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Abstract
We measure the performance of five popular databases
and show that single-node performance does not scale
while hosting data on high-performance storage systems
(e.g., Flash-based SSDs). We then analyze each system,
unveiling techniques each system uses to increase concur-
rent performance; our taxonomy places said approaches
into six different categories (thread architecture, batch-
ing, granularity, partitioning, scheduling and low-level ef-
ficiency) and thus points towards possible remedies that
can scale the system. Finally, we introduce Xyza, a modi-
fied version of MongoDB that uses a wide range of classic
and novel techniques to improve performance under con-
current, write-heavy workloads. Empirical analysis re-
veals that Xyza is 2× to 3× faster than MongoDB and
scales well (up to 32 processing cores).

1 Introduction
Parallelism is a core technique used to increase distributed
system performance. However, using parallelism, both
across machines and within a single machine, is challeng-
ing; without careful management of concurrent activity,
performance can be lost and correctness can be sacrificed.

The goal of concurrency control is to ensure correctness
among operations that are executing simultaneously in a
system. Ideally, concurrency control mechanisms should
enable correctness while allowing the system to scale well
with the number of cores. Achieving this reality is diffi-
cult; decades of efforts have been put forth to understand
limitations and propose new techniques that do not limit
scaling [12–15, 35, 40, 41, 50, 51, 55].

Technology changes are also afoot in the data center. For
example, storage has been a central performance bottle-
neck in scalable databases and file systems. Researchers
and practitioners have proposed systems that can effec-
tively utilize the newly available faster storage media
[4, 31–33, 42, 44, 46, 52]. In addition, each node now con-
sists of more cores and it becomes crucial to use them all
to achieve high performance; if single-node performance
does not scale, more machines must be recruited to tackle
the task at hand, thus increasing costs.

Thus, the central question that we address: are stan-
dard concurrency control mechanisms effective enough
to harness faster storage devices and the large number
of cores available in modern systems? In this paper, we
answer this question by first analyzing the performance
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of five popular NoSQL databases – MongoDB [36], Cas-
sandra [1], CouchDB [2], Oracle NoSQL DB [21], and
ArangoDB [5]. Our first and most important finding: on a
single node with many cores, all five systems do not scale
well as the client load increases; as a result, despite the
presence of a fast storage device (in this case, a modern
SSD [11]), system throughput is notably lower than what
could be realized, sometimes by 3× or more.

To understand the concurrency control techniques uti-
lized in these systems, we classify each popular technique
into six categories: thread architecture, batching, granu-
larity, partitioning, scheduling, and low-level efficiency.
Classifying these techniques helps us understand weak-
nesses and identify why the databases are not scaling.
Based on this analysis, we observe that common scal-
ing techniques (such as partitioning and scheduling) are
not well utilized; simply put, these systems, optimized for
slow-storage media, are not yet concurrent enough to fully
realize the performance of modern storage systems.

To remedy this problem, and to demonstrate how high
performance can be attained, we present Xyza – a modi-
fied version of MongoDB that uses a wide range of clas-
sic and novel techniques to deliver high performance and
scalability. In particular, we concentrate our improve-
ments on three techniques that most affect performance:
partitioning, scheduling, and low-level efficiency.

Specifically, we partition data structures such as vectors,
the journal, and the key-space to improve the performance
of the write path. We introduce two novel techniques in
scheduling: contention-aware scheduling and semantic-
aware scheduling. Contention-aware scheduling consid-
ers each lock as a resource and only schedules an opera-
tion if there will be no such contention. Semantic-aware
scheduling selectively drops conflicting operations when
no difference can be realized by clients (due to weakened
levels of consistency). Finally, using atomic primitives,
we fast-path the common cases allowing them a higher
share of system resources, thus increasing performance
under load. Overall, when Xyza is subjected to a concur-
rent, write-heavy workload, we observe that it scales well
up to 32 cores and is 2× to 3× faster than MongoDB.

2 Concurrency Analysis
The simplest way to measure if a system scales vertically
is by gradually scaling the resources in a single system
and then measuring its performance. A truly scalable sys-
tem will demonstrate a linear performance increase. How-



Figure 1: Performance scaling of NoSQL Databases. Dark line represents single instance run. White line represents multiple instances run.
Consistency options used (i) MongoDB 3.2.11 - w:0,j=false; (ii) Cassandra 3.11 - commitlog sync:periodic,replication factor:0, (iii) CouchDB
1.6.1 - delayed commits:true, (iv) ArangoDB 3.2 - database.wait-for-sync:false and (v) Oracle NoSQL DB 4.3.11 - master and replica sync pol-
icy:KV SYNC NONE, acknowledgement policy:KV ACK NONE.

ever, if the system does not scale well, how can one de-
termine whether concurrency control is at the root of the
problem? Also, how can one discover if the system cannot
utilize available resources and hence limits performance?
In this paper, we particularly concentrate on CPU scaling.

To identify if concurrency control is a bottleneck, we
conduct experiments in two modes. In the first mode,
a single instance of a NoSQL database is run while the
amount of load generated on these databases is increased
via additional clients. In the second mode, multiple in-
stances are instantiated and each client is configured to
interact with a separate instance (on the same machine).
As there is no interference among client operations, the
hypothesis is that the overall cumulative performance will
scale in the latter case, and reveal the potential optimal
scaling of the system within that particular configuration.

In these experiments, we focus on write performance on
a single node as it is more challenging to scale (as com-
pared to reads). Writes modify the global structures more
often and hence maintaining integrity poses a challenge
under highly concurrent workloads.

We choose the weakest consistency option available for
the insert operation for all these databases. The weak-
est form of consistency is designed to achieve the highest
levels of performance. Thus, it is useful in understanding
whether concurrency control is a bottleneck.

2.1 Experimental Setup and Workload
We perform our experiments on an 2.4 GHz Intel Xeon
E5-2630 v3. It has 2 sockets and each socket has 8 phys-
ical cores with hyper-threading enabled. We use two
such machines for our experiments where one is used
as a server while another is used to run client programs.
Both of these machines are connected via a 10Gbps net-
work and has one 480 GB SAS SSD and 128 GB RAM.
Both have Ubuntu 14.04 with kernel version 4.9. For
ArangoDB, we use five client machines as a single client
machine CPU utilization saturates, limiting the load that
is generated on the server. Due to memory constraints in
the Java environment, we only instantiate two and ten in-
stances of Cassandra and Oracle NoSQL DB respectively.

Our workload consists solely of insert operations. A
client program issue inserts in a loop. The client pro-
gram generates the key and the start and end key range

is passed as a parameter to the client program. The value
is 100 bytes and consists of random characters. We vary
the number of client programs and all client programs ex-
ecute on the same machine as discussed above. Totally, all
the clients combined together insert fifty million records.
We measure the time taken to complete the insert opera-
tions to calculate throughput and monitor the CPU, disk
and network utilization on the server using dstat com-
mand [3]. For Cassandra, we use their stress tool [29] and
it is configured to mimic the above-mentioned workload.
The throughput reported is the average of five runs.

2.2 Results and Analysis
The performance comparison of each NoSQL database
for single and multiple instances is shown in Figure 1. We
observe that for single instance mode, neither the storage
nor the network is a bottleneck. This observation is con-
sistent among all the databases; the average disk band-
width ranges between 5-150 MB/sec. The throughput for
single instance mode saturates as the number of clients
increase. However, the CPU utilization of the server ma-
chine increases as the number of clients increase.

With multiple instances, the throughput either increases
linearly or sub-linearly. We observe that the CPU utiliza-
tion of the server is similar to that of the single instance
mode. With multiple instances, unlike the single instance
case, each client interacts with a separate instance and all
the resources are independent and isolated. As there is no
interference from other clients, the concurrency control
mechanism does not have to handle contention. With less
contention, each instance is able to work independently,
thereby increasing the throughput of the system.

The gap between single instance and multiple instances
for Cassandra and Oracle NoSQL DB is not the same as
that of other databases because the total number of in-
stances compared is smaller. However, even with such a
low number of multiple instances, we still see a significant
difference in the throughput.

Based on the throughput comparison shown in Figure 1,
we show that current concurrency control mechanisms are
not able to scale well as the number of clients increases.
Given the availability of many-core systems, and newer
media such as Flash and NVM technologies, it is critical
to design systems keeping in mind these technologies.



2.3 Popular Design Techniques
Modern systems consist of many cores, thus making it ex-
tremely important to exploit the high parallelism offered
to achieve high performance. Today’s systems rely on a
variety of techniques to ensure scalability and correctness,
many of which have been suggested in the research litera-
ture. However, only some of these have been implemented
in current systems, whereas others have not. We hypothe-
size that we can improve the performance scaling of these
systems by focusing on a certain class of techniques that
are not being currently implemented.

We present a qualitative analysis of these five systems
based on the techniques they use in Table 1. This table
also discusses our new system (Xyza), an extension of
MongoDB; we will present Xyza in the coming section.
The table is generated by manually analyzing the code,
architecture, and design documents of each system.
Thread Architecture: We focus on one aspect of thread
architecture: whether the threads are initialized stati-
cally at startup or dynamically created/terminated at run
time. Static handling of threads can lead to either under-
utilization or over-utilization of resources; it can be chal-
lenging to identify an optimal thread-pool size. Dynamic
thread creation augurs well, creating the possibility for
the system to adjust itself according to system load. All
five systems choose the former while MongoDB, Oracle
NoSQL DB, and ArangoDB choose the latter.
Batching: Batching is the process of grouping multiple
operations to reduce overheads; for example, processing
two requests together avoids some locking overhead, as
locks only need to be acquired/released once. Similarly,
a single larger disk I/O is generally more efficient than
smaller individual writes. However, batching can increase
the latency of operations; furthermore, it is sometimes
difficult to create large batches, depending on the system
and workload [47]. All five systems that we study utilize
batching to improve the performance of their systems.
Granularity: Granularity refers to how a system han-
dles data access and at what level such data access is al-
lowed. There are two prime issues that need to be ad-
dressed: write/write coordination and write/read coordi-
nation. A simple coarse-grained approach is to allow ex-
clusive access. However, it is extremely inefficient and
limits scaling. To mitigate this, a fine-grained approach
of allowing concurrent access to multiple threads is pre-
ferred. The coordination is ensured using locks or lock-
free data structures. Locks enforce serialization and hence
ensures integrity. Many techniques have been proposed
to allow concurrent access to readers and writers such as
snapshot isolation [12], multi-version concurrency con-
trol [14], and optimistic concurrency control [45].

MongoDB, ArangoDB and Oracle NoSQL DB use fine-
grained locking to ensure write-write coordination. On
the other hand, Cassandra uses last-write-wins strategy

and allows two concurrent threads to work on a single
record. However, such a strategy impacts read perfor-
mance as the read operation will have to sweep all the rel-
evant entries to find the latest. From the write-read coor-
dination perspective, the majority of them use MVCC for
write/read coordination while Cassandra uses row-level
isolation and Oracle NoSQL DB uses read/write locks.
Partitioning: Using partitioning, a resource can be bro-
ken into multiple parts and then each partition can either
be allowed exclusive access or concurrent access. Gen-
erally, the number of partitions is not too large, and also
depends on the data structure in question. The key aspect
is that as the number of partitions increase, more threads
can access the data parallelly improving the scalability.

Interestingly, none of the systems we study partition re-
sources within a single node effectively. Oracle NoSQL
DB does key-space partitioning and the number of par-
titions is configurable. MongoDB partitions the locks to
scale the common case. We believe that partitioning is a
necessary component of any design to scale well and we
explore partitioning of resources in our approach.
Scheduling: Scheduling deals with when to schedule op-
erations based on resource availability and data-integrity
constraints. Effective scheduling can improve perfor-
mance by re-ordering requests to minimize contention.
Scheduling and partitioning go hand-in-hand, as a system
can schedule operations that belong to different partitions
in parallel; many systems have relied on data partitioning
and scheduling for scalability [25]. Similarly, MongoDB
uses multi-granularity locking [34] that allows compatible
operations to run in parallel.

Locks help enforce a schedule of how operations are
executed. However, as system scales, contention to ac-
quire locks increases limiting the performance. To scale
well, we introduce an effective scheduling approach,
called contention-aware scheduling(Section 3.2), that
views locks as a resource and prevents two active threads
from accessing the same lock or partition. To prevent
the wait queues from growing longer due to contention,
we introduce semantic-aware scheduling(Section 3.2) that
drops the operations having weak consistency option un-
der certain contention scenarios.
Low-level efficiency: With multiple threads, acquiring
and releasing locks is costly. Locks are implemented us-
ing hardware-provided atomic instructions and many de-
signers choose to use these low-level atomic primitives
directly to improve efficiency. These primitives are also
used to build concurrent data structures and are more ef-
ficient than their lock-based counterparts [11, 16]. Using
atomic primitives extensively makes programming hard,
complicated, and prone to bugs. All the systems we
study use atomic primitives to optimize some of their code
paths. However, there is room for further optimization as
we believe that low-level efficiency can be used to opti-



MongoDB Cassandra CouchDB Oracle NoSQL ArangoDB Xyza
Thread

Architecture
Static Initialization Yes Yes [30] Yes Yes Yes [8] Yes
Dynamic handling Yes Yes Yes [10] Yes

Batching operations Yes [37] Yes [26] Yes [24] Yes [20] Yes [7] Yes

Granularity W/W coordination Concurrent Exclusive locks [38] Last write wins [27] W/W locks [18, 22] Exclusive locks [9]
Exclusive Per database [23] Per partition

W/R coordination MVCC [39] Row-level isolation [27] MVCC [23] R/W locks [18, 22] MVCC [6] MVCC

Partitioning

Key-space Yes [19] Yes
Other data structures Yes [28] Yes

Locks Yes
Journal Single [39] Single [17] Single Per-client

Scheduling
Non-overlapping operations Yes [38] Yes [27] Yes [18] Yes [9] Yes

Contention-aware Yes
Semantic-aware Yes

Low-level efficiency Yes Yes Yes Yes Yes Yes
Table 1: Key design techniques used for concurrency control mechanism. Empty cells denotes that the particular feature is not implemented.

mize common cases.
To summarize the above analysis, we observe that re-

source contention due to improper partitioning and inef-
ficient scheduling limits scalability. Optimizing common
cases needs to be emphasized for scaling systems.

3 Xyza
In this section, we discuss how a combination of old and
new techniques can address the fundamental scaling prob-
lems. We present Xyza, an extension of MongoDB’s ex-
isting concurrency control architecture. We choose Mon-
goDB as it is a widely used and important system; it also
presents us with ample room for improvement. Xyza in-
herits everything from MongoDB other than the concur-
rency control techniques discussed below.

3.1 Partitioning
MongoDB does not effectively utilize partitioning despite
the presence of partitionable resources like the journal,
key-space, global vectors, and maps, that Xyza partitions.
Per client partitioning: For each new client connection,
MongoDB creates a separate thread to handle their re-
quests. Consequently, the thread terminates once the con-
nection closes. Xyza takes advantage of this design aspect
and partitions many resources per client thread. Due to
exclusive access, there is no need for locking.

Xyza partitions the system-wide journal used by Mon-
goDB into a per-client journal. As the client threads now
have exclusive access to their journal, they do not have to
find/allocate active slots in the single global journal and
hence avoid the use of locks/atomic primitives as would
be necessary for coordination among threads.

MongoDB associates each write operation with a session
object and maintains a vector of session objects and pro-
tects it using a lock. In Xyza, we partition the session
vector so that each client will have its own session vector
and have exclusive access to it.

Additionally, effective partitioning helps in pinning the
client threads to a particular core. Without pinning,
threads can move between cores leading to frequent cache
invalidations impacting the performance.
Key-space: MongoDB uses sharding to partition its key-
space horizontally across multiple nodes; however, within

a single node, it does not partition the key-space. It pre-
vents write-write conflicts using locks. Xyza extends the
partitioning approach to the key-space ranges and parti-
tions the key-space accordingly. Thus, instead of relying
on the locks for concurrent page accesses, more opera-
tions can execute in parallel as long as the number of par-
titions is more than the cores available in the node.

3.2 Scheduling
Contention-aware scheduling: As the locks are within
the application domain, the operating system does not
have a view of how they are used and hence cannot sched-
ule operations based on their availability. However, the
application can detect the lock availability and accord-
ingly schedule operations that are not likely to contend.
Taking advantage of this fact, we propose contention-
aware scheduling, where no two operations that require
the same set of locks will be scheduled simultaneously.
Overlapping operations wait until the current operations
complete. We extend this idea to partitions too. Us-
ing such scheduling helps in avoiding locks and thus one
can view scheduling as a form of primitive synchroniza-
tion. This ensures that correctness is not compromised.
Moreover, Xyza does not allow a single operation to span
across two partitions and hence avoids deadlocks.

The hierarchical locking approach [38] taken by Mon-
goDB is not enough to ensure scaling. Thus, we include
contention-aware scheduling in addition to hierarchical
locking. Contention-aware scheduling relies on partition-
ing to mitigate the problem of false conflicts by precisely
knowing which key ranges are busy.
Semantic-aware scheduling: As part of scheduling the
operations, the system should decide what happens to op-
erations that are not scheduled due to lack of resources.
The most obvious choice of waiting until the resources
needed are available comes from the fact that the execu-
tion of the operation is absolutely necessary [14]. How-
ever, another option arises due to the consistency op-
tions available within many of today’s NoSQL databases.
Specifically, Xyza uses this semantic knowledge, partic-
ularly in cases where consistency is weakened, to de-
cide what should be done in case the operation cannot be
scheduled. Such operations can be dropped without wait-



Figure 2: Xyza performance with various optimization techniques

ing as there is no guarantee associated with the weaker
consistency option. Operations having stronger consis-
tency will wait as the guarantees are stronger too.

3.3 Low-level Efficiency
We believe low-level efficiency should also target com-
mon cases and designers should use atomic primitives
wherever possible to optimize performance. Basic read
and write operations are one of the most common opera-
tions for any NoSQL database. To speed up this common
case, we replace the complex lock manager with a simple
wait-signal mechanism where each resource has its own
set of mutex and condition variables that can be efficiently
used for waiting and signaling. To optimize the common
case further, we use atomic primitives instead of travers-
ing the hierarchy tree that acquires the mutex to update
the state information of each resource.

4 Evaluation
To highlight Xyza’s performance, we conduct experi-
ments using workloads as described in Section 2. As
seen in Figure 2, the performance of Xyza is more than
2× faster than MongoDB. Xyza’s performance is roughly
80-90% of that of the multiple instances performance of
MongoDB. As the machine has 16 physical cores, Xyza’s
performance improves slowly after 15 clients.

We perform another experiment where each client writes
to its own database and collection. We expect the per-
formance to be on par with that of multiple instances of
MongoDB as each client is accessing a different database
and collection. The results shown in Figure 2 confirms
our expectations.

To test how Xyza performs when subjected to conflicting
operations where multiple clients write in the same key-
space partition for the same workload mentioned earlier;
we observe around 8-12% operations are dropped due to
semantic-aware scheduling for all clients(1-35). We also
observe a decrease in the throughput by 3-11% along with
a drop in CPU utilization around 4-9%.

5 Related Work
Key-value (KV) stores such as FAWN [4], WiscKey
[44], NVMKV [46], SILT [42], etc., proposed new data-
structures or optimizations from the storage perspective to

improve performance. Instead, our work concentrates on
concurrency control techniques that are general and can
likely be used in any system.

To improve throughput, several in-memory KV stores
have been proposed such as Masstree [45], MICA [43],
Memcached [47], RAMCloud [48], Hstore [49], VoltDB
[54], and Silo [53]. These systems are carefully designed
to take advantage of DRAM and cache characteristics; our
work shows that it is time to consider aggressive concur-
rency mechanisms even in persistent KV stores.

Most of these stores, including Masstree, RAMCloud,
Memcached, and Silo, use a single partition in a single
node. Masstree chooses fine-grained concurrency and op-
timistic concurrency control in their design. Similarly,
Silo also uses a variant of optimistic concurrency control.
Xyza chooses a coarse-grained approach to identify po-
tential conflicts and accordingly schedule operations and
avoids the traditional concurrency control approaches.

In contrast, Hstore, MICA, and VoltDB partition data
among multiple cores and thus ensure that exclusive ac-
cess to these partitions can avoid concurrency. Hstore as-
signs one thread per partition and thus avoids traditional
concurrency control. Xyza never ties any thread to a par-
tition but relies on the efficient scheduling of operations
to ensure that only one thread is accessing the partition.

6 Conclusion
We have shown that today’s databases do not scale well
when the data is hosted on high-performing storage me-
dia, and thus fail to fully utilize the large number of cores
common in today’s systems. We presented a categoriza-
tion of various concurrency control techniques into six
categories: thread architecture, batching, granularity, par-
titioning, scheduling and low-level efficiency. A thorough
analysis of these techniques indicated that further opti-
mization was needed; today’s concurrency control mech-
anisms are not effective in scaling and thus do not obtain
peak performance. Finally, we present Xyza, an exten-
sion of MongoDB, that uses a combination of classic and
novel techniques to achieve high performance and scaling.
We believe that the proposed techniques can be applied in
many other systems, and look forward to testing this hy-
pothesis in the future. We look forward to analyzing the
read path and revisiting concurrency control for read op-
erations in future work.
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