
A File is Not a File: Understanding the I/O
Behavior of Apple Desktop Applications

Tyler Harter, Chris Dragga, Michael Vaughn,
Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau

Department of Computer Sciences
University of Wisconsin, Madison

{harter, dragga, vaughn, dusseau, remzi}@cs.wisc.edu

ABSTRACT
We analyze the I/O behavior ofiBench, a new collection of productivity and multimedia application
workloads. Our analysis reveals a number of differences between iBench and typical file-system
workload studies, including the complex organization of modern files, the lack of pure sequential
access, the influence of underlying frameworks on I/O patterns, the widespread use of file synchro-
nization and atomic operations, and the prevalence of threads. Our results have strong ramifications
for the design of next generation local and cloud-based storage systems.

1. INTRODUCTION
The design and implementation of file and storage systems has long been atthe forefront of computer
systems research. Innovations such as namespace-based locality [21], crash consistency via jour-
naling [15, 29] and copy-on-write [7, 34], checksums and redundancy for reliability [5, 7, 26, 30],
scalable on-disk structures [37], distributed file systems [16, 35], andscalable cluster-based storage
systems [9, 14, 18] have greatly influenced how data is managed and stored within modern computer
systems.

Much of this work in file systems over the past three decades has been shaped bymeasurement: the
deep and detailed analysis of workloads [4, 10, 11, 16, 19, 25, 33, 36, 39]. One excellent example
is found in work on the Andrew File System [16]; detailed analysis of an early AFS prototype led
to the next-generation protocol, including the key innovation of callbacks. Measurement helps us
understand the systems of today so we can build improved systems for tomorrow.

Whereas most studies of file systems focus on the corporate or academic intranet, most file-system
users work in the more mundane environment of thehome, accessing data via desktop PCs, laptops,
and compact devices such as tablet computers and mobile phones. Despite the large number of
previous studies, little is known about home-user applications and their I/O patterns.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2011 ACM 978-1-59593-591-5/07/0010 ...$5.00.

Home-user applications are important today, and their importance will increase as more users store
data not only on local devices but also in the cloud. Users expect to run similar applications across
desktops, laptops, and phones; therefore, the behavior of these applications will affect virtually every
system with which a user interacts. I/O behavior is especially important to understand since it greatly
impacts how users perceive overall system latency and application performance [12].

While a study of how users typically exercise these applications would be interesting, the first step
is to perform a detailed study of I/O behavior under typical but controlled workload tasks. This
style of application study, common in the field of computer architecture [40], is different from the
workload study found in systems research, and can yield deeper insight into how the applications are
constructed and how file and storage systems need to be designed in response.

Home-user applications are fundamentally large and complex, containingmillions of lines of code [20].
In contrast, traditional UNIX -based applications are designed to be simple, to perform one task well,
and to be strung together to perform more complex tasks [32]. This modular approach of UNIX

applications has not prevailed [17]: modern applications are standalonemonoliths, providing a rich
and continuously evolving set of features to demanding users. Thus, itis beneficial to study each
application individually to ascertain its behavior.

In this paper, we present the first in-depth analysis of the I/O behavior of modern home-user appli-
cations; we focus on productivity applications (for word processing, spreadsheet manipulation, and
presentation creation) and multimedia software (for digital music, movie editing, and photo manage-
ment). Our analysis centers on two Apple software suites: iWork, consisting of Pages, Numbers, and
Keynote; and iLife, which contains iPhoto, iTunes, and iMovie. As Apple’smarket share grows [38],
these applications form the core of an increasingly popular set of workloads; as device convergence
continues, similar forms of these applications are likely to access user filesfrom both stationary
machines and moving cellular devices. We call our collection theiBench task suite.

To investigate the I/O behavior of the iBench suite, we build an instrumentation framework on top of
the powerful DTrace tracing system found inside Mac OS X [8]. DTraceallows us not only to monitor
system calls made by each traced application, but also to examine stack traces, in-kernel functions
such as page-ins and page-outs, and other details required to ensure accuracy and completeness.
We also develop an application harness based on AppleScript [3] to drive each application in the
repeatable and automated fashion that is key to any study of GUI-based applications [12].

Our careful study of the tasks in the iBench suite has enabled us to make a number of interesting
observations about how applications access and manipulate stored data.In addition to confirming
standard past findings (e.g., most files are small; most bytes accessed are from large files [4]), we find
the following new results.

A file is not a file. Modern applications manage large databases of information organized into com-
plex directory trees. Even simple word-processing documents, which appear to users as a “file”, are
in actuality small file systems containing many sub-files (e.g., a Microsoft .doc file is actually a FAT
file system containing pieces of the document). File systems should be cognizant of such hidden
structure in order to lay out and access data in these complex files more effectively.

Sequential access is not sequential.Building on the trend noticed by Vogels for Windows NT [39],
we observe that even for streaming media workloads, “pure” sequential access is increasingly rare.
Since file formats often include metadata in headers, applications often read and re-read the first
portion of a file before streaming through its contents. Prefetching and other optimizations might
benefit from a deeper knowledge of these file formats.

Auxiliary files dominate. Applications help users create, modify, and organize content, but user
files represent a small fraction of the files touched by modern applications. Most files are helper files
that applications use to provide a rich graphical experience, support multiple languages, and record
history and other metadata. File-system placement strategies might reduce seeks by grouping the
hundreds of helper files used by an individual application.

Writes are often forced. As the importance of home data increases (e.g., family photos), applications
are less willing to simply write data and hope it is eventually flushed to disk. We find that most written
data is explicitly forced to disk by the application; for example, iPhoto callsfsync thousands of
times in even the simplest of tasks. For file systems and storage, the days of delayed writes [22] may
be over; new ideas are needed to support applications that desire durability.

Renaming is popular. Home-user applications commonly use atomic operations, in particular
rename, to present a consistent view of files to users. For file systems, this may mean that trans-
actional capabilities [23] are needed. It may also necessitate a rethinkingof traditional means of
file locality; for example, placing a file on disk based on its parent directory[21] does not work as
expected when the file is first created in a temporary location and then renamed.

Multiple threads perform I/O. Virtually all of the applications we study issue I/O requests from a
number of threads; a few applications launch I/Os from hundreds of threads. Part of this usage stems
from the GUI-based nature of these applications; it is well known that threads are required to perform
long-latency operations in the background to keep the GUI responsive [24]. Thus, file and storage
systems should be thread-aware so they can better allocate bandwidth.

Frameworks influence I/O. Modern applications are often developed in sophisticated IDEs and
leverage powerful libraries, such as Cocoa and Carbon. WhereasUNIX -style applications often di-
rectly invoke system calls to read and write files, modern libraries put morecode between applications
and the underlying file system; for example, including"cocoa.h" in a Mac application imports
112,047 lines of code from 689 different files [28]. Thus, the behavior of the framework, and not
just the application, determines I/O patterns. We find that the default behavior of some Cocoa APIs
induces extra I/O and possibly unnecessary (and costly) synchronizations to disk. In addition, use of
different libraries for similar tasks within an application can lead to inconsistent behavior between
those tasks. Future storage design should take these libraries and frameworks into account.

This paper contains four major contributions. First, we describe a general tracing framework for
creating benchmarks based on interactive tasks that home users may perform (e.g., importing songs,
exporting video clips, saving documents). Second, we deconstruct theI/O behavior of the tasks in
iBench; we quantify the I/O behavior of each task in numerous ways, including the types of files ac-
cessed (e.g., counts and sizes), the access patterns (e.g., read/write, sequentiality, and preallocation),
transactional properties (e.g., durability and atomicity), and threading. Third, we describe how these
qualitative changes in I/O behavior may impact the design of future systems. Finally, we present the
34 traces from the iBench task suite; by making these traces publicly available and easy to use, we
hope to improve the design, implementation, and evaluation of the next generation of local and cloud
storage systems:

http://www.cs.wisc.edu/adsl/Traces/ibench

The remainder of this paper is organized as follows. We begin by presenting a detailed timeline of
the I/O operations performed by one task in the iBench suite; this motivates the need for a systematic
study of home-user applications. We next describe our methodology for creating the iBench task
suite. We then spend the majority of the paper quantitatively analyzing the I/O characteristics of the
full iBench suite. Finally, we summarize the implications of our findings on file-system design.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
0

2

4

6

8

10

12

14

16

x3
6 x7 x2 x3
6 x9 x2
8 x5 x2 x3
6 x9

x2

Compressed (11.7MB)

12038

12040

12042

12044 x2

Compressed (23.5MB)

36092

36094

36096

36098

36100

36102
x4

6 x6 x3
9 x6 x3
9 x6 x3
6

x3 x3

Compressed (0.3MB)

36384

36386

Header
WordDocument

Data
1Table

WordDocument

1Table

WordDocument

1Table

WordDocument

1Table

Data
1Table
Root
Ministream
Root
Mini

FAT

DIF

Thread 1

Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7
Thread 8
Threads 1-9
Thread 4

Thread 1

Threads 1, 10

Thread 1

Threads 2, 4, 6, 8
Thread 1
Thread 3
Thread 11
Threads 1, 10

productivity
5 (39MB)

plist
218 (0.8MB)

sqlite
2 (9KB)

multimedia
118 (106MB)

strings
25 (0.3MB)

other
17 (38MB)

ne
w

 d
oc

ad
d

.jp
g

ad
d

.jp
g

ad
d

.jp
g

ad
d

.jp
g

ad
d

.jp
g

ad
d

.jp
g

ad
d

.jp
g

ad
d

.jp
g

ad
d

.jp
g

ad
d

.jp
g

ad
d

.jp
g

ad
d

.jp
g

ad
d

.jp
g

ad
d

.jp
g

ad
d

.jp
g

sa
ve

qu
it

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

magnify .doc file save
Seconds

F
ile

s

Sequential Runs

F
ile

 O
ffs

et
 (

K
B

)

Figure 1: Pages Saving A Word Document.The top graph shows the 75-second timeline of the
entire run, while the bottom graph is a magnified view of seconds 54 to 58. Inthe top graph, anno-
tations on the left categorize files by type and indicate file count and amountof I/O; annotations on
the right show threads. Black bars are file accesses (reads and writes), with thickness logarithmically
proportional to bytes of I/O./ is anfsync; \ is arename; X is both. In the bottom graph, individual
reads and writes to the .doc file are shown. Vertical bar position and bar length represent the offset
within the file and number of bytes touched. Thick white bars are reads; thingray bars are writes.
Repeated runs are marked with the number of repetitions. Annotations on the right indicate the name
of each file section.

2. CASE STUDY
The I/O characteristics of modern home-user applications are distinct from those of UNIX appli-
cations studied in the past. To motivate the need for a new study, we investigate the complex I/O
behavior of a single representative task. Specifically, we report in detail the I/O performed over time
by the Pages (4.0.3) application, a word processor, running on Mac OS X Snow Leopard (10.6.2) as
it creates a blank document, inserts 15 JPEG images each of size 2.5MB,and saves the document as
a Microsoft .doc file.

Figure 1 shows the I/O this task performs (see the caption for a descriptionof the symbols used).
The top portion of the figure illustrates the accesses performed over the full lifetime of the task: at a
high level, it shows that more than 385 files spanning six different categories are accessed by eleven
different threads, with many intervening calls tofsync andrename. The bottom portion of the
figure magnifies a short time interval, showing the reads and writes performed by a single thread
accessing the primary .doc productivity file. From this one experiment, we illustrate each finding
described in the introduction. We first focus on the single access that saves the user’s document
(bottom), and then consider the broader context surrounding this file save, where we observe a flurry
of accesses to hundreds of helper files (top).

A file is not a file. Focusing on the magnified timeline of reads and writes to the productivity .doc
file, we see that the file format comprises more than just a simple file. Microsoft .doc files are based
on the FAT file system and allow bundling of multiple files in the single .doc file. This .doc file
contains a directory (Root), three streams for large data (WordDocument, Data, and 1Table), and a
stream for small data (Ministream). Space is allocated in the file with three sections: a file allocation
table (FAT), a double-indirect FAT (DIF) region, and a ministream allocation region (Mini).

Sequential access is not sequential.The complex FAT-based file format causes random access
patterns in several ways: first, the header is updated at the beginning and end of the magnified access;
second, data from individual streams is fragmented throughout the file; and third, the 1Table stream
is updated before and after each image is appended to the WordDocument stream.

Auxiliary files dominate. Although saving the single .doc we have been considering is the sole
purpose of this task, we now turn our attention to the top timeline and see that 385 different files are
accessed. There are several reasons for this multitude of files. First,Pages provides a rich graphical
experience involving many images and other forms of multimedia; togetherwith the 15 inserted
JPEGs, this requires 118 multimedia files. Second, users want to use Pages in their native language,
so application text is not hard-coded into the executable but is instead stored in 25 different .strings
files. Third, to save user preferences and other metadata, Pages uses a SQLite database (2 files) and
a number of key-value stores (218 .plist files).

Writes are often forced; renaming is popular. Pages uses both of these actions to enforce basic
transactional guarantees. It usesfsync to flush write data to disk, making it durable; it usesrename
to atomically replace old files with new files so that a file never contains inconsistent data. The
timeline shows these invocations numerous times. First, Pages regularly usesfsync andrename
when updating the key-value store of a .plist file. Second,fsync is used on the SQLite database.
Third, for each of the 15 image insertions, Pages callsfsync on a file named “tempData” (classified
as “other”) to update its automatic backup.

Multiple threads perform I/O. Pages is a multi-threaded application and issues I/O requests from
many different threads during the experiment. Using multiple threads forI/O allows Pages to avoid
blocking while I/O requests are outstanding. Examining the I/O behavior across threads, we see that
Thread 1 performs the most significant portion of I/O, but ten other threads are also involved. In most
cases, a single thread exclusively accesses a file, but it is not uncommon for multiple threads to share
a file.

Frameworks influence I/O.Pages was developed in a rich programming environment where frame-
works such as Cocoa or Carbon are used for I/O; these libraries impact I/O patterns in ways the devel-
oper might not expect. For example, although the application developersdid not bother to usefsync
or rename when saving the user’s work in the .doc file, the Cocoa library regularly uses these calls
to atomically and durably update relatively unimportant metadata, such as “recently opened” lists
stored in .plist files. As another example, when Pages tries to read data in 512-byte chunks from
the .doc, each read goes through theSTDIO library, which only reads in 4 KB chunks. Thus, when
Pages attempts to read one chunk from the 1Table stream, seven unrequested chunks from the Word-
Document stream are also incidentally read (offset 12039 KB). In other cases, regions of the .doc file
are repeatedly accessed unnecessarily. For example, around the 3KB offset, read/write pairs occur
dozens of times. Pages uses a library to write 2-byte words; each time a word is written, the library
reads, updates, and writes back an entire 512-byte chunk. Finally, we see evidence of redundancy
between libraries: even though Pages has a backing SQLite database forsome of its properties, it also
uses .plist files, which function across Apple applications as generic property stores.

This one detailed experiment has shed light on a number of interesting I/O behaviors that indicate
that home-user applications are indeed different than traditional workloads. A new workload suite is
needed that more accurately reflects these applications.

3. IBENCH TASK SUITE
Our goal in constructing the iBench task suite is two-fold. First, we would like iBench to berepre-
sentative of the tasks performed by home users. For this reason, iBench contains popular applications
from the iLife and iWork suites for entertainment and productivity. Second, we would like iBench
to be relativelysimple for others to use for file and storage system analysis. For this reason, we
automate the interactions of a home user and collect the resulting traces of I/O system calls. The
traces are available online at this site:http://www.cs.wisc.edu/adsl/Traces/ibench.
We now describe in more detail how we met these two goals.

3.1 Representative
To capture the I/O behavior of home users, iBench models the actions of a“reasonable” user inter-
acting with iPhoto, iTunes, iMovie, Pages, Numbers, and Keynote. Since the research community
does not yet have data on the exact distribution of tasks that home usersperform, iBench contains
tasks that we believe are common and uses files with sizes that can be justified for a reasonable user.
iBench contains 34 different tasks, each representing a home user performing one distinct operation.
If desired, these tasks could be combined to create more complex workflows and I/O workloads. The
six applications and corresponding tasks are as follows.

iLife iPhoto 8.1.1 (419): digital photo album and photo manipulation software. iPhoto stores photos
in a library that contains the data for the photos (which can be in a variety of formats, including
JPG, TIFF, and PNG), a directory of modified files, a directory of scaled down images, and two
files of thumbnail images. The library stores metadata in a SQLite database.iBench contains six
tasks exercising user actions typical for iPhoto: starting the application andimporting, duplicating,
editing, viewing, and deleting photos in the library. These tasks modify both the image files and the
underlying database. Each of the iPhoto tasks operates on 400 2.5 MB photos, representing a user
who has imported 12 megapixel photos (2.5 MB each) from a full 1 GB flash card on his or her
camera.

iLife iTunes 9.0.3 (15): a media player capable of both audio and video playback. iTunes organizes
its files in a private library and supports most common music formats (e.g., MP3, AIFF, WAVE,
AAC, and MPEG-4). iTunes does not employ a database, keeping mediametadata and playlists in
both a binary and an XML file. iBench contains five tasks for iTunes: starting iTunes, importing and
playing an album of MP3 songs, and importing and playing an MPEG-4 movie. Importing requires
copying files into the library directory and, for music, analyzing each song file for gapless playback.
The music tasks operate over an album (or playlist) of ten songs while the movie tasks use a single
3-minute movie.

iLife iMovie 8.0.5 (820): video editing software. iMovie stores its data in a library that contains
directories for raw footage and projects, and files containing video footage thumbnails. iMovie sup-
ports both MPEG-4 and Quicktime files. iBench contains four tasks for iMovie: starting iMovie,
importing an MPEG-4 movie, adding a clip from this movie into a project, and exporting a project to
MPEG-4. The tasks all use a 3-minute movie because this is a typical length found from home users
on video-sharing websites.

iWork Pages 4.0.3 (766): a word processor. Pages uses a ZIP-based file format and can export to
DOC, PDF, RTF, and basic text. iBench includes eight tasks for Pages: starting up, creating and
saving, opening, and exporting documents with and without images and withdifferent formats. The
tasks use 15 page documents.

iWork Numbers 2.0.3 (332): a spreadsheet application. Numbers organizes its files with a ZIP-based
format and exports to XLS and PDF. The four iBench tasks for Numbers include starting Numbers,
generating a spreadsheet and saving it, opening the spreadsheet, andexporting that spreadsheet to
XLS. To model a possible home user working on a budget, the tasks utilize afive page spreadsheet
with one column graph per sheet.

iWork Keynote 5.0.3 (791): a presentation and slideshow application. Keynote saves to a .key ZIP-
based format and exports to Microsoft’s PPT format. The seven iBench tasks for Keynote include
starting Keynote, creating slides with and without images, opening and playing presentations, and
exporting to PPT. Each Keynote task uses a 20-slide presentation.

Accesses I/O MB
Name Description Files (MB) Accesses (MB) RD% WR% / CPU Sec / CPU Sec

iL
ife

iP
ho

to

Start Open iPhoto with library of 400 photos 779 (336.7) 828 (25.4) 78.8 21.2 151.1 4.6
Imp Import 400 photos into empty library 5900 (1966.9) 8709 (3940.3) 74.4 25.6 26.7 12.1
Dup Duplicate 400 photos from library 2928 (1963.9) 5736 (2076.2) 52.4 47.6 237.9 86.1
Edit Sequentially edit 400 photos from library 12119 (4646.7) 18927 (12182.9) 69.8 30.2 19.6 12.6
Del Sequentially delete 400 photos; empty trash 15246 (23.0) 15247 (25.0) 21.8 78.2 280.9 0.5
View Sequentially view 400 photos 2929 (1006.4) 3347 (1005.0) 98.1 1.9 24.1 7.2

iT
un

es

Start Open iTunes with 10 song album 143 (184.4) 195 (9.3) 54.7 45.3 72.4 3.4
ImpS Import 10 song album to library 68 (204.9) 139 (264.5) 66.3 33.7 75.2 143.1
ImpM Import 3 minute movie to library 41 (67.4) 57 (42.9) 48.0 52.0 152.4 114.6
PlayS Play album of 10 songs 61 (103.6) 80 (90.9) 96.9 3.1 0.4 0.5
PlayM Play 3 minute movie 56 (77.9) 69 (32.0) 92.3 7.7 2.2 1.0

iM
ov

ie

Start Open iMovie with 3 minute clip in project 433 (223.3) 786 (29.4) 99.9 0.1 134.8 5.0
Imp Import 3 minute .m4v (20MB) to “Events” 184 (440.1) 383 (122.3) 55.6 44.4 29.3 9.3
Add Paste 3 minute clip from “Events” to project 210 (58.3) 547 (2.2) 47.8 52.2 357.8 1.4
Exp Export 3 minute video clip 70 (157.9) 546 (229.9) 55.1 44.9 2.3 1.0

iW
or

k

P
ag

es

Start Open Pages 218 (183.7) 228 (2.3) 99.9 0.1 97.7 1.0
New Create 15 text page document; save as .pages 135 (1.6) 157 (1.0) 73.3 26.7 50.8 0.3
NewP Create 15 JPG document; save as .pages 408 (112.0) 997 (180.9) 60.7 39.3 54.6 9.9
Open Open 15 text page document 103 (0.8) 109 (0.6) 99.5 0.5 57.6 0.3
PDF Export 15 page document as .pdf 107 (1.5) 115 (0.9) 91.0 9.0 41.3 0.3
PDFP Export 15 JPG document as .pdf 404 (77.4) 965 (110.9) 67.4 32.6 49.7 5.7
DOC Export 15 page document as .doc 112 (1.0) 121 (1.0) 87.9 12.1 44.4 0.4
DOCP Export 15 JPG document as .doc 385 (111.3) 952 (183.8) 61.1 38.9 46.3 8.9

N
um

be
rs Start Open Numbers 283 (179.9) 360 (2.6) 99.6 0.4 115.5 0.8

New Save 5 sheets/column graphs as .numbers 269 (4.9) 313 (2.8) 90.7 9.3 9.6 0.1
Open Open 5 sheet spreadsheet 119 (1.3) 137 (1.3) 99.8 0.2 48.7 0.5
XLS Export 5 sheets/column graphs as .xls 236 (4.6) 272 (2.7) 94.9 5.1 8.5 0.1

K
ey

no
te

Start Open Keynote 517 (183.0) 681 (1.1) 99.8 0.2 229.8 0.4
New Create 20 text slides; save as .key 637 (12.1) 863 (5.4) 92.4 7.6 129.1 0.8
NewP Create 20 JPG slides; save as .key 654 (92.9) 901 (103.3) 66.8 33.2 70.8 8.1
Play Open and play presentation of 20 text slides 318 (11.5) 385 (4.9) 99.8 0.2 95.0 1.2
PlayP Open and play presentation of 20 JPG slides 321 (45.4) 388 (55.7) 69.6 30.4 72.4 10.4
PPT Export 20 text slides as .ppt 685 (12.8) 918 (10.1) 78.8 21.2 115.2 1.3
PPTP Export 20 JPG slides as .ppt 723 (110.6) 996 (124.6) 57.6 42.4 61.0 7.6

Table 1:34 Tasks of the iBench Suite.The table summarizes the 34 tasks of iBench, specifying the
application, a short name for the task, and a longer description of the actions modeled. The I/O is
characterized according to the number of files read or written, the sum ofthe maximum sizes of all
accessed files, the number of file accesses that read or write data, the number of bytes read or written,
the percentage of I/O bytes that are part of a read (or write), and the rate of I/O per CPU-second in
terms of both file accesses and bytes. Each core is counted individually,so at most 2 CPU-seconds
can be counted per second on our dual-core test machine. CPU utilizationis measured with the
UNIX top utility, which in rare cases produces anomalous CPU utilization snapshots; those values
are ignored.

Table 1 contains a brief description of each of the 34 iBench tasks as well as the basic I/O charac-
teristics of each task when running on Mac OS X Snow Leopard 10.6.2. The table illustrates that
the iBench tasks perform a significant amount of I/O. Most tasks access hundreds of files, which in
aggregate contain tens or hundreds of megabytes of data. The tasks typically access files hundreds of
times. The tasks perform widely differing amounts of I/O, from less than amegabyte to more than a
gigabyte. Most of the tasks perform many more reads than writes. Finally, the tasks exhibit high I/O
throughput, often transferring tens of megabytes of data for every second of computation.

3.2 Easy to Use
To enable other system evaluators to easily use these tasks, the iBench suiteis packaged as a set of
34 system call traces. To ensure reproducible results, the 34 user tasks were first automated with
AppleScript, a general-purpose GUI scripting language. AppleScript provides generic commands
to emulate mouse clicks through menus and application-specific commandsto capture higher-level
operations. Application-specific commands bypass a small amount of I/O by skipping dialog boxes;
however, we use them whenever possible for expediency.

The system call traces were gathered using DTrace [8], a kernel anduser level dynamic instrumenta-
tion tool. DTrace is used to instrument the entry and exit points of all system calls dealing with the
file system; it also records the current state of the system and the parameters passed to and returned
from each call.

While tracing with DTrace was generally straightforward, we addressed four challenges in collect-
ing the iBench traces. First, file sizes are not always available to DTrace;thus, we record every
file’s initial size and compute subsequent file size changes caused by system calls such aswrite
or ftruncate. Second, iTunes uses theptrace system call to disable tracing; we circumvent
this block by usinggdb to insert a breakpoint that automatically returns without callingptrace.
Third, thevolfs pseudo-file system in HFS+ (Hierarchical File System) allows files to be opened
via their inode number instead of a file name; to include pathnames in the trace, we instrument the
build_path function to obtain the full path when the task is run. Fourth, tracing system calls
misses I/O resulting from memory-mapped files; therefore, we purgedmemory and instrumented
kernel page-in functions to measure the amount of memory-mapped file activity. We found that the
amount of memory-mapped I/O is negligible in most tasks; we thus do not include this I/O in the
iBench traces or analysis.

To provide reproducible results, the traces must be run on a single file-system image. Therefore, the
iBench suite also contains snapshots of the initial directories to be restored before each run; initial
state is critical in file-system benchmarking [1].

4. ANALYSIS OF IBENCH TASKS
The iBench task suite enables us to study the I/O behavior of a large set of home-user actions. As
shown from the timeline of I/O behavior for one particular task in Section 2, these tasks are likely to
access files in complex ways. To characterize this complex behavior in a quantitative manner across
the entire suite of 34 tasks, we focus on answering four categories of questions.

• What different types of files are accessed and what are the sizes of these files?
• How are files accessed for reads and writes? Are files accessed sequentially? Is space preallo-

cated?
• What are the transactional properties? Are writes flushed withfsync or performed atomi-

cally?
• How do multi-threaded applications distribute I/O across different threads?

Answering these questions has two benefits. First, the answers can guidefile and storage system
developers to target their systems better to home-user applications. Second, the characterization
will help users of iBench to select the most appropriate traces for evaluation and to understand their
resulting behavior.

All measurements were performed on a Mac Mini running Mac OS X SnowLeopard version 10.6.2
and the HFS+ file system. The machine has 2 GB of memory and a 2.26 GHzIntel Core Duo proces-
sor.

4.1 Nature of Files
Our analysis begins by characterizing the high-level behavior of the iBench tasks. In particular, we
study the different types of files opened by each iBench task as well as the sizes of those files.

4.1.1 File Types
The iLife and iWork applications store data across a variety of files in a number of different formats;
for example, iLife applications tend to store their data in libraries (or data directories) unique to each
user, while iWork applications organize their documents in proprietary ZIP-based files. The extent to
which tasks access different types of files greatly influences their I/O behavior.

To understand accesses to different file types, we place each file into one of six categories, based
on file name extensions and usage.Multimedia files contain images (e.g., JPEG), songs (e.g., MP3,
AIFF), and movies (e.g., MPEG-4). Productivity files are documents (e.g., .pages, DOC, PDF),
spreadsheets (e.g., .numbers, XLS), and presentations (e.g., .key, PPT).SQLite files are database
files. Plist files are property-list files in XML containing key-value pairs for user preferences and
application properties.Strings files contain strings for localization of application text. Finally,Other
contains miscellaneous files such as plain text, logs, files without extensions, and binary files.

Figure 2 shows the frequencies with which tasks open and access files ofeach type; most tasks
perform hundreds of these accesses. Multimedia file opens are common in all workloads, though
they seldom predominate, even in the multimedia-heavy iLife applications. Conversely, opens of
productivity files are rare, even in iWork applications that use them; this is likely because most iWork
tasks create or view a single productivity file. Because .plist files act as generic helper files, they
are relatively common. SQLite files only have a noticeable presence in iPhoto, where they account
for a substantial portion of the observed opens. Strings files occupy a significant minority of most
workloads (except iPhoto and iTunes). Finally, between 5% and 20% of files are of type “Other”
(except for iTunes, where they are more prevalent).

Figure 3 displays the percentage of I/O bytes accessed for each file type. In bytes, multimedia I/O
dominates most of the iLife tasks, while productivity I/O has a significant presence in the iWork
tasks; file descriptors on multimedia and productivity files tend to receive large amounts of I/O.
SQLite, Plist, and Strings files have a smaller share of the total I/O in bytes relative to the number
of opened files; this implies that tasks access only a small quantity of data for each of these files
opened (e.g., several key-value pairs in a .plist). In most tasks, files classified as “Other” receive a
more significant portion of the I/O (the exception is iTunes).

Summary: Home applications access a wide variety of file types, generally opening multimedia files
the most frequently. iLife tasks tend to access bytes primarily from multimedia or files classified
as “Other”; iWork tasks access bytes from a broader range of file types, with some emphasis on
productivity files.

0%

20%

40%

60%

80%

100%

iPhoto iTunes iMovie Pages Numbers Keynote

S
ta

rt
Im

p
D

up
E

di
t

D
el

V
ie

w

S
ta

rt
Im

pS
Im

pM
P

la
yS

P
la

yM

S
ta

rt
Im

p
A

dd
E

xp

S
ta

rt
O

pe
n

N
ew

N
ew

P
P

D
F

P
D

F
P

D
O

C
D

O
C

P

S
ta

rt
O

pe
n

N
ew

X
LS

S
ta

rt
P

la
y

P
la

yP
N

ew
N

ew
P

P
P

T
P

P
T

P

82
8

87
09

57
36

18
92

7
15

24
7

33
47

19
5

13
9

57 80 69 78
6

38
3

54
7

54
6

22
8

10
9

15
7

99
7

11
5

96
5

12
1

95
2

36
0

13
7

31
3

27
2

68
1

38
5

38
8

86
3

90
1

91
8

99
6

multimedia productivity plist sqlite strings other

Figure 2:Types of Files Accessed By Number of Opens.This plot shows the relative frequency
with which file descriptors are opened upon different file types. The number at the end of each bar
indicates the total number of unique file descriptors opened on files.

0%

20%

40%

60%

80%

100%

iPhoto iTunes iMovie Pages Numbers Keynote

S
ta

rt
Im

p
D

up
E

di
t

D
el

V
ie

w

S
ta

rt
Im

pS
Im

pM
P

la
yS

P
la

yM

S
ta

rt
Im

p
A

dd
E

xp

S
ta

rt
O

pe
n

N
ew

N
ew

P
P

D
F

P
D

F
P

D
O

C
D

O
C

P

S
ta

rt
O

pe
n

N
ew

X
LS

S
ta

rt
P

la
y

P
la

yP
N

ew
N

ew
P

P
P

T
P

P
T

P

25
M

B
4G

B
2G

B
12

G
B

25
M

B
10

05
M

B

9M
B

26
5M

B
43

M
B

91
M

B
32

M
B

29
M

B
12

2M
B

2M
B

23
0M

B

2M
B

59
8K

B
1M

B
18

1M
B

94
1K

B
11

1M
B

10
21

K
B

18
4M

B

3M
B

1M
B

3M
B

3M
B

1M
B

5M
B

56
M

B
5M

B
10

3M
B

10
M

B
12

5M
B

multimedia productivity plist sqlite strings other

Figure 3:Types of Files Opened By I/O Size. This plot shows the relative frequency with which
each task performs I/O upon different file types. The number at the end of each bar indicates the total
bytes of I/O accessed.

. .. .

. .. .

. .. .

. .. .

. .. .

0%

20%

40%

60%

80%

100%

iPhoto iTunes iMovie Pages Numbers Keynote

S
ta

rt
Im

p
D

up
E

di
t

D
el

V
ie

w

S
ta

rt
Im

pS
Im

pM
P

la
yS

P
la

yM

S
ta

rt
Im

p
A

dd
E

xp

S
ta

rt
O

pe
n

N
ew

N
ew

P
P

D
F

P
D

F
P

D
O

C
D

O
C

P

S
ta

rt
O

pe
n

N
ew

X
LS

S
ta

rt
P

la
y

P
la

yP
N

ew
N

ew
P

P
P

T
P

P
T

P

82
8

87
09

57
36

18
92

7
15

24
7

33
47

19
5

13
9

57 80 69 78
6

38
3

54
7

54
6

22
8

10
9

15
7

99
7

11
5

96
5

12
1

95
2

36
0

13
7

31
3

27
2

68
1

38
5

38
8

86
3

90
1

91
8

99
6

<4KB <64KB <1MB <10MB >=10MB

Figure 4: File Sizes, Weighted by Number of Accesses.This graph shows the number of ac-
cessed files in each file size range upon access ends. The total numberof file accesses appears at the
end of the bars. Note that repeatedly-accessed files are counted multipletimes, and entire file sizes
are counted even upon partial file accesses.

0%

20%

40%

60%

80%

100%

iPhoto iTunes iMovie Pages Numbers Keynote

S
ta

rt
Im

p
D

up
E

di
t

D
el

V
ie

w

S
ta

rt
Im

pS
Im

pM
P

la
yS

P
la

yM

S
ta

rt
Im

p
A

dd
E

xp

S
ta

rt
O

pe
n

N
ew

N
ew

P
P

D
F

P
D

F
P

D
O

C
D

O
C

P

S
ta

rt
O

pe
n

N
ew

X
LS

S
ta

rt
P

la
y

P
la

yP
N

ew
N

ew
P

P
P

T
P

P
T

P

34
6M

B
7G

B
4G

B
19

G
B

23
M

B
2G

B

22
2M

B
64

2M
B

26
9M

B
26

9M
B

16
1M

B

37
3M

B
2G

B
60

M
B

29
6M

B

18
4M

B
2M

B
2M

B
29

3M
B

2M
B

18
7M

B
1M

B
25

6M
B

18
0M

B
2M

B
6M

B
6M

B

18
4M

B
16

M
B

11
8M

B
16

M
B

17
8M

B
16

M
B

17
8M

B

<4KB <64KB <1MB <10MB >=10MB

Figure 5: File Sizes, Weighted by the Bytes in Accessed Files.This graph shows the portion of
bytes in accessed files of each size range upon access ends. The sumof the file sizes appears at the
end of the bars. This number differs from total file footprint since files change size over time and
repeatedly accessed file are counted multiple times.

. . . .

4.1.2 File Sizes
Large and small files present distinct challenges to the file system. For large files, finding contiguous
space can be difficult, while for small files, minimizing initial seek time is more important. We
investigate two different questions regarding file size. First, what is the distribution of file sizes
accessed by each task? Second, what portion of accessed bytes resides in files of various sizes?

To answer these questions, we record file sizes when each unique file descriptor is closed. We cat-
egorize sizes as very small (< 4KB), small (< 64KB), medium (< 1MB), large (< 10MB), or very
large (≥ 10MB). We track how many accesses are to files in each category and how many of the bytes
belong to files in each category.

Figure 4 shows the number of accesses to files of each size. Accessesto very small files are extremely
common, especially for iWork, accounting for over half of all the accesses in every iWork task. Small
file accesses have a significant presence in the iLife tasks. The large quantity of very small and small
files is due to frequent use of .plist files that store preferences, settings, and other application data;
these files often fill just one or two 4 KB pages.

Figure 5 shows the proportion of the files in which the bytes of accessed files reside. Large and very
large files dominate every startup workload and nearly every task that processes multimedia files.
Small files account for few bytes and very small files are essentially negligible.

Summary: Agreeing with many previous studies (e.g., [4]), we find that while applications tend to
open many very small files (< 4 KB), most of the bytes accessed are in large files (> 1 MB).

4.2 Access Patterns
We next examine how the nature of file accesses has changed, studyingthe read and write patterns
of home applications. These patterns include whether files are used for reading, writing, or both;
whether files are accessed sequentially or randomly; and finally, whether or not blocks are preallo-
cated via hints to the file system.

4.2.1 File Accesses
One basic characteristic of our workloads is the division between readingand writing on open file
descriptors. If an application uses an open file only for reading (or onlyfor writing) or performs more
activity on file descriptors of a certain type, then the file system may be able tomake more intelligent
memory and disk allocations.

To determine these characteristics, we classify each opened file descriptor based on the types of
accesses–read, write, or both read and write–performed during its lifetime. We also ignore the ac-
tual flags used when opening the file since we found they do not accurately reflect behavior; in all
workloads, almost all write-only file descriptors were opened withO_RDWR. We measure both the
proportional usage of each type of file descriptor and the relative amount of I/O performed on each.

Figure 6 shows how many file descriptors are used for each type of access. The overwhelming
majority of file descriptors are used exclusively for reading or writing; read-write file descriptors
are quite uncommon. Overall, read-only file descriptors are the most common across a majority of
workloads; write-only file descriptors are popular in some iLife tasks, but are rarely used in iWork.

We observe different patterns when analyzing the amount of I/O performed on each type of file
descriptor, as shown in Figure 7. First, even though iWork tasks have very few write-only file de-
scriptors, they often write significant amounts of I/O to those descriptors.Second, even though
read-write file descriptors are rare, when present, they account forrelatively large portions of total
I/O (particularly when exporting to .doc, .xls, and .ppt).

Summary: While many files are opened with theO_RDWR flag, most of them are subsequently
accessed write-only; thus, file open flags cannot be used to predict how a file will be accessed.
However, when an open file is both read and written by a task, the amount of traffic to that file
occupies a significant portion of the total I/O. Finally, the rarity of read-write file descriptors may
derive in part from the tendency of applications to write to a temporary file which they then rename
as the target file, instead of overwriting the target file; we explore this tendency more in §4.3.2.

0%

20%

40%

60%

80%

100%

iPhoto iTunes iMovie Pages Numbers Keynote

S
ta

rt
Im

p
D

up
E

di
t

D
el

V
ie

w

S
ta

rt
Im

pS
Im

pM
P

la
yS

P
la

yM

S
ta

rt
Im

p
A

dd
E

xp

S
ta

rt
O

pe
n

N
ew

N
ew

P
P

D
F

P
D

F
P

D
O

C
D

O
C

P

S
ta

rt
O

pe
n

N
ew

X
LS

S
ta

rt
P

la
y

P
la

yP
N

ew
N

ew
P

P
P

T
P

P
T

P

82
8

87
09

57
36

18
92

7
15

24
7

33
47

19
5

13
9

57 80 69 78
6

38
3

54
7

54
6

22
8

10
9

15
7

99
7

11
5

96
5

12
1

95
2

36
0

13
7

31
3

27
2

68
1

38
5

38
8

86
3

90
1

91
8

99
6

Read Only Both Write Only

Figure 6:Read/Write Distribution By File Descriptor. File descriptors can be used only for reads,
only for writes, or for both operations. This plot shows the percentage of file descriptors in each
category. This is based on usage, notopen flags. Any duplicate file descriptors (e.g., created by
dup) are treated as one and file descriptors on which the program does not perform any subsequent
action are ignored.

0%

20%

40%

60%

80%

100%

iPhoto iTunes iMovie Pages Numbers Keynote

S
ta

rt
Im

p
D

up
E

di
t

D
el

V
ie

w

S
ta

rt
Im

pS
Im

pM
P

la
yS

P
la

yM

S
ta

rt
Im

p
A

dd
E

xp

S
ta

rt
O

pe
n

N
ew

N
ew

P
P

D
F

P
D

F
P

D
O

C
D

O
C

P

S
ta

rt
O

pe
n

N
ew

X
LS

S
ta

rt
P

la
y

P
la

yP
N

ew
N

ew
P

P
P

T
P

P
T

P

25
M

B
4G

B
2G

B
12

G
B

25
M

B
10

05
M

B

9M
B

26
5M

B
43

M
B

91
M

B
32

M
B

29
M

B
12

2M
B

2M
B

23
0M

B

2M
B

59
8K

B
1M

B
18

1M
B

94
1K

B
11

1M
B

10
21

K
B

18
4M

B

3M
B

1M
B

3M
B

3M
B

1M
B

5M
B

56
M

B
5M

B
10

3M
B

10
M

B
12

5M
B

Read Only Both (Reads) Both (Writes) Write Only

Figure 7:Read/Write Distribution By Bytes. The graph shows how I/O bytes are distributed among
the three access categories. The unshaded dark gray indicates bytes read as a part of read-only ac-
cesses. Similarly, unshaded light gray indicates bytes written in write-only accesses. The shaded
regions represent bytes touched in read-write accesses, and are divided between bytes read and
bytes written.

0%

20%

40%

60%

80%

100%

iPhoto iTunes iMovie Pages Numbers Keynote

S
ta

rt
Im

p
D

up
E

di
t

D
el

V
ie

w

S
ta

rt
Im

pS
Im

pM
P

la
yS

P
la

yM

S
ta

rt
Im

p
A

dd
E

xp

S
ta

rt
O

pe
n

N
ew

N
ew

P
P

D
F

P
D

F
P

D
O

C
D

O
C

P

S
ta

rt
O

pe
n

N
ew

X
LS

S
ta

rt
P

la
y

P
la

yP
N

ew
N

ew
P

P
P

T
P

P
T

P

20
M

B
3G

B
1G

B
8G

B
5M

B
98

6M
B

5M
B

17
5M

B
21

M
B

88
M

B
29

M
B

29
M

B
68

M
B

1M
B

12
7M

B

2M
B

59
5K

B
78

2K
B

11
0M

B
85

7K
B

75
M

B
89

8K
B

11
2M

B

3M
B

1M
B

3M
B

3M
B

1M
B

5M
B

39
M

B
5M

B
69

M
B

8M
B

72
M

B

Sequential Nearly Sequential Non-sequential

Figure 8:Read Sequentiality.This plot shows the portion of file read accesses (weighted by bytes)
that are sequentially accessed.

0%

20%

40%

60%

80%

100%

iPhoto iTunes iMovie Pages Numbers Keynote

S
ta

rt
Im

p
D

up
E

di
t

D
el

V
ie

w

S
ta

rt
Im

pS
Im

pM
P

la
yS

P
la

yM

S
ta

rt
Im

p
A

dd
E

xp

S
ta

rt
O

pe
n

N
ew

N
ew

P
P

D
F

P
D

F
P

D
O

C
D

O
C

P

S
ta

rt
O

pe
n

N
ew

X
LS

S
ta

rt
P

la
y

P
la

yP
N

ew
N

ew
P

P
P

T
P

P
T

P

5M
B

10
10

M
B

98
8M

B
4G

B
20

M
B

19
M

B

4M
B

89
M

B
22

M
B

3M
B

2M
B

24
K

B
54

M
B

1M
B

10
3M

B

3K
B

3K
B

28
6K

B
71

M
B

84
K

B
36

M
B

12
3K

B
71

M
B

10
K

B
3K

B
26

4K
B

14
3K

B

2K
B

9K
B

17
M

B
42

4K
B

34
M

B
2M

B
53

M
B

Sequential Nearly Sequential Non-sequential

Figure 9:Write Sequentiality. This plot shows the portion of file write accesses (weighted by bytes)
that are sequentially accessed.

. .. .

. .. .

. .. .

. .. .

. .. .

. . . .

4.2.2 Sequentiality
Historically, files have usually been read or written entirely sequentially [4].We next determine
whether sequential accesses are dominant in iBench. We measure this by examining all reads and
writes performed on each file descriptor and noting the percentage of files accessed in strict sequential
order (weighted by bytes).

We display our measurements for read and write sequentiality in Figures 8 and 9, respectively. The
portions of the bars in black indicate the percent of file accesses that exhibit pure sequentiality. We
observe high read sequentiality in iWork, but little in iLife (with the exception of the Start tasks and
iTunes Import). The inverse is true for writes: most iLife tasks exhibit high sequentiality; iWork
accesses are largely non-sequential.

Investigating the access patterns to multimedia files more closely, we note thatmany iLife applica-
tions first touch a small header before accessing the entire file sequentially. To better reflect this
behavior, we define an access to a file as “nearly sequential” when at least 95% of the bytes read or
written to a file form a sequential run. We found that a large number of accesses fall into the “nearly
sequential” category given a 95% threshold; the results do not change much with lower thresholds.

The slashed portions of the bars in Figures 8 and 9 show observed sequentiality with a 95% threshold.
Tasks with heavy use of multimedia files exhibit greater sequentiality with the 95% threshold for
both reading and writing. In several workloads (mainly iPhoto and iTunes), the I/O classified almost
entirely as non-sequential with a 100% threshold is classified as nearly sequential. The difference for
iWork applications is much less striking, indicating that accesses are more random.

Summary: A substantial number of tasks contain purely sequential accesses. When the definition
of a sequential access is loosened such that only 95% of bytes must be consecutive, then even more
tasks contain primarily sequential accesses. These “nearly sequential”accesses result from metadata
stored at the beginning of complex multimedia files: tasks frequently touch bytes near the beginning
of multimedia files before sequentially reading or writing the bulk of the file.

4.2.3 Preallocation
One of the difficulties file systems face when allocating contiguous space for files is not knowing how
much data will be written to those files. Applications can communicate this information by providing
hints [27] to the file system to preallocate an appropriate amount of space.In this section, we quantify
how often applications use preallocation hints and how often these hints are useful.

We instrument two calls usable for preallocation:pwrite andftruncate. pwrite writes a
single byte at an offset beyond the end of the file to indicate the future end of the file;ftruncate
directly sets the file size. Sometimes a preallocation does not communicate anything useful to the
file system because it is immediately followed by a single write call with all the data; we flag these
preallocations as unnecessary.

Figure 10 shows the portion of file growth that is the result of preallocation.In all cases, preallocation
was due to calls topwrite; we never observedftruncate preallocation. Overall, applications
rarely preallocate space and preallocations are often useless.

The three tasks with significant preallocation are iPhoto Dup, iPhoto Edit, andiMovie Exp. iPhoto
Dup and Edit both call acopyPath function in the Cocoa library that preallocates a large amount
of space and then copies data by reading and writing it in 1 MB chunks. iPhoto Dup sometimes
usescopyPath to copy scaled-down images of size 50-100 KB; since these smaller files are copied
with a single write, the preallocation does not communicate anything useful. iMovie Exp calls a
Quicktime append function that preallocates space before writing the actual data; however, the data
is appended in small 128 KB increments. Thus, the append is not split into multiplewrite calls; the
preallocation is useless.

0%

20%

40%

60%

80%

100%

iPhoto iTunes iMovie Pages Numbers Keynote

S
ta

rt
Im

p
D

up
E

di
t

D
el

V
ie

w

S
ta

rt
Im

pS
Im

pM
P

la
yS

P
la

yM

S
ta

rt
Im

p
A

dd
E

xp

S
ta

rt
O

pe
n

N
ew

N
ew

P
P

D
F

P
D

F
P

D
O

C
D

O
C

P

S
ta

rt
O

pe
n

N
ew

X
LS

S
ta

rt
P

la
y

P
la

yP
N

ew
N

ew
P

P
P

T
P

P
T

P

99
2B

19
8K

B
96

6M
B

94
3M

B
17

4K
B

1K
B

34
M

B

19
2B

19
2B

19
2B

38
4B

38
4B

Useful Unnecessary

Figure 10:Preallocation Hints.. The sizes of the bars indicate which portion of file extensions are
preallocations; unnecessary preallocations are diagonally striped. Thenumber atop each bar indicates
the absolute amount preallocated.

Summary: Although preallocation has the potential to be useful, few tasks use it to provide hints,
and a significant number of the hints that are provided are useless. Thehints are provided inconsis-
tently: although iPhoto and iMovie both use preallocation for some tasks, neither application uses
preallocation during import.

4.3 Transactional Properties
In this section, we explore the degree to which the iBench tasks require transactional properties from
the underlying file and storage system. In particular, we investigate the extent to which applications
require writes to be durable; that is, how frequently they invoke calls tofsync and which APIs
perform these calls. We also investigate the atomicity requirements of the applications, whether from
renaming files or exchanging inodes.

4.3.1 Durability
Writes typically involve a trade-off between performance and durability. Applications that require
write operations to complete quickly can write data to the file system’s main memory buffers, which
are lazily copied to the underlying storage system at a subsequent convenient time. Buffering writes
in main memory has a wide range of performance advantages: writes to the same block may be
coalesced, writes to files that are later deleted need not be performed, and random writes can be more
efficiently scheduled.

On the other hand, applications that rely on durable writes can flush written data to the underlying
storage layer with thefsync system call. The frequency offsync calls and the number of bytes
they synchronize directly affect performance: iffsync appears often and flushes only several bytes,
then performance will suffer. Therefore, we investigate how modernapplications usefsync.

0%

20%

40%

60%

80%

100%

iPhoto iTunes iMovie Pages Numbers Keynote

S
ta

rt
Im

p
D

up
E

di
t

D
el

V
ie

w

S
ta

rt
Im

pS
Im

pM
P

la
yS

P
la

yM

S
ta

rt
Im

p
A

dd
E

xp

S
ta

rt
O

pe
n

N
ew

N
ew

P
P

D
F

P
D

F
P

D
O

C
D

O
C

P

S
ta

rt
O

pe
n

N
ew

X
LS

S
ta

rt
P

la
y

P
la

yP
N

ew
N

ew
P

P
P

T
P

P
T

P

5M
B

57
M

B
12

M
B

3G
B

15
M

B
18

M
B

4M
B

89
M

B
22

M
B

3M
B

2M
B

24
K

B
34

M
B

1M
B

69
M

B

3K
B

3K
B

12
K

B
71

M
B

3K
B

35
M

B
7K

B
35

M
B

10
K

B
3K

B
32

K
B

21
K

B

2K
B

9K
B

17
M

B
16

K
B

34
M

B
14

K
B

17
M

B

SQLite Pref Sync Archiving writeToFile FlushFork Other No fsync

Figure 11:Percentage of Fsync Bytes.The percentage offsync’d bytes written to file descriptors
is shown, broken down by cause. The value atop each bar shows total bytes synchronized.

0%

20%

40%

60%

80%

100%

iPhoto iTunes iMovie Pages Numbers Keynote

S
ta

rt
Im

p
D

up
E

di
t

D
el

V
ie

w

S
ta

rt
Im

pS
Im

pM
P

la
yS

P
la

yM

S
ta

rt
Im

p
A

dd
E

xp

S
ta

rt
O

pe
n

N
ew

N
ew

P
P

D
F

P
D

F
P

D
O

C
D

O
C

P

S
ta

rt
O

pe
n

N
ew

X
LS

S
ta

rt
P

la
y

P
la

yP
N

ew
N

ew
P

P
P

T
P

P
T

P

12
59

11
77

1
28

56
19

02
5

84
34

16
34

53 95 32 11
7

29 6 63 18
5

15 1 1 5 12
2

1 10
3

2 94 3 1 13 8 1 5 25 10 50 9 29

0B <4KB <64KB <1MB <10MB >=10MB

Figure 12:Fsync Sizes.This plot shows a distribution offsync sizes. The total number offsync
calls appears at the end of the bars.

. .. .

. .. .

. .. .

. .. .

. .. .

. . . .

Figure 11 shows the percentage of written data each task synchronizes with fsync. The graph fur-
ther subdivides the source of thefsync activity into six categories.SQLite indicates that the SQLite
database engine is responsible for callingfsync; Archiving indicates an archiving library frequently
used when accessing ZIP formats;Pref Sync is thePreferencesSynchronize function call
from the Cocoa library;writeToFile is the Cocoa callwriteToFile with theatomically flag
set; and finally,FlushFork is the CarbonFSFlushFork routine.

At the highest level, the figure indicates that half the tasks synchronize close to 100% of their written
data while approximately two-thirds synchronize more than 60%. iLife taskstend to synchronize
many megabytes of data, while iWork tasks usually only synchronize tens of kilobytes (excluding
tasks that handle images).

To delve into the APIs responsible for thefsync calls, we examine how each bar is subdivided. In
iLife, the sources offsync calls are quite varied: every category of API except for Archiving is
represented in one of the tasks, and many of the tasks call multiple APIs which invokefsync. In
iWork, the sources are more consistent; the only sources are Pref Sync, SQLite, and Archiving (for
manipulating compressed data).

Given that these tasks require durability for a significant percentage oftheir write traffic, we next
investigate the frequency offsync calls and how much data each individual call pushes to disk.
Figure 12 groupsfsync calls based on the amount of I/O performed on each file descriptor when
fsync is called, and displays the relative percentage each category comprisesof the total I/O.

These results show that iLife tasks callfsync frequently (from tens to thousands of times), while
iWork tasks callfsync infrequently except when dealing with images. From these observations,
we infer that calls tofsync are mostly associated with media. The majority of calls tofsync
synchronize small amounts of data; only a few iLife tasks synchronize more than a megabyte of data
in a singlefsync call.

Summary: Developers want to ensure that data enters stable storage durably, andthus, these tasks
synchronize a significant fraction of their data. Based on our analysis of the source offsync calls,
some calls may be incidental and an unintentional side-effect of the API (e.g., those from SQLite or
Pref Sync), but most are performed intentionally by the programmer.Furthermore, some of the tasks
synchronize small amounts of data frequently, presenting a challenge for file systems.

4.3.2 Atomic Writes
Applications often require file changes to be atomic. In this section, we quantify how frequently
applications use different techniques to achieve atomicity. We also identify cases where perform-
ing writes atomically can interfere with directory locality optimizations by moving files from their
original directories. Finally, we identify the causes of atomic writes.

Applications can atomically update a file by first writing the desired contents to atemporary file and
then using either therename or exchangedata call to atomically replace the old file with the
new file. Withrename, the new file is given the same name as the old, deleting the original and
replacing it. Withexchangedata, the inode numbers assigned to the old file and the temporary
file are swapped, causing the old path to point to the new data; this allows the filepath to remain
associated with the original inode number, which is necessary for some applications.

Figure 13 shows how much write I/O is performed atomically withrename or exchangedata;
rename calls are further subdivided into those which keep the file in the same directory and those
which do not. The results show that atomic writes are quite popular and that, inmany workloads,
all the writes are atomic. The breakdown of each bar shows thatrename is frequent; a significant
minority of therename calls move files between directories.exchangedata is rare and used only
by iTunes for a small fraction of file updates.

0%

20%

40%

60%

80%

100%

iPhoto iTunes iMovie Pages Numbers Keynote

S
ta

rt
Im

p
D

up
E

di
t

D
el

V
ie

w

S
ta

rt
Im

pS
Im

pM
P

la
yS

P
la

yM

S
ta

rt
Im

p
A

dd
E

xp

S
ta

rt
O

pe
n

N
ew

N
ew

P
P

D
F

P
D

F
P

D
O

C
D

O
C

P

S
ta

rt
O

pe
n

N
ew

X
LS

S
ta

rt
P

la
y

P
la

yP
N

ew
N

ew
P

P
P

T
P

P
T

P

27 16
18

41
4

52
11

13 12
16

29 27 17 48 17 6 26 18
5

8 1 1 7 91 2 86 2 76 3 1 11 5 1 2 2 8 8 6 6

Rename (same dir) Rename (diff dir) Exchange Not atomic

Figure 13:Atomic Writes. The portion of written bytes written atomically is shown, divided into
groups: (1)rename leaving a file in the same directory; (2)rename causing a file to change
directories; (3)exchangedata which never causes a directory change. The atomic file-write count
appears atop each bar.

0%

20%

40%

60%

80%

100%

iPhoto iTunes iMovie Pages Numbers Keynote

S
ta

rt
Im

p
D

up
E

di
t

D
el

V
ie

w

S
ta

rt
Im

pS
Im

pM
P

la
yS

P
la

yM

S
ta

rt
Im

p
A

dd
E

xp

S
ta

rt
O

pe
n

N
ew

N
ew

P
P

D
F

P
D

F
P

D
O

C
D

O
C

P

S
ta

rt
O

pe
n

N
ew

X
LS

S
ta

rt
P

la
y

P
la

yP
N

ew
N

ew
P

P
P

T
P

P
T

P

27 16
18

41
4

52
11

13 12
16

26 25 15 25 15 6 26 18
5

8 1 1 7 91 2 86 2 76 3 1 11 5 1 2 2 8 8 6 6

Pref Sync writeToFile movePath FSRenameUnicode Other

Figure 14:Rename Causes.This plot shows the portion ofrename calls caused by each of the top
four higher level functions used for atomic writes. The number ofrename calls appears at the end
of the bars.

. .. .

. .. .

. .

We find that most of therename calls causing directory changes occur when a file (e.g., a document
or spreadsheet) is saved at the user’s request. We suspect different directories are used so that users
are not confused by seeing temporary files in their personal directories. Interestingly, atomic writes
are performed when files are saved to Apple formats, but not when exporting to Microsoft formats.
We suspect that the interface between applications and the Microsoft libraries does not specify atomic
operations well.

Figure 14 identifies the APIs responsible for atomic writes viarename. Pref Sync, from the Cocoa
library, allows applications to save user and system wide settings in .plist files. WriteToFile and
movePath are Cocoa routines andFSRenameUnicode is a Carbon routine. A solid majority of the
atomic writes are caused by Pref Sync; this is an example of I/O behavior caused by the API rather
than explicit programmer intention. The second most common atomic writeris writeToFile; in this
case, the programmer is requesting atomicity but leaving the technique up tothe library. Finally, in
a small minority of cases, programmers perform atomic writes themselves by calling movePath or
FSRenameUnicode, both of which are essentiallyrename wrappers.

Summary: Many of our tasks write data atomically, generally doing so by callingrename. The bulk
of atomic writes result from API calls; while some of these hide the underlying nature of the write,
others make it clear that they act atomically. Thus, developers desire atomicity for many operations,
and file systems will need to either address the ensuing renames that accompany it or provide an
alternative mechanism for it. In addition, the absence of atomic writes whenwriting to Microsoft
formats highlights the inconsistencies that can result from the use of high level libraries.

4.4 Threads and Asynchronicity
Home-user applications are interactive and need to avoid blocking when I/O is performed. Asyn-
chronous I/O and threads are often used to hide the latency of slow operations from users. For our
final experiments, we investigate how often applications use asynchronous I/O libraries or multiple
threads to avoid blocking.

Figure 15 shows the portion of read operations performed asynchronously withaio_read; none of
the tasks useaio_write. We find that asynchronous I/O is used rarely and only by iLife applica-
tions. However, in those cases where asynchronous I/O is performed, it is used quite heavily.

Figure 16 investigates how threads are used by these tasks: specifically,the portion of I/O performed
by each of the threads. The numbers at the tops of the bars report the number of threads performing
I/O. iPhoto and iTunes leverage a significant number of threads for I/O,since many of their tasks are
readily subdivided (e.g., importing 400 different photos). Only a handful of tasks perform alltheir
I/O from a single thread. For most tasks, a small number of threads areresponsible for the majority
of I/O.

Figure 17 shows the responsibilities of each thread that performs I/O, where a thread can be responsi-
ble for reading, writing, or both. The measurements show that significantly more threads are devoted
to reading than to writing, with a fair number of threads responsible for both. These results indicate
that threads are the preferred technique to avoiding blocking and that applications may be particularly
concerned with avoiding blocking due to reads.

Summary: Our results indicate that iBench tasks are concerned with hiding long-latency operations
from interactive users and that threads are the preferred method fordoing so. Virtually all of the
applications we study issue I/O requests from multiple threads, and some launch I/Os from hundreds
of different threads.

0%

20%

40%

60%

80%

100%

iPhoto iTunes iMovie Pages Numbers Keynote

S
ta

rt
Im

p
D

up
E

di
t

D
el

V
ie

w

S
ta

rt
Im

pS
Im

pM
P

la
yS

P
la

yM

S
ta

rt
Im

p
A

dd
E

xp

S
ta

rt
O

pe
n

N
ew

N
ew

P
P

D
F

P
D

F
P

D
O

C
D

O
C

P

S
ta

rt
O

pe
n

N
ew

X
LS

S
ta

rt
P

la
y

P
la

yP
N

ew
N

ew
P

P
P

T
P

P
T

P

2G
B

98
M

B
7G

B

98
1M

B

41
6K

B

28
M

B

32
3K

B
45

M
B

32
K

B
92

M
B

AIO Reads / All Reads

Figure 15:Asynchronous Reads..This plot shows the percentage of read bytes read asynchronously
via aio_read. The total amount of asynchronous I/O is provided at the end of the bars.

0%

20%

40%

60%

80%

100%

iPhoto iTunes iMovie Pages Numbers Keynote

S
ta

rt
Im

p
D

up
E

di
t

D
el

V
ie

w

S
ta

rt
Im

pS
Im

pM
P

la
yS

P
la

yM

S
ta

rt
Im

p
A

dd
E

xp

S
ta

rt
O

pe
n

N
ew

N
ew

P
P

D
F

P
D

F
P

D
O

C
D

O
C

P

S
ta

rt
O

pe
n

N
ew

X
LS

S
ta

rt
P

la
y

P
la

yP
N

ew
N

ew
P

P
P

T
P

P
T

P

41
7

47
2

40
7

37
1

33
4

7 8 58 12 64 9 5 8 3 6 4 1 4 12 1 12 1 11 3 1 6 3 2 4 5 7 7 6 6

Primary Secondary Others

Figure 16: I/O Distribution Among Threads.. The stacked bars indicate the percentage of total
I/O performed by each thread. The I/O from the threads that do the mostand second most I/O are
dark and medium gray respectively, and the other threads are light gray. Black lines divide the I/O
across the latter group; black areas appear when numerous threads do small amounts of I/O. The total
number of threads that perform I/O is indicated next to the bars.

. .. .

0%

20%

40%

60%

80%

100%

iPhoto iTunes iMovie Pages Numbers Keynote

S
ta

rt
Im

p
D

up
E

di
t

D
el

V
ie

w

S
ta

rt
Im

pS
Im

pM
P

la
yS

P
la

yM

S
ta

rt
Im

p
A

dd
E

xp

S
ta

rt
O

pe
n

N
ew

N
ew

P
P

D
F

P
D

F
P

D
O

C
D

O
C

P

S
ta

rt
O

pe
n

N
ew

X
LS

S
ta

rt
P

la
y

P
la

yP
N

ew
N

ew
P

P
P

T
P

P
T

P

41
7

47
2

40
7

37
1

33
4

7 8 58 12 64 9 5 8 3 6 4 1 4 12 1 12 1 11 3 1 6 3 2 4 5 7 7 6 6

Read Only Both Write Only

Figure 17:Thread Type Distribution.. The plot categorizes threads that do I/O into three groups:
threads that read, threads that write, or threads that both read and write. The total number of threads
that perform I/O is indicated next to the bars.

. .. .

. .

5. RELATED WORK
Although our study is unique in its focus on the I/O behavior of individual applications, a body
of similar work exists both in the field of file systems and in application studies. As mentioned
earlier, our work builds upon that of Baker [4], Ousterhout [25], Vogels [39], and others who have
conducted similar studies, providing an updated perspective on many oftheir findings. However,
the majority of these focus on academic and engineering environments, which are likely to have
noticeably different application profiles from the home environment. Some studies, like those by
Ramakrishnan [31] and by Vogels, have included office workloads onpersonal computers; these are
likely to feature applications similar to those in iWork, but are still unlikely to contain analogues to
iLife products. None of these studies, however, look at the characteristics of individual application
behaviors; instead, they analyze trends seen in prolonged usage. Thus, our study complements the
breadth of this research with a more focused examination, providing specific information on the
causes of the behaviors we observe, and is one of the first to addressthe interaction of multimedia
applications with the file system.

In addition to these studies of dynamic workloads, a variety of papers have examined the static char-
acteristics of file systems, starting with Satyanarayanan’s analysis of filesat Carnegie-Mellon Univer-
sity [36]. One of the most recent of these examined metadata characteristics on desktops at Microsoft
over a five year time span, providing insight into file-system usage characteristics in a setting similar
to the home [2]. This type of analysis provides insight into long term characteristics of files that
ours cannot; a similar study for home systems would, in conjunction with ourpaper, provide a more
complete image of how home applications interact with the file system.

. .. .

. .. .

. .

While most file-system studies deal with aggregate workloads, our examination of application-specific
behaviors has precedent in a number of hardware studies. In particular, Flautneret al.’s [13] and Blake
et al.’s [6] studies of parallelism in desktop applications bear strong similarities to ours in the variety
of applications they examine. In general, they use a broader set of applications, a difference that
derives from the subjects studied. In particular, we select applications likely to produce interesting
I/O behavior; many of the programs they use, like the video game Quake,are more likely to exercise
threading than the file system. Finally it is worth noting that Blakeet al. analyze Windows software
using event tracing, which may prove a useful tool to conduct a similar application file-system study
to ours in Windows.

6. DISCUSSION AND CONCLUSIONS
We have presented a detailed study of the I/O behavior of complex, modern applications. Through
our measurements, we have discovered distinct differences betweenthe tasks in the iBench suite and
traditional workload studies. To conclude, we consider the possible effects of our findings on future
file and storage systems.

We observed that many of the tasks in the iBench suite frequently force data to disk by invoking
fsync, which has strong implications for file systems. Delayed writing has long been the basis of
increasing file-system performance [34], but it is of greatly decreased utility given small synchronous
writes. Thus, more study is required to understand why the developers of these applications and
frameworks are calling these routines so frequently. For example, is data being flushed to disk to
ensure ordering between writes, safety in the face of power loss, or safety in the face of application
crashes? Finding appropriate solutions depends upon the answers to these questions. One possibility
is for file systems to expose new interfaces to enable applications to better express their exact needs
and desires for durability, consistency, and atomicity. Another possibility isthat new technologies,
such as flash and other solid-state devices, will be a key solution, allowing writes to be buffered
quickly, perhaps before being staged to disk or even the cloud.

The iBench tasks also illustrate that file systems are now being treated as repositories of highly-
structured “databases” managed by the applications themselves. In some cases, data is stored in a
literal database (e.g., iPhoto uses SQLite), but in most cases, data is organized in complex directory
hierarchies or within a single file (e.g., a .doc file is basically a mini-FAT file system). One option is
that the file system could become more application-aware, tuned to understand important structures
and to better allocate and access these structures on disk. For example, asmarter file system could
improve its allocation and prefetching of “files” within a .doc file: seemingly non-sequential patterns
in a complex file are easily deconstructed into accesses to metadata followedby streaming sequential
access to data.

Our analysis also revealed the strong impact that frameworks and libraries have on I/O behavior.
Traditionally, file systems have been designed at the level of the VFS interface, not breaking into
the libraries themselves. However, it appears that file systems now needto take a more “vertical” ap-
proach and incorporate some of the functionality of modern libraries. This vertical approach hearkens
back to the earliest days of file-system development when the developers of FFS modified standard
libraries to buffer writes in block-sized chunks to avoid costly sub-block overheads [21]. Future
storage systems should further integrate with higher-level interfaces to gain deeper understanding of
application desires.

Finally, modern applications are highly complex, containing millions of lines ofcode, divided over
hundreds of source files and libraries, and written by many different programmers. As a result, their
own behavior is increasingly inconsistent: along similar, but distinct code paths, different libraries
are invoked with different transactional semantics. To simplify these applications, file systems could
add higher-level interfaces, easing construction and unifying data representations. While the systems
community has developed influential file-system concepts, little has been done to transition this class
of improvements into the applications themselves. Database technology does support a certain class
of applications quite well but is generally too heavyweight. Future storage systems should consider
how to bridge the gap between the needs of current applications and the features low-level systems
provide.

Our evaluation may raise more questions than it answers. To build better systems for the future, we
believe that the research community must study applications that are important to real users. We
believe the iBench task suite takes a first step in this direction and hope othersin the community will
continue along this path.

Acknowledgments
We thank the anonymous reviewers and Rebecca Isaacs (our shepherd) for their tremendous feedback,
as well as members of our research group for their thoughts and comments on this work at various
stages.

This material is based upon work supported by the National Science Foundation under CSR-1017518
as well as by generous donations from Network Appliance and Google. Tyler Harter and Chris
Dragga are supported by the Guri Sohi Fellowship and the David DeWitt Fellowship, respectively.

Any opinions, findings, and conclusions or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of NSF or other institutions.

7. REFERENCES

[1] N. Agrawal, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau.Generating Realistic Impres-
sions for File-System Benchmarking. InFAST ’09, San Jose, CA, February 2009.

[2] N. Agrawal, W. J. Bolosky, J. R. Douceur, and J. R. Lorch. A Five-Year Study of File-System
Metadata. InFAST ’07, San Jose, CA, February 2007.

[3] Apple Computer, Inc. AppleScript Language Guide, March 2011.
[4] M. Baker, J. Hartman, M. Kupfer, K. Shirriff, and J. Ousterhout. Measurements of a Distributed

File System. InSOSP ’91, pages 198–212, Pacific Grove, CA, October 1991.
[5] W. Bartlett and L. Spainhower. Commercial Fault Tolerance: A Taleof Two Systems.IEEE

Transactions on Dependable and Secure Computing, 1(1):87–96, January 2004.
[6] G. Blake, R. G. Dreslinski, T. Mudge, and K. Flautner. Evolution of Thread-level Parallelism in

Desktop Applications.SIGARCH Comput. Archit. News, 38:302–313, June 2010.
[7] J. Bonwick and B. Moore. ZFS: The Last Word in File Systems.

http://opensolaris.org/os/community/ zfs/docs/zfs_last.pdf, 2007.
[8] B. Cantrill, M. W. Shapiro, and A. H. Leventhal. Dynamic Instrumentation of Production Sys-

tems. InUSENIX ’04, pages 15–28, Boston, MA, June 2004.
[9] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S. Sivasubra-

manian, P. Vosshall, and W. Vogels. Dynamo: Amazon’s Highly AvailableKey-Value Store. In
SOSP ’07, Stevenson, WA, October 2007.

[10] J. R. Douceur and W. J. Bolosky. A Large-Scale Study of File-System Contents. InSIGMET-
RICS ’99, pages 59–69, Atlanta, GA, May 1999.

[11] D. Ellard and M. I. Seltzer. New NFS Tracing Tools and Techniquesfor System Analysis. In
LISA ’03, pages 73–85, San Diego, CA, October 2003.

[12] Y. Endo, Z. Wang, J. B. Chen, and M. Seltzer. Using Latency to Evaluate Interactive System
Performance. InOSDI ’96, Seattle, WA, October 1994.

[13] K. Flautner, R. Uhlig, S. Reinhardt, and T. Mudge. Thread-levelParallelism and Interactive
Performance of Desktop Applications.SIGPLAN Not., 35:129–138, November 2000.

[14] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google File System. InSOSP ’03, pages 29–43,
Bolton Landing, NY, October 2003.

[15] R. Hagmann. Reimplementing the Cedar File System Using Logging andGroup Commit. In
SOSP ’87, Austin, TX, November 1987.

[16] J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satyanarayanan, R. Sidebotham, and M. West.
Scale and Performance in a Distributed File System.ACM Transactions on Computer Systems,
6(1), February 1988.

[17] B. Lampson. Computer Systems Research – Past and Present. SOSP 17 Keynote Lecture, De-
cember 1999.

[18] E. K. Lee and C. A. Thekkath. Petal: Distributed Virtual Disks. InASPLOS VII, Cambridge,
MA, October 1996.

[19] A. W. Leung, S. Pasupathy, G. R. Goodson, and E. L. Miller. Measurement and Analysis of
Large-Scale Network File System Workloads. InUSENIX ’08, pages 213–226, Boston, MA,
June 2008.

[20] Macintosh Business Unit (Microsoft). It’s all in the numbers...
blogs.msdn.com/b/macmojo/archive/2006/11/03/it-s-all-in-the-numbers.aspx, November
2006.

[21] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry. A Fast File System for UNIX.ACM
Transactions on Computer Systems, 2(3):181–197, August 1984.

[22] J. C. Mogul. A Better Update Policy. InUSENIX Summer ’94, Boston, MA, June 1994.
[23] J. Olson. Enhance Your Apps With File System Transactions. http://msdn.microsoft.com/en-

us/magazine/cc163388.aspx, July 2007.
[24] J. Ousterhout. Why Threads Are A Bad Idea (for most purposes), September 1995.
[25] J. K. Ousterhout, H. D. Costa, D. Harrison, J. A. Kunze, M. Kupfer, and J. G. Thompson. A

Trace-Driven Analysis of the UNIX 4.2 BSD File System. InSOSP ’85, pages 15–24, Orcas
Island, WA, December 1985.

[26] D. Patterson, G. Gibson, and R. Katz. A Case for Redundant Arrays of Inexpensive Disks
(RAID). In SIGMOD ’88, pages 109–116, Chicago, IL, June 1988.

[27] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky, and J. Zelenka. Informed Prefetching
and Caching. InSOSP ’95, pages 79–95, Copper Mountain, CO, December 1995.

[28] R. Pike. Another Go at Language Design. http://www.stanford.edu/class/ee380/Abstracts/100428.html,
April 2010.

[29] V. Prabhakaran, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Analysis and Evolution of
Journaling File Systems. InUSENIX ’05, pages 105–120, Anaheim, CA, April 2005.

[30] V. Prabhakaran, L. N. Bairavasundaram, N. Agrawal, H. S. Gunawi, A. C. Arpaci-Dusseau,
and R. H. Arpaci-Dusseau. IRON File Systems. InSOSP ’05, pages 206–220, Brighton, UK,
October 2005.

[31] K. K. Ramakrishnan, P. Biswas, and R. Karedla. Analysis of File I/O Traces in Commercial
Computing Environments.SIGMETRICS Perform. Eval. Rev., 20:78–90, June 1992.

[32] D. M. Ritchie and K. Thompson. TheUNIX Time-Sharing System. InSOSP ’73, Yorktown
Heights, NY, October 1973.

[33] D. Roselli, J. R. Lorch, and T. E. Anderson. A Comparison of FileSystem Workloads. In
USENIX ’00, pages 41–54, San Diego, CA, June 2000.

[34] M. Rosenblum and J. Ousterhout. The Design and Implementation ofa Log-Structured File
System.ACM Transactions on Computer Systems, 10(1):26–52, February 1992.

[35] R. Sandberg. The Design and Implementation of the Sun Network FileSystem. InProceedings
of the 1985 USENIX Summer Technical Conference, pages 119–130, Berkeley, CA, June 1985.

[36] M. Satyanarayanan. A Study of File Sizes and Functional Lifetimes.In SOSP ’81, pages 96–

108, Pacific Grove, CA, December 1981.
[37] A. Sweeney, D. Doucette, W. Hu, C. Anderson, M. Nishimoto, andG. Peck. Scalability in the

XFS File System. InUSENIX 1996, San Diego, CA, January 1996.
[38] M. Tilmann. Apple’s Market Share In The PC World Continues To Surge. maclife.com, April

2010.
[39] W. Vogels. File system usage in Windows NT 4.0. InSOSP ’99, pages 93–109, Kiawah Island

Resort, SC, December 1999.
[40] S. C. Woo, M. Ohara, E. Torrie, J. P. Shingh, and A. Gupta. TheSPLASH-2 Programs: Char-

acterization and Methodological Considerations. InISCA ’95, pages 24–36, Santa Margherita
Ligure, Italy, June 1995.

