
�

�

�

�

�

�

�

�

3

A Study of Linux File System Evolution

LANYUE LU, ANDREA C. ARPACI-DUSSEAU, REMZI H. ARPACI-DUSSEAU, and
SHAN LU, University of Wisconsin, Madison

We conduct a comprehensive study of file-system code evolution. By analyzing eight years of Linux file-
system changes across 5079 patches, we derive numerous new (and sometimes surprising) insights into
the file-system development process; our results should be useful for both the development of file systems
themselves as well as the improvement of bug-finding tools.

Categories and Subject Descriptors: D.4.3 [Operating Systems]: File Systems Management

General Terms: Design, Algorithms, Performance, Reliability

Additional Key Words and Phrases: File systems, patch, bug, failure, performance, reliability

ACM Reference Format:
Lu, L., Arpaci-Dusseau, A. C., Arpaci-Dusseau, R. H., and Lu, S. 2014. A study of Linux file system evolution.
ACM Trans. Storage 10, 1, Article 3 (January 2014), 32 pages.
DOI:http://dx.doi.org/10.1145/2560012

1. INTRODUCTION

Open-source local file systems, such as Linux Ext4 [Mathur et al. 2007], XFS [Sweeney
et al. 1996], and Btrfs [Mason 2007; Rodeh et al. 2012], remain a critical component in
the world of modern storage. For example, many recent distributed file systems, such
as Google GFS [Ghemawat et al. 2003] and Hadoop DFS [Shvachko et al. 2010], repli-
cate data objects (and associated metadata) across local file systems. On smart phones,
most user data is managed by a local file system; for example, Google Android phones
use Ext4 [Kim et al. 2012; Simons 2011] and Apple’s iOS devices use HFSX [Morrissey
2010]. Finally, many desktop users still do not backup their data regularly [Jobs et al.
2006; Marshall 2008]; in this case, the local file system clearly plays a critical role as
sole manager of user data.

Open-source local file systems remain a moving target. Developed by different teams
with different goals, these file systems evolve rapidly to add new features, fix bugs, and
improve performance and reliability, as one might expect in the open-source commu-
nity [Raymond 1999]. Major new file systems are introduced every few years [Bonwick
and Moore 2007; Mason 2007; McKusick et al. 1984; Rosenblum and Ousterhout

An earlier version of this article appeared in Proceedings of the 11th File and Storage Technologies Confer-
ence (FAST), USENIX Association, Berkeley, CA.
This material is based on work supported by the National Science Foundation under the following grants:
CNS-1218405, CCF-0937959, CSR-1017518, CCF-1016924, CNS-1319405, as well as generous donations
from EMC, Facebook, Fusion-io, Google, Huawei, Microsoft, NetApp, Samsung, and VMware. Any opinions,
findings, and conclusions or recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of NSF or other institutions.
Authors’ address: L. Lu, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, and S. Lu, Department of Com-
puter Sciences, University of Wisconsin-Madison, 1210 W. Dayton St., Madison, WI 53706-1685; email: {ll,
dusseau, remzi, shanlu}@cs.wisc.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2014 ACM 1553-3077/2014/01-ART3 $15.00
DOI:http://dx.doi.org/10.1145/2560012

ACM Transactions on Storage, Vol. 10, No. 1, Article 3, Publication date: January 2014.

�

�

�

�

�

�

�

�

3:2 L. Lu et al.

1992; Sweeney et al. 1996]; with recent technology changes (e.g., Flash [Boboila and
Desnoyers 2010; Grupp et al. 2009]), we can expect even more flux in this domain.

However, despite all the activity in local file system development, there is little quan-
titative understanding of their code bases. For example, where does the complexity of
such systems lie? What types of bugs are common? Which performance features ex-
ist? Which reliability features are utilized? These questions are important to answer
for different communities: for developers, so that they can improve current designs
and implementations and create better systems; for tool builders, so that they can im-
prove their tools to match reality (e.g., by finding the types of bugs that plague existing
systems).

One way to garner insight into these questions is to study the artifacts themselves.
Compared with proprietary software, open source projects provide a rich resource for
source code and patch analysis. The fact that every version of Linux is available online,
including a detailed set of patches which describe how one version transforms to the
next, enables us to carefully analyze how file systems have changed over time. A new
type of “systems software archeology” is now possible.

In this article, we perform the first comprehensive study of the evolution of Linux file
systems, focusing on six major and important ones: Ext3 [Tweedie 1998], Ext4 [Mathur
et al. 2007], XFS [Sweeney et al. 1996], Btrfs [Mason 2007; Rodeh et al. 2012], ReiserFS
[Buchholz 2006], and JFS [Best 2000]. These file systems represent diverse features,
designs, implementations and even groups of developers. We examine every file-system
patch in the Linux 2.6 series over a period of eight years including 5079 patches. By
carefully studying each patch to understand its intention, and then labeling the patch
accordingly along numerous important axes, we can gain deep quantitative insight into
the file-system development process. We can then answer questions such as “what are
most patches for?”, “what types of bugs are common?”, and in general gain a new level
of insight into the common approaches and issues that underlie current file-system
development and maintenance.

We make the following high-level observations (Section 3). A large number of patches
(nearly 50%) are maintenance patches, reflecting the constant refactoring work needed
to keep code simple and maintainable. The remaining dominant category is bugs (just
under 40%, about 1800 bugs), showing how much effort is required to slowly inch to-
wards a “correct” implementation; perhaps this hard labor explains why some have
found that the quality of open source projects is better than the proprietary software
average [Coverity 2011]. Interestingly, the number of bugs does not die down over time
(even for stable file systems), rather ebbing and flowing over time.

Breaking down the bug category further (Section 4), we find that semantic bugs,
which require an understanding of file-system semantics to find or fix, are the domi-
nant bug category (over 50% of all bugs). These types of bugs are vexing, as most of
them are hard to detect via generic bug detection tools [Bessey et al. 2010; Padioleau
et al. 2008]; more complex model checking [Yang et al. 2004] or formal specifica-
tion [Klein et al. 2009] may be needed. Concurrency bugs are the next most common
(about 20% of bugs), more prevalent than in user-level software [Li et al. 2006; Sahoo
et al. 2010; Sullivan and Chillarege 1992]. Within this group, atomicity violations and
deadlocks dominate. Kernel deadlocks are common (many caused by incorrectly using
blocking kernel functions), hinting that recent research [Jula et al. 2008; Wang et al.
2008] might be needed in-kernel. The remaining bugs are split relatively evenly across
memory bugs and improper error-code handling. In the memory bug category, memory
leaks and null-pointer dereferences are common; in the error-code category, most bugs
simply drop errors completely [Gunawi et al. 2008].

We also categorize bugs along other axes to gain further insight. For example, when
broken down by consequence, we find that most of the bugs we studied lead to crashes

ACM Transactions on Storage, Vol. 10, No. 1, Article 3, Publication date: January 2014.

�

�

�

�

�

�

�

�

A Study of Linux File System Evolution 3:3

or corruption, and hence are quite serious; this result holds across semantic, concur-
rency, memory, and error code bugs. When categorized by data structure, we find that
B-trees, present in many file systems for scalability, have relatively few bugs per line
of code. When classified by whether bugs occur on normal or failure-handling paths,
we make the following important discovery: nearly 40% of all bugs occur on failure-
handling paths. File systems, when trying to react to a failed memory allocation, I/O
error, or some other unexpected condition, are highly likely to make further mistakes,
such as incorrect state updates and missing resource releases. These mistakes can lead
to corruption, crashes, deadlocks and leaks. Future system designs need better tool or
language support to make these rarely executed failure paths correct.

Finally, while bug patches comprise most of our study, performance and reliabil-
ity patches are also prevalent, accounting for 8% and 7% of patches respectively
(Section 5.1). The performance techniques used are relatively common and widespread
(e.g., removing an unnecessary I/O, or downgrading a write lock to a read lock). About
a quarter of performance patches reduce synchronization overheads; thus, while cor-
rectness is important, performance likely justifies the use of more complicated and
time saving synchronization schemes. In contrast to performance techniques, reliabil-
ity techniques seem to be added in a rather ad hoc fashion (e.g., most file systems apply
sanity checks nonuniformly). Inclusion of a broader set of reliability techniques could
harden all file systems.

Beyond these results, another outcome of our work is an annotated dataset of file-
system patches, which we make publicly available for further study (at this URL:
http://research.cs.wisc.edu/wind/Traces/fs-patch) by file-system developers, systems-
language designers, and bug-finding tool builders. We show the utility of PatchDB by
performing a case study (Section 6); specifically, we search the dataset to find bugs,
performance fixes, and reliability techniques that are unusually common across all file
systems. This example brings out one theme of our study, which is that there is a deep
underlying similarity in Linux local file systems, even though these file systems are
significantly different in nature (e.g., designs, features, and groups of developers). The
commonalities we do find are good news: by studying past bug, performance, and re-
liability patches, and learning what issues and challenges lie therein, we can greatly
improve the next generation of file systems and tools used to build them.

This article is an expansion of our earlier work [Lu et al. 2013]. We have made three
major additions to our study: a new graph on bug patch size distribution (Section 3.3),
a section on file-system code evolution (Section 4.1), and many new code examples and
analyses for file-system bugs (Section 4.6), failure paths (Section 4.7), performance
patches (Section 5.1) and reliability patches (Section 5.2).

2. METHODOLOGY

In this section, we first give a brief description of our target file systems. Then, we
illustrate how we analyze patches with a detailed example. Finally, we discuss the
limitations of our methodology.

2.1. Target File Systems

Our goal in selecting a collection of disk-based file systems is to choose the most pop-
ular and important ones. The selected file systems should include diverse reliability
features (e.g., physical journaling, logical journaling, checksumming, copy-on-write),
data structures (e.g., hash tables, indirect blocks, extent maps, trees), performance
optimizations (e.g., asynchronous thread pools, scalable algorithms, caching, block
allocation for SSD devices), advanced features (e.g., pre-allocation, snapshot, resize,
volumes), and even a range of maturity (e.g., stable, under development). For these rea-
sons, we selected six file systems and their related modules: Ext3 with JBD [Tweedie

ACM Transactions on Storage, Vol. 10, No. 1, Article 3, Publication date: January 2014.

�

�

�

�

�

�

�

�

3:4 L. Lu et al.

1998], Ext4 with JBD2 [Mathur et al. 2007], XFS [Sweeney et al. 1996], Btrfs [Mason
2007; Rodeh et al. 2012], ReiserFS [Buchholz 2006], and JFS [Best 2000]. Ext3, JFS,
ReiserFS and XFS were all stable and in production use before the Linux 2.6 kernel.
Ext4 was introduced in Linux 2.6.19 and marked stable in Linux 2.6.28. Btrfs was
added into Linux 2.6.29 and is still under active development.

2.2. Classification of File-System Patches

For each file system, we conduct a comprehensive study of its evolution by examining
all patches from Linux 2.6.0 (Dec ’03) to 2.6.39 (May ’11). These are Linux mainline
versions, which are released every three months with aggregate changes included in
change logs. Patches consist of all formal modifications in each new kernel version,
including new features, code maintenance, and bug fixes, and usually contain clear
descriptions of their purpose and rich diagnostic information. On the other hand, Linux
Bugzilla [Bugzilla 2012] and mailing lists [FSDEVEL 2012; LKML 2012] are not as
well organized as final patches, and may only contain a subset or superset of final
changes merged in kernel.

To better understand the evolution of different file systems, we conduct a broad study
to answer three categories of fundamental questions.

— Overview. What are the common types of patches in file systems and how do patches
change as file systems evolve? Do patches of different types have different sizes?

— Bugs. What types of bugs appear in file systems? Do some components of file systems
contain more bugs than others? What types of consequences do different bugs have?

— Performance and Reliability. What techniques are used by file systems to improve
performance? What common reliability enhancements are proposed in file systems?

To answer these questions, we manually analyzed each patch to understand its pur-
pose and functionality, examining 5079 patches from the selected Linux 2.6 file sys-
tems. Each patch contains a patch header, a description body, and source-code changes.
The patch header is a high-level summary of the functionality of the patch (e.g., fixing
a bug). The body contains more detail, such as steps to reproduce the bug, system con-
figuration information, proposed solutions, and so forth. Given these details and our
knowledge of file systems, we categorize each patch along a number of different axes,
as described later.

Figure 1 shows a real Ext3 patch. We can infer from the header that this patch
fixes a null-pointer dereference bug. The body explains the cause of the null-pointer
dereference and the location within the code. The patch also indicates that the bug
was detected with Coverity [Bessey et al. 2010].

This patch is classified as a bug (type=bug). The size is 1 (size=1) as one line of
code is added. From the related source file (super.c), we infer the bug belongs to Ext3’s
superblock management (data-structure=super). A null-pointer access is a memory
bug (pattern=memory,nullptr) and can lead to a crash (consequence=crash).

However, some patches have less information, making our analysis harder. In these
cases, we sought out other sources of information, including design documents, fo-
rum and mailing-list discussions, and source-code analysis. Most patches are analyzed
with high confidence given all the available information and our domain knowledge.
Examples are shown throughout to give more insight as to how the classification is
performed.

Limitations. Our study is limited by the file systems we chose, which may not reflect
the characteristics of other file systems, such as other non-Linux file systems and flash-
device file systems. We only examined kernel patches included in Linux 2.6 mainline
versions, thus omitting patches for Ext3, JFS, ReiserFS, and XFS from Linux 2.4. As

ACM Transactions on Storage, Vol. 10, No. 1, Article 3, Publication date: January 2014.

�

�

�

�

�

�

�

�

A Study of Linux File System Evolution 3:5

[PATCH] fix possible NULL pointer in fs/ext3/super.c.

In fs/ext3/super.c::ext3 get journal() at line 1675
‘journal’ can be NULL, but it is not handled right
(detect by Coverity’s checker).

--- /fs/ext3/super.c
+++ /fs/ext3/super.c
@@ -1675,6 +1675,7 @@ journal_t *ext3_get_journal()

1 if (!journal){
2 printk(KERN_ERR "EXT3: Could not load ... ");
3 iput(journal_inode);
4 + return NULL;
5 }
6 journal->j_private = sb;

Fig. 1. An example patch. This figure shows an real Ext3 patch in Linux 2.6.7.

for bug representativeness, we only studied the bugs reported and fixed in patches,
which is a biased subset; there may be (many) other bugs not yet reported. A similar
study may be needed for user-space utilities, such as mkfs and fsck [McKusick et al.
1986].

3. PATCH OVERVIEW

File systems evolve through patches. A large number of patches are discussed and
submitted to mailing lists, bug-report websites, and other forums. Some are used to
implement new features, while others fix existing bugs. In this section, we investi-
gate three general questions regarding file-system patches. First, what are file-system
patch types? Second, how do patches change over time? Lastly, what is the distribution
of patch sizes?

3.1. Patch Type

We classify patches into five categories (Table I): bug fixes (bug), performance improve-
ments (performance), reliability enhancements (reliability), new features (feature), and
maintenance and refactoring (maintenance). Each patch usually belongs to a single
category.

Figure 2(a) shows the number and relative percentages of patch types for each file
system. Note that even though file systems exhibit significantly different levels of
patch activity (shown by the total number of patches), the percentage breakdowns
of patch types are relatively similar.

Maintenance patches are the largest group across all file systems (except Btrfs,
a recent and not-yet-stable file system). These patches include changes to improve
readability, simplify structure, and utilize cleaner abstractions; in general, these
patches represent the necessary costs of keeping a complex open-source system well-
maintained. Because maintenance patches are relatively uninteresting, we do not ex-
amine them further.

Bug patches have a significant presence, comprising nearly 40% of patches. Not sur-
prisingly, the Btrfs has a larger percentage of bug patches than others; however, stable
and mature file systems (such as Ext3) also have a sizable percentage of bug patches,
indicating that bug fixing is a constant in a file system’s lifetime (Figure 7). Because

ACM Transactions on Storage, Vol. 10, No. 1, Article 3, Publication date: January 2014.

�

�

�

�

�

�

�

�

3:6 L. Lu et al.

Table I. Patch Type

Type Description
Bug Fix existing bugs

Propose more efficient designs or implementations
Performance to improve performance (e.g., reducing

synchronization overhead or use tree structures)
Improve file-system robustness

Reliability (e.g., data integrity verification, user/kernel
pointer annotations, access-permission checking)

Feature Implement new features
Maintain the code and documentation

Maintenance (e.g., adding documentation, fix compiling
error, changing APIs)

This table describes the classification and definition of file-system
patches. There are five categories: bug fixes (bug), performance im-
provements (performance), reliability enhancements (reliability), new
features (feature), and maintenance and refactoring (maintenance).

Fig. 2. Patch type and bug pattern. This figure shows the distribution of patch types and bug patterns. The
total number of patches is on top of each bar.

this class of patch is critical for developers and tool builders, we characterize them in
detail later (Section 4).

Both performance and reliability patches occur as well, although with less frequency
than maintenance and bug patches. They reveal a variety of techniques used by differ-
ent file systems, motivating further study (Section 5.1).

Finally, feature patches account for a small percentage of total patches; as we will
see, most of feature patches contain more lines of code than other patches.

Summary. Nearly half of total patches are for code maintenance and documenta-
tion; a significant number of bugs exist in not only new file systems, but also stable
file systems; all file systems make special efforts to improve their performance and
reliability; feature patches account for a relatively small percentage of total patches.

ACM Transactions on Storage, Vol. 10, No. 1, Article 3, Publication date: January 2014.

�

�

�

�

�

�

�

�

A Study of Linux File System Evolution 3:7

Fig. 3. Patch size. This figure shows the size distribution for different patch types, in terms of lines of
modifications. The x-axis shows the lines of code in log scale; the y-axis shows the percentage of patches.

3.2. Patch Trend

File systems change over time, integrating new features, fixing bugs, and enhancing
reliability and performance. Does the percentage of different patch types increase or
decrease with time?

We studied the changes in patches over time and found few interesting changes.
While the number of patches per version increased in general, the percentage of main-
tenance, bug, reliability, performance, and feature patches remained relatively stable.
Although there were a few notable exceptions (e.g., Btrfs had a time where a large
number of performance patches were added), the statistics shown in the previous sec-
tion are relatively good summaries of the behavior at any given time. Perhaps most
interestingly, bug patches do not decrease over time; living code bases constantly in-
corporate bug fixes (see Section 4).

Summary. The patch percentages are relatively stable over time; newer file systems
(e.g., Btrfs) deviate occasionally; bug patches do not diminish despite stability.

3.3. Patch Size

Patch size is one approximate way to quantify the complexity of a patch, and is defined
here as the sum of lines of added and deleted by a patch. Figure 3 displays the size
distribution of bug, performance, reliability, and feature patches. Most bug patches
are small; 50% are less than 10 lines of code. However, more complex file systems tend
to have larger bug patches due to their internal complexity. Figure 4 shows that XFS,
Ext4 and Btrfs have larger bug patches than ReiserFS and JFS. Interestingly, feature
patches are significantly larger than other patch types. Over 50% of these patches have
more than 100 lines of code; 5% have over 1000 lines of code.

Summary. Bug patches are generally small; complicated file systems have larger
bug patches; reliability and performance patches are medium-sized; feature patches
are significantly larger than other patch types.

4. FILE-SYSTEM BUGS

In this section, we study file-system bugs in detail to understand their patterns and
consequences comprehensively. First, we examine the code evolution for each file sys-
tem over 40 versions. Second, we show the distribution of bugs in file-system logical

ACM Transactions on Storage, Vol. 10, No. 1, Article 3, Publication date: January 2014.

�

�

�

�

�

�

�

�

3:8 L. Lu et al.

Fig. 4. Bug patch size. This figure shows the size distribution of bug patches for different file systems, in
terms of lines of modifications. The x-axis shows the lines of code in log scale; the y-axis shows the percentage
of patches.

Fig. 5. File-system code evolution. This figure shows the lines of code for each file system in Linux 2.6
series. The x-axis shows 40 versions of Linux 2.6; the y-axis shows lines of code (LOC). Note that LOC of
Ext3 includes the code of JBD and LOC of Ext4 includes the code of JBD2.

components. Third, we describe our bug pattern classification, bug trends, and bug
consequences. Finally, we analyze each type of bug with a more detailed classification
and a number of real examples.

4.1. Code Evolution

FFS had only 1200 lines of code [McKusick et al. 1984]; modern systems are notably
larger, including Ext4, Btrfs, and XFS. How does the code of these major file systems
change across time? Do all file systems increase their code bases over time?

Figure 5 displays lines of code (LOC) for six file systems. First, XFS has the largest
code base for all Linux 2.6 versions; its code size is significantly larger than Ext4, Ext3,
ReiserFS and JFS. Interestingly, the XFS code base has been significantly reduced over

ACM Transactions on Storage, Vol. 10, No. 1, Article 3, Publication date: January 2014.

�

�

�

�

�

�

�

�

A Study of Linux File System Evolution 3:9

Table II. Logical Components

Name Description
balloc Data block allocation and deallocation

dir Directory management
extent Contiguous physical blocks mapping

file File read and write operations
inode Inode-related metadata management
trans Journaling or other transactional support
super Superblock-related metadata management

tree Generic tree structure procedures
other Other supporting components (e.g., xattr, ioctl, resize)

This table shows the classification and definition of file-system logi-
cal components. There are nine components for all file systems.

time, from nearly 80K LOC to 64K LOC. As Figure 2(a) in Section 3.1 shows, about
60% of XFS’s patches are maintenance patches, which are mainly used to simplify its
structures, refactor redundant code, and utilize more generic functions.

Second, new file systems Ext4 and Btrfs continuously increase their code sizes by
adding new features, improving performance and reliability. Ext4 nearly doubles its
size compared with the initial copy of Ext3. Btrfs grows aggressively by implementing
many modern advanced features. Ext4 and Btrfs seem to continue to grow linearly.

Third, the remaining mature file systems (Ext3, ReiserFS, and JFS) keep relatively
stable code size across versions. Changes happen occasionally when new features are
added or major structures are modified. For example, Ext3’s code size slightly in-
creased when the block reservation algorithm was added at 2.6.10. On the other side,
ReiserFS tried to simplify its structure by removing its own custom file read/write
functions at 2.6.24, which reduced its code size accordingly. JFS has fewest changes
due to its smaller developer and user communities.

Summary. XFS has the most lines of code, but it has reduced its size and complexity
over time; new file systems (EXT4 and Btrfs) keep growing by adding new features;
mature file systems are relatively stable across versions while small changes arise due
to major features or structure changes.

4.2. Correlation between Code and Bugs

The code complexity of file systems is changing over time as discussed in the previ-
ous section. Several fundamental questions are germane: How is the code distributed
among different logical components? Where are the bugs? Does each logical component
have an equal degree of complexity?

File systems generally have similar logical components, such as inodes, superblocks,
and journals. To enable fair comparison, we partition each file system into nine logical
components (Table II).

Figure 6 shows the percentage of bugs versus the percentage of code for each of the
logical components across all file systems and versions. Within a plot, if a point is
above the y = x line, it means that a logical component (e.g., inodes) has more than
its expected share of bugs, hinting at its complexity; a point below said line indicates
a component (e.g., a tree) with relatively few bugs per line of code, thus hinting at its
relative ease of implementation.

We make the following observations. First, for all file systems, the file, inode, and
super components have a high bug density. The file component is high in bug density
either due to bugs on the fsync path (Ext3) or custom file I/O routines added for higher
performance (XFS, Ext4, ReiserFS, JFS), particularly so for XFS, which has a custom

ACM Transactions on Storage, Vol. 10, No. 1, Article 3, Publication date: January 2014.

�

�

�

�

�

�

�

�

3:10 L. Lu et al.

Fig. 6. File-system code and bug correlation. This figure shows the correlation between code and bugs. The
x-axis shows the average percent of code of each component (over all versions); the y-axis shows the percent
of bugs of each component (over all versions).

buffer cache and I/O manager for scalability [Sweeney et al. 1996]. The inode and su-
perblock are core metadata structures with rich and important information for files
and file systems, which are widely accessed and updated; thus, it is perhaps unsur-
prising that a large number of bugs arise therein (e.g., forgetting to update a time field
in an inode, or not properly using a superblock configuration flag).

Second, transactional code represents a substantial percentage of each code base (as
shown by the relatively high x-axis values) and, for most file systems, has a propor-
tional amount of bugs. This relationship holds for Ext3 as well, even though Ext3 uses
a separate journaling module (JBD); Ext4 (with JBD2) has a slightly lower percentage
of bugs because it was built upon a more stable JBD from Linux 2.6.19. In summary,
transactions continue to be a double-edged sword in file systems: while transactions
improve data consistency in the presence of crashes, they often add many bugs due to
their large code bases.

Third, the percentage of bugs in tree components of XFS, Btrfs, ReiserFS, and JFS
is surprisingly small compared to code size. One reason may be the care taken to im-
plement such trees (e.g., the tree code is the only portion of ReiserFS filled with asser-
tions). File systems should be encouraged to use appropriate data structures, even if
they are complex, because they do not induce an inordinate amount of bugs.

ACM Transactions on Storage, Vol. 10, No. 1, Article 3, Publication date: January 2014.

�

�

�

�

�

�

�

�

A Study of Linux File System Evolution 3:11

Table III. Bug Pattern Classification

Type Sub-Type Description

S
em

an
ti

c State Incorrectly update or check file-system state
Logic Wrong algorithm/assumption/implementation

Config Missed configuration
I/O Timing Wrong I/O requests order

Generic Generic semantic bugs: wrong type, typo
C

on
cu

rr
en

cy

Atomicity The atomic property for accesses is violated
Order The order of multiple accesses is violated

Deadlock Deadlock due to wrong locking order
Miss unlock Miss a paired unlock

Double unlock Unlock twice
Wrong lock Use the wrong lock

M
em

or
y

Resource leak Fail to release memory resource
Null pointer Dereference null pointer
Dangling Pt Dereference freed memory
Uninit read Read uninitialized variables
Double free Free memory pointer twice

Buf overflow Overrun a buffer boundary

E
rr

or
C

od
e Miss Error Error code is not returned or checked

Wrong Error Return or check wrong error code

This table shows the classification and definition of file-system bugs. There
are four big categories based on root causes and further subcategories for
detailed analysis.

Although bug patches also relate to feature patches, it is difficult to correlate them
precisely. Code changes partly or totally overlap each other over time. A bug patch may
involve both old code and recent feature patches.

Summary. The file, inode, and superblock components contain a disproportionally
large number of bugs; transactional code is large and has a proportionate number of
bugs; tree structures are not particularly error-prone, and should be used when needed
without much worry.

4.3. Bug Patterns

To build a more reliable file system, it is important to understand the type of bugs that
are most prevalent and the typical patterns across file systems. Since different types
of bugs require different approaches to detect and fix, these fine-grained bug patterns
provide useful information to developers and tool builders alike.

We partition file-system bugs into four categories based on their root causes as
shown in Table III. The four major categories are semantic [Li et al. 2006; Sullivan
and Chillarege 1991], concurrency [Fonseca et al. 2010; Lu et al. 2008], memory [Chou
et al. 2001; Li et al. 2006; Sullivan and Chillarege 1991], and error code bugs [Gunawi
et al. 2008; Rubio-Gonzalez et al. 2009].

Figure 2(b) (page 6) shows the total number and percentage of each type of bug
across file systems. There are about 1800 total bugs, providing a great opportunity to
explore bug patterns at scale. Semantic bugs dominate other types (except for Reis-
erFS). Most semantic bugs require file-system domain knowledge to understand, de-
tect, and fix; generic bug-finding tools (e.g., Coverity [Bessey et al. 2010]) may have
a hard time finding these bugs. Concurrency bugs account for about 20% on aver-
age across file systems (except for ReiserFS), providing a stark contrast to user-level

ACM Transactions on Storage, Vol. 10, No. 1, Article 3, Publication date: January 2014.

�

�

�

�

�

�

�

�

3:12 L. Lu et al.

Fig. 7. Bug pattern evolution. This figure shows the bug pattern evolution for each file system over all
versions.

software where fewer than 3% of bugs are concurrency-related [Li et al. 2006; Sahoo
et al. 2010; Sullivan and Chillarege 1992]. ReiserFS stands out along these mea-
sures because of its transition, in Linux 2.6.33, away from the Big Kernel Lock (BKL),
which introduced a large number of concurrency bugs. There are also a fair number of
memory-related bugs in all file systems; their percentages are lower than that reported
in user-level software [Li et al. 2006; Sullivan and Chillarege 1992]. Many research
and commercial tools have been developed to detect memory bugs [Bessey et al. 2010;
Padioleau et al. 2008], and some of them are used to detect file-system bugs. Error code
bugs account for only 10% of total bugs.

Summary. Beyond maintenance, bug fixes are the most common patch type; over
half of file-system bugs are semantic bugs, likely requiring domain knowledge to find
and fix; file systems have a higher percentage of concurrency bugs compared with user-
level software; memory and error code bugs arise but in smaller percentages.

4.4. Bug Trends

File systems mature from the initial development stage to the stable stage over time,
by applying bug-fixing, performance and reliability patches. Various bug detection and
testing tools are also proposed to improve file-system stability. A natural question
arises: do file-system bug patterns change over time, and in what way?

ACM Transactions on Storage, Vol. 10, No. 1, Article 3, Publication date: January 2014.

�

�

�

�

�

�

�

�

A Study of Linux File System Evolution 3:13

Table IV. Bug Consequence Classification

Type Description

Corruption
On-disk or in-memory data structures are corrupted
(e.g., file data or metadata corruption, wrong statistics)

Crash
File system becomes unusable
(e.g., dereference null pointer, assertion failures, panics)

Error
Operation failure or unexpected error code returned
(e.g., failed write operation due to ENOSPC error)

Deadlock Wait for resources in circular chain

Hang
File system makes no progress
(e.g., infinite loop, live lock)

Leak
System resources are not freed after usage
(e.g., forget to free allocated file-system objects)

Wrong
Diverts from expectation, excluding the above ones
(e.g., undefined behavior, security vulnerability)

This table shows the definitions of various bug consequences. There are
seven categories based on impact: data corruption, system crashes, unex-
pected errors, deadlocks, hangs, resource leaks, and wrong behaviors.

Our results (Figure 7) show that within bugs, the relative percentage of semantic,
concurrency, memory, and error code bugs varies over time, but does not converge; a
great example is XFS, which under constant development goes through various cycles
of higher and lower numbers of bugs. Interesting exceptions occasionally arise (e.g.,
the BKL removal from ReiserFS led to a large increase in concurrency bugs in 2.6.33).
JFS does experience a decline in bug patches, perhaps due to its decreasing usage and
development [Wikipedia 2012]. JFS and ReiserFS both have relatively small developer
and user bases compared to the more active file systems XFS, Ext4 and Btrfs.

Summary. Bug patterns do not change significantly over time, increasing and de-
creasing cyclically; large deviations arise due to major structural changes.

4.5. Bug Consequences

As shown in Figure 2(b) (on page 6), there are a significant number of bugs in file
systems. But how serious are these file-system bugs? We now categorize each bug by
impact; such bug consequences include severe ones (data corruption, system crashes,
unexpected errors, deadlocks, system hangs and resource leaks), and other wrong be-
haviors. Table IV provides more detail on these categories.

Figure 8(a) shows the per-system breakdowns. Data corruption is the most predomi-
nant consequence (40%), even for well-tested and mature file systems. Crashes account
for the second largest percentage (20%); most crashes are caused by explicit calls to
BUG() or Assert() as well as null-pointer dereferences. If the patch mentions that the
crash also causes corruption, then we classify this bug with multiple consequences.
Unexpected errors and deadlocks occur quite frequently (just under 10% each on av-
erage), whereas other bug consequences arise less often. For example, exhibiting the
wrong behavior without more serious consequences accounts for only 5–10% of conse-
quences in file systems, whereas it is dominant in user applications [Li et al. 2006].

Given that file-system bugs are serious bugs, we were curious: do certain bug types
(e.g., semantic, concurrency, memory, or error code) exhibit different levels of severity?
Figure 8(b) shows the relationship between consequences and bug patterns. Seman-
tic bugs lead to a large percentage of corruptions, crashes, errors, hangs, and wrong
behaviors. Concurrency bugs are responsible for nearly all deadlocks (almost by def-
inition) and a fair percentage of corruptions and hangs. Memory bugs lead to many

ACM Transactions on Storage, Vol. 10, No. 1, Article 3, Publication date: January 2014.

�

�

�

�

�

�

�

�

3:14 L. Lu et al.

Fig. 8. Bug consequences. This figure displays the breakdown of bug consequences for file systems and bug
patterns. The total number of consequences is shown on top of each bar. A single bug may cause multiple
consequences; thus, the number of consequences instances is slightly higher than that of bugs in Figure 2(b).

memory leaks (as expected) and a fair amount of crashes. Finally, error code bugs lead
to a relatively small percentage of corruptions, crashes, and (unsurprisingly) errors.

Summary. File-system bugs cause severe consequences; corruptions and crashes
are most common; wrong behavior is uncommon; semantic bugs can lead to signif-
icant amounts of corruptions, crashes, errors, and hangs; all bug types have severe
consequences.

4.6. Bug Pattern Examples and Analysis

To gain further insight into the different classes of bugs, we now describe each class
in more detail. We present examples of each and further break down each major class
(e.g., memory bugs) into smaller sub-classes (e.g., leaks, null-pointer dereferences, dan-
gling pointers, uninitialized reads, double frees, and buffer overflows).

4.6.1. Semantic Bugs. Semantic bugs are dominant in file systems, as shown in
Figure 2(b). Understanding these bugs often requires file-system domain knowledge.
Semantic bugs usually are difficult to categorize in an informative and general way.
We are the first to identify several common types of file-system specific semantic bugs
based on extensive analysis and careful generalization of many semantic bugs across
file systems. These common types and typical patterns provide useful guidelines for
analysis and detection of file-system semantic bugs. We partition the semantic bugs
into five categories as described in Table III, including state, logic, config, I/O timing
and generic. Figure 9(a) shows the percentage breakdown and total number of seman-
tic bugs; each is explained in detail in the following text.

File systems maintain a large amount of in-memory and on-disk state. Generally,
operations transform the file system from one consistent state to another; a mistaken
state update or access may lead to serious consequences. As shown in Figure 9(a),
these state bugs contribute to roughly 40% of semantic bugs. An example of a state bug
is shown in S1 of Table V, which misses an inode-field update. Specifically, the buggy

ACM Transactions on Storage, Vol. 10, No. 1, Article 3, Publication date: January 2014.

�

�

�

�

�

�

�

�

A Study of Linux File System Evolution 3:15

Fig. 9. Detailed bug patterns. The detailed classification for each bug pattern; total number of bugs is
shown on top of each bar.

version of ext3 rename() does not update the mtime and ctime of the directory into
which the file is moved, leaving metadata in an incorrect state.

There are also numerous logic bugs, which arise via the use of wrong algorithms,
bad assumptions, and incorrect implementations. An example of a wrong algorithm
is shown in S2 of Table V: find group other() tries to find a block group for inode
allocation, but does not check all candidate groups; the result is a possible ENOSPC
error even when the file system has free inodes.

File-system behavior is also affected by various configuration parameters, such as
mount options and special hardware support. Unfortunately, file systems often forget

ACM Transactions on Storage, Vol. 10, No. 1, Article 3, Publication date: January 2014.

�

�

�

�

�

�

�

�

3:16 L. Lu et al.

Table V. Semantic Bug Code Examples

ext3/namei.c, 2.6.26 State (S1)
1 ext3 rename(...){
2 + new dir->i ctime = CURRENT TIME SEC;

3 + new dir->i mtime = CURRENT TIME SEC;

4 + ext3 mark inode dirty(handle, new dir);

ext3/ialloc.c, 2.6.4 Logic (S2)
1 find group other(...){
2 - group = parent group + 1;

3 - for (i = 2; i < ngroups; i++) {
4 + group = parent group;

5 + for (i = 0; i < ngroups; i++) {

ext4/super.c, 2.6.37 Configuration (S3)
1 ext4 load journal(...){
2 - if (journal devnum && ...)

3 + if (!read only && journal devnum ...)

4 es->s journal dev = devnum;

reiserfs/super.c, 2.6.6 I/O Timing (S4)
1 reiserfs write super lockfs(...){
2 journal mark dirty(&th, s, ...);

3 reiserfs block writes(&th);

4 - journal end(&th, s, 1);

5 + journal end sync(&th, s, 1);

ext3/resize.c, 2.6.17 Generic (S5)
1 setup new group blocks(...){
2 lock buffer(bh);

3 - memcpy(gdb->b data, sbi->s group desc[i], bh->b size);

4 + memcpy(gdb->b data, sbi->s group desc[i]->b data, bh->b size);

5 unlock buffer(bh);

6 ext3 journal dirty metadata(handle, gdb);

This table shows five code examples of semantic bugs. One example for each cate-
gory: state, logic, config, I/O timing, and generic.

or misuse such configuration information (about 10% to 15% of semantic bugs are of
this flavor). A semantic configuration bug is shown in S3 of Table V; when Ext4 loads
the journal from disk, it forgets to check if the device is read-only before updating the
on-disk superblock.

Correct I/O request ordering is critical for crash consistency in file systems. The
I/O timing category contains bugs involving incorrect I/O ordering. For example, in
ordered journal mode, a bug may flush metadata to disk before the related data blocks
are persisted. We found that only a small percentage of semantic bugs (3–9%) are I/O
timing bugs; however, these bugs can lead to potential data loss or corruption. An I/O
timing bug is shown in S4 of Table V. ReiserFS is supposed to wait for the submitted
transaction to commit synchronously instead of returning immediately.

A fair amount of generic bugs also exist in all file systems, such as using the wrong
variable type or simple typos. These bugs are general coding mistakes (such as compar-
ing unsigned variable with zero [Wang et al. 2012]), and may be fixed without much
file-system knowledge. A generic semantic bug is shown in S5 of Table V. In Ext3,

ACM Transactions on Storage, Vol. 10, No. 1, Article 3, Publication date: January 2014.

�

�

�

�

�

�

�

�

A Study of Linux File System Evolution 3:17

sbi->s group desc is an array of pointers to buffer head. However, at line 3, memcpy
uses the address of buffer head, which will corrupt the file system.

Summary. Incorrect state update and logic mistakes dominate semantic bug pat-
terns; configuration errors are also not uncommon; incorrect I/O orderings are rare
(but can have serious consequences); generic bugs require the least file-system knowl-
edge to understand.

4.6.2. Concurrency Bugs. Concurrency bugs have attracted a fair amount of attention
in the research community as of late [Fonseca et al. 2010; Jula et al. 2008; Lu et al.
2008; Wang et al. 2008; Xiong et al. 2010]. To better understand file-system concur-
rency bugs, we classify them into six types as shown in Table III (on page 11): atomic-
ity violations, deadlocks, order violations, missed unlocks, double unlocks, and wrong
locks.

Figure 9(b) shows the percentage and total number of each category of concurrency
bugs. Atomicity violation bugs are usually caused by a lack of proper synchronization
methods to ensure exclusive data access, often leading to data corruption.

An example of an atomicity violation bug in Ext4 is shown in C1 of Table VI. For
this bug, when two CPUs simultaneously allocate blocks, there is no protection for the
i cached extent structure; this atomicity violation could thus cause the wrong location
on disk to be read or written. A simple spin-lock resolves the bug.

There are a large number of deadlocks in file systems (about 40%). Two typical
causes are the use of the wrong kernel memory allocation flag and calling a blocking
function when holding a spin lock. These patterns are not common in application-level
deadlocks, and thus knowledge of these patterns is useful to both developers (who
should be wary of such patterns) and tool builders (who should detect them). Many
deadlocks are found in ReiserFS, once again due to the BKL. The BKL could be ac-
quired recursively; replacing it introduced a multitude of locking violations, many of
which led to deadlock.

A typical memory-related deadlock is shown in C2 of Table VI. Btrfs uses
extent readpages() to read free space information; however, it should not use
GFP KERNEL flag to allocate memory, since the VM memory allocator kswapd will re-
cursively call into file-system code to free memory. The fix changes the flag to GFP NOFS
to prevent VM re-entry into file-system code.

A noticeable percentage of order violation bugs exist in all file systems. An example
of an order concurrency bug is shown in C3 of Table VI. The kernel memory cache
ext4 pspace cachep may be released by call rcu() callbacks. Thus, Ext4 must wait
for the release to complete before destroying the structure.

Missing unlocks happen mostly in exit or failure paths (e.g., putting resource re-
leases at the end of functions with goto statements). C4 of Table VI shows a missing-
unlock bug. ext3 group add() locks the super block (line 1) but forgets to unlock on an
error (line 4).

The remaining two categories account for a small percentage. A double unlock ex-
ample is shown in C5 of Table VI. The double unlock (line 2 and line 5) of XFS inode
ip results in a reproduced deadlock on platforms which do not handle double unlock
nicely. Using wrong locks also happens. For example, as shown in C6 of Table VI, Ext3
should lock the group descriptor lock instead of the block bitmap’s lock when updating
the group descriptor.

Summary. Concurrency bugs are much more common in file systems than in
user-level software. Atomicity and deadlock bugs represent a significant majority of

ACM Transactions on Storage, Vol. 10, No. 1, Article 3, Publication date: January 2014.

�

�

�

�

�

�

�

�

3:18 L. Lu et al.

Table VI. Concurrency Bug Code Examples

ext4/extents.c, 2.6.30 Atomicity (C1)
1 ext4 ext put in cache(...){
2 + spin lock(i block reservation lock);
3 cex = &EXT4 I(inode)->i cached extent;
4 cex->ec block = block;
5 cex->ec len = len;
6 cex->ec start = start;
7 + spin unlock(i block reservation lock);

btrfs/extent io.c, 2.6.39 Deadlock (C2)
1 extent readpages(...){
2 if (!add to page cache lru(page, mapping,
3 - page->index, GFP KERNEL)) {
4 + page->index, GFP NOFS)) {
5 extent read full page(...);

ext4/mballoc.c, 2.6.31 Order (C3)
1 exit ext4 mballoc(...){
2 + /*
3 + * Wait for completion of call rcu()’s on ext4 pspace cachep
4 + * before destroying the slab cache.
5 + */
6 + rcu barrier();
7 kmem cache destroy(ext4 pspace cachep);

ext3/resize.c, 2.6.17 Miss Unlock (C4)
1 lock super(sb);
2 if (input->group != sbi->s groups count){
3
4 + unlock super(sb);
5 err = -EBUSY;
6 goto exit journal;

xfs/xfs dfrag.c, 2.6.30 Double Unlock (C5)
1 xfs swap extents(...){
2 xfs iunlock(ip, ...);
3
4 - out unlock:
5 - xfs iunlock(ip, ...);
6 out:
7 return error;
8 + out unlock:
9 + xfs iunlock(ip, ...);
10 + goto out;

ext3/resize.c, 2.6.24 Wrong Lock (C6)
1 setup new group blocks(...){
2 - lock buffer(bh);
3 + lock buffer(gdb);
4 memcpy(gdb->b data, sbi->s group desc[i]->b data, gdb->b size);
5 - unlock buffer(bh);
6 + unlock buffer(gdb);

This table shows six code examples of concurrency bugs. One example for each cat-
egory: atomicity violations, deadlocks, order violations, missed unlocks, double un-
locks, and wrong locks.

ACM Transactions on Storage, Vol. 10, No. 1, Article 3, Publication date: January 2014.

�

�

�

�

�

�

�

�

A Study of Linux File System Evolution 3:19

concurrency bugs; many deadlock bugs are caused by wrong kernel memory-allocation
flags; most missing unlocks happen on exit or failure paths.

4.6.3. Memory Bugs. Memory-related bugs are common in many source bases, and not
surprisingly have been the focus of many bug detection tools [Bessey et al. 2010;
Padioleau et al. 2008]. We classify memory bugs into six categories, as shown in
Table III: resource leaks, null pointer dereferences, dangling pointers, uninitialized
reads, double frees, and buffer overflows.

Resource leaks are the most dominant, over 40% in aggregate; in contrast, studies of
user-level programs show notably lower percentages [Li et al. 2006; Sahoo et al. 2010;
Sullivan and Chillarege 1992]. We find that roughly 70% of resource leaks happen
on exit or failure paths; we investigate this further later (Section 4.7). An example
of resource leaks (M1 of Table VII) is found in btrfs new inode() which allocates an
inode but forgets to free it upon failure.

As we see in Figure 9(c), null-pointer dereferences are also common in both mature
and young file systems. An example is shown in M2 of Table VII; a return statement
is missing, leading to a null-pointer dereference.

Dangling pointers have a sizeable percentage across file systems. A Btrfs example is
shown in M3 of Table VII. After callling submit bio at line 2, the bio structure can be
released at any time. Checking the bio flags at line 3 may give a wrong answer or lead
to a crash.

Uninitialized reads are popular in most file systems, accounting for about 16% of all
memory bugs. An Ext4 example is shown in M4 of Table VII. Ext4 should should zero
out inode’s tv nsec, otherwise stat() will return garbage in the nanosecond compo-
nent of timestamps.

Double free and buffer overflow only account for a small percentage. M5 of Table VII
shows a double free bug in Ext4. The while loop contains a goto statement (line 4) to
cleanup, which also frees b entry name at line 9. To eliminate the potential double free
on this error path, Ext4 sets b entry name to NULL at line 6.

Summary. Resource leaks are the largest category of memory bug, significantly
higher than that in user-level applications; null-pointer dereferences are also com-
mon; failure paths contribute strongly to these bugs; many of these bugs have simple
fixes.

4.6.4. Error Code Bugs. File systems need to handle a wide range of errors, includ-
ing memory-allocation failures, disk-block allocation failures, I/O failures [Bairava-
sundaram et al. 2007, 2008], and silent data corruption [Prabhakaran et al. 2005].
Handling such faults, and passing error codes through a complex code base, has proven
challenging [Gunawi et al. 2008; Rubio-Gonzalez et al. 2009]. Here, we further break
down error-code errors.

We partition the error code bugs into missing error codes and wrong error codes as
described in Table III. Figure 9(d) shows the breakdown of error code bugs. Missing
errors are generally twice as prevalent as wrong errors (except for JFS, which has few
of these bugs overall).

A missing error code example is shown in E1 of Table VIII. The routine
posix acl from disk() could return an error code (line 2). However, without error
checking, acl is accessed and thus the kernel crashes (line 3).

An example of a wrong error code is shown in E2 of Table VIII. diAlloc()’s return
value should be -EIO. However, in line 3, the original code returns the close (but wrong)
error code EIO; callers thus fail to detect the error.

Summary. Error handling bugs occur in two flavors, missing error handling or in-
correct error handling; the bugs are relatively simple in nature.

ACM Transactions on Storage, Vol. 10, No. 1, Article 3, Publication date: January 2014.

�

�

�

�

�

�

�

�

3:20 L. Lu et al.

Table VII. Memory Bug Code Examples

btrfs/inode.c, 2.6.30 Resource Leak (M1)

1 btrfs new inode(...){
2 inode = new inode(...);

3 ret = btrfs set inode index(...);

4 - if (ret)

5 - return ERR PTR(ret);

6 + if (ret) {
7 + iput(inode);

8 + return ERR PTR(ret);

9 + }

ext3/super.c, 2.6.7 Null Pointer (M2)

1 ext3 get journal(...){
2 if (!journal) {
3

4 + return NULL;

5 }
6 journal->j private = sb;

btrfs/volumes.c, 2.6.34 Dangling Pointer (M3)

1 run scheduled bios(...){
2 - submit bio(cur->bi rw, cur);

3 if (bio rw flagged(cur, BIO RW SYNCIO))

4 num sync run++;

5 + submit bio(cur->bi rw, cur);

ext4/ext4.h, 2.6.38 Uninit Read (M4)

1 #define EXT4 EINODE GET XTIME (...){
2 if (EXT4 FITS IN INODE(...))

3 ext4 decode extra time(...);

4 + else

5 + (inode)->xtime.tv nsec = 0;

ext4/xattr.c, 2.6.33 Double Free (M5)

1 ext4 expand extra isize ea(...){
2 while (...){
3 if (error)

4 goto cleanup;

5 kfree(b entry name);

6 + b entry name = NULL;

7 }
8 cleanup:

9 kfree(b entry name);

This table shows five code examples of memory bugs. One
example for each category: resource leaks, null pointer
dereferences, dangling pointers, uninitialized reads, and
double frees.

4.7. The Failure Path

Many bugs we found arose not in common-case code paths but rather in more unusual
fault-handling cases [Gunawi et al. 2008; Saha et al. 2011; Yang et al. 2004]. This type
of error handling (i.e., reacting to disk or memory failures) is critical to robustness,

ACM Transactions on Storage, Vol. 10, No. 1, Article 3, Publication date: January 2014.

�

�

�

�

�

�

�

�

A Study of Linux File System Evolution 3:21

Table VIII. Error Code Bug Code Examples

reiserfs/xattr acl.c, 2.6.16 Miss Error (E1)

1 reiserfs get acl(...){
2 acl = posix acl from disk(...);

3 - *p acl = posix acl dup(acl);

4 + if (!IS ERR(acl))

5 + *p acl = posix acl dup(acl);

jfs/jfs imap.c, 2.6.27 Wrong Error (E2)

1 diAlloc(...){
2 jfs error(...);

3 - return EIO;

4 + return -EIO;

This table shows two code examples of error code
bugs. One example for each category: missing er-
ror codes and wrong error codes.

Table IX. Failure Related Bugs by File System

XFS Ext4 Btrfs Ext3 ReiserFS JFS
200 149 144 88 63 28

(39.1%) (33.1%) (40.2%) (38.4%) (39.9%) (35%)

This table shows the number and percentage of the bugs related to
failures, partitioned by file systems.

Table X. Failure Related Bugs by Bug Pattern

Semantic Concurrency Memory Error Code
283 93 117 179

(27.7%) (25.4%) (53.4%) (100%)

This table shows the number and percentage of the bugs re-
lated to failures, partitioned by bug patterns.

since bugs on failure paths can lead to serious consequences. We now quantify bug
occurrences on failure paths; Tables IX and Tables X present our accumulated results.

As we can see from the first table, roughly a third of bugs are introduced on failure
paths across all file systems. Even mature file systems such as Ext3 and XFS make a
significant number of mistakes on these rarer code paths.

When broken down by bug type in the second table, we see that roughly a quarter
of semantic bugs occur on failure paths, usually in the previously-defined state and
logic categories. Once a failure happens (e.g., an I/O fails), the file system needs to free
allocated disk resources and update related metadata properly; however, it is easy to
forget these updates, or perform them incorrectly, leading to many state bugs. In ad-
dition, wrong algorithms (logic bugs) are common; for example, when block allocation
fails, most file systems return ENOSPC immediately instead of retrying after committing
buffered transactions.

An example of a semantic bug on failure paths is shown in F1 of Table XI. When
Ext4 detects that multiple resizers are running on the file system at the same time, it
forgets to stop the journal to prevent further data corruption.

A quarter of concurrency bugs arise on failure paths. Sometimes, file systems forget
to unlock locks, resulting in deadlock. Moreover, when file systems output errors to
users, they sometimes forget to unlock before calling blocking error-output functions
(deadlock). These types of mistakes rarely arise in user-level code [Lu et al. 2008].

ACM Transactions on Storage, Vol. 10, No. 1, Article 3, Publication date: January 2014.

�

�

�

�

�

�

�

�

3:22 L. Lu et al.

Table XI. Code Examples of Bugs on Failure Paths

ext4/resize.c, 2.6.25 Semantic (F1)

1 ext4 group extend(...) {
2 ext4 warning(sb, "multiple resizers run on filesystem!");

3 unlock super(sb);

4 + ext4 journal stop(handle);

5 err = -EBUSY;

6 goto exit put;

ext4/mballoc.c, 2.6.27 Concurrency (F2)

1 mb free blocks(...) {
2 + ext4 unlock group(sb, e4b->bd group);

3 ext4 error(sb, ... "double-free of inode");

4 + ext4 lock group(sb, e4b->bd group);

btrfs/inode.c, 2.6.39 Memory (F3)

1 btrfs new inode(...) {
2 path = btrfs alloc path();

3 inode = new inode(root->fs info->sb);

4 - if (!inode)

5 + if (!inode) {
6 + btrfs free path(path);

7 return ERR PTR(-ENOMEM);

8 + }

This table shows three bug code examples of bugs on failure paths. One example
for each category: semantic, concurrency, and memory.

Such an example is shown in F2 of Table XI. ext4 error() is a blocking function,
which cannot be called with a spinlock held. A correct fix is to unlock (line 2) before
the blocking function and lock again (line 4) after that.

For memory bugs, most resource-leak bugs stem from forgetting to release allocated
resources when I/O or other failures happen. There are also numerous null-pointer
dereference bugs which incorrectly assume certain pointers are still valid after a fail-
ure. Finally (and obviously), all error code bugs occur on failure paths (by definition). A
typical example of memory leak bugs on failure path is shown in F3 of Table XI. Btrfs
forgets to release allocated memory for path (line 2) when inode memory allocation
fails. Thus, Btrfs should free path (line 6) before returning an error code.

It is difficult to fully test failure-handling paths to find all types of bugs. Most pre-
vious work has focused on memory resource leaks [Saha et al. 2011; Yang et al. 2004],
missing unlock [Saha et al. 2011; Yang et al. 2004] and error codes [Gunawi et al.
2008; Rubio-Gonzalez et al. 2009]; however, existing work can only detect a small por-
tion of failure-handling errors, especially omitting a large amount of semantic bugs
on failure paths. Our results provide strong motivation for improving the quality of
failure-handling code in file systems.

Summary. A high fraction of bugs occur due to improper behavior in the presence
of failures or errors across all file systems; memory-related errors are particularly
common along these rarely-executed code paths; a quarter of semantic bugs are found
on failure paths.

ACM Transactions on Storage, Vol. 10, No. 1, Article 3, Publication date: January 2014.

�

�

�

�

�

�

�

�

A Study of Linux File System Evolution 3:23

Table XII. Performance Patch Type

Type Description
Inefficient usage of synchronization methods

Synchronization (e.g., removing unnecessary locks, using
smaller locks, using read/write locks)

Access Apply smarter access strategies
Optimization (e.g., caching metadata and statistics, avoiding

unnecessary I/O and computing)

Schedule
Improve I/O operations scheduling
(e.g., batching writes, opportunistic readahead)
Scale on-disk and in-memory data structures

Scalability (e.g., using trees or hash tables, per block group
structures, reducing memory usage of inodes)

Locality
Overcome suboptimal data block allocations
(e.g., reducing file fragmentation, clustered I/Os)

Other
Other performance improvement techniques
(e.g., reducing function stack usage)

This table shows the classification and definition of performance patches.
There are six categories: synchronization (sync), access optimization (ac-
cess), scheduling (sched), scalability (scale), locality (locality), and other.

5. PERFORMANCE AND RELIABILITY

A small but important set of patches improve performance and reliability, which
are quantitatively different than bug patches (Figure 3). Performance and reliability
patches account for 8% and 7% of patches respectively.

5.1. Performance Patches

Performance is critical for all file systems. Performance patches are proposed to im-
prove existing designs or implementations. We partition these patches into six cate-
gories as shown in Table XII, including synchronization (sync), access optimization
(access), scheduling (sched), scalability (scale), locality (locality), and other. Figure 10(a)
shows the breakdown.

Synchronization-based performance improvements account for over a quarter of all
performance patches across file systems. Typical solutions used include removing a
pair of unnecessary locks, using finer-grained locking, and replacing write locks with
read/write locks. A sync patch is shown in P1 of Table XIII; ext4 fiemap() uses write
instead of read semaphores, limiting concurrency.

Access patches use smarter strategies to optimize performance, including caching
and work avoidance. For example, Ext3 caches metadata stats in memory, avoiding
I/O. Figure 10(a) shows access patches are popular. An example Btrfs access patch is
shown in P2 of Table XIII; before searching for free blocks, it first checks whether there
is enough free space, avoiding unnecessary work.

Sched patches improve I/O scheduling for better performance, such as batching of
writes, opportunistic readahead, and avoiding unnecessary synchrony in I/O. As can
be seen, sched has a similar percentage compared to sync and access. An interesting
example of sched patch is shown in P3 of Table XIII. A little mistake in a previous bug
fixing patch is making all transactions synchronous, which reduces Ext3 performance
to comical levels.

Scale patches utilize scalable on-disk and in-memory data structures, such as hash
tables, trees, and per block-group structures. XFS has a large number of scale patches,
as scalability was always its priority. An example Ext4 scale patch is shown in P4

ACM Transactions on Storage, Vol. 10, No. 1, Article 3, Publication date: January 2014.

�

�

�

�

�

�

�

�

3:24 L. Lu et al.

Fig. 10. Performance and reliability patches. This figure shows the performance and reliability patterns.
The total number of patches is shown on top of each bar.

of Table XIII. Ext4 uses ext4 lblk t (32 bits) instead of sector t (64 bits) for logical
blocks, saving unnecessary wasted memory in ext4 inode info structure.

Locality patches overcome suboptimal data locality on disk, such as reducing file
fragmentation, improving the data block allocation algorithm. A locality patch of Btrfs
is shown in P5 of Table XIII. Btrfs uses larger metadata clusters for SSD devices to
improve write performance (overwrite the whole SSD block to avoid expensive erase
overhead). For spinning disks, Btrfs uses smaller metadata clusters to get better fsck
performance.

There are also other performance improvement techniques, such as reducing func-
tion stack usage and using slab memory allocator. As shown in P6 of Table XIII,
XFS dynamically allocates a xfs dir2 put args t structure to reduce stack pressure
in function xfs dir2 leaf getdents.

Summary. Performance patches exist in all file systems; sync, access, and sched each
account for a quarter of the total; many of the techniques used are fairly standard (e.g.,
removing locks); while studying new synchronization primitives, we should not forget
about performance.

5.2. Reliability Patches

Finally, we study our last class of patch, those that aim to improve file-system reliabil-
ity. Different from bug-fix patches, reliability patches are not utilized for correctness.
Rather, for example, such a patch may check whether the super block is corrupted
before mounting the file system; further, a reliability patch might enhance error prop-
agation [Gunawi et al. 2008] or add more debugging information. Table XIV presents
the classification of these reliability patches, including adding assertions and other
functional robustness (robust), corruption defense (corruption), error enhancement
(error), annotation (annotation), and debugging (debug). Figure 10(b) displays the
distributions.

Robust patches check permissions, enforce file-system limits, and handle extreme
cases in a more friendly manner. Btrfs has the largest percentage of these patches,

ACM Transactions on Storage, Vol. 10, No. 1, Article 3, Publication date: January 2014.

�

�

�

�

�

�

�

�

A Study of Linux File System Evolution 3:25

Table XIII. Performance Patch Code Examples

ext4/extents.c, 2.6.31 Synchronization (P1)

1 ext4 fiemap(...){
2 - down write(&EXT4 I(inode)->i data sem);

3 + down read(&EXT4 I(inode)->i data sem);

4 error = ext4 ext walk space(...);

5 - up write(&EXT4 I(inode)->i data sem);

6 + up read(&EXT4 I(inode)->i data sem);

btrfs/free-space-cache.c, 2.6.39 Access Optimization (P2)

1 btrfs find space cluster(...){
2 + if (bg->free space < min bytes){
3 + spin unlock(&bg->tree lock);

4 + return -ENOSPC;

5 + }
6 /* start to search for blocks */

ext3/xattr.c, 2.6.21 Schedule (P3)

1 ext3 xattr release block(...){
2 error = ext3 journal dirty metadata(handle, bh);

3 - handle->h sync = 1;

4 + if (IS SYNC(inode))

5 + handle->h sync = 1;

ext4/ext4.h, 2.6.38 Scalability (P4)

1 struct ext4 inode info {
2 unsigned int i allocated meta blocks;

3 - sector t i da metadata calc last lblock;

4 + ext4 lblk t i da metadata calc last lblock;

btrfs/extent-tree.c, 2.6.29 Locality (P5)

1 find free extent(...) {
2 int empty cluster = 2 * 1024 * 1024;

3

4 if (data & BTRFS BLOCK GROUP METADATA) {
5 - empty cluster = 64 * 1024;

6 + if (!btrfs test opt(root, SSD))

7 + empty cluster = 64 * 1024;

xfs/xfs dir2 leaf.c, 2.6.17 Other (P6)

1 xfs dir2 leaf getdents(...) {
2 int nmap;

3 - xfs dir2 put args t p;

4 + xfs dir2 put args t *p;

This table shows the code examples of performance patches. One ex-
ample for each category: sync, access,sched, scale, locality, and other.

likely due to its early stage of development. A robust patch is shown in R1 of Table XV.
JFS forbids users to change file flags on quota files, avoiding unnecessary problems
caused by users.

Corruption defense patches validate the integrity of metadata when reading from
disk. For example, a patch to Ext4 checks that a directory entry is valid before

ACM Transactions on Storage, Vol. 10, No. 1, Article 3, Publication date: January 2014.

�

�

�

�

�

�

�

�

3:26 L. Lu et al.

Table XIV. Reliability Patch Type

Type Description
Enhance file-system robustness

Robust (e.g., boundary limits and access permission
checking, additional internal assertions)

Corruption Improve file systems’ ability to handle various
Defense possible corruptions

Error Improve original error handling (e.g., gracefully
Enhancement handling failures, more detailed error codes)

Annotation
Add endianness, user/kernel space pointer and lock
annotations for early bug detection

Debug Add more internal debugging or tracing support

This table shows the classification and definition of reliability patches.
There are five categories: functional robustness (robust), corruption de-
fense (corruption), error enhancement (error), annotation (annotation),
and debugging (debug).

traversing that directory. In general, many corruption patches are found at the I/O
boundary, when reading from disk. An example of a corruption defense patch of JBD2
(used by Ext4) is shown in R2 of Table XV. Since the journal may be too short due to
disk corruption, JBD2 refuses to load a journal if its length is not valid.

Error enhancement patches improve error handling in a variety of ways, such as
more detail in error codes, removing unnecessary error messages, and improving
availability, for example by remounting read-only or returning error codes instead of
crashing. This last class is common in all file systems, which each slowly replaced un-
necessary BUG() and assertion statements with more graceful error handling. A typical
example in Btrfs is shown R3 of Table XV. When the memory allocation at line 2 fails,
instead of calling BUG ON(1) to crash, Btrfs releases all allocated memory pages and
returns an appropriate error code.

Annotation patches label variables with additional type information (e.g.,
endianness) and locking rules to enable better static checking. ReiserFS uses lock
annotations to help prevent deadlock, whereas XFS uses endianness annotations for
numerous variable types. Debug patches simply add more diagnostic information at
failure-handling points within the file system.

Interestingly, reliability patches appear more ad hoc than bug patches. For bug
patches, most file systems have similar pattern breakdowns. In contrast, file systems
make different choices for reliability, and do so in a generally nonuniform manner.
For example, Btrfs focuses more on Robust patches, while Ext3 and Ext4 add more
Corruption defense patches.

Summary. We find that reliability patches are added to file systems over time as part
of hardening; most add simple checks, defend against corruption upon reading from
disk, or improve availability by returning errors instead of crashing; annotations help
find problems at compile time; debug patches add diagnostic information; reliability
patch usage, across all file systems, seems ad hoc.

6. CASE STUDY USING PATCHDB

The patch dataset constructed from our analysis of 5079 patches contains fine-grained
information, including characterization of bug patterns (e.g., which semantic bugs for-
get to synchronize data), detailed bug consequences (e.g., crashes caused by asser-
tion failures or null-pointer dereferences), incorrect bug fixes (e.g., patches that are
reverted after being accepted), performance techniques (e.g., how many performance

ACM Transactions on Storage, Vol. 10, No. 1, Article 3, Publication date: January 2014.

�

�

�

�

�

�

�

�

A Study of Linux File System Evolution 3:27

Table XV. Reliability Patch Code Examples

jfs/ioctl.c, 2.6.24 Robust (R1)

1 jfs ioctl(...) {
2 + /* Is it quota file? Do not allow user to mess with it */

3 + if (IS NOQUOTA(inode))

4 + return -EPERM;

5 fs get inode flags(jfs inode);

jbd2/journal.c, 2.6.32 Corruption Defense (R2)

1 journal reset(...){
2 first = be32 to cpu(sb->s first);

3 last = be32 to cpu(sb->s maxlen);

4 + if (first + JBD2 MIN JOURNAL BLOCKS > last + 1){
5 + printk(KERN ERR "JBD: Journal too short");

6 + journal fail superblock(journal);

7 + return -EINVAL;

8 + }

btrfs/file.c, 2.6.38 Error Enhancement (R3)

1 prepare pages(...) {
2 pages[i] = grab cache page(...);

3 if (!pages[i]) {
4 - BUG ON(1);

5 + for (c = i - 1; c >= 0; c--) {
6 + unlock page(pages[c]);

7 + page cache release(pages[c]);

8 + }
9 + return -ENOMEM;

10 }

This table shows the code examples of reliability patches. One example for each
category: robust, corruption, and error.

patches remove unnecessary locks), and reliability enhancements (e.g., the location of
metadata integrity checks). These details enable further study to improve file-system
designs, propose new system language constructs, build custom bug-detection tools,
and perform realistic fault injection.

In this section, we show the utility of PatchDB by examining which patches are com-
mon across all file systems. Due to space concerns, we only highlight a few interesting
cases. A summary is found in Table XVI.

We first discuss specific common bugs. Within semantic bugs is forget sync, in which
a file system forgets to force data or metadata to disk. Most forget sync bugs relate
to fsync. Even for stable file systems, there are a noticeable number of these bugs,
leading to data loss or corruption under power failures. Another common mistake
is forget config, in which mount options, feature sets, or hardware support are over-
looked. File systems also return the ENOSPC error code despite the presence of free
blocks (early enospc); Btrfs has the largest number of these bugs, and even refers to
the Ext3 fix strategy in its patches. Even though semantic bugs are dominant in file
systems, few tools can detect semantic bugs due to the difficulty of specifying correct
behavior [Engler et al. 2001; Li and Zhou 2005; Li et al. 2004]. Fortunately, we find that
many semantic bugs appear across file systems, which can be leveraged to improve bug
detection.

ACM Transactions on Storage, Vol. 10, No. 1, Article 3, Publication date: January 2014.

�

�

�

�

�

�

�

�

3:28 L. Lu et al.

Table XVI. Common File-System Patches

Patch Type Typical Cases X
F

S

E
xt

4

B
tr

fs

E
xt

3

R
ei

se
r

J
F

S

Semantic

forget sync 17 11 6 11 5 1
forget config 43 43 23 16 8 1
early enospc 5 9 14 7

wrong log credit 6 8 1 1 1

Concurrency

lock inode update 6 5 2 4 4 2
lock sleep 8 8 1 1 8

wrong kmalloc flag 20 3 3 2 1
miss unlock 10 7 4 2 2 4

Memory
leak on failure 14 21 16 11 1 3

leak on exit 1 1 4 1

Error Code
miss I/O error 10 11 8 15 4 1

miss mem error 4 2 13 1 1
bad error access 3 8 2

Performance

remove lock 17 14 14 8 5 1
avoid redun write 6 4 5 4 2
check before work 8 5 15 2 1

save struct mem 3 9 1 3

Reliability
metadata validation 12 9 1 7 2 1

graceful handle 8 6 5 5 1 4

This table shows the classification and count of common patches across all
file systems.

For concurrency bugs, forgetting to lock an inode when updating it is common; per-
haps a form of monitors [Hoare 1974] would help. Calling a blocking function when
holding a spin lock (lock sleep) occurs frequently (also in drivers [Chou et al. 2001;
Palix et al. 2011]). As we saw earlier (Section 4.6.2), using the wrong kernel memory
allocation flag is a major source of deadlock (particularly XFS). All file systems miss
unlocks frequently, in contrast to user applications [Lu et al. 2008].

For memory bugs, leaks happen on failure or exit paths frequently. For error code
bugs, there are a large number of missed I/O error bugs. For example, Ext3, JFS,
ReiserFS, and XFS all ignore write I/O errors on fsync before Linux 2.6.9 [Prabhakaran
et al. 2005]; as a result, data could be lost even when fsync returned successfully.
Memory allocation errors are also often ignored (especially in Btrfs). Three file systems
mistakenly dereference error codes.

For performance patches, removing locks (without sacrificing correctness) is com-
mon. File systems also tend to write redundant data (e.g., fdatasync unnecessarily
flushes metadata). Another common performance improvement case is check before
work, in which missing specific condition checking costs unnecessary I/O or CPU
overhead.

Finally, for reliability patches, metadata validation (i.e., inode, super block, direc-
tory and journal) is popular. Most of these patches occur in similar places (e.g., when
mounting the file system, recovering from the journal, or reading an inode). Also com-
mon is replacing BUG() and Assert() calls with more graceful error handling.

Summary. Despite their diversity, file-system patches share many similarities
across implementations; some examples occur quite frequently; PatchDB affords new
opportunities to study such phenomena in great detail.

ACM Transactions on Storage, Vol. 10, No. 1, Article 3, Publication date: January 2014.

�

�

�

�

�

�

�

�

A Study of Linux File System Evolution 3:29

7. RELATED WORK

Operating-System Bugs. Faults in Linux have been studied [Chou et al. 2001; Palix
et al. 2011]. Static analysis tools are used to find potential bugs in Linux 1.0 to
2.4.1 [Chou et al. 2001] and Linux 2.6.0 to 2.6.33 [Palix et al. 2011]. Most detected
faults are generic memory and concurrency bugs. Both studies find that device drivers
contain the most faults, while Palix et al. [2011] also show that file-system errors are
rising. Yin et al. [2011] analyze incorrect bug-fixes in several operating systems. Our
work embellishes these studies, focusing on all file-system bugs found and fixed over
eight years and providing more detail on which bugs plague file systems.

User-Level Bugs. Various aspects of modern user-level open source software bugs
have also been studied, including patterns, impacts, reproducibility, and fixes [Fonseca
et al. 2010; Li et al. 2006; Lu et al. 2008; Sahoo et al. 2010; Xiong et al. 2010]. As our
findings show, file-systems bugs display different characteristics compared with user-
level software bugs, both in their patterns and consequences (e.g., file-system bugs
have more serious consequences than user-level bugs; concurrency bugs are much more
common). One other major difference is scale; the number of bugs (about 1800) we
study is larger than previous efforts [Fonseca et al. 2010; Li et al. 2006; Lu et al. 2008;
Sahoo et al. 2010; Xiong et al. 2010].

File-System Bugs. Several research projects have been proposed to detect and an-
alyze file-system bugs. For example, Yang et al. [2004, 2006] use model checking to
detect file-system errors; Gunawi et al. [2008] use static analysis techniques to de-
termine how error codes are propagated in file systems; Rubio-Gonzalez et al. [2009]
utilize static analysis to detect similar problems; Prabhakaran et al. [2005] study how
file systems handle injected failures and corruptions. Our work complements this work
with insights on bug patterns and root causes. Further, our public bug dataset provides
useful hints and patterns to aid in the development of new file-system bug-detection
tools.

8. CONCLUSIONS

We performed a comprehensive study of 5079 patches across six Linux file systems;
our analysis includes one of the largest studies of bugs to date (nearly 1800 bugs).
Our observations, summarized in the introduction and throughout, should be of utility
to file-system developers, systems-language designers, and tool makers; the careful
study of these results should result in a new generation of more robust, reliable, and
performant file systems.

REFERENCES

Lakshmi N. Bairavasundaram, Garth R. Goodson, Shankar Pasupathy, and Jiri Schindler. 2007. An analysis
of latent sector errors in disk drives. In Proceedings of the ACM SIGMETRICS Conference on Measure-
ment and Modeling of Computer Systems (SIGMETRICS’07).

Lakshmi N. Bairavasundaram, Garth R. Goodson, Bianca Schroeder, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. 2008. An analysis of data corruption in the storage stack. In Proceedings
of the 6th USENIX Symposium on File and Storage Technologies (FAST’08).

Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem, Charles Henri-Gros,
Asya Kamsky, Scott McPeak, and Dawson Engler. 2010. A few billion lines of code later: Using static
analysis to find bugs in the real world. Commun. ACM.

Steve Best. 2000. JFS Overview. http://jfs.sourceforge.net/project/pub/jfs.pdf.
Simona Boboila and Peter Desnoyers. 2010. Write endurance in flash drives: Measurements and analysis.

In Proceedings of the 8th USENIX Symposium on File and Storage Technologies (FAST’10).

ACM Transactions on Storage, Vol. 10, No. 1, Article 3, Publication date: January 2014.

�

�

�

�

�

�

�

�

3:30 L. Lu et al.

Jeff Bonwick and Bill Moore. 2007. ZFS: The last word in file systems.
http://opensolaris.org/os/community/zfs/docs/zfs last.pdf.

Florian Buchholz. 2006. The structure of the Reiser file system.
http://homes.cerias.purdue.edu/∼florian/reiser/reiserfs.php.

Bugzilla. 2012. Kernel bug tracker. http://bugzilla.kernel.org/.
Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem, and Dawson Engler. 2001. An empirical study of

operating system errors. In Proceedings of the 18th ACM Symposium on Operating Systems Principles
(SOSP’01). 73–88.

Coverity. 2011. Coverity Scan: 2011 Open source integrity report.
http://www.coverity.com/library/pdf/coverity-scan-2011-open-source-integrity-report.pdf.

Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Benjamin Chelf. 2001. Bugs as deviant behav-
ior: A general approach to inferring errors in systems code. In Proceedings of the 18th ACM Symposium
on Operating Systems Principles (SOSP’01). 57–72.

Pedro Fonseca, Cheng Li, Vishal Singhal, and Rodrigo Rodrigues. 2010. A study of the internal and external
effects of concurrency bugs. In Proceedings of the International Conference on Dependable Systems and
Networks (DSN’10).

FSDEVEL. 2012. Linux filesystem development list. http://marc.info/?l=linux-fsdevel.
Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. 2003. The Google file system. In Proceedings of

the 19th ACM Symposium on Operating Systems Principles (SOSP’03). 29–43.
L. M. Grupp, A. M. Caulfield, J. Coburn, S. Swanson, E. Yaakobi, P. H. Siegel, and J. K. Wolf. 2009. Char-

acterizing flash memory: Anomalies, observations, and applications. In Proceedings of the 42nd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO’09).

Haryadi S. Gunawi, Cindy Rubio-Gonzalez, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and Ben
Liblit. 2008. EIO: Error handling is occasionally correct. In Proceedings of the 6th USENIX Symposium
on File and Storage Technologies (FAST’08). 207–222.

C. A. R. Hoare. 1974. Monitors: An operating system structuring construct. Commun. ACM 17, 10.
Steve Jobs, Bertrand Serlet, and Scott Forstall. 2006. Keynote address. Apple World-Wide Developers

Conference.
Horatiu Jula, Daniel Tralamazza, Cristian Zamfir, and George Candea. 2008. Deadlock immunity: Enabling

systems to defend against deadlocks. In Proceedings of the 8th Symposium on Operating Systems Design
and Implementation (OSDI’08).

Hyojun Kim, Nitin Agrawal, and Cristian Ungureanu. 2012. Revisiting storage for smartphones. In Proceed-
ings of the 10th USENIX Symposium on File and Storage Technologies (FAST’12).

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, et al. 2009. seL4: Formal verification of an OS kernel. In
Proceedings of the 22nd ACM Symposium on Operating Systems Principles (SOSP’09).

Zhenmin Li and Yuanyuan Zhou. 2005. PR-Miner: Automatically extracting implicit programming rules
and detecting violations in large software code. In Proceedings of the 13th ACM SIGSOFT International
Symposium on Foundations of Software Engineering (FSE’05).

Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan Zhou. 2004. CP-Miner: A tool for finding copy-paste
and related bugs in operating system code. In Proceedings of the 6th Symposium on Operating Systems
Design and Implementation (OSDI’04).

Zhenmin Li, Lin Tan, Xuanhui Wang, Shan Lu, Yuanyuan Zhou, and Chengxiang Zhai. 2006. Have things
changed now? – An empirical study of bug characteristics in modern open source software. In Pro-
ceedings of the Workshop on Architectural and System Support for Improving Software Dependability
(ASID’06).

LKML. 2012. Linux kernel mailing list. http://lkml.org/.
Lanyue Lu, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and Shan Lu. 2013. A study of Linux

file system evolution. In Proceedings of the 11th USENIX Symposium on File and Storage Technologies
(FAST’13).

Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. 2008. Learning from mistakes — A comprehensive
study on real world concurrency bug characteristics. In Proceedings of the 13th International Conference
on Architectural Support for Programming Languages and Operating Systems (ASPLOS XIII).

Cathy Marshall. 2008. “It’s like a fire. You just have to move on”: Rethinking personal digital archiving. In
Proceedings of FAST’08.

Chris Mason. 2007. The Btrfs filesystem. oss.oracle.com/projects/btrfs/dist/documentation/btrfs-ukuug.pdf.
Avantika Mathur, Mingming Cao, Suparna Bhattacharya, Alex Tomas Andreas Dilge, and Laurent Vivier.

2007. The New Ext4 filesystem: Current status and future plans. In Proceedings of the Ottawa Linux
Symposium (OLS’07).

ACM Transactions on Storage, Vol. 10, No. 1, Article 3, Publication date: January 2014.

�

�

�

�

�

�

�

�

A Study of Linux File System Evolution 3:31

Marshall K. McKusick, William N. Joy, Sam J. Leffler, and Robert S. Fabry. 1984. A fast file system for
UNIX. ACM Trans. Comput. Syst. 2, 3, 181–197.

Marshall Kirk McKusick, Willian N. Joy, Samuel J. Leffler, and Robert S. Fabry. 1986. Fsck - The UNIX file
system check program. Unix System Manager’s Manual - 4.3 BSD Virtual VAX-11 Version.

Sean Morrissey. 2010. iOS Forensic Analysis: for iPhone, iPad, and iPod Touch. Apress.
Yoann Padioleau, Julia Lawall, René Rydhof Hansen, and Gilles Muller. 2008. Documenting and automating

collateral evolutions in Linux device drivers. In Proceedings of the EuroSys Conference (EuroSys’08).
Nicolas Palix, Gael Thomas, Suman Saha, Christophe Calves, Julia Lawall, and Gilles Muller. 2011. Faults

in Linux: Ten years later. In Proceedings of the 15th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS XV).

Vijayan Prabhakaran, Lakshmi N. Bairavasundaram, Nitin Agrawal, Haryadi S. Gunawi, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. 2005. IRON file systems. In Proceedings of the 20th ACM
Symposium on Operating Systems Principles (SOSP’05). 206–220.

Eric S. Raymond. 1999. The Cathedral & the Bazaar: Musings on Linux and Open Source by an Accidental
Revolutionary. O’Reilly.

Ohad Rodeh, Josef Bacik, and Chris Mason. 2012. BTRFS: The Linux B-tree Filesystem. Tech. rep. RJ10501.
IBM.

Mendel Rosenblum and John Ousterhout. 1992. The design and implementation of a log-structured file
system. ACM Trans. Comput. Syst. 10, 1, 26–52.

Cindy Rubio-Gonzalez, Haryadi S. Gunawi, Ben Liblit, Remzi H. Arpaci-Dusseau, and Andrea C. Arpaci-
Dusseau. 2009. Error propagation analysis for file systems. In Proceedings of the ACM SIGPLAN 2009
Conference on Programming Language Design and Implementation (PLDI’09).

Suman Saha, Julia Lawall, and Gilles Muller. 2011. Finding resource-release omission faults in Linux. In
Proceedings of the Workshop on Programming Languages and Operating Systems (PLOS’11).

Swarup Kumar Sahoo, John Criswell, and Vikram Adve. 2010. An empirical study of reported bugs in server
software with implications for automated bug diagnosis. In Proceedings of the 32nd ACM/IEEE Inter-
national Conference on Software Engineering (ICSE’10).

Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. 2010. The Hadoop distributed
file system. In Proceedings of the 26th IEEE Symposium on Mass Storage Systems and Technologies
(MSST’10).

Tony Simons. 2011. First Galaxy Nexus ROM available, features Ext4 support.
http://androidspin.com/2011/12/06/first-galaxy-nexus-rom-available-features-ext4-support/.

Mark Sullivan and Ram Chillarege. 1991. Software defects and their impact on system availability – A
study of field failures in operating systems. In Proceedings of the 21st International Symposium on
Fault-Tolerant Computing (FTCS-21).

Mark Sullivan and Ram Chillarege. 1992. A comparison of software defects in database management sys-
tems and operating systems. In Proceedings of the 22st International Symposium on Fault-Tolerant
Computing (FTCS-22). 475–484.

Adan Sweeney, Doug Doucette, Wei Hu, Curtis Anderson, Mike Nishimoto, and Geoff Peck. 1996. Scalability
in the XFS file system. In Proceedings of the USENIX Annual Technical Conference (USENIX’96).

Stephen C. Tweedie. 1998. Journaling the Linux ext2fs file system. In Proceedings of the 4th Annual Linux
Expo.

Xi Wang, Haogang Chen, Zhihao Jia, Nickolai Zeldovich, and M. Frans Kaashoek. 2012. Improving integer
security for systems. In Proceedings of the 10th Symposium on Operating Systems Design and Imple-
mentation (OSDI’12).

Yin Wang, Terence Kelly, Manjunath Kudlur, Stphane Lafortune, and Scott Mahlke. 2008. Gadara: Dynamic
deadlock avoidance for multithreaded programs. In Proceedings of the 8th Symposium on Operating
Systems Design and Implementation (OSDI’08).

Wikipedia. 2012. IBM Journaled file system. http://en.wikipedia.org/wiki/ JFS (file system).
Weiwei Xiong, Soyeon Park, Jiaqi Zhang, Yuanyuan Zhou, and Zhiqiang Ma. 2010. Ad hoc synchronization

considered harmful. In Proceedings of the 9th Symposium on Operating Systems Design and Implemen-
tation (OSDI’10).

Junfeng Yang, Can Sar, and Dawson Engler. 2006. EXPLODE: A lightweight, general system for finding
serious storage system errors. In Proceedings of the 7th Symposium on Operating Systems Design and
Implementation (OSDI’06).

Junfeng Yang, Paul Twohey, Dawson Engler, and Madanlal Musuvathi. 2004. Using model checking to
find serious file system errors. In Proceedings of the 6th Symposium on Operating Systems Design and
Implementation (OSDI’04).

ACM Transactions on Storage, Vol. 10, No. 1, Article 3, Publication date: January 2014.

�

�

�

�

�

�

�

�

3:32 L. Lu et al.

Zuoning Yin, Ding Yuan, Yuanyuan Zhou, Shankar Pasupathy, and Lakshmi Bairavasundaram. 2011. How
do fixes become bugs? – A comprehensive characteristic study on incorrect fixes in commercial and
open source operating systems. In Proceedings of the Joint Meeting of the European Software Engi-
neering Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engineering
(ESEC/FSE’11).

Received May 2013; accepted June 2013

ACM Transactions on Storage, Vol. 10, No. 1, Article 3, Publication date: January 2014.

