gov/data, 2007.

J. K. Ousterhout, H. D. Costa, D. Harrison, J. A. Kunze,
M. Kupfer, and J. G. Thompson. A Trace-Driven Analysis of the
UNIX 4.2 BSD File System. I'5OSP '85pages 15-24, Orcas
Island, WA, December 1985.

Y. Padioleau and O. Ridoux. A logic file system. WSENIX
Annual Technical Conferenc8an Antonio, TX, June 2003.

D. Patterson, G. Gibson, and R. Katz. A Case for Redundan
Arrays of Inexpensive Disks (RAID). 118IGMOD ’88 pages
109-116, Chicago, IL, June 1988.

V. Prabhakaran, L. N. Bairavasundaram, N. Agrawal, HG8-
nawi, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. IRON
File Systems. '8OSP '05pages 206—220, Brighton, UK, Octo-
ber 2005.

B. Przydatek. A Fast Approximation Algorithm for the I&et-
sum Problem. International Transactions in Operational Re-
search 9(4):437-459, 2002.

E. Riedel, M. Kallahalla, and R. Swaminathan. A Frameufor
Evaluating Storage System Security. HAST '02 pages 14-29,
Monterey, CA, January 2002.

D. Roselli, J. R. Lorch, and T. E. Anderson. A Comparisdfrile
System Workloads. IRSENIX '0Q pages 41-54, San Diego,
CA, June 2000.

A. Rowstron and P. Druschel. Storage Management antiGgc

in PAST, A Large-scale, Persistent Peer-to-peer StoragityUt

In SOSP '01Banff, Canada, October 2001.

M. Satyanarayanan. A study of file sizes and functioifefiines.

In Proceedings of the 8th ACM Symposium on Operating Systems
Principles (SOSR)pages 96-108, Pacific Grove, CA, December
1981.

T. F. Sienknecht, R. J. Friedrich, J. J. Martinka, andl F-rieden-
bach. The implications of distributed data in a commeraisi-e
ronment on the design of hierarchical storage managenfrant.
formance Evaluation20(1-3):3-25, May 1994.

B. Sigurd, M. Eeg-Olofsson, and J. van de Weijer. Wortgth,

sentence length and frequency — Zipf revisitegtudia Linguis-
tica, 58(1):37-52, 2004.

K. Smith and M. I. Seltzer. File System Aging. Rroceedings
of the 1997 Sigmetrics Conferen&eattle, WA, June 1997.

SNIA. Storage network industry association: lottaasipory.
http://iotta.snia.org, 2007.

S. Sobti, N. Garg, F. Zheng, J. Lai, Y. Shao, C. Zhang, \8kifid,
and A. Krishnamurthy. Segank: A Distributed Mobile Storage
System. INFAST '04 pages 239-252, San Francisco, CA, April
2004.

M. W. Storer, K. M. Greenan, E. L. Miller, and K. Vorugant
Pergamum: replacing tape with energy efficient, reliabiek-d
based archival storage. IFAST'08: Proceedings of the 6th
USENIX Conference on File and Storage Technologiages 1—
16, Berkeley, CA, USA, 2008. USENIX Association.

C. P. Wright, N. Joukov, D. Kulkarni, Y. Miretskiy, and Eadok.
Auto-pilot: A platform for system software benchmarking.
In Proceedings of the Annual USENIX Technical Conference,
FREENIX TrackAnaheim, CA, April 2005.

Z. Zhang and K. Ghose. yfs: A journaling file system dedigy
handling large data sets with reduced seekindAST '03 pages
59-72, Berkeley, CA, USA, 2003. USENIX Association.

N. Zhu, J. Chen, and T.-C. Chiueh. Tbbt: scalable andi-acc
rate trace replay for file server evaluation. MRroceedings of
the 4th conference on USENIX Conference on File and Storage
Technologiespages 24-24, Berkeley, CA, USA, 2005. USENIX
Association.

(trec) datasets.

